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Abstract

Keystroke dynamics is the process of identifying individ-
ual users on the basis of their typing rhythms, which are
in turn derived from the timestamps of key-press and key-
release events in the keyboard. Many researchers have ex-
plored this domain, with mixed results, but few have ex-
amined the relatively impoverished territory of digits only,
particularly when restricted to using a single finger — which
might come into play on an automated teller machine, a mo-
bile phone, a digital telephone dial, or a digital electronic
security keypad at a building entrance.

In this work, 28 users typed the same 10-digit number,
using only the right-hand index finger. Employing statistical
machine-learning techniques (random forest), we achieved
an unweighted correct-detection rate of 99.97% with a cor-
responding false-alarm rate of 1.51%, using practiced 2-
of-3 encore typing with outlier handling. This level of ac-
curacy approaches sufficiency for two-factor authentication
for passwords or PIN numbers.

1 Introduction

Ascertaining the unique typing style attributed to a given
user through their typing rhythms is an idea whose origin
lies in the observation (made in 1897) that telegraph opera-
tors have distinctive patterns of keying messages over tele-
graph lines [7]. In keeping with these early observations,
British radio interceptors, during World War II, identified
German radio-telegraph operators by their “fist,” the per-
sonal style of tapping out a message. “The interceptors had
such a good handle on the transmitting characteristics of the
German radio operators that they could literally follow them
around Europe — wherever they were.”! One key aspect of
fists is that they emerge naturally, as noted over a hundred

! John West, British military historian specializing in intelligence, coun-
terintelligence, & security issues, quoted in [17].
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years ago by Bryan & Harter [7], who showed that oper-
ators are distinctive due to the automatic and unconscious
way their personalities express themselves, such that they
could be identified on the basis of having telegraphed only
a few words.

Just as the telegraph key served as a common input
medium in those days, keyboards, mice, joysticks, light
pens and other pointing or scribing devices are common in-
put devices today. Keyboard characteristics are rich in cog-
nitive qualities [15, 28], and have great promise as personal
identifiers [16]. If users’ keystroke behaviors can be distin-
guished automatically, users could benefit from two-factor
authentication or continuous (re)authentication, and typists
could be identified and held accountable for what they type.

There have been many investigations of keystroke behav-
iors. While these studies have favored using data from real-
world environments, an unintended side-effect of this real-
ism has been the introduction of confounding factors (e.g.,
different keyboards, operating environments, etc.) that can
influence experimental outcomes. This makes it quite dif-
ficult to attribute outcomes solely to user behavior, and not
to other factors along the long path of a keystroke, from
fingertip to operating system.

This paper, by using tightly-controlled experiments, iso-
lates human typing behavior as the principal factor in dis-
criminating among user typing styles, the characteristics
of which are regarded to be unique to a person’s physiol-
ogy, behavior, and habits. Seeking nearly the simplest con-
ditions possible, we studied single-finger typing (with no
wrist rest or stabilization) in the restricted domain of nu-
meric input, on an isolated keypad, testing the limit of what
can be achieved in keystroke dynamics, and identifying the
issues that inhibit maturing beyond the current state of the
art. Confounding effects due to different keyboards, differ-
ent passwords, different operating environments, etc. were
eliminated, leaving only typing behavior as a differentiator.
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Figure 1: Keystrokes from two different users. Left panel shows Subject 35; right panel shows Subject 30. Each subject typed
50 repetitions of the number string 412-193-7761 (without the hyphens). Notice that each subject has his own distinct pattern.
Solid dots indicate the moment of key-press; open dots indicate key-release. Distance between like-colored solid/open dots
is key-hold time. Open space is time between key presses. Colors (grey scales if in black and white) separate one key from

another, and have no other meaning.

2 Background and related work

Keystroke dynamics is the term given to the procedure
of measuring and assessing a user’s typing style. These
measures, based largely on the timing latencies between
keystrokes, are compared to a user profile as part of a clas-
sification procedure; a match or a non-match can be used to
decide whether or not the user is authenticated, or whether
or not the user is the true author of a typed sequence. As an
example of differences in typing behaviors, Figure 1 shows
typing samples from two different people; it’s easy to see
that their styles differ, and that attempts to discriminate be-
tween them automatically are likely to succeed.

There are over a hundred papers that deal with keystroke
dynamics in one way or another. While it is not possible to
review all of them here, we will discuss briefly the ones that
seem most directly relevant to the current work.

Keystroke dynamics on full keyboards. The field
of keystroke dynamics was arguably born in 1980 with
the publication of a little-noticed technical report from
RAND, in which a feasibility study demonstrated that typ-
ing rhythms might plausibly be utilized to identify and/or
authenticate users [16]. Although the study was small in
scale, it was methodologically quite well done, and its re-
sults indicated strongly that the technique had promise as an
authentication mechanism.

