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Abstract. Six approaches for downscaling climate model outputs for use in hydrologic simulation
were evaluated, with particular emphasis on each method’s ability to produce precipitation and other
variables used to drive a macroscale hydrology model applied at much higher spatial resolution
than the climate model. Comparisons were made on the basis of a twenty-year retrospective (1975–
1995) climate simulation produced by the NCAR-DOE Parallel Climate Model (PCM), and the
implications of the comparison for a future (2040–2060) PCM climate scenario were also explored.
The six approaches were made up of three relatively simple statistical downscaling methods – lin-
ear interpolation (LI), spatial disaggregation (SD), and bias-correction and spatial disaggregation
(BCSD) – each applied to both PCM output directly (at T42 spatial resolution), and after dynamical
downscaling via a Regional Climate Model (RCM – at 1/2-degree spatial resolution), for downscaling
the climate model outputs to the 1/8-degree spatial resolution of the hydrological model. For the
retrospective climate simulation, results were compared to an observed gridded climatology of tem-
perature and precipitation, and gridded hydrologic variables resulting from forcing the hydrologic
model with observations. The most significant findings are that the BCSD method was successful
in reproducing the main features of the observed hydrometeorology from the retrospective climate
simulation, when applied to both PCM and RCM outputs. Linear interpolation produced better results
using RCM output than PCM output, but both methods (PCM-LI and RCM-LI) lead to unacceptably
biased hydrologic simulations. Spatial disaggregation of the PCM output produced results similar
to those achieved with the RCM interpolated output; nonetheless, neither PCM nor RCM output
was useful for hydrologic simulation purposes without a bias-correction step. For the future climate
scenario, only the BCSD-method (using PCM or RCM) was able to produce hydrologically plausible
results. With the BCSD method, the RCM-derived hydrology was more sensitive to climate change
than the PCM-derived hydrology.

1. Introduction

An improved understanding of the interactions between ocean, land and at-
mosphere has led to definitive advances in the ability to forecast weather and
climate using complex models of the ocean-land-atmosphere system (e.g., Betts et
al., 1997; Livezey et al., 1997; Shukla, 1998; Koster et al., 1999). Despite improved
skill in weather and climate forecasts, hydrologists struggle with how best to use
forecast information in applications such as water resource planning, management
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and conservation as well as irrigation and drainage for sustainable development.
The lack of spatial specificity and accuracy have rendered weather and climate
forecasts inadequate for hydrologic applications that have serious ramifications to
stakeholders and the society at large (Stern and Easterling, 1999).

One factor that has limited the use of climate forecast information in hydrolog-
ical prediction is the scale mismatch between climate model output and the spatial
scale at which hydrological models are applied – typically some subdivision, either
natural (subcatchment) or gridding of a watershed (e.g., Lettenmaier et al., 1999;
Wood et al., 2002; Wilby et al., 2000). Various studies have evaluated downscaling
methods designed to bridge this gap, particularly in terms of their ability to repro-
duce surface temperature and precipitation fields (IPCC, 2001; Leung et al., 2003).
The methods that have been most widely used include dynamical modeling by
nesting a regional climate model (RCM – see Leung et al., 2004) within a general
circulation model (GCM) (Cocke and LaRow, 2000; Leung et al., 1999; Giorgi
and Mearns, 1991; Kim et al., 2000; Yarnal et al., 2000), statistical or empirical
transfer functions that relate local climate to GCM output (Hewitson and Crane,
1996; Wilby and Wigley, 1997; Wilby et al., 1998) and climate-anolog procedures
(IPCC, 1996). Still other methods (e.g., Charles et al., 1999) combine dynamical
and statistical procedures. Murphy (1999) showed that while dynamical and statis-
tical downscaling approaches yield similar reproductions of current climate (e.g.,
Wilby et al., 2000), they can nonetheless differ significantly in their projections
of future climate conditions. Studies by Murphy (1999), Kidson and Thompson
(1998) and Wilby et al. (2000) further suggest the need to bias correct climate
model output to assure meaningful results in applications like hydrologic and water
resources assessments.

The papers in this special issue report results from the pilot phase of the De-
partment of Energy Accelerated Climate Prediction Initiative (ACPI), which used
GCM scenarios of future climate produced by the DOE-NCAR Parallel Climate
Model (PCM; Washington et al., 2000; Dai et al., 2004). A variety of methods
were used in ACPI projects to downscale PCM output. Dettinger et al. (2004)
studied water resources impacts of climate change projected by PCM in several
subbasins of the Sacramento–San Joaquin River basin after adjustment of histor-
ical climate model output to match daily observed precipitation and temperature
statistics. Payne et al. (2004) utilized variations of the probability mapping methods
described by Wood et al. (2002) for spatial downscaling and bias correction of both
global and regional climate model outputs in their investigation of water resources
impacts of climate change in the Columbia River Basin (CRB). VanRheenen et
al. (2004) and Christensen et al. (2004) used similar approaches in studies of the
Sacramento–San Joaquin and Colorado River basins, respectively. All of these
studies used different methods to downscale and bias correct the global or regional
model outputs in order to produce realistic simulations of hydrologic conditions of
the current climate. It is worth noting that this is a de facto minimum standard of
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any useful downscaling method for hydrologic applications: the historic (observed)
conditions must be reproducible.

