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ABSTRACT
Time-travel text search enriches standard text search by
temporal predicates, so that users of web archives can easily
retrieve document versions that are considered relevant to a
given keyword query and existed during a given time interval.
Different index structures have been proposed to efficiently
support time-travel text search. None of them, however, can
easily be updated as the Web evolves and new document
versions are added to the web archive.

In this work, we describe a novel index structure that
efficiently supports time-travel text search and can be main-
tained incrementally as new document versions are added to
the web archive. Our solution uses a sharded index organiza-
tion, bounds the number of spuriously read index entries per
shard, and can be maintained using small in-memory buffers
and append-only operations. We present experiments on
two large-scale real-world datasets demonstrating that main-
taining our novel index structure is an order of magnitude
more efficient than periodically rebuilding one of the existing
index structures, while query-processing performance is not
adversely affected.

Categories and Subject Descriptors
H.3.3 [Information Search & Retrieval]: Search process

General Terms
Experimentation, Algorithms, Performance

Keywords
Time-Travel Text Search, Index Maintenance, Web Archives

1. INTRODUCTION
In recent years, there has been an increasing awareness

that born-digital contents, such as those on the Web, are
ephemeral but often worth preserving. Organizations in-
volved in the preservation of web contents include non-profits
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(e.g., the Internet Archive [1] and the Internet Memory Foun-
dation [2]), for-profit companies, as well as national libraries
and universities. The motivations behind such web archives
are diverse and range from preservation of cultural heritage
to compliance with legal requirements.
Web archives typically contain multiple versions of every

document that reflect the evolution of its content over time.
Interfaces provided to users in order to access archived con-
tents, though, are still limited, for instance, to URL-based
lookup & browsing as in the Internet Archive’s Wayback
Machine or simple keyword search. Motivated by this, time-
travel text search has been proposed as an extension of stan-
dard text search by temporal predicates. Users can thus
combine a keyword query (e.g., financial crisis) with a time
interval (e.g., [2006, 2008]) to retrieve all document versions
from the archive that are considered relevant to the given
keywords and existed during the given time interval. Differ-
ent index structures [3, 4, 7] have been proposed to efficiently
support time-travel text search, incurring controllable over-
head either in terms of index size or response time when
compared to standard text search.
However, none of the existing index structures for time-

travel text search can easily be updated when additional
document versions are archived. To keep up with the state
of the web archive, they thus have to be rebuilt periodically.
While this used to be the case as well for standard inverted
indexes, their maintenance in the presence of insertions,
modifications, and deletions of documents is now fairly well-
understood [11, 19, 24].

Our approach put forward in this work efficiently supports
time-travel text search and handles additions of new docu-
ment versions to the archive. It distinguishes between active
versions, as the most recent and still current document ver-
sions, and archive versions, as the document versions already
superseded by a more recent version of the same document.
To search the active versions, a standard incrementally up-
datable inverted index [11, 18] is employed, which we will
not discuss further. Our focus instead is on searching the
archive versions. We propose a novel index structure to this
end, building on our own sharded index for time-travel text
search [4], and describe how it can be maintained incremen-
tally when document versions are superseded and thus need
to be migrated from the active index.
The original sharded index for time-travel text search re-

lies on a method to horizontally partition each index list,
so that any time-travel query can be processed without se-
quentially reading index entries that do not overlap with the
query time-interval. It then relaxes the horizontal partitions
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determined (the so-called shards), taking into account the
I/O characteristics of the storage infrastructure, encoded
as a parameter η reflecting the cost ratio between random
seeks and sequential reads. The method guarantees for every
relaxed shard that the expected number of wastefully read
index entries is bounded by η. We are more stringent in this
work and consider the worst case by bounding the maximum
number of wastefully read index entries instead. This allows
us to develop an online incremental sharding algorithm that
keeps only a small in-memory buffer for every shard in the
archive index. We show that our online algorithm is within
an approximation factor of (2− 2

η+2 ) and hence results in at
most two times the optimal number of relaxed shards.
We conducted experiments on the revision history of the

English Wikipedia and the UKGOV web archive, as two
large-scale real-world datasets. Our results show that incre-
mentally maintaining our novel index structure is an order
of magnitude more efficient than periodically rebuilding a
sharded index for time-travel text search. Query process-
ing performance, in addition, is not adversely affected and
even improves in some cases. We therefore believe that the
proposed approach provides the best of both worlds – up-
date ability and efficient query processing – two key features
needed when searching web archives but missing so far.
The rest of this paper unfolds as follows: Section 2 intro-

duces our model and notation. Section 3 recaps key ideas
behind the sharded index that we build upon. Section 4
describes our incremental sharding method to maintain the
index. Section 5 presents the overall architecture of our
system. Our experimental evaluation is the subject of Sec-
tion 6. Finally, we relate to existing research in Section 7
and conclude in Section 8.