Over the next two decades, many researchers investi-
gated a range of phenomena regarding keystroke dynam-
ics, including the use of different features (e.g., key-hold
(dwell) time, digram latencies, trigram latencies, etc.), dif-
ferent classifiers (e.g., neural nets, support-vector machines,
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decision trees, Markov models, etc.), different phenomena
(e.g., user identification (one to many) and user verification
(one to one)) and different stimulus data (passwords, short
strings, paragraphs, etc.) [3, 4, 5, 10, 20, 22, 34]. Peacock
and his colleagues have surveyed much of the current liter-
ature, demonstrating that excellent results are quite hard to
achieve [25]. All of these studies used (and quite sensibly
so) full QWERTY keyboards.

One advantage that has accrued to the aforementioned
studies is that they have had a very rich environment in
which to work. They have used all the keys, letters, numbers
and special characters available on any standard keyboard.
All these combinations provide many alternative avenues
for success. But with that richness comes the penalty of
complexity, which can make it quite hard to isolate the key
factors in discriminating among typists.

It is precisely that complexity issue that made us wonder
if success would be less elusive in a simpler environment.
Our particular simplification was to restrict the stimuli to
just the digits 0-9, to constrain their input to just the number
pad (on the right end of most full-sized keyboards), and to
limit the fingers used to just the index finger. In addition to
the advantage of being simpler, this environment is similar
to the one used by millions of people every day when they
input PIN numbers into automated teller machines (ATMs),
or they input codes into numeric keypads for building secu-
rity. Of course the keypads for ATMs and building security
systems are not the same as the number pad on a work-
station computer, but the input patterns are similar, and if
users could be adequately identified on the basis of a PIN
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(perhaps a few characters longer than the typical four dig-
its), there’s a possibility that keystroke dynamics could play
a role in banking and secure-area operations.

Keystroke dynamics on number pads. We are not
the only ones to investigate a numbers-only regime. Sev-
eral studies have been done in which mobile-phone key-
pads were used as input devices; other studies restricted
themselves to using only the numeric keypad portion of a
standard keyboard. Examples of such investigations follow.
Note that many of these studies use a figure of merit called
the equal-error rate (EER) [33]. This is a one-number sum-
mary of how well a detection system performs, derived from
an ROC curve by noting the point at which the false-alarm
rate is the same as the miss rate. Lower values are better.

Rodrigues and his colleagues [27] asked 20 subjects to
type 40 repetitions of 8-digit numerical passcodes. A sep-
arate group of impostors typed 30 repetitions of the same
passcodes in attempts to break in. A hidden Markov model
used four types of features, all of which were latencies
of the various combinations of key-press and key-release
times, to achieve an equal-error rate of 3.6%.

Clarke et al. [12] asked 16 subjects to type 4-digit and
11-digit pre-assigned, fixed passcodes on the keypad of a
specially instrumented mobile phone. Each subject typed
30 repetitions, 20 of which were used to train a “‘combined”
neural net classifier, and 10 of which were used for testing.
Each subject acted as an impostor for all the other subjects.
The classifier achieved an equal-error rate of 5.5% for the
4-digit passcode, and 3.2% for the 11-digit passcode.

Ord and Furnell [24] performed experiments using just
the keypad portion of a standard workstation keyboard.
They asked each of 14 subjects to type 50 repetitions of a
6-digit numerical PIN. They used the first 30 repetitions for
training a multi-layer perceptron, and the remaining 20 rep-
etitions for testing. Setting the detector’s decision thresh-
old at 30%, meaning that 30% of attempts were falsely re-
jected, based on the idea that most systems allow three tries
in case a passcode is mis-typed, they achieved a correct-
classification rate of 90.1%.

Kotani and Horii [18] tested 9 subjects using a
pressure/force-sensitive keypad, which was custom built in
the shape of an automated-teller-machine’s numeric key-
pad. All subjects typed the same 4-digit PIN, using only
their right index finger. An ad hoc classifier, based on
threshold values obtained from subjects’ reference signa-
tures, used key-hold times, peak force on the keyboard, and
digraph latency times as features. The obtained equal-error
rate was 2.4%, which is reasonably impressive, considering
an input of only 4 digits.

Ogihara and his colleagues [23] used a clever combina-
tion of finger/hand motion and key-press timing on a touch-
screen automated teller machine. Ten subjects typed 4-digit,
static PINs (always the same digit sequence) in 1800 trials.
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For the PIN “5555” they obtain an equal-error rate of 1.1%,
using an unspecified classifier. Given the task and the short
range of digits typed, this is an extraordinary outcome, per-
haps explained by the large number of trials and the small
number of subjects.

Clarke and Furnell [13], in an extension of [11], asked 30
subjects to enter 30 repetitions each for both a 4-digit PIN
and an 11-digit telephone number into a mobile phone that
was specially instrumented to collect keystroke timing data.
Using interkeystroke latencies as inputs to a neural network,
they achieved an equal-error rate of 8% for the 4-digit PIN
and 9% for the 11-digit phone number.