Few studies have evaluated the differences among various downscaling meth-
ods based on their implications for hydrological predictions (Crane et al., 2002;
Wilby et al., 2000). There remain critical questions, for instance, about the value of
dynamic downscaling, given that biases inevitably remain that must be removed,
usually by subsequent application of statistical methods. With these questions in
mind, we evaluated six different methods of downscaling from global or regional
models to the still finer scale of a grid based hydrological model (specifically,
the Variable Infiltration Capacity, or VIC model). Included are three statistical
downscaling methods – linear interpolation (LI), spatial disaggregation (SD) and
bias-corrected spatial disaggregation (BCSD) – applied either directly to PCM out-
puts or to dynamically downscaled (to intermediate resolution) PCM output, i.e.,
to the output of a regional climate model. The six methods were compared through
application to a retrospective climate simulation, and those that performed best
were also applied to a future climate scenario. The spatial domain of all compar-
isons was the Columbia River Basin (CRB) of the U.S. Pacific Northwest (PNW)
region (see Payne et al., 2004 for background).

2. Approach

The general approach was to simulate land surface energy and water fluxes using
the VIC macroscale hydrological model (see Section 2.2), driven by meteoro-
logical outputs from PCM with and without intervening dynamical downscaling
using a regional climate model. Results of a twenty-year climate-hydrology sce-
nario were evaluated by comparison with a retrospective observational analysis
of surface climate and hydrologic conditions. Implications of the more successful
of the approaches were also explored for a future climate run. The observational
analysis is discussed in Section 2.1, the models and simulations in Section 2.2, and
the downscaling methods in Section 2.3. Sampling error issues are discussed in
Section 2.4.

2.1. OBSERVATIONAL ANALYSIS

The observed climatological and hydrological fields used to evaluate the down-
scaled climate model outputs were taken or derived from the hydroclimatic
retrospective analysis of Maurer et al. (2002), which is based on a 1/8-degree hydro-
logic simulation of land surface energy and water variables run at a 3 hour timestep
over the continental U.S. for the period 1950–2000. We used average monthly
temperature and soil moisture, total monthly precipitation, runoff and evapora-
tion, and basin-averaged monthly snow water equivalent. The climate variables
(precipitation and temperature) for the 20-year retrospective period (approximately



192 A. W. WOOD ET AL.

1976–96) were taken directly from the Maurer et al. (2002) dataset, and the hydro-
logic ones were generated via a retrospective simulation of the 20 year period (with
a 2 year hydrologic model spin-up, producing an initial model state from which all
retrospective runs were started), driven by climate variables taken from the same
gridded observations.

2.2. MODELS AND SIMULATIONS

We used output from two climate models: PCM, and the RCM of Leung et al.
(2004) for that portion of their domains included within the VIC model’s 1/8-degree
representation of the PNW. The PNW domain is divided by the Cascade Mountain
range into coastal basins draining to the west, and all of the CRB. Almost all of
the region has a winter-dominant precipitation regime in which most of the annual
precipitation is derived from frontal systems originating in the North Pacific, the
majority of the moisture from which falls on the west slopes of the Cascades.
Although much drier, the CRB to the east receives winter precipitation mostly as
snow (in the mountains of British Columbia, Canada, and Idaho and Montana),
much of which contributes to a strong seasonal runoff peak in the late spring and
early summer. Figure 1 shows the study domain, along with the PCM and RCM
grid alignments (T42 or 2.8125 degrees latitude/longitude for PCM, and 1/2-degree
latitude/longitude for RCM). Also shown are the PCM and RCM average annual
precipitation and temperature climatologies for the period 1975–95, at the resolu-
tion of each climate model, and the observed 1/8-degree climatology described in
Section 2.1. The figure shows the effect of RCM’s higher spatial resolution relative
to PCM (PCM represents the PNW region with about 20 grid cells, while RCM
uses about 500, and the observed 1/8-degree climatology has about 6400).

The climate scenarios and climate model simulations used in the study are de-
scribed in greater detail elsewhere in this issue (Dai et al., 2004 (for PCM); Leung
et al., 2004 (for RCM)), but in brief, they resulted from retrospective historical sim-
ulation and future climate simulations, based on a observed historical greenhouse
gas and aerosol emissions for the historical run, and ‘business as usual’ (BAU)
global emissions future climate. Because the RCM simulations were of length 20
years (using a subset of longer PCM sequences to represent boundary conditions),
all analyses were based on the 20-year simulations for both PCM and RCM for the
periods designated ‘RCM subset’ in Table 1 to avoid sample length differences.
The run designations used in Table 1 are consistent with other papers in this issue
(specifically Dai et al., 2004; Leung et al., 2004).

The hydrologic model used in this study, the Variable Infiltration Capacity
(VIC) model of Liang et al. (1994, 1996, 1999) is a semi-distributed grid-
based hydrological model which parameterizes the dominant hydrometeorological
processes taking place at the land surface-atmosphere interface. The VIC model
has been implemented previously for the CRB, and the calibration procedure and
results are described in Nijssen et al. (1997) and Payne et al. (2004). VIC model



APPROACHES TO DOWNSCALING CLIMATE MODEL OUTPUTS 193

Figure 1. (a) PNW domain with PCM and RCM model grids and four streamflow simulation locations
(diamonds: 1 – Corra Linn; 2 – Chief Joseph; 3 – Ice Harbor; and 4 – The Dalles). (b) PNW annual
average 1979–95 model climatologies for total precipitation and average temperature at PCM’s T42
and RCM’s 1/2-degree resolutions, and the 1/8-degree observed climatology of Maurer et al. (2002).

