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Abstract—This paper proposes a dense stereo-based robust ver-
tical road profile estimation method. The vertical road profile is
modeled by a cubic B-spline curve, which is known to be accurate
and flexible but difficult to estimate under a large proportion
of outliers. To robustly estimate a cubic B-spline curve, the pro-
posed method utilizes a two-step strategy that initially estimates a
piecewise linear function and then obtains a cubic B-spline curve
based on the initial estimation result. A Hough transform and
dynamic programming are utilized for estimating a piecewise lin-
ear function to achieve robustness against outliers and guarantee
optimal parameters. In the experiment, a performance evaluation
and comparison were conducted using three publicly available
databases. The result shows that the proposed method outper-
forms three previous methods in all databases. In particular, its
performance is superior to the others in the cases of a large propor-
tion of outliers and road surfaces distant from the ego-vehicle.

Index Terms—B-spline curve, dense stereo, dynamic program-
ming, Hough transform, piecewise linear function, road profile,
road surface, stereo vision.

I. INTRODUCTION

TEREO cameras have been widely used for driving en-
S vironment perception since they can provide both image
and depth information. Road surface estimation is one of the
most important procedures for stereo vision systems because
an obstacle is generally defined as an object located above the
road surface. Although a road is a 3-D curved surface in the real
world, mostly it has been approximated to a 2-D slice capturing
the vertical road height along the heading direction of the ego-
vehicle because its lateral variation is negligible in on-road
situations. This approximation is beneficial since it reduces a
computational burden and increases robustness against outliers
produced by obstacles or stereo matching errors. The 2-D slice
representing a road surface is often referred to as a vertical road
profile.

A vertical road profile has been modeled as a polyno-
mial function [1]-[4] and a piecewise linear function [S]-[7].
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A B-spline curve has been presented as a generalization of poly-
nomial and piecewise linear functions [8]-[12]. Among these
popular vertical road profile models, a cubic B-spline curve has
been known as the most accurate and flexible model. However,
this curve is difficult to estimate under a large proportion of
outliers produced by obstacle or stereo matching errors due to
its high degree of freedom (DOF). To alleviate this problem,
Wedel et al. [8], [9] proposed a Kalman filter-based estimation
method. Keller et al. [10], [11] utilized a region of interest
(ROI)-based outlier removal approach. Schauwecker and Klette
[12] presented an M-estimator-based region growing method.
Despite all these efforts, the previous methods are unable to
work properly in cases of non-Gaussian noises, increasing
triangulation errors at the distant road surface, and a larger
portion of outliers.

To overcome the drawbacks of the previous methods, this
paper proposes a novel vertical road profile estimation method
based on a cubic B-spline curve. The proposed method utilizes
a two-step strategy because it is difficult to directly estimate a
function with a high DOF from the realistic data contaminated
by outliers. First, the road surface is divided into several sub-
regions, and Hough transform is applied to the 3-D points in
each subregion to obtain their voting results. Dynamic program-
ming is utilized to estimate the parameters of the piecewise lin-
ear function by treating the voting results as a data term and the
changes of slopes and locations of adjacent linear functions as a
smoothness term. Second, the vertical road profile with a cubic
B-spline curve is estimated by utilizing the points uniformly
sampled from the estimation result of the piecewise linear
function. Fig. 1 shows the flowchart of the proposed method.

This paper has the following contributions.

1) A two-step strategy is proposed in order to reliably esti-
mate a cubic B-spline curve from the realistic data contam-
inated by outliers with a reasonable computational cost.

2) A method that combines a Hough transform and dynamic
programming is proposed to robustly find the optimal
parameters of a piecewise linear function under a large
proportion of outliers.

The proposed method was tested using three publicly avail-
able databases and compared with three previous methods that
utilize robust estimators. Experimental results reveal that the
proposed method outperforms the three previous methods in all
three databases. In particular, its performance is superior to the
others in the cases of a large proportion of outliers and road
surfaces distant from the ego-vehicle.
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Fig. 1. Flowchart of the proposed method.

