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Abstract

Given the importance of moving-obstacle avoidance in
many mission-critical systems, the conditions under which it
is possible to guarantee avoidance are poorly understood.
Even more troubling is the fact that most researchers in the
field address a static formulation of the problem, implicitly
assuming that a solution to such a problem can be
generalized to the dynamic demands of a real-time system.
This paper exposes a serious flaw in this assumption. In the
process of doing so, it also describes an important, unsolved
lower-bound problem that is fundamental to real-time
avoidance of moving obstacles.

Robot Motion Planning   

Motion planning has been a fundamental component of
robotics research from the time the first mobile robots were
constructed in the late 1960's. [Nilsson 69] describes what
may be the earliest such robot, and this description
includes a discussion of a graph-search algorithm used to
determine the shortest collision-free path from the robot's
location to a goal position. In the 30 years since that time, a
large body of research has focused upon the problems
associated with determining how to direct a mechanical
robot from one location to another, subject to constraints
imposed by the application environment and the
mechanical constraints of the robot itself.

Broadly speaking, motion planning problems fall into two
categories. Gross motion planning focuses on problems
involving distances much greater than the size of the robot.
Fine motion planning revolves around the problem of
moving an object in a narrow space, where the required
accuracy of motion approaches, or even exceeds, the
positional accuracy of the robot. This paper is solely
concerned with problems and issues implicit in gross
motion planning. The terms “motion planning” and “path
planning” are used interchangeably throughout the paper,
to refer to problems associated with planning the gross
motions of mobile robots. There are a number of excellent
surveys of gross motion planning research, including
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[Hwang92], [Latombe91] and [Yap87]. The reader should
refer to these for detailed descriptions of research that falls
beyond the scope of this paper.

There are two temporal aspects of motion planning that
must be distinguished. Adopting terminology from
[Hwang92], gross motion planning can be categorized as
either time-invariant or  time-variant, according to whether
or not the obstacles in the domain can change position over
time. Path-planning problems can also be either static, in
which all of the obstacle information is known to the
planner prior to planning, or dynamic, in which case
information about environment becomes known to the
planner over time, after the planning process in initiated,
and often during the execution of a partially constructed
plan.

By these definitions, most of the previous work in moving-
obstacle avoidance (i.e. path planning in time-varying
domains) has focused upon a “static” problem. Problem
specifics are known when the algorithm for solving it
begins to run, and they do not change afterwards. An
implicit assumption is that such an algorithm can be easily
modified to address the more realistic, “dynamic” case,
where aspects of the problem become known to the control
system over time, and are subject to change. This paper
will demonstrate a serious flaw in this assumption.

Real-Time Motion Planning

Inside of the real-time systems community, there is a
strong definition of “real time” that has yet to become part
of mainstream usage in the path-planning literature. As
[Musliner95] put it

Real-time computing is not about building “fast”
systems; it is about building systems that are
predictably “fast enough” to act on their environments
in well-specified ways.

Systems that are constrained by hard deadlines, which
absolutely must be met to avoid catastrophe, are also
known as mission-critical, or hard real time systems.
Systems that are shown to meet some explicitly stated
statistical performance properties, where timeliness is not



strictly guaranteed, and the result of a failure to meet a
deadline is not catastrophic, are generally referred to as soft
real time systems. Systems where the statistical properties
are implicit, unexamined and unstated are known as
coincidentally real time systems. This usage will be
adopted through the rest of this paper.

There has been significant research in the area of dynamic
motion planning. Typically, such studies are associated
with the control of actual robots, and so the convenience of
the static assumption cannot be adopted. Many of the
papers in this area purport to describe real-time algorithms.
With only a very few exceptions, these real-time claims
stem directly from the dynamic nature of the problem. In
other words, most work in “real-time path-planning” is
more correctly categorized as research in dynamic path
planning, since the real-time aspects of the work are
confined to the fact that data is gathered “online,” after
system execution has begun. Such claims are not atypical,
and stem generally from the looser definition of real time
adopted outside of the real-time systems community. As
[Garvey94] put it

A strict definition of real time is that the system
guarantees that tasks will receive up to their worst-
case runtime and resource requirements, which
presumably means that tasks will produce the best
possible results (highest quality results). In real-time
AI the focus is usually on high-level goal
achievement, rather than worst-case requirements. For
this reason, often in real-time AI less strict definitions
of real time are used. One common (and usually
implicit) definition is that the system will statistically
(e.g., on average) achieve the required quality value
by the required time, but no guarantee is made about
any particular task .