Table I

Simulations used in this study

Run Description Run period RCM subset

B06.22 Historical (greenhouse CO2 + aerosols forcing) 1870–2000 10/1975–9/1995

B06.44 Climate change (BAU6, future scenario forcing) 1995–2099 7/2040–6/2060

climate inputs for this study were daily precipitation, maximum and minimum
temperature, and daily average wind speed, for each 1/8-degree model grid cell
(other forcing variables – specifically downward solar and longwave radiation,
and dew point – were derived using methods described by Maurer et al., 2002).
Because VIC was run at a finer spatial resolution than the climate models, a
downscaling step (methods described in the next section) to bridge the resolution
gap between climate model and VIC was implemented, whether PCM or RCM
output was used. The VIC model was applied to the entire PNW study domain
of Figure 1, although the hydrologic analysis was confined to the CRB drainage
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upstream of the Dalles, OR, a domain identical to that used by Payne et al. (2004).
The primary difference between the VIC model used for this study and the Payne
et al. (2004) implementation was grid resolution: we used 1/8- rather than 1/4-degree
longitude and latitude to afford a greater resolution gap for the downscaling method
evaluation. Streamflow results are reported for four locations shown in Figure 1:
Kootenai River at Corra Linn Dam, Columbia River at Chief Joseph Dam, Snake
River at Ice Harbor Dam, and the Columbia River at the Dalles, OR. These reflect,
roughly, streamflow effects in the Canadian portion of the basin, the middle and
upper Columbia River, the Snake River drainage, and the entire basin. Figure 2
shows simulated streamflow at these locations when VIC was driven by observed
precipitation and temperature. The simulations generally reproduce the observed
long term monthly mean hydrograph and also capture interannual flow variation.

2.3. DOWNSCALING METHODS

For each of the climate model runs summarized in Table I, we compared six
approaches for downscaling climate model output: three model output post-
processing approaches – linear interpolation (LI), spatial disaggregation (SD)
and bias-corrected spatial disaggregation (BCSD) – each applied to PCM output
directly and to RCM output, which represents an intermediate dynamical down-
scaling step. To distinguish between three direct PCM output methods and the
three RCM output methods, a prefix of PCM – or RCM – is used with the post-
processing method designator. Regardless of the method, the climate model output
fields that were downscaled were the same: monthly mean temperature (Tavg) and
total precipitation (Ptot), at the climate model resolution. Each downscaling pro-
cedure reproduced these as input fields for the VIC model at 1/8-degree resolution,
and an additional step was taken to disaggregate the monthly fields into daily time
series required by VIC (daily precipitation, maximum and minimum temperature).
This final disaggregation step is identical to that used in Wood et al. (2002), and is
summarized briefly in Section 2.3.1 below. Sections 2.3.2 and 2.3.3 summarize the
SD and LI approaches, primarily focusing on their differences from BCSD.

2.3.1. Bias Correction of Climate Model Output, Followed by Spatial
Disaggregation (BCSD)

For direct use of PCM output, Tavg and Ptot forcings from each climate model
cell centered within the study region were treated individually for purposes of
bias correction. For bias removal, a quantile-based mapping (e.g., the empirical
transformation of Panofsky and Brier, 1968) was constructed from the PCM model
climatology to the observed monthly climatology for each variable (Tavg and Ptot).
The observed climatology was derived from Maurer et al. (2002) for the period
1975–95, re-gridded and averaged to the PCM grid resolution. The PCM clima-
tology was taken from modeled Tavg and Ptot from the B06.22 simulation for the
same period. The mapping from PCM to observed climatology was subsequently
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Figure 2. VIC model streamflow validation results for four routing locations (naturalized observa-
tions, solid gray; simulated, dashed). A subset timeseries from the validation period is shown at left,
the monthly mean hydrographs at right.

applied to the PCM raw output, translating it to a plausible range with respect to
historical observations. The mapping was performed at the resolution of the PCM
output, hence the adjustments vary spatially at the PCM grid scale and by month.
For the BAU scenarios, the PCM cell-specific temperature shift (monthly averages
relative to the B06.22 retrospective run monthly averages) were removed from the
uncorrected PCM output before, and replaced after, the bias-correction step. For
the BAU runs, this step was needed because the BAU temperature distribution was
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quite different from that of the climate model historic run. When the temperature
shift was removed, the spread of the BAU run temperature distribution was near the
historical range, enabling the bias-correction step to be applied with little extrapo-
lation. The basic assumption of this approach is that the variability of the BAU run
temperature distributions will remain similar to the retrospective run variability,
despite the BAU mean shift.

Spatial disaggregation imposed sub-PCM grid scale spatial variability on the
bias-corrected, PCM-scale forcings. The monthly time step, bias-corrected PCM-
scale BAU scenario time series were spatially interpolated to the hydrology model
grid cell centers. Anomaly fields (multiplicative for Ptot, and additive for Tavg,
different for each calendar month), developed from the observed climatological
monthly means (for Tavg and Ptot) were applied to the resulting 1/8-degree monthly
variable fields as follows: (a) observed monthly mean Tavg and Ptot 1975–95 av-
erages were aggregated to the climate model scale (T42 or 1/2-degree), and then
interpolated back to the 1/8-degree scale, exactly as the climate model scale forcings
were interpolated; (b) the differences (for Tavg) or ratios (for Ptot) between the
1/8-degree monthly mean Tavg and Ptot and the interpolated monthly mean fields
were calculated to create the anomaly fields. The mean monthly sets of anomaly
fields so constructed, when applied to timeseries of interpolated climate model-
derived fields, added spatial variability to the smooth 1/8-degree field created by the
interpolation step. The spatial disaggregation created VIC-scale monthly forcing
time series corresponding to the PCM-scale time series, but reflecting VIC-scale
spatial structure.

