
Prometheus: A Methodology for Developing Intelligent
Agents

Lin Padgham
linpa@cs.rmit.edu.au

Michael Winikoff
winikoff@cs.rmit.edu.au

RMIT University
Melbourne, Australia

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques; D.2.2
[Software Engineering]: Requirements/Specifications—Method-
ologies; I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems

1. INTRODUCTION
As agents are gaining acceptance as a technology, there is a

growing need for practical methods for developing agent applica-
tions. This paper presents thePrometheusmethodology for devel-
oping intelligent agent systems. The methodology has been devel-
oped over the last several years in collaboration with AgentOri-
ented Software. Our goal was to develop a design process with
associated deliverables which can be taught to industry practition-
ers and undergraduate students who do not have a background in
agents and which they can use to develop intelligent agent systems.
Our claim is that Prometheus is developed in sufficient detail to
be used by a non-expert. Our evidence is, at this stage, stillanec-
dotal; however, the indications are that Prometheus is usable by
non-experts and that they find it useful.

Prometheus has been taught to an undergraduate class of (third
year) students who successfully designed and implemented agent
systems using JACK [1]. A second year student over the summer
vacation was given a description of the methodology and a descrip-
tion of an agent application (in the area of Holonic Manufacturing).
With only (intentionally) limited support, the student wasable to
design and implement an agent system to perform Holonic Manu-
facturing using a simulator of a manufacturing cell. With student
projects it is abundantly clear that the existence of the methodology
is an enormous help in thinking about and deciding on the design
issues, as well as conveying the design decisions.

Unfortunately space limitations preclude a detailed comparison
with the many existing methodologies. We simply note that Prometheus
differs from existing methodologies (e.g. [2, 3, 4, 5, 6, 7, 9]) in
that it focuses on the development ofintelligent agentsrather than
black boxes, supports software engineering activities from require-
ments specification through to detailed design and implementation,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02,July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

provides detailed processes (not just artifacts and notations), has
evolved out of practical industrial and pedagogical experience, has
been used by people other than the developers of the methodology,
and supports (automatable) cross checking, hierarchical structuring
mechanisms and an iterative process.

Although none of these properties is unique in isolation, their
combination is, to the best of our knowledge, unique. We believe
that these properties are all essential for apractical methodology
that is usable by non-experts to build real systems, and accordingly
the design of Prometheus was guided by these properties.

The Prometheusmethodology consists of three phases (see di-
agram below). Thesystem specification phasefocuses on iden-
tifying the basic functionalities of the system, along withinputs
(percepts), outputs (actions) and any important shared data sources.
Thearchitectural design phaseuses the outputs from the previous
phase to determine which agents the system will contain and how
they will interact. Thedetailed design phaselooks at the internals
of each agent and how it will accomplish its tasks within the overall
system.

actions and percepts

Use cases

Interaction
diagrams

Protocols

Functionality
descriptors

Agent
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
overview

agent
grouping

agent
acquaintance

shared
data

events

D
e
ta
il
e
d
 d
e
s
ig
n

A
rc
h
it
e
c
tu
ra
l
d
e
s
ig
n

S
y
s
te
m

s
p
e
c
if
ic
a
ti
o
n

final design
artifact

intermediate
design tool

crosscheck

derives

Key

Instead of attempting to cover all of the activities and artifacts
of the methodology we shall focus on the part of the architectural
design phase where the agents in the system are identified.

2. IDENTIFYING AGENTS
A major decision to be made during the architectural design is

which agents should exist. In the preceding phase (system specifi-
cation) thefunctionalities1 of the system were identified. An agent
is viewed as a combination of functionalities and so we determine
1Functionalities (called roles in some methodologies) are things

the agents that will exist by looking at combinations of functional-
ities. These combinations are evaluated according to the traditional
software engineering criteria of coherence and coupling.

We assess coupling and derive possible groupings using adata
coupling diagram. The data coupling diagram (see example be-
low2) shows functionalities (rounded boxes), data (ovals), andlinks
between them. An arrow from a functionality to data indicates
that the functionality produces the data3. The diagram assists in
identifying which functionalities interact and which functionalities
share data; this is used to suggest possible groupings of function-
alities into agents. We also identify other reasons for and against
grouping functionalities together. For example, if functionalities
use the same data it is an indication for grouping them, as is signif-
icant interaction between them. Reasons against groupingsmay be
clearly unrelated functionality or existence on differenthardware
platforms.