II. RELATED RESEARCH

Reliable terrain estimation is an important task for intelligent
vehicle applications. Terrain estimation using stereo vision
starts with generating 3-D points from a disparity map. Since an
off-road environment usually has complex and arbitrary terrain,
various types of grid maps (2-D, 2.5-D, or 3-D) have been
utilized for off-road terrain estimation. A 2-D grid map stores
occupancy information (traversable/nontraversable) at each cell
and is often called an occupancy grid [13]. Although the 2-D
grid map is effective in avoiding simple obstacles on flat terrain,
a detailed grid map is required to handle complex situations.
A 2.5-D grid map, a so-called elevation map, contains height
information at each cell [14]-[17]. This map is useful for terrain
with a single surface layer, but cannot deal with multiple surface
layers such as bridges, tunnels, or underpasses. A 3-D grid
map is able to overcome this problem by representing terrain
using stacks of cubes with occupancy information [18], [19].
This map is often called a voxel map and can be efficiently
described by a hierarchical data structure for spatial subdivision
such as an octree [20]. Since dealing with a 3-D grid map
usually requires a high computational cost, elevation maps
that compromise accuracy and computational cost are more
popularly used for intelligent vehicle applications.

Unlike the off-road environment, terrain in on-road situations
consists of a man-made paved road with a fairly simple shape.
Terrain estimation of on-road situations is often called a road
surface estimation. Since a road is a 3-D curved surface, 3-D
models have been used for the road surface estimation.
Sappa et al. [21], [22] modeled a road surface with a 3-D plane.
This method selects 3-D points that are likely to be a part of
the road surface using the Y Z-plane accumulation. The road
surface is estimated by applying a random sample consensus
(RANSAC)-based 3-D plane estimator to the selected 3-D
points. Suhr er al. [23] also presented a method similar to
this in rear-view situations. Danescu ef al. [24] and Oniga
and Nedevschi [25] utilized a 3-D quadratic surface as a road
surface model. This method estimates the initial solution via
RANSAC and refines it using a region growing process.

Although a road is a 3-D curved surface in the real world,
a small number of previous methods utilize 3-D road models.
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This is because its lateral variation in on-road situations is
negligible. Thus, many previous methods approximate the road
surface to a 2-D slice by considering accuracy, robustness,
and computational cost. The 2-D slice representing a road
surface is often referred to as a vertical road profile. Labayrade
and Aubert [1] and Benenson et al. [2] modeled a vertical
road profile with a straight line. These methods generate a
v-disparity image using a sparse disparity map or stereo match-
ing cost and apply a robust estimator to find a straight line.
Since the straight line model is only suitable for a flat road,
various methods have been proposed to handle nonflat road
situations. Nedevschi et al. [3] utilized a clothoid curve model.
This method accumulates 3-D points on the Y Z-plane and esti-
mates the curve using an angle histogram of the near 3-D points
and a curvature histogram of the far 3-D points. Sappa et al.
[4] compared various polynomial-based vertical road profile
models (linear, quadratic, and cubic) in both v-disparity and
Y Z-plane domains using synthetic scenes. Labayrade et al. [5],
Suhr et al. [6], and Suhr and Jung [7] used a piecewise linear
function model. Labayrade et al. [S] applied Hough transform
to a whole v-disparity image and estimated a piecewise linear
function by selecting several straight lines that have large
accumulation values and compose an upper or a lower envelope.
Suhr et al. [6] divided a v-disparity image into several parts
and applied Hough transform to the consecutive parts to find
a piecewise linear function. Suhr and Jung [7] sampled 3-D
points using the Y Z-plane accumulation and estimated a piece-
wise linear function by applying RANSAC to the points sam-
pled in consecutive regions.

Meanwhile, a B-spline curve has been presented as a gener-
alization of polynomial and piecewise linear functions. Among
the popular vertical road profile models discussed above, a
cubic B-spline curve has been known as the most accurate and
flexible model because of its high DOF [8]-[12]. Wedel et al.
[8], [9] estimated a cubic B-spline curve-based vertical road
profile using a Kalman filter. This method properly works if the
3-D points provided to the Kalman filter are from the actual
road surface and are only contaminated by Gaussian noise.
However, it is known that this method gives inaccurate results
if the 3-D points include outliers such as points produced by
obstacles or stereo matching errors [10], [11]. Keller et al.
[10], [11] proposed an ROI-based outlier removal approach.
This method selects ROIs according to the predicted driving
corridor, variance of triangulation error, height distribution of
3-D points, and empirically designed fixed area. This method is
able to stabilize the estimation results of the B-spline curve by
reducing the number of outliers. However, it is difficult for the
empirically selected ROIs to reject most of the outliers while
retaining inliers under various road conditions. In particular,
in the case of the distant road surface, it is hard to accurately
select ROIs because errors of the driving corridor prediction and
triangulation dramatically increase. This might be the reason
why Keller et al. [10], [11] utilized this method only for road
surfaces up to 30-40 m. Schauwecker and Klette [12] presented
a robust estimator-based method. This method iteratively per-
forms least squares estimation of a B-spline curve by growing
the road surface region participating in the estimation process.
It can be regarded as an M-estimator-based method with an
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Fig. 2. Example of the function approximation. Thick green and thin red lines
indicate a cubic B-spline curve and its approximation using a piecewise linear
function, respectively.