Clarke and Furnell [14] asked 32 subjects to enter a 4-
digit PIN and an 11-digit telephone number on a mobile
telephone handset. Each subject typed 30 correct repeti-
tions in a single session (incorrect trials were rejected and
repeated). Using pooled best results for specific subjects for
a neural network classifier, they obtained equal-error rates
of 8.5% for the PIN and 4.9% for the telephone number.

There are several commercial systems on offer (e.g.,
BioPassword (now AdmitOne), PSYLock, Trustable Pass-
words), but since no evaluation data are publicly available
for these systems, we do not discuss them here.

The results of these studies have been mixed, possibly
due to the realism of the experiments, possibly due to a lack
of real differences among users, or possibly due to exper-
imental errors or faulty data. A careful reading of the lit-
erature suggests that complexity and bias have caused pre-
vious results to be disappointing, but since these studies do
not tend to be replicated, it’s hard to pin the discrepancies
on any one thing. In the work that follows, we control the
experimental environment carefully to increase the likeli-
hood that our results will be free from the entanglements of
experimental complexities and confounds.

3 Problem and approach

Previous work appears to have concentrated on what can
be accomplished in real-world environments. As a conse-
quence, some confounding factors have slipped into experi-
ments, making it hard to determine exactly what factors are
responsible for experimental outcomes. For example, be-
cause keystroke timing may be influenced by things other
than the typists themselves (due to different keyboards, dif-
ferent system loads, or different network paths), it’s possi-
ble that such factors could account for at least part of the
success of previous work. To tease these factors apart, and
to determine how well users can be discriminated solely
on the basis of their typing rhythms, we engaged in a con-
trolled experiment with the impoverished conditions of us-
ing only the number-pad portion of a keyboard, and having
users type a fixed, 10-digit number using only one finger.
This is nearly as simple an environment as could be imag-
ined, without the richness (and complexity) of all the keys
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and characters on the keyboard, and without all ten fingers.
We are trading richness for simplicity. If discrimination is
possible under these conditions, then moving to richer and
more realistic environments could effect even better results.
It may be worth noting that it is not our intention to build
or describe a robust procedure that is nearly product-ready.
Rather, we are building and describing a science and tech-
nology that may one day support a product. Our objective
at this stage is to investigate the feasibility of the technique,
rather than to provide a complete solution to the problem.

4 Experimental method

We offer here considerable detail regarding the conduct
of the experiment, because these particulars can best reveal
potential biases, confounds, and threats to experimental va-
lidity.?> Although it is not typical to include such detail, we
do so in the interest of other investigators being able to repli-
cate our work, to judge whether we did it correctly, to take
up where we’ve left off, or to see problems that we did not.

4.1 Subjects

Subjects were 28 volunteer students and staff, all expe-
rienced computer users, from the CMU computer science
department. These subjects included advanced undergradu-
ate students, graduate students, and professional staff. All
subjects had been typing on computer keyboards for a min-
imum of five years. Payment was not given; some students
participated as part of a course.

The pool from which the subjects were selected is some-
times called a convenience sample, because it is convenient
to draw from such a close-by population. Sometimes con-
clusions based on convenience samples cannot be general-
ized to a broader population. In our case, however, the pop-
ulation was sampled not so much for mere convenience; it
was, in fact, the population in which we were most inter-
ested — skilled computer users. Consequently, the sample
is less of a convenience sample than it may seem, and con-
clusions based on our data can certainly be generalized to
a broader population of similar users. Whether generaliza-
tions extend to people who are not experienced typists re-
mains an open question, subject to further investigation.

4.2 Materials: stimulus and rationale

Stimulus material consisted of a single, 10-digit, pass-
code, 412-193-7761, which subjects were asked to type
without the hyphens, as if it were a telephone number, or

2Validity refers to the scientific accuracy of the study or procedure, e.g.,
the presence of confounding variables, unrepresentative samples, inappro-
priate statistical tests or violations of statistical assumptions, or experi-
menter/subject bias. In other words, was the experiment done correctly,
and was it conducted in such a way that no obvious biases were introduced
that could skew the results toward an invalid conclusion?
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a PIN number, or a building passcode. The hyphens are
only for readability; in practice, no one would type them.

The passcode was ten characters long for a variety of rea-
sons. First, ten characters is probably longer than the aver-
age passcode (many older UNIX systems only used the first
8 characters of a passcode, and people are used to typing
passcodes of about that length). If the passcode had been
shorter, there may not have been enough characters to facil-
itate sufficient discrimination among subjects. If it had been
longer, it might have become burdensome for people to type
repetitively, as was required (see Section 4.5 on procedure).

The same passcode was assigned to all subjects, in con-
trast to having each subject select a passcode of his own
choosing. There were several reasons for this. First, self-
selected passcodes may be of different lengths, making their
typing hard to compare. Second, self-selected passcodes
might be chosen because they are easy to type (or, in per-
verse cases, particularly hard to type), again introducing bi-
ases that are difficult to control. Third, using all the same
passcode means that each subject can be treated as an im-
postor for all the other subjects, putting testing on a firm
foundation. Finally, using the same passcode for everyone
effected experimental control over unanticipated biases.

