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Abstract

The crayfish escape circuit is a well studied circuit in neurobiology. A mas-

sive and simultaneous stimulus, which is the signature of a predator’s attack,

triggers a rapid stereotyped tail-flip. The circuit is a case study of robust

reflex behaviour in animals. Computational models of the electrical charac-

teristics of the escape circuit, based on biological data, simulate the decision

making of circuit. The models demonstrate that the rectifying junctions,

which connect the sensory neurons to the command neuron, discriminate

for highly coincidental stimuli. Furthermore, the sensory neurons are di-

rectly connected to form a lateral excitatory network, whereby stimulated

neurons recruit non-stimulated neurons. The models show that the network

sharpens the stimulus threshold required to trigger a tail-flip and enables

the escape circuit to discriminate between different combinations of sen-

sory inputs. Escape behaviour is also investigated in a broader context by

simulating the interaction of escaping with other behaviours.
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CHAPTER 1

Introduction

The goal of Artificial Intelligence is to make artificial systems that are

able to function with human level intelligence. Despite fifty years of

research, Artificial Intelligence is a long way from achieving its goal. There

is still a wide disparity between the intelligence we observe in nature and

the artificial intelligence we can create. Biological systems display superior

intelligence to the state of the art artificial systems, especially in regard to

adaptiveness and robustness. Even ‘simple’ animals exhibit robust, adaptive

behaviour that cannot be found in the most advanced artificial systems.

The observations above immediately suggest several questions: what do bi-

ological systems have that artificial ones do not? Which of these differences

are relevant to our goals of building robust and adaptive artificial systems?

In manufacturing, when a competitor has superior technology, a common

approach is to reverse engineer the competitor’s product. By understand-

ing the advantages biological systems have over artificial ones we can try

to reverse engineer animal systems. This thesis is in the spirit of ‘reverse

17



CHAPTER 1. INTRODUCTION

engineering’ biological systems.

Possibly the most advanced brain, and the most relevant to Artificial In-

telligence is the human brain. If we had a complete understanding of the

human brain we could surely manufacture an artificial one. Unfortunately

the human brain is of a complexity that causes this to be a rather diffi-

cult task. The human central nervous system (CNS) is estimated to have

1011 neurons and at least 1014 synapses (Bear et al., 1996). These numbers

give an impression that underestimates the complexity. Individual cells are

themselves highly complex and cells have many different mechanisms for in-

teracting with each other. With current techniques in Neuroscience we are

only able to obtain a superficial understanding of how our brains think.

By comparison, invertebrate brains are simpler and better understood. The

number of neurons in invertebrate brains is many orders of magnitude less.

For example, the honeybee is estimated to have one million neurons and

the flatworm, Caenorhabditis elegans, has only 302 or 381 (male or female)

neurons. In invertebrates neuroscientists are able to identify individual cells.

Complete circuits controlling identifiable behaviours have been mapped out.

Invertebrate brains are interesting in themselves. Invertebrate brains pro-

duce many interesting behaviours. Such behaviours are superior to the state

of the art Artificial Intelligence systems in many aspects of cognition.

Fortunately, despite vastly differing in complexity, there are many similari-

ties between invertebrate and vertebrate brains. The neurons that comprise

these respective types of brains are very similar and function according to

the same principles. The types of channels, receptors and neurotransmitters

found in vertebrates are (for the most part) also found in invertebrates. Un-

derstanding invertebrate brains can yield many principles that are applicable

also to vertebrates.
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Current knowledge of biological brains is very far from a complete under-

standing. It is difficult to understate that fact. What we do not know is

far greater than what we know. This is true even for the best understood

systems. There are some specific neuronal circuits whose structure and

cognition are relatively well understood. Even though it is impossible to

completely reverse engineer a biological brain, it is possible to study parts

of it in isolation. Understanding these specific circuits gives us concrete

examples of how biological brains are organised and make decisions. An

accurate understanding of specific neural circuits is a precursor to a general

theory of how brains function.

Previous studies of modelling invertebrate systems have yielded success.

(Beer, 1990) simulated the neuroethology of cockroach walking to demon-

strate a robust and adaptive locomotive controller. Beer’s model was used

to implement walking in a robotic system (Beer et al., 1992; Espenschied

et al., 1993; Espenschied et al., 1996).

This thesis is directed to investigate an example of a reflex behaviour. Un-

derstanding reflex behaviours will allow us to implement robust decision

making in Artificial Intelligence. Many reflex behaviours in different animals

are well studied in neurobiology. Reflex behaviours are relatively simple and

interesting. When an animal acts reflexively it has made a decision. Reflex

behaviour is a specialised form of decision making. The decision processes

for reflexes are very robust. Reflex behaviour provides an example of robust

decision making in nature. Arguably to understand reflexes is to understand

how biological systems get their robustness.