empirical binary weighting function. The M-estimator-based
method can robustly estimate a vertical road profile if the 3-D
points are contaminated by a small proportion of outliers.
However, it might converge to a local minimum when a large
proportion of outliers are presented. There are mainly two
reasons for this drawback. One is that the performance of the
M-estimator is highly dependent on the initial estimate, which
is difficult to correctly establish in the case of a large proportion
of outliers [26]. The other is that the larger the proportion of
outliers, the higher the possibility that the empirical binary
weighting function selects the wrong 3-D points [12]. This
situation frequently occurs when a road surface is severely
occluded by obstacles close to the ego-vehicle or the proportion
of outliers increases on the distant road surface due to the
perspective projection.

III. PROPOSED METHOD
A. Two-Step Strategy

A cubic B-spline curve with a high DOF and nonlinearity
is hard to estimate from the realistic data contaminated by
outliers. This paper utilizes a two-step strategy that initially
estimates a piecewise linear function and then obtains a cubic
B-spline curve from the initial estimation result. In this paper, a
road surface up to 100 m is modeled by a cubic B-spline curve
with control points every 20 m, and this curve is approximated
to 20 linear functions with 5-m interval. Fig. 2 shows an
example of the function approximation. In this figure, thick
green and thin red lines indicate a cubic B-spline curve and its
approximation using a piecewise linear function, respectively.
It can be observed that a cubic B-spline curve can be precisely
approximated by a piecewise linear function.

This approximation can achieve robustness against outliers.
Robust estimation of a function with a high DOF requires a
large amount of computational complexity. [f RANSAC [27] is
utilized for estimating parameters of the two functions shown
in Fig. 2, a cubic B-spline curve whose DOF is 8§ requires
log(1 — p)/log(1 — w®) iterations, but a piecewise linear func-
tion needs only 20 x log(1 — p)/log(1 — w?) iterations by
assuming that adjacent linear functions are independent. p and
w are the probability that at least one of the random samples
is free from outliers and the proportion of inliers, respectively.
If Hough transform [28] is utilized instead, the former requires
N voting bins, but the latter needs only 20 x N2 voting bins.
N is the number of voting bins in each parameter space. The
decrease of computational complexity not only reduces the
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Fig. 3. (a) Left image of stereo camera. (b) Dense disparity map. (c) Three-
dimensional point accumulation result in logarithmic scale.

computing time but also raises the possibility of correct estima-
tion. Since the piecewise linear function representing a vertical
road profile is continuous, there are dependencies among the
adjacent linear functions. However, they are temporarily ig-
nored in this stage to achieve computational efficiency. These
dependencies are restored during the parameter estimation
stage by the smoothness term of dynamic programming. It will
be discussed later in Section III-C.

B. Three-Dimensional Point Accumulation

A dense disparity map is utilized for vertical road profile
estimation. Fig. 3(a) and (b) shows the left image of a stereo
camera and the corresponding dense disparity map calculated
by Semiglobal Matching (SGM) [29] implemented in [30],
respectively. The road in this figure is sloped downward. All
pixels in a dense disparity map are three-dimensionally recon-
structed and accumulated on the Y Z-plane after compensating
the camera tilting angle obtained by an offline precalibration.
The tilt angle compensation is for removing the effect caused
by camera installation variation. Since each public database
provides this value, this paper simply used it. This approach can
achieve computational efficiency since numerous 3-D points are
able to be represented by limited number of bins, and it has
been also used in [3], [7], [21], and [22]. Fig. 3(c) shows an
accumulation result of 3-D points on the Y Z-plane. In the fig-
ure, the accumulation is displayed in logarithmic scale for better
visualization. The horizontal axis indicates Z-coordinates from
0.0 m (left) to 100.0 m (right), and the vertical axis indicates
Y -coordinates from —10.0 m (bottom) to +10.0 m (top). Bin
size is set to 0.1 m x 0.1 m. For better understanding, a picture
of a small car is depicted at the approximated ego-vehicle
location. Due to the perspective projection, an image of a distant
object appears smaller than that of a close object, although they
are equal in metric size. This causes an accumulation inequality
among objects located at different distances. Approximately,
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an object size in an image is proportional to focal length, f,
and inversely proportional to depth, Z. Thus, accumulation
inequality due to the perspective projection can be moderated
by multiplying the accumulation result by Z/ f as
G, = A, 24
f