2. DATA AND QUERY MODEL
We consider a collection D of versioned documents that

change over time. Each document d is uniquely identified by
an identifier idd. At time t, document d may have an active
version d∗ and zero or more archive versions 〈d1, d2, . . .〉.
Each (active or archive) version di of d comes with a valid-
time interval I(di) = [ begin(di), end(di) ) that denotes when
that version was the active version of d; for d∗, end(d∗) = ∞
and t ∈ I(d∗). We furthermore assume that all the I(di) are
disjoint.
The active version of a document turns into an archive

version when the document is re-crawled and either a new
active version is found or the document was removed from
the Web. In both cases, the end time of the old version is
set to the current time.
We consider time-travel queries over D that consist of a

set of terms Q = {q1, . . . , qm} and a time interval [bQ, eQ].
When evaluated, this query retrieves the set of document
versions that satisfy the keyword query Q and existed at any
time during the time interval [bQ, eQ].

3. INDEX ORGANIZATION
We now describe our index organization and briefly recap

the sharded index for time -travel text search [4] that we
build upon in this work.

Our system distinguishes between active versions, as those
that are the most recent and still current version of a docu-
ment, and archive versions, as those that have already been
superseded by a more recent version of the same document.

To search them, our system employs separate indexes, coined
active index and archive index.
Both our indexes are based on the established inverted

index [28] that associates each term with an index list.
Each entry in the index list, 〈idd, I(di), s〉, consists of
a document identifier idd, a valid-time interval, I(di) =
[begin(di), end(di)], and a payload s. The specifics of the
payload depend on the retrieval model and the types of
queries to be supported – it can be empty, a scalar value
(e.g., capturing term frequency), or include positional infor-
mation. When no confusion arises, we simply use begin(p)
and end(p) of an index entry p to refer to the valid-time
interval boundaries of the corresponding document version.
Queries that only ask for current information contained

in active versions can be processed using only the active
index, which corresponds to the live index that search engines
maintain on the current Web. Time-travel queries that
also ask for information from the past contained in archive
versions are processed using both the active index and the
archive index in combination.
The active index is implemented as an incrementally up-

datable inverted index [11, 18]. Depending on the fraction
of time-travel queries among all queries posed to the system,
index lists in the active index can be organized to efficiently
support queries on active versions or time-travel queries. For
the former, index entries may be ordered by their document
identifier to allow for more efficient query processing, possibly
together with additional structures [8, 12, 21, 26]. For the
latter, index entries may be ordered by the begin boundary
of their valid-time interval to support efficient filtering of too
recent document versions.
The archive index is implemented as a sharded index [4],

whose key ideas we now briefly recap. The sharded index
distributes entries in an index list over disjoint partitions
coined shards. Entries within a shard are ordered by the
begin boundary of their valid-time interval. In addition, each
shard comes with an impact list that maintains, for every
possible begin boundary bQ of a query time-interval, the
position of the earliest entry in the shard whose valid-time
interval contains the begin boundary bQ. In practice, impact
lists can be represented compactly and kept in main memory,
as described in [4].
When processing a time-travel query, all shards for the

query terms in Q are read from the position stored in their
impact list for the begin boundary bQ of the query time-
interval, as opposed to, from their beginning. Per shard this
involves one random seek to get to the indicated position
followed by a number of sequential reads. One can safely
stop reading a shard once the first index entry with a begin
boundary larger than eQ has been seen. The query processing
cost thus depends on the number of shards, each of which is
accessed with a random seek, and the total number of index
entries that are read sequentially. Every method that assigns
index entries to shards has to consider these two factors.
We now describe how index entries can be assigned to

shards so as to optimize query processing cost. Since the
assignment of index entries to shards solely depends on their
valid-time intervals, we describe it as an interval-to-shard
assignment problem and use the notions index entry and
interval interchangeably. Let us first introduce some basic
notation for intervals that we need in what follows. An
interval Ij is associated with a begin time begin(Ij) and an
end time end(Ij). We say that an interval I1 subsumes an
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interval I2 (for short: I1 � I2), if:

begin(I2) > begin(I1) ∧ end(I2) < end(I1) .