The particular number 412-193-7761 was chosen for a
variety of reasons. Memorizing a ten-digit number can be
intimidating for many people, but since people routinely
memorize telephone numbers (including area codes), hav-
ing a number that was readily identifiable as a telephone
number made it easier for subjects to have confidence that
they could type the number handily. The triplet 412 is a
familiar area code for subjects in the experiment.

For the sake of publication and potential liability, we
didn’t want the digit string to be a real phone number. The
three digits after the area code (193) are commonly called
the prefix. By convention, a prefix must start with a number
between 2 and 9 [1]. Starting the prefix with a 1 means there
is no risk that the digit string is actually someone’s phone
number, eliminating the potential for crank calls.

Because we had only one opportunity (in this experi-
ment) for typing digit strings, we chose a string from which
we could learn the most. The digits after the prefix were
chosen to cause the typist to perform a wide variety of key-
board movements. Since subjects were restricted to using
only the index finger, we chose a digit string that would in-
clude as many basic finger moves as possible.

The sequence 1-9-3-7 spans the keypad. A finger typing
this sequence travels both of the diagonals, and a vertical.
Hence, we can see whether people travel from 1 to 9 at the
same speed as they travel from 3 to 7. The digram 7-7 ex-
ists because we wanted the sequence to have a duplicate
key. A digram that involves no finger transit can be useful
for inferring how long a subject spends actually pressing
and releasing a single key. The movement involved in se-
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quences 7-6 and 6-1 are symmetric (with a vertical axis of
reflection), representing a “knight’s move” across the key-
pad (i.e., down one and over two). They were chosen be-
cause, after having selected the previous digits, they were
movements that had not yet been made by the typist, and
they are the second longest movements from one key to an-
other on the keypad. Putting all this together, we get 412-
193-7761. Finally, since the number consists of familiar
strings (412) and random ones (776), we can see whether
there are different practice effects or discrimination accura-
cies based on these different spans, in addition to the phone
number in its entirety.

Other digit strings may meet these criteria; our string
may not be unique. However, in the end, the passcode in-
cludes all but two keys on the square portion of the keypad
(5 and 8 are never typed; O is outside the square), and it in-
cludes nine different vertical or horizontal movements that
seem characteristic of keying patterns.

4.3 Apparatus

Our experience suggests that the particulars of apparatus
used in experiments are of significant importance, and so
we provide considerable detail for the benefit of others who
may wish to replicate the conditions under which our exper-
iments were run, or to determine for themselves whether or
not our tests were biased by experimental apparatus.

Computer and environment. All experiments were run
on an IBM ThinkPad X60s notebook computer (type-model
1702-4EU) with 1.5 Gb RAM. The operating system was
Windows XP Professional (Service Pack 2). We used an
external keyboard — the Apple M9034LL/A USB; this is the
typical external keyboard used with Apple machines. No
mouse or other cursor-movement device was available. An
external display was used for better visibility; it was a Dell
UltraSharp 1907FP 19-inch flat panel LCD with 1280x1024
pixel resolution. Both wired and wireless networking was
turned off, and there was no load on the machine other than
the keystroke-logging application itself.

Presentation and logging software. A presentation pro-
gram displayed the passcode to the user in a full-screen win-
dow on the display, and directed the user to type it into a
text-entry box within the user interface. The presentation
program has two components: a Logger and a Prompter.
The Logger is a DLL, written in C++, that logs each key-
down and key-up event to a file. The Prompter, written in
VB.NET, is the graphic user interface that displays informa-
tion (instructions, input text box, etc.) to the user. Timing
resolution was 100 microseconds via a specialized clock.

Calibration. Keystroke timing accuracy was calibrated
by pulsing the keyboard matrix with a known signal; we
used a Hewlett Packard model 33120A, 15 MHz function
and arbitrary waveform generator. We used a square wave

978-1-4244-7499-8 /10/$26.00 ©2010 IEEE

205

whose characteristics were: frequency of one Hertz, am-
plitude of 3.8 volts peak-to-peak, duty cycle of 50%, DC
offset of 2 volts, and rise time of 20 nanoseconds. The
keyboard matrix was triggered by the square wave via a
simple TTL logic tri-state output latch, with the “enable”
input tied to the clock line (the output of the function gener-
ator). Three thousand keystroke events (one key-press and
one key-release per event) were triggered. 81.3% had zero
error, and 18.7% had an error of 200 microseconds (or 0.2
milliseconds). At worst, timing is accurate to a precision of
200 microseconds.