where A(j,i) and A(j,4) are the original and moderated ac-
cumulation results, respectively; and Z (i) and f are a depth
corresponding to A(j,7) and the focal length in pixel units,
respectively. ¢ and j are indexes of the accumulation result in
horizontal and vertical directions, respectively. The origin of
1 and j is located at the top left corner in Fig. 3(c).

ey

C. Parameter Estimation

A piecewise linear function has been used for representing
a vertical road profile [S]-[7]. Labayrade et al. [5] estimated a
piecewise linear function in v-disparity using Hough transform.
This method estimates a vertical road profile by calculating
an upper or a lower envelope of multiple straight lines that
have the highest accumulation values. However, it can only
handle slope changes in one direction. Suhr et al. [6] (our
previous method) also utilized v-disparity image and Hough
transform. This method divides a v-disparity image into several
parts and applied Hough transform to the consecutive parts
to find a piecewise linear function. Suhr and Jung [7] (our
previous method) estimated a piecewise linear function in the
Y Z-plane using RANSAC. This method first samples the 3-D
points expected to compose a road surface and estimates a
piecewise linear function by adaptively changing the interval.
Since the estimation procedure of the methods in [6] and [7]
is sequentially conducted, a linear function in a subregion is
influenced only by the linear function in the previous subregion.
This may cause an estimation error in the near subregion to be
propagated to the far subregions.

For robust and accurate estimation of a piecewise linear
function, this paper proposes a method that utilizes Hough
transform [28] and dynamic programming [31]. This combina-
tion is suited for this problem, since Hough transform produces
voting results (fitness values) for all discrete parameter combi-
nations within a search range and dynamic programming can
directly use them as the data term for optimization. In addition,
dependence of adjacent linear functions scarified for computa-
tional efficiency can be restored as the smoothness term. Unlike
the previous methods [5]-[7], this method can produce more
reliable estimation results and handle slope changes in both
directions because it selects the most appropriate combinations
of linear functions via global optimization. In this paper, Hough
transform does not require a high computational cost because a
small search range with rough resolution is sufficient for the
given problem.

A piecewise linear function in the Y Z-plane can be repre-
sented as

Y(Z) =tan(0,) - Z + pn, In1 < Z<Z, (2

where 6,, and p,, are the slope angle and y-intersection at
the start point of the nth subregion Y (Z,_1), respectively.
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Zn-1 < Z < Z,indicates the range of the nth subregion. Since
0,, means the slope of the road at the nth subregion, this method
can handle the slanted roads. Dynamic programming is utilized
to estimate the piecewise linear function. Cost of dynamic
programming C(0,,, pp, 041, Pny1) consists of two terms as

C(9n7 Pns 9n+17 anrl) = D(9n7 pn) + S(enu Pny 9n+17 anrl)
(3)

where D(6,,, p,) and S(0,,, pp,0nt1, pnr1) are the data and
smoothness terms, respectively.

The data term is calculated by applying Hough transform to
the 3-D point accumulation result shown in Fig. 3(c). Before
applying Hough transform, the 3-D point accumulation result is
manipulated. Since there is ideally no 3-D point underneath the
road surface, a certain location that has a large accumulation
value underneath it is unlikely to be a part of the road sur-
face. Based on this, the accumulation result is manipulated by
subtracting the maximum accumulation value below a certain
location from the accumulation value of that location as (4).
This procedure suppresses the accumulation values generated
by obstacles above the road surface.