An index entry is said to be a wasted read, if it is accessed
during query processing although its valid-time interval does
not overlap with the query time-interval. Such a wasted read
may be caused when an interval I1 subsumes another interval
I2 in the same shard. Assuming that a shard contains only
these two intervals, the impact list entry for a begin boundary
bQ of the query time-interval after the end of I2 will point to
I1 which is stored before I2, and I2 will be read even though
it does not qualify as query result.

Since all shards for a term are accessed for any time-travel
query including the term, the cost incurred due to random
seeks is proportional to the number of shards per term. The
cost for random seeks and sequential reads can be traded-off
with two extremes. On one hand we can eliminate the cost
for all but one random seek by having only a single shard
per term. On the other hand, we can eliminate wasted reads
altogether by creating idealized shards. Idealized sharding
avoids subsumption entirely, i.e., there are no two intervals
I1 and I2 with I1 � I2 in a shard. The minimal number of
idealized shards for a given set of intervals can be determined
using a greedy algorithm, as described in [4].
The best performing solution is usually in between these

two extremes, taking into account the I/O characteristics
of the storage infrastructure housing the index. Cost-aware
sharding developed in [4] systematically allows for interval
subsumptions, while minimizing the overall number of shards.
It thus trades some additional wasted sequential reads for
a reduced number of random seeks. The method minimizes
the number of shards per index list (and hence the number
of random seeks) by systematically merging idealized shards.
It thereby ensures that the expected number of wasted se-
quential reads per shard is below a threshold η encoding the
cost ratio between random seeks and sequential reads.

4. INCREMENTAL SHARDING
Incremental sharding takes into account the relative costs

of random and sequential accesses by a more restrictive
bound on the number of subsumptions for a given shard. It
bounds the absolute number of subsumptions for a given
shards. This is opposed to cost-aware sharding in [4] where
the number of subsumptions per shard were on an average
limited to a system-wide parameter. A bound on the number
of subsumptions per shard translates to bounding the number
of sequential wasted reads. We term this restriction as the
bounded subsumption property. A shard is said to exhibit a
bounded subsumption property if an interval in that shard
does not subsume more than η intervals, where η is a system-
wide constant same as before. Formally,

Definition 1 (Bounded Subsumption). A shard S
is said to satisfy the bounded subsumption property of limit
η if each interval Ii ∈ S does not subsume more than η
intervals:

∀Ii ∈ S : | { Ij ∈ S | Ij �= Ii ∧ Ii � Ij} | ≤ η .

The problem of minimizing the number of random accesses
with a limited number of wasted sequential accesses can be
redefined in terms of minimizing the overall number of shards
such that each shard exhibits the bounded subsumption.
Thus, the problem definition becomes:

d1:v1

d2:v3

d3: v9

d4: v2

t2

t1

t3

t4

now

tnow

d4:v3

d4:v2 sent to Archive Indexing System d4:v3 in Live Index

term “v”

Figure 1: End time order of finalizing versions

Shard buffers

Inserted 
incoming 
interval

Appended 
popped 
interval

Archive Index Shards

buf(si)
si

Figure 2: Incremental sharding

Definition 2. Given a set of intervals I, partition I into
a minimal set of shards S = {S1, . . . , Sm}, ∀Ik ∈ Si, Ik ∈ I
where:

Si ∩ Sj = ∅ ∀Si, Sj ∈ S, i �= j⋃
i

Si = I

s.t. ∀Si ∈ S : Si satisfies bounded subsumption.

Before attempting to solve the above problem let us discuss
certain properties in an archive indexing setting. Firstly, the
archive setting is very specific in terms of arrival of the input
sequence, i.e., in the order of arrival of new versions to the
archive index. Whenever the end time of an existing version
is determined, it is sent to the archive indexing system (refer
Figure 1). Since versions are generated in the end time order,
the input intervals also follow the same order.
Secondly, we do not deal with deletions of versions since

a deletion of a document results in an entry in the archive
index for that document, and existing versions are never
removed. This means that the index steadily grows over time
with the older collection indexed by the archive index being
a subset of the current collection.
Finally, from the indexing point of view it is preferable

to have an updating scheme which appends newly created
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postings at the end of the index list. The major benefit of
an append operation is that the indexes built for the older
indexes can be used as partial solutions to build an up-to-
date archive index efficiently thus avoiding recomputation.
Recomputation of shards with a non-append based technique
(say cost-aware sharding) is expensive because it involves
processing the entire input (existing data along with the new
updates) thus limiting its applicability to an update aware
indexing system.