4.4 Instructions to subjects

Subjects were instructed to use only the external key-
board, and they were advised that no mouse would be
needed or would be available. Subjects were asked to type
50 repetitions of the experiment passcode (412-193-7761)
into a text box on the screen, when prompted by the pre-
sentation software to do so. Subjects were instructed to
type with only the index finger of the right hand (irrespec-
tive of the dominant hand), as if dialing a telephone or en-
tering a PIN at an automated teller. Any error in typing
caused the text box to reset, requiring the subject to type
the entire passcode again. In this way, 50 perfectly typed
passcodes were obtained. Subjects were told that if they
needed a break or needed to stretch their hands or fingers,
they were to do so after they had typed a full passcode, in-
cluding the Return key. This was intended to prevent artifi-
cially anomalous key-hold times and inter-key latencies in
the middle of a passcode. Subjects could gauge progress
by looking at a counter at the bottom of the screen which
showed how many passcodes had been typed and how many
yet remained. Subjects were admonished to focus on the
task, as if they were logging into their own account, and
to avoid distractions, such as talking with the experimenter,
while the task was in progress.

4.5 Procedure

Subjects typed 200 error-free repetitions of the same 10-
digit string, using only their right index finger (irrespective
of dominant hand). The 200 repetitions were accumulated
50 repetitions at a time, in each of four sessions carried out
over four alternating days. This provided enough repetitions
to reach a level of comfort with the string, just the same
as when getting used to a new password. This “level of
comfort” can be more formally described as habituation or
automaticity — the ability to do things without occupying
the mind with the low-level details required. It is usually
the result of learning, repetition, and practice (see [29, 30]
for a review). Nonlinear regression shows that full practice
is reached after 80-100 repetitions. On average, the typing
task itself takes less than five minutes within a session.
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5 Classifier, features and training

This section explains the classifier that we used, the fea-
tures it employed, and its training and testing. The R statis-
tical programming environment (version 2.10.0) [26] was
used for analyses.

5.1 Classifier - random forest

We used the random forest classifier, introduced by
Breiman [6]. Random forests are an ensemble method
based on the generation of many classification trees from
one data set. Each tree is obtained through a separate boot-
strap sample from the data set. Each tree classifies the data,
and a majority vote among the trees provides the final result.

Although support vector machines are often considered
to be the best classifiers currently available, random forests
are strong competitors, frequently outperforming SVMs
[8, 21]. The random forest classifier is generally a good
performer because it is robust against noise, and because
its tree-classification rules enable it to find informative sig-
natures in small subsets of the data (i.e., automatic feature
selection). In contrast, SVMs do not perform variable se-
lection, and can perform poorly when the classes are dis-
tributed in a large number of different but simple ways.

5.2 Features used in the classifier

During typing, all key-press (key-down) and key-release
(key-up) events were timestamped and recorded. From
these events, each of the three features used in the random-
forest classifier can be derived: (1) hold time (time elapsed
from key-down to key-up of a single key); (2) digram la-
tency (time elapsed from the key-down of a character be-
ing typed to the key-down of the next character); and (3)
digram interval (key-up to key-down latencies between di-
grams). For a ten-digit passcode, there are 11 hold times
(including the return key), 10 key-down to key-down laten-
cies, and 10 key-up to key-down intervals, which taken to-
gether form a 31-dimensional vector that represents each
passcode repetition. All three features were used, because
they form a superset of the features commonly used by other
researchers. Although some of these features are linearly
dependent, this is not a concern when using a random for-
est, because the random forest performs feature selection as
part of its training, thereby accommodating any linear de-
pendencies among features.

5.3 Training and testing procedures

In this section we show how the random-forest classifier
was trained and tested. As a reminder, each of the subjects
typed the passcode 200 times, in four sessions of 50 repeti-
tions each. Half of the data were selected to use in training
the detector; the other half were used to test the detector.
For the training phase, we drew 100 passcodes from each
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subject — 25 from each of a subject’s four sessions of 50.
This was done so that the training set would contain equal
amounts of data from each subject, while controlling for
potential within-subject variation between sessions. (Al-
though such stringent sampling across sessions would be
impractical in a real-world setting, we wanted to establish
how well the detector could perform before having to ac-
count for this additional challenge.) Finally, to control for
within-session changes in typing behavior, the 25 passcodes
were drawn randomly from each session (e.g., rather than
taking the first 25, we took a randomly-selected 25 from
each session).

The testing data were composed of the half of the data
that remained after the training data were drawn. Using
the training data, a random-forest classifier was built to pre-
dict which subject (denoted as the subject’s ID number) had
typed a passcode on the basis of the passcode’s timing fea-
tures (see Section 5.2 for description of features). We used
the implementation of the random forest training algorithm
that is part of the randomForest R package (version 4.5-
34) by Liaw and Weiner [19]. We evaluated the classifier by
using it to predict the subject ID of each of the passcodes in
the test sample, comparing the predicted subject IDs to the
actual subject IDs. We created a 26-by-26-dimension con-
fusion matrix in which the element in row 4, column j is a
count of the number of times the subject with true ID i was
predicted to have ID j by the random forest.