Two approaches were taken to studying reflex behaviour. The first is at a

high level that considers the behaviour but ignores the underlying neural

mechanisms. The goal was to consider the role of escape behaviour in a

wider context of competing behaviours. Chapter 2 describes an animat
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CHAPTER 1. INTRODUCTION

in a simulated world that integrates an escape behaviour with the task of

collecting food to survive. The work was presented at the Australian Joint

Conference on Artificial Intelligence 2001 (Versteeg, 2001). We examine the

combination of escape behaviour with other roles in an artificial system in

a very simple case. We show that by having a robust escape response the

agent is able to be bolder in the pursuit of primary goals.

The animat simulation treats the decision of whether to escape at a very

high level. The simulation demonstrated the usefulness of escape behaviour

but no really interesting complexities emerged. Furthermore, perhaps as

a consequence of the logic based decision making being used, the results

showed rigidity and brittleness, which are common attributes of artificial

systems but absent from biological systems. This directed us to our second

approach. In order to truly understand how animals make decisions it was

decided to investigate at the neurophysiological level.

A good way of gaining an understanding of reflex behaviour is by simulating

the neural circuit that controls it. In general, simulating neural circuits

enables us to test theories of how things work. Neural circuits are extremely

complex. Biologists are able to identify the specific components of the circuit

but are only able to get a intuitive and qualitative understanding of how the

system functions as a whole. Computer simulations enable us to test these

ideas. If we can reproduce an interesting behaviour in simulation then we

have understood it.

There is a positive feedback loop between experimental biology and com-

puter simulations. Neural simulations depend on experimental results from

biology. The simulation results provide feedback for biologists. Simulations

verify theories of how a neural circuit functions. Simulations make predic-

tions about the broader functions of the circuit.

The crayfish escape circuit is a particularly well studied invertebrate cir-

20



cuit that commands a reflex behaviour. The circuit controls a stereotyped

short latency tail-flip that propels the animal from danger when unexpect-

edly attacked. The neurons in the circuit have been identified and well

characterised.

The crayfish escape response is a rare example of a high level behaviour

where the controlling neural circuitry is well described. The crayfish escape

circuit is a system that is responsible for activating and controlling a spe-

cific behaviour. The neurons and connections involved in this decision are

identified. The circuit is simple enough to be able simulate all of its compo-

nents. The escape circuit is responsible for making a critical life threatening

decision. It provides a concrete example of how a biological brain robustly

makes a decision.

The escape circuit is also a case study of other interesting capabilities of

biological brains. The escape circuit is involved in social behaviour. Ani-

mals flip their tail during agnostic (fighting) encounters to demonstrate their

strength to assert their dominance. The crayfish escape circuit undergoes

learning. The circuit is not static. The response is regulated by the condi-

tions in the environment and the crayfish’ internal state. The circuit is able

to habituate to be sensitised or desensitised to frequently occurring stimuli.

The major component of the thesis is a model of the crayfish escape circuit.

By building a quantitative model of the crayfish escape circuit, one that

accurately reproduces its interesting characteristics, we can gain insight into

qualities that make biological brains interesting.

A key underlying issue is the level of detail that should be included in

the model. Ideally our model should be as simple as possible while still

retaining the interesting characteristics that explains the decision making

process in crayfish escape. We have chosen to model the electrical properties

of the neurons in the escape circuit. The model includes neurophysiological
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CHAPTER 1. INTRODUCTION

and neuroanatomical information about the cells. The model is far from

complete. The model does not explain all the known phenomenon of the

circuits behaviour nor does it include all the biological information. The

work presented provides a foundation for a complete model of the escape

circuit behaviour.

Chapters 3 and 4 give background. Chapter 5 describes the model. The

model was used to perform a series of simulations to identify what aspects

of the escape circuit’s organisation assists its function.

Chapter 6 investigates how the lateral giant is able to detect a group of

simultaneous excitation, which is the signature of a predator’s attack.

Chapter 7 simulates a network of sensory neurons that are connected to-

gether. Stimulated neurons are able to recruit non-stimulated neurons and

thereby bring the lateral giant to spiking threshold. The work in this chapter

was presented at Neuroscience 2003 (Versteeg et al., 2003).

Escape behaviours are useful to study as an example of decision making.