Another benefit with an append operation is the avoidance
of the expensive decompression and compression cycles in
building the new updated index. While merging two index
lists by employing recomputation the corresponding shards
of each term are completely decompressed to form usable
input for the sharding algorithm. After recomputing the
new set of shards are compressed back again for storage.
The most popular compression algorithms used in index list
compression are based on gap-encoding schemes which are
local schemes and hence append friendly. Hence, rather than
optimally solving the problem we look for an approach which
is based on an append only operation to the existing shards
and exploits the end time order of input arrival. In the
following subsection we introduce the incremental sharding
algorithm which apart from being incremental also has an
approximation guarantee.

4.1 Incremental Sharding Algorithm
We present the incremental sharding algorithm which is an

update aware incremental algorithm with a factor (2− 2
η+2 )

approximation algorithm(cf. Algorithm 1). Apart from
having the natural benefit of being an append only algorithm
it also exploits the end time arrival order of the intervals by
processing the intervals in that order thus avoiding expensive
sort operations on the input.

The algorithm processes intervals in the end time order (cf.
line 1) and creates or updates shards incrementally. It follows
a scheme of immediate assignment but deferred append of an
interval to a shard. For each shard we maintain a shard buffer
of size η + 1 and an shard begin time. The assignment of the
interval to a shard is based on the begin time of the shard
and the shard buffer defers the actual writing or appending of
the interval of the shard to satisfy the bounded subsumption
property. In other words the shard buffer maintains the
interval until it deems it right to be appended to the end of
the shard.

When an interval, I[i], is processed it is either assigned to
an existing shard based on the interval and shard begin times
(cf. line 15) or it results in the creation of a new shard (lines
7-10). The creation of a new shard involves setting the begin
time of the shard to zero and placing the chosen interval in
its shard buffer. Until the buffer reaches its capacity of η
the begin time of the shard remains zero. The shard begin
time is first updated only when the an interval is popped out
of it after the buffer reaches its capacity η + 1. When the
assignment for the interval is decided, say St, it is placed
in the respective shard buffer buf(St) (cf. line 19). The
incremental sharding chooses the shard whose begin time
has the least difference with the begin time of the incoming
interval (cf. line 15).
The shard buffers determine the relative position of the

intervals in the shard where it will be finally stored. The
insertions into the buffer are made to preserve the begin time
order (cf. line 19) which in turn ensures a begin time order

when intervals are removed from it. This is diagramatically
shown in Figure 2. Only the first interval or the interval
with the minimum begin time is removed from the buffer to
limit the buffer size to η + 1 (line 23) and it is appended
to the end of its corresponding shard St. The shard buffers
also ensure that no interval in a shard subsumes more than
η intervals. This is done by setting the begin time of a
shard St.begin to the first interval begin(first(buf(St)))(or
the interval with the least begin time) of the shard buffer as
in line 24. The interval with the minimum begin time in the
shard can subsume the maximum number of intervals and
any interval with a begin time lesser than it is dissallowed.
Note the use ∪ in lines 23 and 30 to indicate the append

operation on the shard that is logically organized as a list of
intervals in their begin time order.

Algorithm 1 Incremental Sharding Algorithm
1: Input: (i)η, (ii)I sorted in increasing order of end times
2: S = ∅ // incremental sharding
3:
4: for i = 1 .. |I| do
5: //creates new shard
6: if ¬∃S ∈ S : S.begin ≤ begin(I[i]) then
7: create new shard Snew and buf(Snew)
8: Snew.begin = 0
9: add I[i] to buf(Snew)
10: S = S ∪ {Snew}
11: end if
12:
13: //find the best candidate shard for assignment
14: Scand = {Si | Si ∈ S ∧ Si.begin ≤ begin(I[i])}
15: St = argmin

g ∈Scand

(begin(I[i])− g.begin)

16:
17: //update buffers and begin times of shards
18: if St �= Snew then
19: insert I[i] into buf(St) in begin time order
20: end if
21: if |buf(St)| = η + 1 then
22: //first element in the buffer finalized
23: St = St ∪ removefirst(buf(St))
24: St.begin = begin(first(buf(St)))
25: end if
26: end for
27:
28: //finally append the buffer intervals to the shards
29: for S ∈ S do
30: S = S ∪ buf(S)
31: end for
32:
33: Output: S is the incremental sharding.