Since we used a random sample to divide the data into
training and testing sets, and we wanted to account for the
effect of this randomness, we repeated the above procedure
five times, each time with an independently selected draw
from the entire data set. This yielded five confusion matri-
ces, only one of which was chosen for use in this paper —
that was the one with the median misclassification rate. The
variation of misclassification rates across all five draws had
a range of only 0.6 percentage points. Hence the choice of
which of the five matrices to explore is of small import.

6 Analysis and results

Performance was measured in terms of classification er-
ror, by which we mean the percentage of the instances in
which the system misclassified a legitimate user (mistak-
enly calling him an impostor) or misclassified an impostor
(mistakenly admitting him as if he were a legitimate user).
In classical signal-detection terminology, these would be
called, respectively, Type I error (variously called false
alarm or false positive or false rejection) and Type II error
(miss or false negative or false acceptance) [31].

Many researchers report performance in terms of the
equal-error rate (EER), sometimes called crossover error
rate. EER is a one-number summary of how well a detection
system performs; it is the point at which the false-alarm rate
is the same as the miss rate. Lower EER values are better.
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The EER is often an extrapolation of miss and false-alarm
rates, so it tends to be less exact and, therefore, less infor-
mative than separate miss and false-alarm rates. Equal-error
rates should be used with caution, because they can be de-
rived in more than one way, making them hard to compare;
but they are a sensible attempt to rank systems on the ba-
sis of a one-number summary. We use them here because
some of the authors in Section 2 reported only EERs, and
we wanted to compare our results with theirs as best we
could.

Cost of error. To simplify comparing results stated in
terms of misses, false-alarms and EERs, we use the cost of
error, which is based on the miss and false-alarm rates. We
use two kinds of cost: unweighted and weighted.

Unweighted error. When neither one of a miss or a false
alarm is judged to be more serious than the other (a situa-
tion which some call “equal cost of error”), the cost of error
can be measured as the sum of the miss rate and the false
alarm rate. This unbiased measure is not likely to be used
in practical situations, but it is useful when we don’t know
the appropriate bias terms that might be used in real-world
conditions. Example: given a correct detection rate of 99%
(miss rate of 1%), and a false alarm rate of 1%, then the
unweighted cost of error is the sum of these: 1 + 1 = 2. In
this example, the EER would also be 1, and its unweighted
cost would be 2.

Weighted error. In deployment situations in which one
type of error is more serious than the other, the total cost
of error is weighted toward the more serious error type.
As an example of weighted error, the European standard
EN-50133-1 for biometric access-control systems requires
a miss rate of not more than 0.001% and a false alarm rate
of less than 1% [9]. Said another way, the standard requires
not more than one accidental granting of access (a missed
detection) to an illegitimate user in a hundred thousand at-
tempts, and at the same time, fewer than 1,000 false alarms
(accidental rejections). A miss is regarded as being 1,000
times as serious as a false alarm, engendering a cost ratio of
1,000 to 1. It is this standard to which we aspire.

From our example above (1% miss rate and 1% false
alarm rate) the weighted cost of error, based on the Euro-
pean standard, would be 1 * 1000 4+ 1 = 1001. If the stan-
dard were met, and we really did have .001% misses and
1% false alarms, then the weighted cost of error would be
0.001 = 1000 + 1 = 2. If we were to use EER in this case
(taking the extreme position of setting the EER to .001, with
miss and false alarm rates being equal), the unweighted cost
of EER would be .001+.001 = .002, and the weighted cost
would be .001 % 1000 4+ .001 = 1.001.

6.1 Basic results

Table 1 shows a range of experimental outcomes, each
of which will be explained below. The first row of the table
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Raw Unweighted Weighted
Results Cost Cost
European 99.999% hits
Stan(li)ar d .001% misses
. 1.0% false alarms 1.001 2
(Baseline/Goal) 001% EER 002 T.001
99.54% hits
Basic 0.46% misses
12.50% false alarms 12.96 472.50
8.60% EER 17.20 | 8608.60
99.74%  hits
. . 0.26% misses
Outlier Handling 771400 false alarms 740 |  267.14
4.42% EER 8.84 | 4424.42
99.96% hits
2of3 0.04% misses
5.58% false alarms 5.62 45.58
3.51% EER 7.02 | 3513.51
99.98% hits
Outlier Handling 0.02% misses
(2 of 3) 2.18% false alarms 2.20 22.18
1.45% EER 2.90 1451.45
Practiced 99.97% thS
(2 of 3) plus 0.03% misses
tier hpr:ldlin 1.51% false alarms 1.54 31.51
outher hanciing 1.00% EER 2.00 | 1001.00

Table 1: Error rates and costs of error for basic and alter-
native analytical approaches. The best weighted results are
for 2-of-3 with outlier handling; the best unweighted results
are for practiced typing, 2-of-3, with outlier handling.

shows the target values for attaining the levels needed to
meet the European standard; these are the target numbers
against which to compare our results.