In the diagram below we can see that the stock manager func-
tionality and the price setter functionality seem to be strongly cou-
pled and thus we group them together into a single agent type.On
the other hand, although the book finder functionality uses both
the stock and price databases, it is more related to the user inter-
face functionalities (welcomer and sales transaction) andthus is
grouped with them. We do not group the user information func-
tionality with these because we want to have a sales assistant agent
(with the welcomer, sales transaction, and book finder functionali-
ties) for each active user, but only a single agent in the system that
stores user and bank information4.

Stock
manager

Catalogue

Stock DB

Price DB

Price
setter

Book
finder

Sales
transaction

Bank info.

User info.
User info.

Email userWelcomer

Orders DB
Delivery
problems

Problems

Transport
information

Courier/
postal DB

Order
handling

Delivery
organisation

In order to evaluate a potential grouping for coupling we usean
agent acquaintance diagram. This diagram simply links each agent
with each other agent with which it interacts. A design with fewer
linkages is less highly coupled and therefore preferable.

3. DISCUSSION AND CONCLUSIONS
We have briefly described one step of the Prometheus method-

ology. The methodology has been in use for several years and
has been taught in industry workshops (most recently at the Aus-
tralian AI conference, 2001) and to students at RMIT University.

that the system needs to be able to do. They are specified using
a natural language description and an interface (actions, percepts,
interactions with other functionalities, and data produced/used).
2The example is taken from an online book store application
3Note that we include as data both transient information passed in
messages/events as well as persistent data that is stored.
4Furthermore, this single agent will probably (for securityreasons)
be on a different hardware platform.

The feedback we have received indicates that it provides substan-
tial guidance for the process of developing the design and for com-
municating the design within a work group.

One of the advantages of this methodology is the number of
places where automated tools can be used for consistency check-
ing across the various artifacts of the design process. For exam-
ple, the input and output events for an agent must be the same on
the system overview diagram and on the agent overview diagram.
Agent Oriented Software Pty. Ltd. has constructed a supporttool
for the methodology that allows design diagrams to be drawn and
generates corresponding skeleton code in JACK.

Future work includes clearer integration of goals, extension to
social agent concepts (e.g. teams, roles), and investigating the use
of design artifacts in debugging [8]. We are also in the process of
writing a book on the design of intelligent agent systems. This will
be a practical “how-to design agent systems” aimed at industrial
practitioners and undergraduate students.

Acknowledgements: We would like to acknowledge the sup-
port of Agent Oriented Software Pty. Ltd. and of the Australian
Research Council (ARC) under grant CO0106934. We would also
like to thank James Harland and Jamie Curmi for comments on
drafts of this paper.

4. REFERENCES
[1] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas. JACK

Intelligent Agents - Components for Intelligent Agents in
Java. Technical report, Agent Oriented Software Pty. Ltd,
Melbourne, Australia, 1998.

[2] S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multiagent
systems engineering.International Journal of Software
Engineering and Knowledge Engineering, 11(3):231–258,
2001.

[3] C. Iglesias, M. Garijo, and J. González. A survey of
agent-oriented methodologies. In J. Müller, M. P. Singh, and
A. S. Rao, editors,Proceedings of the 5th International
Workshop on Intelligent Agents V : Agent Theories,
Architectures, and Languages (ATAL-98), volume 1555, pages
317–330. Springer-Verlag: Heidelberg, Germany, 1999.

[4] D. Kinny, M. Georgeff, and A. Rao. A methodology and
modelling technique for systems of BDI agents. In R. van
Hoe, editor,Seventh European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, 1996.

[5] J. Lind. A development method for multiagent systems. In
Cybernetics and Systems: Proceedings of the 15th European
Meeting on Cybernetics and Systems Research, Symposium
“From Agent Theory to Agent Implementation”, 2000.

[6] J. Mylopoulos, J. Castro, and M. Kolp. Tropos: Toward
agent-oriented information systems engineering. InSecond
International Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS2000), June 2000.

[7] J. Odell, H. Parunak, and B. Bauer. Extending UML for
agents. InProceedings of the Agent-Oriented Information
Systems Workshop at the 17th National conference on
Artificial Intelligence., 2000.

[8] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging
multi-agent systems using design artifacts: The case of
interaction protocols.Proceedings of Autonomous Agents and
Multi Agent Systems (AAMAS), 2002.

[9] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia
methodology for agent-oriented analysis and design.
Autonomous Agents and Multi-Agent Systems, 3(3), 2000.