A(j,4) = A(j, 1)
—max {A(j + 1,1), A(j +2,7), ..., A(jmax, 1)} @)

where jax indicates the maximum of row index j. After this
manipulation, the road surface is divided into 20 subregions,
and Hough transform is applied to the manipulated accumula-
tion result (A) of each subregion. During Hough transform, the
range and interval of 6,, are set to —4.0° to +4.0° and 1.0°,
respectively; and those of p,, are set to —5.0 m to +5.0 m
and 0.1 m, respectively. Fig. 4(a) and (b) shows the divided
subregions and corresponding Hough transform results, respec-
tively. Horizontal and vertical axes of the Hough transform
result are 0,, and p,,, respectively. In this figure, only 19 Hough
transform results are presented because the region up to 5.0 m
that is out of the stereo camera’s field of view is omitted. These
Hough transform results are used for the data term of dynamic
programming as

D(9n7 pn) = _H(ena pn) (@)

where H (0, p,,) denotes the accumulation value of the voting
bin at (0, p,) calculated by applying Hough transform to
the nth subregion. A negative sign is added because dynamic
programming is designed to solve a minimization problem.

The smoothness term consists of two subterms related with
two properties of the piecewise linear function as

S(Gna PrsOng1, Pyt ) = 31(071,7 PrsOnit, pn+1) +55 (Gna 0n+1)~

(6)
The first subterm of (6) reflects the property that adjacent linear
functions should meet at the region boundaries as

0, if R(67upn79n+1apn+1) ST

S10n; o Ont1s 1) = { 00, otherwise

)
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Fig. 4. Procedures of the proposed vertical road profile estimation method.
(a) Divided sub-regions. (b) Hough transform results and estimated linear
function parameters (red crosses). (c) Estimation result of the piecewise linear
function (green line). (d) Estimation result of the cubic B-spline curve (red line).

where R(0,, pn,0n+1,pnr1) indicates the distance in
Y -coordinates between adjacent linear functions at the region
boundary, Z,,, as

R(Gna Prns 9n+17 pn+1) = Htan(e”) " Zn + p"’}
— {tan(9n+1) <Ly + pn+1}| - (8

If this distance is less than or equal to a predetermined thresh-
old, T, the first subterm is set to 0, and otherwise, it is set to
infinity. Thus, it provides a strong constraint that makes the
adjacent linear functions connected to each other at the region
boundary. T is set to the same value as the bin size used for the
3-D point accumulation (0.1 m) to cope with the quantization
error caused by the accumulation process. The second subterm
of (6) reflects the property that the slopes of adjacent linear
functions are gradually changing as

52(971,79n+1) = |{(Zn+1 - Z’n,) : tan(en)}
- {(ZnJrl - Zn) : tan(9n+1)}| . (9)

This term calculates the slope difference between adjacent lin-
ear functions in Y -coordinates within the range of the subregion
(Zn+1 — Zy). To make the cost of dynamic programming well
balanced, both the data term in (5) and the smoothness term
in (6) are designed to have metric values. Fig. 4(b) and (c)
shows the estimation result of the piecewise linear function
via the proposed method. Red crosses on the Hough transform
results in Fig. 4(b) indicate the parameters of linear functions
for corresponding subregions, and a green line in Fig. 4(c) is
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TABLE 1
DATABASE DESCRIPTION

Number Stereo matching Image resolution
Database . . .
of images algorithm (pixels)
6D-VISIONDB 500 UM (implemented 1024 x 440
by Daimler)

SGM (implemented 1242 x 375
KITTIDB 287 in [30]) (slightly varying)

DAIMLERDB 306 UM (implemented 640 x 480

in [30])

the vertical road profile represented by the estimated piecewise
linear function.

Since the piecewise linear function has a drawback in that
slope changes are abrupt [8], [9], the vertical road profile is
refined by estimating a cubic B-spline curve based on the
estimation result of the piecewise linear function. To this end,
points are uniformly sampled with intervals of 0.1 m on the
estimated piecewise linear function, and the cubic B-spline
curve is obtained by applying the least squares estimator to the
sampled points. A red line in Fig. 4(d) shows the final vertical
road profile estimation result with the cubic B-spline curve.