The basic results for our experiment (without enhance-
ments), shown in the second major row of the table, were:

Metric Achieved  Target
hits 99.54% 99.999%
misses 0.46% .001%
false alarms 12.50% 1.000%
EER 8.60% .001%
unweighted cost 12.96 .002
weighted cost 472.50 1.001

These numbers are good, although far from the target
values. The numbers can be improved through the use of
certain analytical enhancements, which we describe below.

6.2 Analytical enhancements and their effects

The basic results can be improved by any of several ana-
lytical enhancements that consider how outliers in the data
are treated, how many times someone types a passcode (en-
cores), and the amount of practice the typist has with the
particular passcode being used.
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QOutlier-handling effects. An outlier is an extreme
or atypical data point whose value is markedly different
from surrounding data points that represent the same phe-
nomenon. For example, it takes 3.016 seconds, on aver-
age, to type the passcode. If it took someone 12 seconds
to type one of the 200 repetitions, that repetition would be
an outlier. The left panel of Figure 1 shows a few promi-
nent total-time outliers as well as some key-down latency
outliers (note repetitions 1, 17 and 22 starting from the bot-
tom). These vectors are outliers not only in terms of total
typing time, but also in terms of some interkey latencies.
Such outliers can affect classification outcomes unless they
are specially treated (which is typical to do). Handling out-
liers requires two steps: detection and accommodation [2].

In this work, an outlier detector flags points that are more
than 1.5 IQRs (inter-quartile range) greater than the third
quartile, or more than 1.5 IQRs less than the first quartile.
This is the usual convention in constructing boxplots [32].
Outliers are accommodated by a resampling procedure in
which the outlier is replaced by a random sample, which
is not an outlier, drawn from the same subject’s data in the
same region of the outlier. This assures that no data are syn-
thetic, and that all data are accommodated. The same outlier
handling procedure was applied to all features of the data,
improving the basic hits from 99.54% to 99.74%, and low-
ering false alarms from 12.50% to 7.14%. The correspond-
ing reductions in unweighted and weighted costs of error
are from 12.96 to 7.40 and 472.50 to 267.14 respectively.
While this is not as much of an improvement as effected by
2-of-3 encore typing (below), it only uses one repetition of
the passcode, not three.

Encore effects. Encore means repeat, and one way of
ensuring that someone inputs a passcode (or its rhythm)
correctly, is to ask that the passcode be typed more than
once. This is not as burdensome as it may seem at first
blush. The passcode used in this study took an average of
3.016 seconds to type, across all 28 subjects; the median
typing time was 2.732 seconds. So to type the passcode
three times would take perhaps 6 to 9 seconds, which is not
a big price to pay if classifier accuracy improves, especially
if increased security demands it. We investigated the ef-
fects of having people type the passcode correctly k out of
n times, where n had a maximum value of 3. Results im-
proved when typists entered the passcode three times, two
of which had to match the user’s profile. As shown in Table
1, hits went up from 99.54% to 99.96%, while false alarms
dropped considerably from 12.50% to 5.58%. The dramatic
reduction in false alarms renders encore typing as the best
of the enhancement approaches, taken singularly, without
users having to practice typing the passcode.

Practice effects. As a person types a passcode over and
over, performance improves; the typing gets more fluent or
consistent or practiced. Classifier performance is likely to
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improve as the typist becomes more and more consistent.
If you think about times when you change your password,
you have a feel for how it gets progressively easier to type
the new password fluently, smoothly and rapidly. Given that
subjects typed 200 repetitions of the passcode, it’s possible
that the classifier would be better at distinguishing among
users during their fluent stage than during their learning
stage. To test this notion, we ran the data through a ran-
dom forest in two ways. First we used all 200 repetitions;
later we used only the last 50 repetitions, which would have
been the most practiced.

For the entire 200-repetition data set, we achieved a hit
rate of 99.54%, a false-alarm rate of 12.50%, and an equal-
error rate of 8.60%, as shown in the Basic row of Table
1. For the last 50 repetitions of the data, which would
have been relatively more practiced than the first 150 repeti-
tions, we achieved a hit rate of 99.66%, a false-alarm rate of
9.29%, and an equal-error rate of 5.32% (not shown in the
table), indicating that there is an effect from practice. How-
ever, this can be improved even more by applying both of
the aforementioned 2-of-3 encore and outlier handling treat-
ments to the practiced data. Table 1 shows the results of do-
ing this: 99.97% hits, 1.51% false alarms, and 1.00% EER,
with a corresponding best unweighted cost of 1.54 (due to
the low false-alarm rate). The even lower weighted cost for
outlier handling combined with 2-of-3 encore (22.18), was
due to weighted cost being dominated by a slightly lower
miss rate (.02 vs. .03).

7 Discussion

In judging the merits of a keystroke-dynamics detector,
it’s arguable that the preferred figure of merit should be the
weighted cost of error, based on the European standard for
biometric authentication systems (see row one of Table 1).
The target cost is 2. We achieved 472.50 under basic condi-
tions, and 22.18 when typing 2-of-3 encores and using out-
lier handling to mitigate extreme values. EER was 1.45%.