Finally, a temporal disaggregation step was used to form daily time step in-
puts for the VIC model. The monthly forcing time series were replicated using
scaled or shifted daily patterns sampled from the historic record, at the hydrol-
ogy model resolution. Month-long daily patterns of precipitation and temperature
(more specifically minimum and maximum temperature, with Tavg defined as their
average) were sampled for each monthly timeseries by picking a year from the
50-year climatology period at random. Each sampling year was used for the entire
CRB domain to preserve a degree of synchronization in the weather components
driving hydrologic response. The daily patterns were then scaled (for Ptot) and
shifted (for Tavg) to match the monthly timeseries (in Tavg and Ptot) created by
applying the interpolated, bias-corrected PCM anomalies to the VIC cell climato-
logical means. Various screening methods were applied to the precipitation patterns
to ensure that rescaling did not result in unrealistic values. The same temporal
disaggregation step was applied in all six methods, to avoid confounding the results
by differences in the derivation of daily weather patterns. The rationale for use of
monthly rather than daily or sub-daily climate model outputs is discussed in Wood
et al. (2002).

Application of the BCSD method to RCM output was as described above, with
the following differences:
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• Instead of PCM output for Tavg and Ptot, RCM’s dynamically downscaled
monthly Tavg and Ptot at 1/2-degree were used. A 1/2-degree observed clima-
tology was developed for bias-correction by aggregation from the Maurer et
al. (2002) archive.

• The spatial disaggregation began with bias-corrected 1/2-degree monthly fields
rather than the PCM resolution fields.

Note that RCM is driven with a more comprehensive set of PCM output fields
than the limited surface variables used in our hydrologic downscaling (see Leung
et al., 2004 for details).

2.3.2. Spatial Disaggregation of Climate Model Output, without Bias Correction
(SD)

The SD approach was similar to the BCSD method, except that the PCM or
RCM output fields were interpolated to the 1/8-degree VIC model grid without the
intervening bias-correction step.

2.3.3. Spatial Linear Interpolation of Climate Model Output (LI)
The LI procedure was similar to BCSD, except that the PCM output fields or RCM
output fields were linearly interpolated to the hydrologic model grid cells without
the intervening bias-correction step, and without spatial disaggregation. The LI
approach is intended to provide a baseline for comparison with the other methods
because it adds the least additional information to the raw output of the climate
model. More elaborate interpolation approaches exist that draw from ancillary
information sources (e.g., using elevation data to estimate precipitation gradients
across an interpolation space, as in Hutchinson, 1995), to yield a more intelligent
distribution of the interpolated data. These methods arguably fall closer to the
category of spatial disaggregation (SD), and are not considered in this paper, given
our inclusion of a separate SD method.

2.4. METHOD DISCUSSION

The success of two of the techniques – BC and SD – depend on the stability over
time of the probability distributions used to correct climate model bias and to
impose spatial variability, respectively. In the retrospective assessment, the proba-
bility distributions were estimated from the same simulation period that was being
downscaled. Hence the distributions at first glance appear to yield unbiased results
after downscaling – although it should be understood that even in this case, the
historic period provides only an estimate to the underlying statistical populations
of the variables being downscaled, and there is bias associated with the short record
length from which the probability distributions were estimated. Had the corrections
been applied to another retrospective period, the effect of bias resulting from the
relatively short record length used to estimate the probability distributions would
have been more apparent. If the timeseries of the variables in question are stationary
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and the variance is relatively small, this should be a somewhat minor issue, as even
small samples (e.g., N = 20, as in this paper) will not produce large sampling
biases, at least in the estimation of the means of derived hydrologic variables.
On the other hand, for variables with larger bias, and/or estimation of variables
near the tails of the probability distributions, the problem is potentially important
– notwithstanding that it can be alleviated by use of a longer period of coincident
historical observations and climate simulation.

As noted in Section 2.3.1, for the BAU climate downscaling the sampling bias
issue is compounded by the need to estimate unbiased probability distributions
of future climate with which to adjust the climate model biases. We recognized
through exploratory data analysis that the PCM Ptot distribution changes are small
enough that the retrospective period can be used to estimate these distributions, but
the shift in the climate model Tavg distributions cannot be ignored. Our approach
to minimizing bias in future Tavg distributions and the required assumptions is
described in Section 2.3.1.

A thorough investigation of the sampling bias issues associated with estimation
of probability distributions from short record lengths is beyond the scope of this
paper. Instead, we report here a brief investigation of the implications. The goal is
to estimate the extent to which biases in results could arise from errors in estimating
probability distributions of the underlying variables. The discussion applies to the
means of derived variables, and to the BC method only.