IV. EXPERIMENTS
A. Database Description

Three publicly available databases were used for perfor-
mance evaluation: 1) 6D-Vision Scene Labeling Database
(6D-VISION DB) [32]; 2) KITTI Vision Benchmark Suite -
Road Database (KITTI DB) [33]; and 3) Daimler Stereo Pedes-
trian Detection Benchmark Data Set (DAIMLER DB) [34]. The
6D-VISION DB and the KITTI DB were chosen because they
provide the designation results of road surface region, and the
DAIMLER DB was chosen because it includes various urban
situations. The 6D-VISION DB and the KITTI DB provide
500 and 287 images with the road surface designation results,
respectively. In the case of the DAIMLER DB, we selected
uniformly distributed 306 images and manually designated their
road surface regions. Since dense disparity maps are included
only in the 6D-VISION DB, those of the KITTI DB and the
DAIMLER DB were obtained by SGM implemented in [30].
Table I describes the test databases in detail. Fig. 5 shows
examples of three databases. Fig. 5(a) shows the designated
road surface region (red line) on a left stereo camera image, and
Fig. 5(b) shows the corresponding dense disparity map. Exam-
ples in the first, second, and third rows are from the 6D-VISION
DB, the KITTI DB, and the DAIMLER DB, respectively.

B. Performance Evaluation and Comparison

Performance evaluation was conducted by comparing the
ground truth of the vertical road profile with the estimated
vertical road profile. The ground truth of the vertical road
profile was manually generated via the following steps.

1) Disparities inside the manually designated road surface
region are selected.
2) Miscalculated disparities are manually removed.
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Fig. 5. Examples of test databases. (a) Designated road surface region (red
line) on a left stereo camera image. (b) Corresponding dense disparity map.
Examples in the first, second, and third rows are from the 6D-VISION DB, the
KITTI DB, and the DAIMLER DB, respectively.

3) Retained disparities are three-dimensionally reconstructed.

4) Maximum distance of the road surface region visible in
the current image is manually designated.

5) Ground truth of vertical road profile is obtained by es-
timating a cubic B-spline curve using the reconstructed
3-D points within the maximum distance via the least
squares estimator.

We believe that this curve can be considered as the most
accurate vertical road profile that can be estimated from the
given dense disparity map and a cubic B-spline curve model.
This procedure is a slightly modified version of [12] and [35].

For quantitative evaluation, this paper suggests a criterion
called mean absolute vertical difference (MAVD). If G and
E are the areas under the ground truth and estimated vertical
road profiles, MAVD is calculated by dividing the symmetric
difference of G and E (GAFE) within the maximum distance
of the road surface region (L) by L as

GAE _ (GUE)-(GNE)

MAVD =
L L

(10)

Since MAVD means the average absolute difference be-
tween the ground truth and estimated vertical road profiles in
Y -coordinates, a lower MAVD means better performance.

The proposed method was compared with three previ-
ous methods: M-estimator-based region-growing method [12],
RANSAC-based sequential estimation method (our previous
method) [7], and Hough transform and v-disparity-based
method [5]. In the case of the method in [12], our implemen-
tation might be slightly different from the original one because
detailed descriptions were omitted in their paper. Since the
method in [7] was originally proposed to estimate a piecewise
linear function, a cubic B-spline curve is estimated using the
inliers that support the estimated piecewise linear function.

Table II shows the MAVDs of the four vertical road pro-
file estimation methods in three different databases. It can
be easily noticed that the proposed method outperforms the
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TABLE II
MAVDS OF THE FOUR METHODS

Database Method Method Method Proposed
in [12] in [7] in [5] method
6D-VISION DB 13.6 cm 159 cm 13.4 cm 7.8 cm
KITTI DB 18.3 cm 24.1 cm 19.9 cm 11.1cm
DAIMLER DB 329 cm 20.9 cm 25.7 cm 11.2 cm
Total 20.3 cm 19.5 cm 18.6 cm 9.6 cm
70 T I T
N\ ! ~ - Method in [12]
60 ------ i L %+~ Method in [7]
6 : =8-- Method in [5]
e N A i —6— Proposed method |1
@ |
£ ;
GCJ |
o |
~ I
S
<
=
1 1 1
0~10 10~20 20~30 30~40 40~55

Road surface proportion (%)
Fig. 6. Changes in MAVD with different road surface proportions.

three previous methods in all three databases. On average, the
proposed method gives MAVD of 9.6 cm, and the methods in
[51, [7], and [12] give 18.6, 19.5, and 20.3 cm, respectively. The
performance of the method in [12] is dramatically degraded
in the DAIMLER DB. This is because the 6D-VISION DB
and the KITTI DB mostly consist of situations where forward
obstacles are distant from the ego-vehicle and the road surface
is not much occluded, as shown in the first and second rows
in Fig. 5(a). On the contrary, the DAIMLER DB includes
many situations where a large proportion of the road surface
is occluded by forward obstacles close to the ego-vehicle, as
shown in the last row in Fig. 5(a). It reveals that the method
in [12] is more sensitive to these situations compared with the
others. This will be discussed in detail later. All four methods
show the best results in the 6D-VISION DB. This is because the
dense disparity maps included in this database are more reliable
compared with those calculated by SGM implemented in [30],
as shown in Fig. 5(b).