Many recent papers reporting results in obstacle avoidance,
such as [Newman91], [Ianigro92], [Hu94], and
[Coombs95], make some sort of real-time claim. For
example, [Coombs95] describes an impressive system that
uses visual information to recognize and avoid obstacles
while controlling a robot traveling at relatively high
speeds. As evidence of the real-time capabilities of the
system, they state:

The robot has wandered around the lab at 30 cm/s for
as long as 20 minutes without collision. To our
knowledge, this is the first such demonstration of real-
time wandering using only image motion cues.

Typically, as is the case with each of the papers cited
above, claims of “real-time” performance are based solely
upon the dynamic nature of the problem. In other words,
when not all of the obstacle data is known prior to plan
execution, and must be somehow sensed at run-time,
especially when a robot is simultaneously moving and
avoiding obstacles, researchers often claim that their
system is real time. While the tendency to conflate

dynamic motion-planning with real-time motion planning
is epidemic in the literature, it is not universal. For
example, [Fox97] describes a technique used aboard a
robot that safely navigates at 95 cm/sec in cluttered
environments, and they make no use of the term “real
time.” According to the terminology adopting above, most
real-time path-planning and obstacle-avoidance algorithms
are at best coincidentally real time.

The Asteroids Avoidance Problem

The Asteroids Avoidance Problem is the best known and
most often studied problem in moving-obstacle avoidance.
It can be informally stated as follows:

Given a robot, at initial location R, that is capable of
instantaneous, unbounded acceleration, up to some
maximum speed VR and a set of moving obstacles,
O1, O2,…,ON, that move at known, constant linear
velocities, find a “safety-preserving”' path that the
robot can travel to avoid being hit by any of the
obstacles.

Typically this problem is cast as one of finding a path to a
goal from a starting location, while avoiding moving
obstacles. This is not strictly necessary: since all of the
obstacles are moving in a straight line, it suffices to show
that the robot is capable of getting to some one safe
location, at which it can stop indefinitely without being hit.
If this is the case, then eventually there will exist a linear,
constant velocity, collision-free path to any location in the
plane. [Canny87] has shown that the static formulation of
the problem is NP-hard. However, [Kohout96] established
necessary and sufficient conditions for guaranteeing safety
in this problem, and in those cases where it is possible to
guarantee that a safety-preserving path exists, there are
polynomial time algorithms exist to find it. The theorem
for sufficiency is:

Theorem 1: Let R be a point in a 2-dimensional
Euclidean plane, which represents the location of a
robot at time t0. Assume that the robot can rotate and
accelerate instantaneously, but is limited by a
maximum speed VR. Let O1, O2,…,ON  be a set of N
circular obstacles with diameters d1, d2,…,dN which
move at known, constant velocities v1, v2,…,vN. Let
VO be the largest of the Vi. Let W be the sum of the
widths of the obstacles, i.e., W =  dI, i = 1..N. If

each of the obstacles is initially a distance greater than

from R, then there exists a “safe harbor'” point S such
that none of the OI will touch S at any time, and the
robot can move from R to S without intersecting any
of the Oi.

The distance H = W(VO_VR)/2VR is known as the threat
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horizon. [Kohout96] also shows that if obstacles are not
constrained to start outside of this horizon, it is possible to
construct cases where the robot cannot find a path to
safety. The proof of these properties is constructive, and
suggests an O(N

3
) algorithm for solving the problem when

the requisite conditions are known to hold true, where N is
the number of obstacles. A constant-time Monte Carlo
algorithm can also be used, with the caveat that it has a
non-zero probability p of failing to find a safe harbor.
While p can be made arbitrarily close to zero, it is
impossible to use this technique to guarantee a solution.