Escape and reflex behaviours also have a direct application to the design

of robots and artificial systems. The fact that every animal has a startle

response of some description provides compelling evidence that they have a

critical role in the function of biological nervous systems. When an animal

finds itself unexpectedly in a critical situation it must rely on fast, simple and

robust reflexes to manœuvre out of trouble. Robots when they are placed

in a real environment also have to deal with unexpected events. Studying

escape reflexes in nature is instructive as to how to design for such situations

in artificial systems.

Escape behaviours have obvious applications in RobocupRescue and Robocup.

RobocupRescue provides direct parallels to the natural world. Robots will

find themselves in physical danger. In Robocup, robots are also frequently

22



faced with unexpected events. Reflex behaviours may provide a suitable

mechanism for desperately preventing goals.

The introduction is concluded by noting the great gulf that existsx between

neuroscience and artificial intelligence. Neuroscience is the study of brains

in animals. Artificial intelligence aims to engineer brains in robots and

artificial systems. For the most part, the two communities are unaware of

each others work. The two communities have a lot to learn from each other.

This thesis is intended to contribute to crossing the gulf.

If you are interested to know how an animat can escape from a predator

while collecting enough food and whether it will survive will you must read

the next chapter.
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CHAPTER 2

Testing escape behaviour in a

simulated environment

This chapter is concerned with testing an animat with escape behaviour in

a simulated environment. We consider how an escape response can be used

by an agent in an environment and be integrated with its other behaviours.

Sections 2.1-2.6 describes simulations that evaluate some specific questions

in regard to how escape behaviour is used within an environment. These

simulations are runnable online as Java applets at:

http://www.cs.mu.oz.au/~scv/botsim/

In section 2.7 we describe a framework for creating simulations of multiple

agents interacting with each other in an environment.

25



CHAPTER 2. TESTING ESCAPE BEHAVIOUR IN A SIMULATED
ENVIRONMENT

2.1 Introduction

In nature, animals going about their daily routine need to avoid predators in

order to survive. Many animals have evolved some kind of startle response

(see section 3.5), which enables them to escape from dangerous situations.

The term ‘animat’, for an artificial animal, either simulated on a computer

or a physical robot, which must adapt to increasingly more challenging en-

vironments (Cliff et al., 1994). As robots are required to operate in more

hostile environments, mechanisms analogous to startle responses may be

critical to building robust systems. Animats may also need to escape from

sources of danger, such as malevolent passers by and curious children (Miller

and Cliff, 1994). The key is not only to have effective escape mechanisms

but also to integrate escape with the animat’s other activities. An animal

that spends all its time running away without stopping to eat and find food

will not survive very long.

This chapter presents some preliminary work exploring (1) how some reac-

tive evasive behaviours can be added to an agent operating in a hostile en-

vironment, and (2) how evasive measures can be integrated with the agent’s

other activities.

(Miller and Cliff, 1994) argued for studying pursuit and evasion tactics as

a useful problem domain for artificial intelligence. Pursuit-Evasion tactics

are amongst the common, most challenging contests in animals. Their main

reasons for studying pursuit and evasion included:

• Pursuit and evasion require highly robust forms of adaptive behaviour.

Systems that are slow, brittle or easily confused do not do well. Tra-

ditional AI may not be suited. Newer reactive, behaviour based ap-

proaches may be more suitable.

• Studying pursuit and evasion may illuminate behavioural arms races
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2.1. INTRODUCTION

in general. Pursuit and evasion scenarios may be the simplest.

• Pursuit and evasion is well studied in 3 fields: behavioral biology,

neuroethology and game theory.

• Pursuit and evasion is the simplest situations that can favour protan

(adaptively unpredictable.)

• Understanding P-E may give better understanding of evolution and

have other scientific implications.

Miller and Cliff used co-evolution to evolve predators and prey.

There have been many previous studies of evasion in isolation. A couple

of examples of evolving optimal strategies in scenarios with fixed predator

behaviour include (Koza, 1991) and (Grefenstette et al., 1990). Miller and

Cliff (Miller and Cliff, 1994) co-evolved pursuer and evader tactics using

noisy neural network controllers. The pursuer-evader problem has been re-

formulated as a one-dimensional, time-series prediction game. (Ficici and

Pollack, 1998) There has been exploration of the evolution of evasion strate-

gies when the game is made slightly asymmetric between the pursuer and

evader (Wahde and Nordahl, 1998).

(Edwards, 1991) created a pursuit-evasion scenario for testing a hypothesis

of how a crayfish may choose between different behavioural modes. Central

to Edwards’ model are mutually inhibiting command systems. Edwards

created a scenario with a crayfish and a predator. The crayfish needs to eat

food to survive and may retreat to a shelter for safety from the predator.