While our work cannot be compared directly with some
of the papers described in Section 2 (due to figure-of-merit
and device differences, e.g., mobile phone vs. large key-
board), our results compare favorably with other work listed
there. Rodrigues and his colleagues [27] asked 20 sub-
jects to type 40 repetitions of 8-digit numerical passcodes.
They achieved an equal-error rate of 3.6% (weighted cost of
3503.5). Ord and Furnell [24] performed experiments using
just the keypad portion of a standard workstation keyboard.
They asked each of 14 subjects to type 50 repetitions of a 6-
digit numerical PIN. They achieved a correct-classification
rate of 90.1% (false-alarm rate was not reported, so cost of
error cannot be calculated). Kotani and Horii [18] tested 9
subjects using a pressure/force-sensitive keypad, which was
custom built in the shape of an automated-teller-machine’s
numeric keypad. All subjects typed the same 4-digit PIN,
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using only their right index finger. They achieved an EER
of 2.4% (weighted cost of 2402.4).

One interesting aspect of the present study is that the sub-
jects were well differentiated, even though they typed with-
out resting a hand or wrist on a stable platform, as one does
when typing regular text on a regular keyboard. The lack
of stability would seem to have introduced more variability
in typing, and yet the results were good despite this. This
suggests that using keystroke dynamics as an authentication
mechanism for banks and buildings may be possible.

Success factors. The present work achieved a weighted
cost of 22.18 for 2-of-3 encore-plus-outlier typing — a con-
siderable improvement over past work. What are the factors
that account for our results, and what are the aspects of the
study that were limiting? What can be done to foster im-
provements so that the European standard can be met?

It’s quite hard to pinpoint one or two things that may
have made our results better than those of our predecessors,
because (1) previous work favored realism over experimen-
tal control, and (2) there has been no common data set on
which to perform competitive evaluations. The issue of ex-
perimental control, however, is likely to be responsible for
much of our success. Although the work described in the
literature does not admit to any particulars in controlling
experiments, our own work is very tightly controlled. The
instrumentation was high resolution with well-calibrated er-
ror bounds; operating system and network noise were con-
trolled; and extraneous variables (e.g., keyboard type, pass-
code length, typing inconsistency, etc.) were eliminated.
Every subject received the same instructions, and was proc-
tored by the same experimenter; everyone typed with the
index finger of the right hand. All of this suggests strongly
that the differences in subjects were due to individual differ-
ences among subjects, and not to apparatus or environment.

We also had more subjects (28) than many studies do,
more typing repetitions (200), and a longer passcode (10
characters). Larger subject pools, however, sometimes
make things harder, not easier; when there are more sub-
jects there is a higher probability that two subjects will have
similar typing rhythms, resulting in more misclassification
errors. Finally, we used a classifier (random forest) that may
itself have outperformed competitive classifiers (some other
studies have also used the random forest, but without results
competitive to ours). Until there is a comparative study that
stabilizes these factors, it will be hard to be definitive about
the precise elements that made this work successful.

Opportunities for improvement. What prevented us
from doing better, and how can current knowledge be turned
toward improving our results? Three factors are readily ap-
parent. First, our environment was quite impoverished —
the keypad and one finger. By enriching the environment
to include all keyboard keys and characters, as well as al-
lowing all fingers to be used for typing, more information
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will be available for input to a classifier. Second, we used
only the most fundamental features of the data — basic com-
binations of key-press and key-release timings. A richer
set of features, spurned here in the interest of simplicity,
could improve results. Finally, we did not accommodate
the idiosyncrasies of user mistakes. When users make typo-
graphical errors, it is likely that these, too, will confer some
uniqueness to the user, and this information can be used to
advantage in identifying a typist.

8 Limitations

It’s very hard to compare results in keystroke experi-
ments, because neither the evaluation methodologies nor the
figures of merit used by the discipline are consistent. Our
attempt to level the playing field was to use cost of error
as a metric. As a one-number summary, this is a good es-
timate of performance, but like equal-error rates (EER) it
does not admit the details of the trade-off between misses
and false alarms. We are aware that to calculate cost-of-
error scores from equal-error rates is risky, since a point on
the ROC curve other than the EER could result in a lower
cost-of-error score for the classifier/detector. However, to
use EERs in this way, trying to arrive at a common scoring
mechanism, was the best we could do at this time.

9 Conclusion

We have shown gains in keystroke dynamics perfor-
mance of roughly an order of magnitude in cost and error
over previous results. Through controlled experiments we
have come closer to meeting the European requirements for
authentication systems, with 99.97% correct detections and
1.51% false alarms. We need to further improve results, and
to attain them in more realistic settings, now that we have
shown what can be achieved in controlled conditions, and
have factored out at least the obvious alternative explana-
tory factors, save the keystroke rhythms themselves.
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