The static version of the Asteroids Problem, in which all of
the relevant information about obstacle trajectories is
known prior to algorithmic execution, is far and away the
most studied version of the problem, and is known to be
intractable. The theorem stated above describes a natural
and realistic environmental constraint that both ensures
that a safety-preserving path exists and that such a path can
be found in bounded time. As in much of AI, it has been
standard practice to develop algorithms to solve static
problems, even when the domain of discourse is known to
be dynamic, implicitly assuming that the problem of
making the solution “fast enough” amounts to a
performance hack.

In the Asteroids Problem, algorithms and bounds that
sufficed for the static case of the problem (in a time-
varying domain) are insufficient for the dynamic case, in a
strong sense. The construction used to prove that H was
sufficient to ensure safety in the static version of the
problem cannot be used for the dynamic case, in which
obstacles are allowed to appear over time, after execution
begins. The reasons for this have important implications
for real-time path planning, as well as a much larger body
of algorithmic research.

To briefly summarize, H is chosen to ensure that,
regardless of the configuration of obstacles, there will
always exist a constant velocity path to safety. In the static
formulation of the problem, requiring all obstacles to start
a distance of at least H from R implies that at time t0 all
obstacles are outside of a fixed radius. Finding a safe
harbor can be somewhat complex, but once it is found, the
path is exceedingly simple: a straight line. In the dynamic
case, constraining obstacles to appear some minimum
distance from the robot says nothing about the relative
position of the various obstacles. Safe harbors still exist,
and they are just as easy to find, but simply finding a safe
harbor does not imply that a path to it exists, or that it can
be found.

In the case of dynamic path planning, it is not sufficient for
the planner merely to find a path to the goal and/or safety.
In addition the planners needs to ensure that it doesn’t
“paint itself into a corner,” so that it cannot escape as yet
undetected obstacles. More generally, in order to guarantee
safety in any dynamic environment, the problem solver
needs to prepare solutions that not only solve the part of

the problem that is known to it at any given time. Solutions
must also anticipate the impact of future events. When the
goal of a system is to guarantee some minimal quality of
performance, this implies that a real-time control system
for a dynamic domain cannot simply choose the solution
that best fits the known environment. Whatever solution it
finds must also be sufficient in all possible future worlds.

Dodger

[Kohout96] does establish sufficient conditions for
guaranteeing safety in the dynamic version of the Asteroids
Problem, which provide a theoretical basis for reasoning
over all possible futures, and guaranteeing safety in all
possible eventualities. To paraphrase,

Theorem 2: Assume all obstacles travel at the same
speed. Let H be W(VO+VR)/2VR, where W,VO, and
VR are as stated above. If each of the obstacles Oi

appears at some time ta(i) ! 0, at a distance greater
than ! = nH + W from the position of the robot, and
no more than n obstacles can be within a distance !
of R at any time, then there always exists a collision-
free path from Ra(i), the robot’s location at time ta(i), to
some point S such that none of the Oi will touch S at
any time.

This section of the paper presents empirical evidence that
this theoretical bound is not tight, based upon experiments
with a software simulation that solves the Asteroids
Problem in hard real-time. There are two things to note
about !, the threat horizon for the dynamic version of the
Asteroids Problem. As discussed above, it not known to be
necessary. Empirical evidence that this is not a tight bound
on the horizon will be presented below. Second, note that
! is quadratic in the number of obstacles.

Based upon this theoretical result, the author implemented
a softbot that solves the dynamic Asteroids problem in
hard real time. Known as “Dodger,” this implementation
avoided over 1.5 millions obstacles in over ten CPU-weeks
of testing, without being hit a single time. All
computations are made according to a fixed, pre-computed
periodic schedule, and are made in strictly bounded clock
time. Dodger runs on the Maruti Hard Real-Time
Operating System (HRTOS), which computes component
schedules, and guarantees that each reactive component
executes as scheduled. The Dodger problem space was
constrained to the set of problems for which solutions are
guaranteed to exist, i.e., it enforces a threat horizon that
grows quadratically with the number of obstacles.