The crayfish was given seven different behavioural modes: foraging, eating,

hiding, defending, retreating, tail-flipping and swimming. Each behavioural

mode has a separate command system. The command systems are excited

by sensors in the environment. The command systems also mutually inhibit

for each other. The command system with the greatest excitation, after
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CHAPTER 2. TESTING ESCAPE BEHAVIOUR IN A SIMULATED
ENVIRONMENT

the inhibitory effects, has its behaviour executed. Edwards’ simulation to

showed that a mutually inhibiting command systems can produce robust

and stable behaviour. The simulation is viewable as a Java applet at:

http://www.cs.mu.oz.au/~scv/sim/simcray.html.

We create a simple scenario where an animat has a primary task, in this case

collecting food. A predator is placed in the environment to make it hostile.

Escape capabilities are incrementally added to the agent. As we build up

the prey’s evasive capabilities, we observe the impact on the agent’s survival

and the change to its approach to its primary task.

2.2 The Scenario

The set-up of the predator-prey scenario is similar to the crayfish-predator

scenario described by (Edwards, 1991). There is one predator, one prey, a

shelter and some food.

The prey has the task of collecting enough food to survive while being hunted

by a predator. The predator has a greater maximum velocity (Vpred) than

the prey (Vprey). Furthermore the predator’s seeing distance (Rpred) is also

greater than the prey’s (Rprey). The prey has superior acceleration over

the predator and may choose to hide in a shelter where it is safe from the

predator.

The environment is a continuous two-dimensional plane of n × m units. It

has wraparound edges (this is to avoid the artifact of the prey being trapped

in a corner.) The world contains pieces of food located at random locations.

New pieces of food are added and old ones are removed at random time

intervals. Also situated in the environment is a shelter. When the prey is

in the shelter the predator is unable to see it and unable to kill it.
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2.2. THE SCENARIO

The predator and prey are able to move within the world and are able to

make some limited interactions with the other entities in the world. The

prey is able to eat a piece of food if it is close enough. The predator is

able to kill the prey if it is close enough. The simulation is updated in

discrete time steps. At each time step the predator and prey are queried

by the simulation engine about their intended movements and other actions

they want to take. All updates to positions and interactions are executed

simultaneously. If the predator or prey elect to change their velocity, they

are not able to do it instantly but instead accelerate to new velocities. It

may take several time steps for the predator or prey to reach their new

velocity. The predator and prey each have maximum rates of acceleration.

The predator follows a very simple behaviour pattern which is fixed for all

the experiments. The predator roams around at half-speed (vpred

2 ) travelling

in a straight line. At random time intervals it changes to a new random

direction. The predator is continuously looking for the prey. If at any point

the predator spots the prey it will immediately change its direction to head

directly toward it and accelerate to its maximum velocity (vpred). When the

predator gets within a distance of kkill units of the prey, the predator kills

the prey and then eats its. The predator is present somewhere in the world

for the entire duration of the simulation.

The prey has an internal energy level. To avoid starvation it must maintain

its energy level above zero. At each time interval the prey consumes an

amount of energy determined by equation 2.1.

∆E = −(B + Av2) (2.1)

The base energy consumption (determined by B) forces the prey to occa-

sionally go and collect food. The other term is dependent on the square of

the prey’s velocity to penalise travelling at high speeds. The prey replen-
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ishes its energy level by eating food. The prey needs to move close to a

piece of food before it can eat it. When a piece of food is eaten the food

is removed and the prey gains k units of energy. If E drops below zero the

prey starves to death.

The simulation was implemented using the botsim framework (which is de-

scribed in detail in section 2.7.)

2.3 Architecture of the prey

The prey uses a layered architecture which we build up incrementally (Pfeifer

and Scheier, 1999; Brooks, 1986). The prey operates in distinct behavioural

modes. It monitors the level of some simple stimuli, such as ‘hunger’, to

determine which behavioural mode to operate in. At the most basic stage

the prey ignores the predator completely and is solely focused on collecting

enough food to avoid starving. At each stage, another behavioural mode or

stimulus is added to the prey’s repertoire to assist it in avoiding the predator.

New behaviours are able to subsume or suppress behaviours introduced at

previous levels.

2.3.1 The Hiding Bot

First we consider a very simple bot. The hiding bot looks for food when

it is hungry and hides in the shelter when it is not. It does not detect

an approaching predator. The hiding bot’s survival strategy is basically to

spend as much time in the shelter as possible, while avoiding starvation.

The hiding bot uses one stimulus with which to make its decisions: the

internal energy level (E). It uses this information to choose between one of

two behavioural modes in which it can operate:
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Forage The prey searches for food and eats it. The prey follows the odour

gradient emitted by the food until it reaches an item of food which it

then eats. The prey travels at half speed to conserve energy.