Using a Monte Carlo framework, 500 pairs of samples of 20 years of Ptot and
Tavg (each year drawn randomly with replacement) were taken from the observed
1950–99 PCM-scale record over the CRB domain, and from the spatial means,
monthly probability distributions of sampling errors were estimated. These are
shown in Figure 3 (panels a and b) by the 95% confidence limits, together with
the mean of the 50-year period. For precipation, the largest errors were roughly
20–25% in winter and spring, while the largest temperature errors were 1–2 ◦C in
winter, and 0.9 ◦C in spring. It should be noted that winter and spring precipitation
and temperature are the dominant meteorological variables affecting streamflow.

In this limited investigation, it was not feasible to carry this analysis through
the hydrologic simulation. Instead, we estimated the effects of the precipitation
and temperature variation on peak season runoff using 2000 randomly drawn non-
consecutive 20-year samples from the simulated runoff associated with the full 50-
year period. Figure 3c shows the variation in mean monthly May–August (MJJA)
runoff associated with variations in mean monthly December–March (DJFM)
CRB-average precipitation and temperature. While the May–August runoff is
relatively insensitive to temperature variations, absolute changes (in mm) were
approximately half the absolute winter precipitation changes (in mm). Figure 3d
shows the variation in May runoff as a fraction of June runoff associated with
variations in April–June (AMJ) precipitation and temperature. The runoff fraction
ranges from approximately 0.85, for the retrospective climate, to approximately
1.15 for a shift in peak flow commonly associated with moderate climate warming
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Figure 3. Sampling error 95% confidence limits for monthly precipitation (a) and temperature (b);
(c) correspondence of mean May–August runoff (RO-MJJA) with mean December–March (DJFM)
precipitation and temperature; and (d) correspondence of ratio of May runoff to June runoff with
April–June (AMJ) precipitation and temperature.

in this region. The implications of precipitation and temperature sampling error
for runoff, at the extremes, are that a 1 ◦C warm bias in spring temperature, about
the same magnitude as the 0.975 non-exceedence sampling error, is sufficient to
produce the entire shift, and a winter precipitation negative bias could produce a
20% summer runoff reduction. On the other hand, as the results in Section 3 show,
these runoff biases are minor relative to the distortions arising from a failure to bias
correct climate model output, even using a short correction period.
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These results are not comprehensive, but illustrate that the 20 year scenario
lengths used here are on the shorter end of the size needed to produce robust
correction distributions for application to different scenario periods. Again, the
magnitude of these errors can be reduced by increasing the length of the retrospec-
tive period, although it should be noted that the rate of error reduction is expected
to go roughly as the 1/2 power of the record length, so even using the entire 50-year
period of historic observations (and assuming RCM runs of this length were made)
would only reduce the errors by a factor of about 1.6.

3. Results

Results are presented first for the retrospective climate simulation, followed by
the future climate simulation, and each is compared to the observational analysis
described in Section 2.1. Results include (a) temporally averaged spatial climate
fields (monthly total precipitation, Ptot, and monthly average air temperature, Tavg)
for December and July (which reflect winter and summer conditions); (b) as-
sociated spatially averaged variables (Ptot, Tavg, evapotranspiration, snow water
equivalent or SWE, runoff and soil moisture); and (c) monthly average streamflow
(runoff routed through a stream network) at four locations in the CRB shown in
Figure 1.

3.1. RETROSPECTIVE ANALYSIS (OCTOBER 1975–SEPTEMBER 1995)

3.1.1. Spatial Analyses of Precipitation, Temperature and Snow Water Equivalent
For December and July, observed Ptot and Tavg (Figures 4 and 5) are compared
with the PCM and RCM-derived retrospective simulation (B06.22) results. For
precipitation, the main features of the observed climatology (top row, Figure 4)
are a spatial divide between higher precipitation to the west of the Cascade Moun-
tains (which run north-south at about longitude 121–122◦ W – see Figure 1) and
lower precipitation to the east, and a temporal divide between wet and dry in
winter (December) and summer (July), respectively. A less pronounced feature
is associated with the higher precipitation areas in Canada, Idaho and Montana,
which correspond primarily to higher elevations. The LI results show that PCM
simulates the west-east gradient toward lower precipitation in December, and
somewhat reproduces the reverse in the July, but not surprisingly fails to cap-
ture any elevation-dependent features (hence at the local scale is biased almost
everywhere, even though the basin average bias is moderate). The RCM better
resolves these spatial features, but shows a wet tendency in December (except in
coastal areas and British Columbia, where it is too dry), and a dry tendency in July.
Spatial disaggregation (SD) alone leads to better representation of precipitation for
PCM, greatly reducing the December local precipitation biases and nearing RCM’s
performance with LI. Because of RCM’s better resolution, RCM-SD closely re-
sembles RCM-LI, although SD appears to exacerbate RCM-LI local biases in some
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Figure 4. December and July total precipitation for the PCM and RCM-driven retrospective simula-
tions (1975–95), and for each downscaling method, as compared with the observed climatology (top
row) for the same period. LI method values are shown in the second row, below which are differences
from observed values for the LI, SD and BCSD methods.
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Figure 5. December and July average temperature for the PCM and RCM-driven retrospective sim-
ulations (1975–95), and for each downscaling method, as compared with the observed climatology
(top row) for the same period. LI method values are shown in the second row, below which are
differences from observed values for the LI, SD and BCSD methods.
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areas while improving them in others. BCSD reduces differences between observed
and simulated Ptot in both December and July to within 1–2% of observed.