In principle, there can be two main components to the
system: the reactive, hard real-time competencies that are
responsible for guaranteeing safety, and a non-realtime
problem solving component that finds safety-preserving
paths to goals. However, in its current form Dodger relies
upon cyclic, time-bounded heuristic routines to find paths
to goals. These find-path routines are heuristic in the sense



that they do not explicitly search for complete safety-
preserving paths to the goal, even though such paths are
guaranteed to exist. One of the “heuristics” has been shown
to be sufficient to ensure that progress is always made
towards a goal and thus is theoretically complete. In
practice, each of the heuristics employed by Dodger is
sufficient to support very effective goal achievement,
without compromising safety. Dodger is described in much
greater detail in [Kohout99].

Briefly, the find-path heuristic used for the experiments
reported in this paper is as follows: first, the algorithm
determines whether or not a constant velocity path to its
goal exists, and if so, the robot begins to head along the
indicated trajectory. If there is no direct motion to the goal,
it calculates the point at which each of the obstacles passes
closest to the goal, and then considers the feasibility of
going to a nearby point that is not threatened by the
obstacle being considered. The robot considers such points
in order of their increasing distance from the goal, and will
not go to a point that is farther from the goal than its
current position. If no such path can be found, the
maintenance of the appropriate threat horizon constraints
ensures that a safe harbor exists, and a Monte Carlo
algorithm is use to find it. The intuition behind this
heuristic is that, if direct motions to the goals are blocked,
the robot should go to some point that is both closer to the
goal and outside of the path of the obstacle(s) occluding
the direct path to the goal.

Dodger was tested on a variety of pseudo-random obstacle
generation schemes. In the first experiment reported in this
paper, all obstacles started at a fixed “battery position,”
with trajectories towards the robot's current goal, plus or
minus some random noise. All obstacles had the same
velocity, and obstacle/robot speed ratio was 1.5. 18
experimental trials were run, in which the number of
obstacles was varied from 3-20. These 18 experiments
totaled 1,671,319 seconds of runtime (19.34 days), 132,418
goals and 131,220 obstacles. During these trials, the
Dodger was not hit once. The find-path computation was
run once per 150 milliseconds. The worst-case running
time of the find-path algorithm is plotted versus the
number of obstacles in Figure 1

Figure 1

The variance in the plot suggests that nineteen days was
not enough runtime to produce a smooth curve, but the
trend is nonetheless clear. The observed worst-case
performance peaked at 65.48 milliseconds in the 11
obstacle case, and quickly dropped off thereafter. This
behavior is consistent with the conjecture that the threat
horizon is not tight. The threat horizon in this experiment
grows quadratically in the number of obstacles. Even
though the worst-case algorithmic complexity of the find-
path algorithm is linear in the number of obstacles, it
apparently becomes easier for Dodger to find safety-
preserving paths as the number of obstacles increases. The
average-case performance in these experiments is shown in
Figure 2. This curve is quite clearly linear, with a least-
squares fit of 0.000266537 + 0.000153479x. Thus the
average-case performance increases by approximately
1530 microseconds per obstacle, and will dominate the
worst-case performance at approximately 425 obstacles.

Figure 2

The basic idea of the second experiment was to reduce the
threat horizon to the point where the robot starts to get hit,
and to thus establish a rough idea of where the actual threat
horizon lies. There are two problems with this approach:
first, Dodger employs a well-defined avoidance strategy,
but the threat horizon applies to all possible strategies.
Second, just because the Dodger runs without collision for
a fixed number of seconds, N, does not imply that it would
not be hit at some later time. As N increases, our
confidence grows, but in the absence of a mathematically
grounded proof, we can never be absolutely certain that a
threat horizon empirically determined in this way will
suffice in all situations. The point of this investigation is
not to empirically establish a threat horizon, so much as it
is to get an empirical measure of how it grows with the
number of obstacles.