4.2 Approximation Guarantee

Theorem 1. Incremental sharding is a (2− 2
η+2 ) approx-

imation.

We approach the proof by first proving two lemmas. As-
suming that incremental sharding produces m shards, we
construct a worst case scenario. For notational convenience
let us assume that shards are numbered according to their
creation times in incremental sharding, i.e., S1 was created
before S2 and so on.
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Lemma 1 (Descending Begin Times). If incremen-
tal sharding created a shard Si+1 after Si, then
Si.begin > Si+1.begin.

Proof. We prove this property by induction over increas-
ing number of intervals Ii ∈ I which are added in in end
time order, i.e, end(Ii+1) > end(Ii) .
i = 1 : For the first interval I1 the property holds since

there are no earlier shards.
i → i+ 1: Let there be n existing shards S = {S1 · · ·Sn}.

Depending on the begin time of the (i + 1)th interval
begin(Ii+1) we consider the following two cases:
Case 1: If begin(Ii+1) < Sk.begin , 1 ≤ k ≤ n, then

Ii+1 forms a new shard Snew and the begin of the shard
Snew.begin is less than all the existing shard begin times.
This proves the claim.

Case 2: Assuming ∃Sk : begin(Ii+1) ≥ Sk.begin and on
addition of Ii+1 to Sk there is a violation of the descending
begin time order of shards, i.e. , Sk.begin > Sk−1.begin. This
means that Sk−1.begin < begin(Ii+1) and Ii+1 should have
been assigned to Sk−1 due to a smaller difference according
to the induction hypothesis of Sk+1.begin > Sk.begin , ∀1 ≤
k < n.

Lemma 2 (Incremental subsumption). An interval
added to Si subsumes at least (i− 1)(η + 1) intervals.

Proof. Note that Si.begin refers to the time of the first
interval in the buffer of shard Si or the earliest begin time in
the shard buffer buf(S). By Lemma 1 we know that there is
an ordering of the shard begin times. Hence for an interval I
assigned to Si the following holds – begin(I) < Si−1.begin <
· · · < S1.begin. Since we assume end time arrival order of
intervals it subsumes all intervals in i−1 shards buffers, which
are S1, ..., Si−1. Further the fixed buffer size of η+1 results in
making the subsumptions lower bounded by (i−1)(η+1).

We recollect the Staircase Property of a shard as introduced
in [4] as a property which requires the intervals to be in their
begin time order and additionally disallowing subsumptions
among any pair of intervals in the shard. We further need to
introduce the notion of stalagtite sets and stalagtite groups.
A stalagtite set Λs is a set of time intervals such that,

∀p, q ∈ Λs, begin(p) ≤ begin(q) ⇒ end(p) > end(q).

Stalagtite groups (cf. Figure 3) are a collection of sets of
intervals such that choosing one interval from each of these
sets results in a stalagtite set.

Lemma 3 (Stalagtite grouping). Stalagtite group-
ing with a staircase property in each shard is the worst case
for incremental sharding.

Proof. From the previous lemma, any input resulting
in m shards from incremental sharding will have at least
intervals with η+1, 2(η+1), · · · , (m−1)(η+1) subsumptions
in S2, S3, · · · , Sm respectively. Let us suppose that the set
of subsumed intervals when the first interval added to Si

be represented as sub(Si). To reduce the overall number of
shards we should strive for a configuration with minimum
number of subsumptions. This is possible when sub(S1) ⊆
sub(S2) ⊆ · · · ⊆ sub(Sm) and |Si| = η + 1,∀i = 1, . . . ,m.
This arrangement forms a stalagtite group(cf. Figure 3) with
each of the groups having a cardinality of η + 1.

Additionally, each of these stalagtite groups should have a
staircase arrangement to allow for the maximum capacity - η -

...