Hide The prey moves to the shelter and hides there when it arrives. The

prey travels at half speed to conserve energy.

Figure 2.1a shows the hiding bot’s control architecture.

2.3.2 The Running Away Bot

The running away bot actively keeps an eye out for the predator while it is

outside of the shelter. The bot operates in the same way as the hiding bot

in that it ventures out of the shelter for food when it is hungry, but if while

the bot is out of the shelter it detects the predator it will scurry back to the

shelter for safety.

The running away bot may use the behavioural modes of the hiding bot:

hide and forage, and in addition may use: run away mode.

Run Away The prey runs to the shelter at maximum velocity.

To determine when to run away, the bot uses the stimulus predator fear. It

is dependent on the distance (dpred) between the prey and the predator as

shown in equation 2.2.

P = AP e−
dpred

L (2.2)

The algorithm uses to control the running away bot is shown in figure 2.1b.

31



CHAPTER 2. TESTING ESCAPE BEHAVIOUR IN A SIMULATED
ENVIRONMENT

2.3.3 The Memory Bot

The hiding bot and the running away bot are stateless. The memory bot

explores what advantage a simple piece of state information can give an

agent. (Dorigo and Colombetti, 1994) demonstrated that adding even a few

memory bits can give a significant improvement to the performance of a

reactive object tracking system.

The memory bot remembers when it last saw the predator. This affects the

stimulus memory fear. When the predator is seen memory fear instantly

rises to the maximum. It decays exponentially with time (tpred) from when

the predator was last seen as shown in equation 2.3

M = AMe−
tpred

τ (2.3)

The memory bot operates in the same way as the running away bot but if

its memory fear is still above a threshold TM then it will continue to hide.

Figure 2.1c shows the control algorithm.

2.3.4 The Dodging Bot

The dodging bot has a reflex action with which it attempts to evade the

predator if it gets too close.

If the predator fear stimulus crosses a threshold TD then the prey will go

into dodge mode:

Dodge The prey immediately changes to a new direction which is orthogo-

nal to the direction of the approaching predator. The prey very rapidly

accelerates to maximum velocity. (It is in effect a jump to the side.)

This manœuvre is somewhat analogous to the escape reflex in the crayfish
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(which is described in detail in chapter 3) in that (1) a simple test is used

to determine when to activate the response, and (2) to be effective a special

piece of hardware is needed. The crayfish makes use of special flexors in the

abdomen which are only used in an escape tail-flip; this gives it extremely

rapid acceleration. The dodging bot uses a higher amount of acceleration

in the dodge manœuvre than it normally has available to it. The dodge

manœuvre is also somewhat similar to the zig-zagging used by the evasive

agents in the (Miller and Cliff, 1994) simulations.

The dodge behaviour takes precedence over all other behaviours. Figure 2.1d

shows the control layer diagram of the dodging bot.

2.4 Evaluation methods

The four bots were placed in the environment to see how well they survived.

To evaluate how the prey modifies its approach to its primary task (collecting

food) as its evasive capabilities increase, we measured the optimal hunger

threshold (TH) for each bot. This was done performing a linear search

over the entire range of valid hunger thresholds. A total of 101 sample

points were considered. For each hunger threshold one thousand simulations

were performed. This was necessary to obtain reasonably precise statistical

measures of the prey’s expected life. One thousand trials was within the

capability of the computer resources available and produced quite smooth

curves of the recorded mean statistics versus the varied parameters.

For each configuration the following statistics were recorded:

1. The mean number of time steps that the bot survived.

2. The median number of time steps that the bot survived.

33



CHAPTER 2. TESTING ESCAPE BEHAVIOUR IN A SIMULATED
ENVIRONMENT

3. The standard deviation of the survival time.

4. The frequencies of the alternative survival outcomes. For each simula-

tion the bot may have died because (a) it ran out of energy (starved),

or (b) it was caught by the predator (killed), or (c) it reached the end

of the simulation still alive (survived).

The conditions of the environment, the prey’s energy costs and the con-

straints on the prey’s sensory capabilities were kept constant for all bot

configuration trials. Refer to appendix A for the values of these constants

which were used in the simulations. Prior to the bot configuration trials

being executed, some different environmental settings were experimented

with by hand. Changing the environmental constants modifies the balance

between the predator and the prey. The parameters in equation 2.1 reduce

or increase the frequency at which the prey needs to forage for food. Mod-

ifying the predator’s seeing range and maximum velocity significantly tilts

the balance. If the seeing range is too great or the chasing velocity is too

high, the predator becomes too efficient at hunting the prey to the extent

that the prey always dies. The final values adopted for all these settings

gave a fair balance; the predator has a reasonable chance of catching the

prey and a well-adapted prey has a reasonable chance of survival.