There are mainly two reasons that make the proposed
method outperform the previous methods. The first reason is
that the proposed method is more robust against the situations
with a large proportion of outliers compared with the previous
methods. Fig. 6 shows the changes in MAVD with different
road surface proportions. In this figure, black dash—dot, blue
dotted, green dashed, and red solid lines indicate the MAVDs
of the methods in [5], [7], and [12] and the proposed method,
respectively. Since the road surface proportion is the ratio
between the image of the road surface region and the whole im-
age, a lower road surface proportion means a higher proportion
of outliers. In Fig. 6, it can be easily observed that the proposed
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Fig. 7. Changes in MAVD with different distances in Z-coordinates.

method gives similar MAVDs with different road surface
proportions, but the MAVDs of the other three methods are
increased, as the road surface proportion is getting lower.
Particularly, the MAVD of the method in [12] is more rapidly
increased compared with the other methods. This is because the
M-estimator of the method in [12] is more sensitive to outliers
(3-D points not produced from the road surface) compared with
the RANSAC of the method in [7] and the Hough transform
of the method in [5] and the proposed method. This is a
well-known drawback of the M-estimator [26]. Furthermore,
the proposed method can more efficiently restrict the parameter
space using Hough space and smoothness term of dynamic
programming compared with the method in [12].

The second reason is that the MAVD of the proposed method
gradually grows when the distance in Z-coordinates increases.
Fig. 7 shows the changes in MAVD with different distances in
Z-coordinates. In this figure, black dash—dot, blue dotted, green
dashed, and red solid lines indicate the MAVDs of the methods
in [5], [7], and [12] and the proposed method, respectively. It
is obvious that the MAVD of the proposed method is more
gradually increased compared with the MAVDs of the previous
methods. This is because the proposed method estimates a
vertical road profile using a global optimization via dynamic
programming. That is, a vertical road profile in each subregion
is determined by considering the vertical road profiles of all
subregions. However, in the cases of the methods in [7] and
[12], the vertical road profile in a subregion is estimated by
considering only the previous subregion since they sequentially
estimate a vertical road profile from near to far subregions.
Due to this, the estimation error in the near subregion can be
propagated to the far subregions. This causes the MAVDs of
the methods in [7] and [12] to more rapidly increase compared
with the proposed method. In the case of the method in [5],
the estimation result highly depends on the road surface near
the ego-vehicle because the contribution of this region to the
v-disparity accumulation is dominant due to the perspective
projection. This makes the MAVD of the method in [5] be-
come larger when the distance in Z-coordinates increases. In
addition, this result can be analyzed in terms of the outlier
proportion. The proportion of road surface is decreased in an
image when the distance in Z-coordinates is getting farther
because of the perspective projection. This means that the 3-D
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Fig. 8. Vertical road profile estimation result from the KITTI DB. (a) Left
image of stereo camera and corresponding dense disparity map. (b) Ground
truth vertical road profile (yellow line). (c) Vertical road profile estimation
results of the method in [5] (black line), the method in [7] (blue line), the
method in [12] (green line), and the proposed method (red line).

(b)

Fig.9. Vertical road profile estimation result from the DAIMLER DB. (a) Left
image of stereo camera and corresponding dense disparity map. (b) Ground
truth vertical road profile (yellow line). (c) Vertical road profile estimation
results of the method in [5] (black line), the method in [7] (blue line), the
method in [12] (green line), and the proposed method (red line).

points produced from a distant subregion include a large
proportion of outliers compared with those produced from a
subregion close to the ego-vehicle. Since the proposed method
is superior to the others in terms of robustness against outliers,
as already discussed with Fig. 6, the proposed method can more
accurately estimate the distant vertical road profile.