Sm

Sm-1

S1� + 1

Figure 3: Stalagtite groups

Active Index
Archive Index

IMAI EMAI

Crawls

Figure 4: System architecture

out of place insertions. Any additional interval or misaligned
interval either increases subsumption or reduces capacity for
out of place insertions. Any removal of intervals on the other
hand result in contradiction to the original assumption that
there are m shards from incremental sharding.

Now we can complete the proof for Theorem 1.
Proof. From the Lemma 3 we know that there are m

stalagtite groups with each group residing in the shards
formed from incremental sharding. It is easy to see that none
of the optimal shards will have more than 2η + 1 intervals.
Thus we choose an assignment where we try to minimize
minimum number of shards, i.e., choose as many shards with
2η + 1 intervals as possible. One such assignment is when
we assign η of the η + 1 intervals of Si to Sm+1−i, ∀i ≤ m

2 .
The remaining m

2 intervals (an interval from each Si) can
then be placed in m

2(η+1) shards. Hence for m shards created
by incremental sharding we get a minimum of m

2 + m
2(η+1)

shards. Notice that we can have other arrangements which
give the same number of minimum shards. The ratio

|S|
OPT

=
m

m
2 + m

2(η+1)

= 2
(
1− 1

η + 2

)

proves that incremental sharding is a factor (2 − 2
η+2 )

approximation algorithm.

5. SYSTEM ARCHITECTURE
Figure 4 shows a high-level overview of the architecture of

a search engine using our incremental sharding method. It
consists of

• The active index for all active versions of documents,
consisting of an in-memory inverted list for each term
that keeps the active versions of documents containing
this.

• The archive index for all archive versions of documents,
consisting of an inverted list for each term that is
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organized in shards. The archive index consists of an
in-memory index IMAI and an on-disk index EMAI,
both organized in shards.

• A crawler that continuously crawls the target Web
sites, for example a predefined set of domains or the
complete Web.

When the crawler encounters a new document that has
been unknown so far, it adds it to the active index; this is
an inexpensive operation since the active index is in main
memory. When a document is found again, it is checked for
changes (using, for example, a fingerprinting technique such
as [9, 16]). If changes are detected, the active version of that
document turns into an archive version (with end time equal
to the crawl time) and is sent to the archive index, and index
entries for the new active version are added to the active
index.
The archived version is then added to the in-memory

archive index by first creating the corresponding postings for
each term, which are then added to the in-memory archive in-
dex using the incremental technique from Section 4. Figure 1
shows an example for this, where in a crawl at time tnow a
new version v3 for document d4 is detected. This results in
firstly adding a new version d4 : v3 with a begin time tnow to
the affected terms in the active index. Secondly, the end time
of v2 is finalized and the posting 〈d4 : v2, [t1, tnow], score 〉
with the complete interval information is send to the archive
indexing system. In the archive indexing system this posting
is processed by placing it in the shard buffer of term “v” and
updating the IMAI from the popped posting in the buffer as
shown in Figure 2. As soon as the in-memory index IMAI
is full, entries are merged into the disk-based archive index
EMAI, merging corresponding shards; this essentially cor-
responds to incremental maintenance of standard inverted
lists.

6. EXPERIMENTAL EVALUATION
All our algorithms were implemented in Java 1.6, within

the time-travel indexing system presented earlier in [4]. Ex-
periments were conducted on Dell PowerEdge M610 servers,
with 48 GB of main memory, and attached to a large disk
array through iSCSI.
The two data collections used in our experiments are:

(i) the English Wikipedia revision history, referred to as
the WIKI collection, which contains the edit history from
January 2001 until December 2005 excluding all the minor
edits, and (ii) a web archive, referred to as the UKGOV
collection, provided by the Internet Memory Foundation
(previously European Archive), consisting of weekly crawls
of 11 government websites within U.K. during 2004 and
2005. The characteristics of these two collections are briefly
summarized in Table 1. For the ease of experimentation, we
rounded the time-stamps of versions to the nearest day for
all datasets.

6.1 Index Management
We build indexes based on incremental sharding (INC) and

cost-aware sharding as in [4] (CA) algorithms with relaxation
parameter(η) values 10, 100 and 1000. All sharded indexes
are stored on disk in flat files containing both the lexicon
(i.e., pointers to the shards for each term) as well as sharded
term lists. At run time, the lexicon is read completely into
memory, and for a given query the appropriate shards are

retrieved from disk. For compression we employ 7-bit + gap
encoding [20].