2.5 Results

2.5.1 The Hiding Bot

Since the hiding bot is unable to detect the predator its behaviour is gov-

erned only by the hunger threshold, which determines when it will hide in

the shelter and when it will venture out to look for food. Figure 2.2 shows

how the survival time and cause of death vary as the hunger threshold (TH)
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changes. If the hunger threshold is very low, then the bot will wait until

it is almost completely out of energy before venturing out to look for food.

There is a very high chance that the bot will starve to death before finding

the food. If the hunger threshold is very high, then the bot will spend most

of its time out of the shelter looking for food and there is a greater chance

of it being eaten by the predator. The bots that do the best are the ones

that stay in the shelter as long as possible while still having a good chance

of finding food in time before starving.

Figure 2.2 shows how the survival rate of the hiding bot varies by adjusting

the hunger threshold. A curious feature of the graph in figure 2.2 is that as

the hunger threshold goes from 0 to about 2, the median declines slightly

but the mean rises. The explanation of this phenomenon is at very low

hunger thresholds when the bot ventures out it is more likely that the bot

will starve than that it will find food. While most of the bots die of this

cause the median will stay low. However the lucky few who find food live

significantly longer so push up the mean.

2.5.2 The Running Bot

The running bot survives significantly better than the hiding bot as can be

seen in figure 2.3.

After seeing the predator the running bot is generally effective at running

back to the shelter in time before the predator overhauls it. Provided that

the hunger threshold is set at a reasonable level the death of the running

bot generally occurs under one of three circumstances: (1) the bot is too far

away from the shelter when the predator sees it and is therefore rundown by

the predator in pursuit, (2) the predator approaches so that it is between the

bot and the shelter; in this case the bot is cut off while running to safety, and

(3) the bot is chased before it reaches any food so it is even shorter of energy
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when it gets back to the shelter; this causes the bot to die of exhaustion

rather than being killed by the predator directly. Furthermore, the running

bot suffers from having no memory and a shorter seeing distance than the

predator. If the bot is chased to the shelter and is still hungry it will venture

out as soon as it can no longer see the predator. But it is very likely that

the bot will be still within the predator’s seeing distance and therefore is

immediately chased again.

The optimal threshold at which escape is triggered, TP (see equation 2.2),

was found to be quite low. If the threshold was too high, the prey would

have an insufficient head start on the predator to safely get back to the

shelter. On the other hand, if the threshold was extremely low, then the

prey would continuously hide in the shelter (and starve to death.)

In the context of the limited visibility range given to the prey, its best

strategy was to run as soon as it caught sight of the predator. This is

because by the time the prey can detect the predator, the predator can

expect to reach the prey within about four time steps if no evasive action

is taken. We conducted some experiments where the prey’s visibility range

was made to be unlimited to determine what the optimal value of TP should

be in that context. Under those conditions the optimal value of TP was

about 0.05 which equates to the predator being about ten time steps away.

This is also the distance at which the predator can spot the prey.

2.5.3 The Memory Bot

The simple state information provided by the memory fear stimulus gives

the memory bot a big boost in survival chances. The memory bot is able

to run back to the shelter and stay there long enough until the predator

has passed. Since the predator moves randomly, the longer it stays in the

shelter the greater the chance that the predator will have passed. Balanced
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against this is that staying longer in the shelter reduces the chance of having

enough energy to reach new food before it starves.

The bot will stay in the shelter until the memory fear (see equation 2.3)

drops below the threshold TM . The effect of the memory threshold was

evaluated using the method described in section 2.4 and was repeated for

a number of different hunger threshold settings. If the bot has a very high

threshold it will stay in the shelter only a short time. If the bot has a

very low threshold it will stay in the shelter a very long time. Figure 2.4

shows how the survival rate is affected by the value chosen for the memory

threshold. Note that the survival rate is fairly even for thresholds between

0.2 and 0.6, reflecting that the tradeoff between waiting out the predator

and risk of starvation is fairly evenly balanced.

Figure 2.5 shows how the survival rate is affected by the hunger threshold for

the memory bot. The optimal hunger threshold is greater for the memory

bot than for the running bot. This can be explained by two factors: (1)

the memory bot has got a better chance of surviving an encounter with

the predator so it can risk spending more time out of the shelter and (2) if

the memory bot collects more energy then it can spend more time in the

shelter after it has been chased by a predator, giving it higher chance of the

predator having left.