Figs. 8—10 show the vertical road profile estimation results of
the four methods. Figs. 8(a), 9(a), and 10(a) show left images
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Fig. 10. Vertical road profile estimation result from the 6D-VISION DB.
(a) Left image of stereo camera and corresponding dense disparity map.
(b) Ground truth vertical road profile (yellow line). (c) Vertical road profile
estimation results of the method in [5] (black line), the method in [7] (blue line),
the method in [12] (green line), and the proposed method (red line).

of the stereo camera and corresponding dense disparity map,
and Figs. 8(b) and (c), 9(b) and (c), and 10(b) and (c) show the
ground truth vertical road profiles (yellow line) and the vertical
road profile estimation results, respectively. Black, blue, green,
and red lines in Figs. 8(c), 9(c), and 10(c) indicate the estima-
tion results of the methods in [5], [7], and [12] and the proposed
method, respectively. Fig. 8 shows the vertical road profile esti-
mation result from the KITTI DB. In this example, a wide road
surface is presented without occlusions caused by obstacles
close to the ego-vehicle. The proposed method and the methods
in [7] and [12] give reliable results in this case. However,
the result of the method in [5] becomes unreliable when the
distance in Z-coordinates increases. This is mainly due to its
high dependence on the road surface close to the ego-vehicle.
Fig. 9 shows the vertical road profile estimation result from the
DAIMLER DB. A small proportion of road surface is visible
due to the forward vehicle close to the ego-vehicle. The pro-
posed method and the method in [7] successfully estimate the
vertical road profile, and the method in [S5] gives a result with
a small error. However, the method in [12] fails due to its sen-
sitivity to the outlier proportion. This result is consistent with
the analysis in Fig. 6. Fig. 10 shows the vertical road profile
estimation result from the 6D-VISION DB. In this example, the
proportion of the road surface is dramatically decreased due to
the perspective projection and the surrounding obstacles (build-
ings, vehicles, etc.), whereas the distance in Z-coordinates
is increased. The proposed method accurately estimates the ver-
tical road profile, whereas the three previous methods are get-
ting more erroneous after the location of approximately 50 m.
This result is consistent with the analysis in Fig. 7.

Some 3-D points are located under the ground truth, although
there must be no 3-D points under the road surface in an ideal
situation. This is because of the triangulation error presented in

1535
TABLE III
COMPUTATION TIMES OF THE FOUR METHODS
Method Method Method Proposed
Database in [12] in [7] in [5] method
Matlab Matlab Matlab Matlab C
6D-VISION DB 1.72 s 094s 0.38 s 1.10s  0.042s
KITTI DB 1.56 s 0.79 s 0.32s 1.06s  0.042s
DAIMLER DB 1.37s 0.59's 0.41s 099s  0.038s

a real situation. This error causes the 3-D points from the road
surface to become more scattered while its distance increases.

C. Execution Time

All methods were implemented in MATLAB, and their
execution times were measured on a 3.40 GHz Intel Core
17-2600 CPU with 4 G RAM. Table III shows the compu-
tation times of the four methods. The computation time of
the method in [12] is higher than those of the other methods
because it directly utilizes 3-D points, but the other methods
utilize 2-D accumulation results. The proposed method was
also implemented in C language, and it requires 38 ms in the
DAIMLER DB and 42 ms in the 6D-VISION DB and the
KITTI DB. Although the pixel resolutions of the 6D-VISION
DB and the KITTI DB are almost twice that of the DAIMLER
DB, there is a slight difference in execution time (only 4 ms).
This is because the computational cost of the proposed method
is consistent regardless of pixel resolutions once 3-D points are
reconstructed and accumulated onto the Y Z-plane. This is one
of the advantages of using the Y Z-plane accumulation. The
computation time presented in Table III does not include stereo
matching procedure.

V. SUMMARY AND FUTURE WORK

This paper has proposed a dense stereo-based vertical road
profile estimation method. The proposed method utilizes a
two-step strategy and combination of Hough transform and
dynamic programming. The two-step strategy enables a cubic
B-spline curve to be reliably estimated from the realistic data
contaminated by outliers. The combination of Hough transform
and dynamic programming makes the estimation procedure
robust against a large proportion of outliers and guarantee op-
timal parameters. Experimental results show that the proposed
method produces reliable vertical road profiles even in the cases
of a large proportion of outliers and road surfaces distant from
the ego-vehicle. The proposed method cannot properly work in
cases of a severe roll angle and complete occlusion of the road
surface. Thus, we are planning to overcome these drawbacks by
adding an online roll angle calibration and road profile tracking
in the future. In addition, we will improve the proposed method
by compensating the increasing sparseness of the 3-D point
accumulation considering the sensor error model.
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