We simulate the index updates needed for our incremental
index maintenance as follows: we first created partial indexes
for each month containing postings of only those versions
that have end time within that month. The index is incre-
mented, starting from an empty index, by merging partial
index of each month in sequence. We employed immediate-
merging [10] to create one consolidated index at the end of
every monthly merge operation, and each sharded posting
list in the index is incrementally maintained using our INC
algorithm. We compared this with CA sharding, which re-
computes the entire sharding for the combined index every
time from scratch. In other words, all shards of a posting list
in the currently merged index are read and decompressed, the
corresponding list from the partial index for the next month
is also read and decompressed, these two are combined, and
finally, a new sharding is generated using the CA algorithm
for the merged index which is written in compressed form to
disk.

6.2 Query Workloads and Execution
We compiled one query workload for each dataset, by

extracting frequent queries from the AOL query logs that
were temporarily available during 2006. For querying the
WIKI dataset, we extracted the 300 most frequent queries
which had a result click on the domain en.wikipedia.org;
similarly for UKGOV, we compiled 50 queries which had
result hit on .gov.uk domains. Using these keyword queries,
we generated a time-travel query workload with 5 instances
each for the following three different temporal predicate
granularities: week, month and year.
For query processing we employed conjunctive query se-

mantics i.e., query results contain documents that include
all the query terms. We use wall-clock times (in millisec-
onds) to measure the query processing performance. The
runtimes were measured on warm caches using only a single
core. Specifically, each query was executed five times in
succession and the average of the last four runs was taken
for a more stable and accurate measurement of the query
runtime.

6.3 Results

Index Maintenance Performance
Figures 5 and 6 show results of our experiments on index
maintenance with WIKI and UKGOV datasets respectively.
Note the log-scale used on the y-axis in these charts, which
represents the time-taken for the consolidated sharded index
to be built in milliseconds. It is quite evident from these
charts that the INC algorithm for maintaining the index is
an order of magnitude faster than CA. Note that for UKGOV
we report maintenance times for the first seven months only
which is already smaller than time taken to merge the entire
index for two years using INC. This efficiency comes from two
advantages that INC enjoys over CA: first, recomputing the
sharding by CA on the merged index takes much of the time
and grows as the index size grows. Since INC does not re-
compute the sharding, its performance improves significantly.
Second, it does not have to decompress, merge and shard the
entire list before writing do the disk. Instead, it has to just
read two posting lists in parallel and append corresponding
shards (without decompressing), and write to the disk. From
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Dataset Coverage Size (in GB) N V μ/σ

WIKI 2001 to 2005 ∼700 1,517,524 15,079,829 9.94 / 46.08
UKGOV 2004 to 2005 ∼400 685,678 17,297,548 25.23 / 28.38
Datasets with no. of documents N , no. of versions V, average number of versions per
documents μ, and standard deviation σ.

Table 1: Characteristics of datasets used
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Figure 5: Performance of index maintenance - WIKI

our experiments we observe that recomputation of shards
accounts for an average of 45% of the entire maintenance
time. Compression and decompression take upto 15% of the
overall time but since we use 7-bit encoding for compression
we expect that a more involved compression technique would
only increase the maintenance time. It should be noted that
in our simulation we do not perform an append, instead we
resort to creating a new index file in each step – incurring
additional overheads. Thus, the performance of INC can be
further improved by carefully implementing advanced index
merging methods.

Effect on Query Processing
To assess the effect of using INC for index maintenance
on query processing performance, we used the final index
computed for each dataset – i.e., after merging the last partial
index at end of 5 years in case of WIKI and after the last
partial index at the end of 2 years in case of UKGOV. We
compared the performance of answering queries using this
index against the query performance over a newly created
archive index for the entire collection, sharded using CA.
Since the active index, as mentioned in 5 is common to both
INC and CA, we omitted the query processing time over the
active index from our measurements. We considered indexes
obtained using three relaxation parameter values η = 10,
100, 1000. We report runtimes, measured in milliseconds,
averaged over queries for three granularities of temporal
predicates we considered – week, month and year, as described
in Section 6.2. Results are shown in Figures 7 and 8 for
WIKI and UKGOV datasets respectively.