The memory bot is still killed if it is too far away from the shelter when

pursuit begins or if the predator is in between it and the shelter. It is

fairly successful in waiting in the shelter until the predator has passed. It

sometimes starves while waiting for the predator to pass and sometimes is

unlucky and finds the predator still waiting outside after it has waited.
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2.5.4 The Dodging Bot

The dodge manœuvre of the dodging bot allows it to survive in one of the

situations where the memory bot is frequently killed. If the predator attacks

the prey coming from the direction of the shelter, the dodging bot is able to

evasively side-step the predator. The predator coming at full speed is unable

to adjust its direction in time to catch the prey. The dodge manœuvre is less

successful in evading the predator chasing from behind. However as with

the running bot and the memory bot, in most cases when the prey is being

chased from behind it will be able to reach the shelter in time. It is usually

only when the prey is very far from the shelter that it is caught in pursuit.

Figure 2.6 shows how the survival rate of the dodging bot varies with the

hunger threshold. The dodging bot has a higher optimal hunger threshold

again compared to the memory bot.

2.6 Discussion

A trend that emerges is the prey spends more time outside of the shelter

foraging for food as it gets better at avoiding the predator. This phenomenon

can be explained by a combination of two factors: (1) the evasion manœuvres

require a lot of energy, if the prey accumulates greater energy reserves, it

is better prepared for an encounter with a predator, as it is able to deploy

more evasive actions, and (2) because the prey is more likely to survive an

encounter with the predator it can afford to spend more time outside the

shelter foraging for food, thereby reducing its risk of starvation.

To optimise its survival time the prey needs to balance its primary task,

collecting food, with taking evasive action. If the predator were nonexistent

the optimal survival strategy for the prey would be to spend all its time
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collecting food to nullify any risk of starvation. In the presence of a predator,

collecting food becomes a risky task. This causes the bots with poor predator

avoidance to wait until they are really hungry before they will venture out

to look for food. As the prey is equipped with more evasive capabilities

the risk in collecting food diminishes. This increased confidence allows the

prey to act more like it would if there was no predator. As more evasive

capabilities are added, the prey’s behaviour pattern (when it is not taking

evasive action) approaches what it would be if the predator did not exist.

A more general implication of this result is that having separate subsystems

to deal with dangerous situations allows an agent to be less obstructed in

undertaking its primary activities. Robots presumably have a set of primary

tasks which they have to perform. However some robots while undertaking

their work robots may periodically have to face obstructions or even dangers.

A hypothetical example is a rescue robot sent into a burning building that

may have to dodge falling debris. Having separate subsystems to deal with

obstructions may allow robots to be minimally affected in the way they

achieve their primary tasks. Animals have dedicated neural circuits to deal

with unexpected hazardous situations (Bennett, 1984; Hoy, 1993).

One of the biggest improvements given to the prey in this simulation is the

addition of some simple memory information. In this memory model the

time that the predator was last seen is used implicitly as a predictor of the

predator’s present proximity.

The fixed hierarchical model used for the agents seems suboptimal for this

scenario. One kind of behaviour should not always have precedence over

another. For example because hiding in a shelter after seeing a predator

has a higher precedence than foraging, in some cases the bot would starve

to death in the shelter. A better model would be more flexible: wait longer

in the shelter if energy reserves are relatively high, and shorter if energy
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reserves are low. Different actions need different precedence at different

times.

There is biological evidence that in animals the precedence of actions is much

more flexible. (Prescott et al., 1999) review biological findings about parts

of the vertebrate brain and argue that the basal ganglia acts as a central

decision making point for arbitrating between conflicting actions. They

argue that a similar specialised switching mechanisms might be employed in

layered robot architectures (such as (Brooks, 1986)) to provide more flexible

action selection.

In the crayfish the giant command neurons responsible for triggering the

escape response are modulated by other parts of the nervous system (Vu

and Krasne, 1993a; Glanzman and Krasne, 1983; Edwards et al., 1991).

The trigger threshold adjusts according to various circumstances, such as

during feeding and restraint (Wine, 1984) and also adjusts according to

longer term conditions such as the mating cycle and social dominance (Yeh

et al., 1997).

Edwards (Edwards, 1991) proposes a model for behavioural choice in cray-

fish that uses mutual inhibition amongst the neural command centres. In

Edwards’ model there is one command neuron for seven different behavioural

modes. Each neuron receives excitatory stimuli from sensors. Each neuron

is able to inhibit other command neurons and also receives inhibitory signals

from the excited command neurons. After summing the excitations and the

inhibitions, the command neuron with the greatest excitation wins. Ed-

wards’ model is able to give actions different precedence at different times.