For this experiment, obstacles started at random locations
at the edge of a rectangular display that was scaled to the
threat horizon. Obstacle trajectory was then randomly
assigned to be towards either a) the robot's current location
or b) the goal’s current location. The number of obstacles
was varied from 9 to 30. For each number of obstacles, the
threat horizon was systematically manipulated to find two
threat horizons HA < HB < !, such that



Figure 3

a) Dodger was hit at least once with threat horizon HA.

b) Dodger avoided obstacles for two or more days
with threat horizon HB.

c) HB - HA ! ! /100

The graph of Figure 3 plots the number of obstacles vs. the
empirically determined threat horizon, in units of width.
The scatter of this curve is a clear indication that a 2-day
threshold is not sufficiently long to produce a smooth
indication of the trend. Bear in mind, however, that each
data point plotted in this figure represents roughly a week
to 10 days of machine time. It took over 283 machine-days,
not counting time lost to power outages and other minor
disasters, to collect this data. Extending the required period
of collision-free running time to a week would have taken
several machine-years. Despite the scatter, there does
appear to be an upward trend to the data. More
significantly, consider Figure 4, which plots both the date
shown in Figure 3, in dark, and the theoretical horizon in
light.

Figure 4

It is clear from this plot that the theoretical horizon greatly
overestimates the empirically observed horizon. Figure 5
plots the observed threat horizon vs. the theoretical horizon
for the static case, which grows linearly in the number of
obstacles. In over 9 machine-months of testing, no failures
were observed for a threat horizon greater than 5 times the
horizon required for the static case. The fact that this graph
does not appear to be trending upwards supports an
hypothesis that the true theoretical lower bound is near-

linear in the number of obstacles.

Figure 5

Discussion

These empirical results do not prove that the lower bound
of the dynamic threat horizon is not quadratic. It is quite
likely that one could construct an obstacle-generation
strategy that is far more taxing than the randomized one
employed. What would such a strategy be?

This question cuts to the core of the lower-bound problem.
In order to assure that an avoidance strategy is sufficient,
one must establish that it suffices in all cases, including the
“worst case,” whatever that may be. In most real-time
applications, this worst-case is easily determined, but in the
case of path planning, it is not straightforward. Without the
concept of a threat horizon, it would be difficult to even
define the worst-case configuration. Assuming that all
obstacles are constrained to appear, dynamically over time,
at a distance at least ! from the robot, the question
becomes:

What (dynamic) configuration of obstacles forces !
to be largest for any possible avoidance strategy?

Presumably, if this question can be answered, then a tight
bound on ! can be established, although this is not
necessarily the case. This is a fundamental problem for any
spatially situated mission-critical system, such as airplanes,
spacecraft, and motor vehicles. All are subject to
potentially catastrophic failure in the event that they collide
with a moving obstacle, and all operate in far more
complex domains.

Most of the constraints of the Asteroids Problem can be
relaxed. [Kohout96] extends the result of Theorem 2 to the
case where obstacles can have different non-zero speeds.
[Kohout99] extends these results to cases where some
obstacles can be stationary, and to cases where obstacles
can change speed and directions subject to known bounds.
However, all of these solutions make use of the established
sufficiency of ! to ensure safety. Consequently, these



results could be improved substantially if the size of the
threat horizon can be reduced.

The other main point of this paper is that the traditional
approach of solving a static problem formulation, and
implicitly assuming that this can somehow be made to
apply in a dynamic environment is demonstrably
inadequate in the case of real-time path planning.
Timeliness cannot be enforced as an afterthought.
Improvements in algorithmic and hardware performance
belie the fact that most search, scheduling and planning
algorithms developed to date are fundamentally offline
procedures that can be more or less awkwardly applied in
online applications. Real-time requirements do not create
the need to plan, design and implement for real-world
dynamism. They merely serve to highlight its importance.
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