The main feature of the observed climatology for Tavg (top row, Figure 5) is
a cooling gradient, present both in winter (December) and summer (July), from
southwest to northeast, which is moderated primarily by elevation, and secondar-
ily by humidity effects associated with lower precipitation east of the Cascades
Mountains (which, along with the Snake River plain in the southeast, is clearly
identifiable in the observed climatology). The interpolated PCM-LI and RCM-LI
results both capture the primary gradient, but RCM is clearly superior in resolving
the temperature range and spatial distribution across the basin. Both models show
cold and warm biases in the lower and higher elevation areas, respectively, but these
are much stronger in PCM, particularly in December. For PCM, the SD method
alone removes much of the spatial elevation related bias for July and December,
leaving broad scale biases of a few degrees or less. (It should be noted, however,
that this apparent agreement is somewhat deceptive, as the hydrological model is
quite sensitive even to temperature biases of this magnitude). For RCM, SD may
also smooth biases arising from the finer resolution of the observed climatology,
but RCM’s initial biases, for the most part, remain. BCSD improves the results to
the point that the PCM and RCM Tavg simulations match the observed means to
within a few tenths of a degree Celsius in December, and a few hundredths of a
degree Celsius in July.

For the CRB domain (upstream of the Dalles, OR, bordered to the west by the
Cascade Mountains rather than the Pacific Ocean), the simulated average April 1
snow water equivalent (SWE) (Figure 6) reflects the effects of winter and spring
temperature and precipitation. PCM-LI completely fails to capture both the mag-
nitude and spatial distribution of SWE, and although interpolated RCM distributes
snow correctly, it has a high bias, particularly in the Snake River plain, western
Montana and eastern Oregon. With SD, PCM derived results improve greatly, de-
spite leaving a high bias in eastern Oregon and central Idaho and a low bias in
BC. For RCM, SD makes little difference. For both PCM and RCM, the BCSD
method eliminates most of the bias inherent in using both RCM and PCM outputs
directly, although some small differences between the two are evident, and some
very localized biases remain (such as in the northern part of the study domain).

3.1.2. Basin-Average Monthly Analysis
The basin average monthly analysis (Figure 7) shows that the LI and SD methods
produce nearly the same basin-wide precipitation and temperature signals for each
model. In dynamical downscaling, however, there are no physically-based mecha-
nisms that constrain the simulation to preserve PCM’s basin mean precipitation or
temperature. In this example, while the RCM changes the PCM temperature signal
only slightly (leaving a cold winter and spring bias), it worsens the bias in the
seasonality of precipitation, particularly the high bias in fall and winter. For RCM,
with the LI and SD methods, the high bias in fall and winter precipitation leads
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Figure 6. Average April 1 SWE simulation for the retrospective 1975–95 climate simulations, com-
pared with the observed (simulated by the VIC model forced with observations) climatology for the
same period (top left). LI method values are shown to the right of the observed values; rows 2–4
contain differences from observed values for the LI, SD and BCSD methods.
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to an oversimulation of SWE, soil moisture and summer evaporation. For PCM,
the results are varied, with SWE and runoff undersimulated for the LI method
and oversimulated for the SD method, but soil moisture and summer evaporation
oversimulated for both. SD has little effect on the interpolated results for RCM, but
as before, greatly changes the interpolated results for PCM. The BCSD method, by
definition, forces the mean and variance of the PCM and RCM output to equal
the observed distribution, so for precipitation and temperature, the PCM and RCM
BCSD results cannot be discriminated (in top row panels of Figure 7) from the
observed climatology. For hydrologic variables, however, the exacting monthly
corrections of precipitation and temperature alone do not eliminate all biases rel-
ative to the observed hydroclimatology. Note that PCM and RCM BCSD runoff
shifts slightly earlier in the year, SWE is reduced, and soil moisture is slightly out
of phase as compared with values simulated directly using VIC forced with gridded
observations.

3.1.3. Monthly Average Streamflow
The plots of monthly average streamflow in Figure 8 show the implications of
the downscaling methods for different parts of the basin. At The Dalles, RCM’s
high precipitation bias leads to oversimulation of runoff for both the SD and LI
methods; whereas for PCM, the LI results are reasonably close to observed, while
the SD method oversimulates runoff. The same is true for PCM at Ice Harbor, while
at Corra Linn and Chief Joseph, SD improves runoff simulation. For RCM, the SD
and LI methods yield similar streamflows, and these are much improved relative
to PCM streamflows at Corra Linn and Chief Joseph, but are worse (due to over-
simulation) at Ice Harbor. The SD step in all cases reduces the difference between
interpolated PCM streamflow and RCM-LI streamflow. This reflects the fact that
RCM inherited large scale bias from PCM and therefore streamflows simulated
using the RCM-LI outputs are similar to those simulated by PCM-SD. The BCSD
method greatly improves streamflow simulation relative to the other methods for
both PCM and RCM, at all four sites, although the small bias toward earlier runoff
remains. The PCM and RCM BCSD results are essentially identical, more or less
by construct.