As one can observe from these charts, the sharded index
generated using INC compares quite favorably with the com-
bined sharded index computed using CA. This behavior is
consistent across all the granularities of temporal predicate
for all values of η parameter. In some small number of cases,
the performance of INC is slightly better than that of CA,
and is never worse. Further, we also compared the average
number of shards generated by both the algorithms with dif-

Sharding

Dataset η INC CA

WIKI
10 23.37 32.83
100 13.32 11.41
1000 5.83 4.42

UKGOV
10 10.93 13.16
100 6.84 10.35
1000 4.14 4.79

Table 2: Average number of shards per term

ferent values of η. These results are summarized in Table 2.
As these results show, using INC in most cases generates
fewer number of shards on average for each posting list, re-
ducing the number of random accesses required during query
processing. So, when the underlying storage system has high
cost of random accesses, then it seems more beneficial to
query processing performance to use INC to maintain the
index than using CA.

7. RELATED WORK
We now put our work in context with existing research.

This can be categorized into (a) work on maintaining inverted
indexes when faced with changes in the document collection
and (b) approaches that make search aware of temporal
information associated with documents. No work, to the
best of our knowledge, has been done at the intersection of
the two categories.
Given that the construction of inverted indexes is well

understood and can easily be parallelized, one existing main-
tenance strategy has been to rebuild the index periodically.
Returning stale query results, most of the time, is an obvi-
ous disadvantage of this approach. For a long time, though,
this has been the approach taken by major search engines
on the Web. Only lately, Peng et al. [24] have addressed
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Figure 6: Performance of index maintenance – UKGOV
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Figure 7: Query processing performance with varying granularity of temporal predicate – WIKI

the issue of handling updates in web-scale indexes. Instead
of rebuilding the index, Lester et al. [19] suggest to collect
updates in an in-memory index that is then merged, from
time to time to amortize costs, with a disk-resident inverted
index. This merge can either be performed in-situ, thus mod-
ifying posting lists at their current location, or by storing
entirely new posting lists. A hybrid approach that chooses
between these alternatives is described by Büttcher et al. [11].
Guarajada and Kumar [13] can be seen as another extension
that leverages query logs to determine terms whose posting
lists mandate eager maintenance. In a spirit similar to log-
structured methods [23], Lester et al. [18] propose to keep
multiple indexes of geometrically increasing size and merge
them, when they overflow, in a rolling manner. Query results
reflecting the current state of the document collection can
be obtained in these approaches by executing queries both
on in-memory and disk-resident indexes. For more detailed
discussions of inverted index maintenance, we refer to the
recent textbooks by Büttcher et al. [10] and Manning et
al. [20], as well as, the survey by Zobel and Moffat [28].

Constructing indexes for (versioned) document collections
with a high degree of redundancy has been an active area of
research lately. Anick and Flynn [5], as the earliest approach,
applies techniques from version-control systems to a text
index. Zhang and Suel [27] propose a two-level index that
avoids repeatedly indexing redundant content. Herscovici et
al. [17] employ a sequence-alignment formulation to address
the same problem. Berberich et al. [7] present the idea of time-
travel text search, incorporating temporal predicates into
text search, and describe a vertically partitioned (or, sliced)
inverted index to support it efficiently. Anand et al. [4], as

the work that our methods build upon, show that time-travel
text search can be supported equally efficiently by building a
horizontally partitioned (or, sharded) inverted index. He et
al. [14, 15] have focused on improving compression techniques
for inverted indexes on versioned document collections. As a
final note, the problem of indexing and querying data with
associated temporal information has been studied intensively
in the database community – a survey of existing approaches
is given by Salzberg and Tsotras [25] present. Becker et
al. [6], being based on the B+-Tree, and Muth et al. [22], as
a log-structured method inspired by the LSM-Tree [23], are
two database approaches that explicitly deal with updates.

8. CONCLUSIONS
This paper presented incremental sharding, an efficient

maintenance technique for indexes in web archives. It uses
only cheap append operations to add newly arrived versions
to the existing index. It can be smoothly integrated into
a search engine for both live and archived documents. Ex-
periments demonstrated that the technique is an order of
magnitude more efficient than recomputing the index.
Our future work will focus on an full-fledged implemen-

tation of our proposed system. We will further study the
influence of different techniques for inverted list maintenance.
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Figure 8: Query processing performance with varying granularity of temporal predicate – UKGOV
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