3.2. BAU ANALYSIS (JULY 2040–JUNE 2060)

3.2.1. Spatial Analyses of Precipitation, Temperature and Snow Water Equivalent
Because of the large biases resulting from the LI and SD methods for the retro-
spective climate period, results for BCSD only are discussed for the BAU climate.
LI spatial plots are shown, however, to help illustrate the differences between the
BAU and retrospective scenarios.
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For the BAU simulations, after BCSD, the primary changes in precipitation
(top row, Figure 9), as compared with the observed climatology and with the ret-
rospective climate simulation results (second row, Figure 4), are an intensification
of precipitation in the northwest and northeast parts of the domain, a drying in the
southeast in December, and a moderate drying over most of the region in July. The
BCSD results for both models are quite similar, but RCM simulates greater precip-
itation in some areas in December (particularly west of the Cascade Mountains and
in the mountains of Idaho) and less precipitation in the eastern part of the basin in
July.

For temperature (Figure 10), the BAU simulations from PCM and RCM pre-
served the spatial patterns from each model’s retrospective simulation (Figure 5),
but are uniformly about 3 and 1.8 ◦C warmer in winter and July, respectively, a
difference that PCM-BCSD and RCM-BCSD simulated almost identically. The
two approaches nonetheless lead to differences of up to 1/2 ◦C in places.

For precipitation and temperature, the RCM-PCM differences with BCSD ap-
pear in most cases to be reasonably consistent with tendencies present in the
retrospective simulations before any adjustment (e.g., comparing RCM-PCM dif-
ferences in the LI rows of Figures 4 and 5). For example, the RCM’s BAU climate
is wetter than PCM’s to the west of the Cascade Mountains, where it is also wetter
in the retrospective LI approach. The RCM BAU’s Snake River basin is warmer
than PCM in July, while in the retrospective simulations, that area is both warmer
and drier before bias correction. In winter, the reverse is true (as it is for the eastern
rim of the domain). These differences are consistent with the RCM’s colder, wetter
bias in those areas in the retrospective simulations. Although these differences
are damped out in the retrospective BCSD, they filter through BCSD in the BAU
simulations.

For the BAU climate April 1 SWE (Figure 11), the BCSD method with RCM
and PCM yields significantly less snow for each model, relative to their retrospec-
tive SWE results. RCM has less SWE relative to PCM except in the northern tip of
the basin, where the RCM BAU is both colder and wetter than the PCM BAU in
December.

Facing page:

Figure 7. CRB areal averages of climate and hydrology variables for the retrospective 1975–95
climate simulations, compared with the observed climatology (i.e., observed precipitation and tem-
perature, and simulated hydrologic variables based on these observations) for the same period (note
that the PCM and RCM BCSD methods produce monthly mean precipitation and temperature that
are indistinguishable from the observed in the figure).

Figure 8. Streamflow at four locations (see Figure 1) for the retrospective 1975–95 climate sim-
ulations, compared with the observed (simulated by the VIC model driven with observations)
climatology for the same period.
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Figure 9. December and July total precipitation for the PCM and RCM-driven BAU future climate
simulations (2040–60). With LI only (top row); (second row) differences in BAU BCSD results for
PCM and RCM from their retrospective BCSD results; (third row) differences between RCM-BCSD
and PCM-BCSD results.

3.2.2. Monthly Basin Average and Streamflow Analyses
In the monthly analysis of basin average variables (Figure 12), the BAU RCM and
PCM with BCSD approaches both have increased spring and decreased summer
precipitation, although PCM precipitation is greater than RCM, except in fall. BAU
temperature increases are nearly identical for the two approaches, hence different
hydrologic results for the basin-averages variables follow more from precipitation
differences. Soil moisture and evaporation are higher in PCM-BCSD, moderating
the effect of PCM’s higher precipitation on runoff, which is only slightly higher
for PCM than for RCM. For both approaches, the peak runoff comes about one
month earlier, but for RCM-BCSD, volume also decreases. Basin-average BAU
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SWE declines relative to retrospective SWE, but without much difference between
approaches (despite the spatial differences in Figure 11). Relative to the retrospec-
tive results, the BAU streamflow (Figure 13) shows an even larger seasonality shift
toward higher winter-spring flows, and lower summer ones, relative to the observed
climatology. Although equally shifted, the RCM BCSD streamflows are more sen-
sitive to climate warming (with decreases in volume in addition to the shift) than
the PCM-BCSD flows. This effect is exaggerated at Ice Harbor (near the mouth of
the Snake River), where flow does not benefit from the RCM-BCSD’s relatively
higher spring snowpack in the Canadian headwaters of the CRB.

4. Conclusions

The foregoing results of spatial analyses for December and July, and monthly
analyses of basin averaged climate and hydrology variables and streamflow were
chosen to characterize spatial and temporal differences arising from six differ-
ent approaches to downscaling climate model output. We recognize that there
are some difficulties in diagnosing hydrologic effects from one-month ‘summer’
and ‘winter’ snapshots of climate variables, even coupled with the continuous
monthly analyses of basin averaged variables. Nonetheless, we draw the following
conclusions from the retrospective analysis:

• With BCSD (in contrast to the two other postprocessing choices), a dynam-
ical downscaling step does not lead to large improvements in retrospective
hydrologic simulation relative to direct use of GCM output.

• Linear interpolation of PCM or RCM output is insufficient to support plau-
sible hydrologic simulation, even over large areas, despite the fact that RCM
moderates PCM-derived hydrologic biases relative to the 1/8-degree observed
climatology.

• If large-scale climate model outputs are relatively unbiased, applying spatial
disaggregation (SD) to impose subgrid spatial variability improves hydrologic
simulations, but substantial local biases will remain. After SD, for example,
hydrologic (e.g., SWE and runoff) and streamflow simulations derived from
the PCM output produce similar results to the finer scale RCM outputs after
LI.

• If the climate fields are biased, SD alone may exacerbate biases locally (while
leaving the basin average bias unchanged), particularly for precipitation, with
the result that the downscaled climate variables may be unsuitable for use in
hydrologic simulation.

Hydrologic simulation is sufficiently sensitive to biases in the basin mean and
spatial distribution of precipitation and temperature at the monthly level, that
nearly all local bias must be removed from climate inputs. This is particularly true
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where seasonal snowpack transfers moisture input to the soil column and runoff
from one season to the next. A primary conclusion of the retrospective study
is that, although the BCSD method successfully reproduces observed hydrology
using biased climate model simulation outputs from both PCM and RCM, the
monthly temporal scale used in correction of climate model precipitation and
temperature, separately, fails to rectify more subtle differences between climate
model simulation and observed climate. Interdependencies between precipitation
and temperature (for example, the frequency of wet-warm and wet-cold winters)
are not addressed by the BCSD method, nor are the characteristics of seasonal dis-
tributions of precipitation and temperature arising from temporal autocorrelation
in climate variables. Although the RCM may augment PCM in simulating these
dynamics, after the BCSD method, the RCM and PCM retrospective hydrology
simulations (with residual biases) were nonetheless nearly identical.

Like seasonal climate variability, interannual climate variability is only repre-
sented by the downscaling methods described in this paper via those characteristics
that are directly transmitted to the downscaled values. For instance, while the
methods ensure that the long term model-based monthly climatology (and to a
large extent) the hydrology will resemble the observed hydroclimatology, they do
not guarantee that the interseasonal or interannual sequencing of different climate
regimes (e.g., dry/wet periods such as the 1988 drought or 1993 midwestern U.S.
flooding) in a retrospective climate model simulation will be accurately simu-
lated. Extratropical interannual climate variability, particularly for precipitation,
is not predicted well by GCMs (e.g., Lau et al., 1996), even given observed
ocean boundary forcings, far less in free-running climate integrations that form
the basis for many climate change studies. Given retrospective boundary con-
ditions, however, many climate models (PCM included, as noted in Zhu et al.,
2004) simulate long-term average annual and seasonal climate characteristics (for
means and other statistics) reasonably well, which is the rationale for using these
models in climate impact assessments. Approaches that combine climate model
estimates of changes in characteristics which climate models simulate well with
observation-derived information about poorly simulated climate characteristics
(e.g., interannual variability, subgrid spatial variability) may be a fruitful area for
future investigations.

Facing page:

Figure 10. December and July average temperature for the PCM and RCM-driven BAU future
climate simulations (2040–60). With LI only (top row); (second row) differences in BAU BCSD
results for PCM and RCM from their retrospective BCSD results; (third row) differences between
RCM-BCSD and PCM-BCSD results.

Figure 11. Average April 1 SWE simulation for the PCM and RCM-driven BAU future climate simu-
lations (2040–60). LI method results (top row); (second row, left) PCM and RCM BCSD differences
between BAU and retrospective results; (second row, right) differences between RCM-BCSD and
PCM-BCSD results.
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Figure 12. CRB areal averages of climate and hydrology variables for the PCM and RCM-driven
BAU future (2040–60) climate simulations, compared with the observed 1975–95 climatology
(i.e., observed precipitation and temperature, and simulated hydrologic variables based on these
observations).

When applied to the future (BAU) climate scenarios, the BCSD method yielded
the only consistently plausible streamflow simulations, whether or not dynamical
downscaling was also used. A significant conclusion, however, is that dynami-
cally downscaling the climate model scenarios before applying the BCSD method
yielded results showing greater hydrologic sensitivity to climate change in the CRB
than PCM-BCSD (i.e., without dynamical downscaling). The RCM’s initial biases
in the spatial simulation of temperature and precipitation that were removed for
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Figure 13. Streamflow at four locations (see Figure 1) for the PCM and RCM-driven BAU future
(2040–60) climate simulations, compared with the observed 1975–95 climatology (simulated by the
VIC model driven with observations).

the retrospective scenarios appeared to provide tendencies that produce the model
differences for the BAU climate. Charles et al. (1999) note that for climate change
assessments, the inclusion in statistical downscaling approaches of an atmospheric
moisture prediction variable (in this case, one other than surface precipitation – per-
haps one more confidently simulated by climate models) can lead to convergence
in the results of statistical and dynamical approaches.

The greater hydrologic sensitivity to the BAU climate found using RCM-BCSD
compared to PCM-BCSD may imply that fully coupled land-atmosphere models
like RCM have a role to play in climate change analysis. The hydrologic differ-
ences are the combined result of differences between the PCM and RCM simulated
warming signals, and differences in their precipitation characteristics. Leung et al.
(2004) showed larger warming in the BAU scenario at the higher elevations that
may be associated with snow-albedo feedback effects (a dependence also found
in observations by Beniston et al. (1997), and other regional climate simulations:
Giorgi et al. (1997), Leung and Ghan (1999), and Kim (2001)). A one way cou-
pling of large scale climate models with high resolution hydrologic models cannot
recover the effects of the missing regional scale climate change signatures. Where
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such regional signatures can be shown to be important (and can be accurately
represented) in a subgrid scheme, they argue for higher resolution modeling or
at least subgrid treatments in fully coupled land-atmosphere models for the study
of climate change effects.
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