An attempt was made to write a bot based on Edwards’ architecture for the

scenario described in this chapter. Preliminary results indicate that in this

scenario it performs slightly better, but the results are inconclusive.

The scenario examined in this chapter is very specific. Previous pursuit-

40



2.7. THE BOTSIM FRAMEWORK

evasion experiments (Cliff and Miller, 1996) have shown that effective eva-

sion strategies are often very sensitive to the parameters of the environment.

Future work may consider what kind of escape measures work best when

faced with different kinds and variable sources of danger. The prey cur-

rently uses ‘magic’ perception to get the position of the predator. This is

unrealistic. In future simulations the prey should have to infer the presence

of a predator from noisy sensors.

The work presented in this chapter is a preliminary step in exploring the

role of integrating evasive actions in the context of doing other activities. As

robots move out of the laboratory into more hostile environments, handling

evasive actions may prove an important component of the robot architecture.

2.7 The botsim framework

Botsim is a framework for creating high level simulations of robots or animal

like agents. The design goals of botsim are:

• to provide a flexible and extendable framework for creating heteroge-

neous multi-agent simulations, botsim should be able to support many

different kinds of agents;

• the simulation results should be recorded in detail, allowing the simu-

lations to be ‘played back’ for detailed analysis.

• to have a command-line interface to facilitate large multiple-run ex-

periments;

• to able to run through a graphical interface, that should be viewable

in a web browser;

• to adhere to a design that excludes agents from compromising the

integrity of other agents or the world; and
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• the framework should be able to run on multiple operating system

platforms.

Botsim is a library of classes for creating simulations. In a botsim simulation

there is a world which contains entities. The entities in the world may be

custom coded. The properties of the world and the types of entities which

populate it are set in configuration files.

Botsim is written in the Java programming language (Joy et al., 2000; Chan

et al., 1998), version 1.1.

The source code for botsim is available at:

http://www.cs.mu.oz.au/~scv/thesis/botsim/botsim_src.jar

A precise specification of the all botsim library classes is available at:

http://www.cs.mu.oz.au/~scv/thesis/botsim/doc/

2.7.1 The world and entities

A botsim simulation consists of a world and a population of entities that

exist within it.

The world’s properties and functions are encapsulated in the World class.

Time is discrete, it elapses in time-steps. The world is a finite two-dimensional

space in which the entities are placed. Space in the world is continuous. The

world has a rectangular shape, its dimensions are determined by the configu-

ration file settings (see section 2.7.3.) Botsim supports two alternative ways

of handling the edges of the world: (1) they may be treated as boundaries

which cannot be passed, or (2) they can be wrap-around edges (i.e. if an

entity passes over the edge it moves to the other side of the world.) The

World class also contains the code for the simulation engine.

Within the world exist entities. The World class keeps a list of all the
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entities that exist within it and the positions at which they are located.

The relationship between these the world and entities is described in UML

notation in figure 2.7.

There are two top-level entity subclasses: static entities and active enti-

ties. These subclasses have many subtypes but each entity in the world

is either static or active. The botsim library provides the Java interfaces

StaticEntity and ActiveEntity. A botsim entity must implement one of

these interfaces. Interfaces were used to allow the programmer maximum

flexibility in how they implement an entity.

Static and active entities are fundamentally different in two respects. Firstly,

active entities can move (although they do not necessarily have to) and static

entities cannot. Secondly, active entities have an act() method which is

called by the simulation engine at each time step of the simulation. Active

entities may use the act() method to observe the conditions in the world,

update their movements and initiate interactions with other entities. Static

entities exist passively in the world.

As an illustration of the different entity types, imagine one wished to use

botsim to create a simple simulation of an autonomous lawn mower which

needs to avoid rocks. The lawn mower would be implemented as an active

entity and the rocks as static entities.

Each entity is allocated a unique identifier by the simulation. Since entities

are not given a direct reference to any other entity in the world, entity

identifiers are used within the simulation as public addresses. When entities

interact, entity identifiers are used to specify the entities that are being

referred to.

Entities may belong to one or more categories. Categories are a loose mech-

anism for allowing different types of entities belong to the same group. Each
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entity lists which categories it belongs to. For example in an artificial life

simulation, a carrot entity may be in the categories ‘carrot’ and ‘food’. Cat-

egories allow entities to search for certain kinds of entities within the world.

For example, a rabbit entity may search for the closest ‘food’.

In addition to entities there are also generators. Generators occupy no ‘phys-

ical’ space but are able to generate new entities in the world. Generators

are polled by the simulation engine at each time step when they are given

the opportunity to add new entities to the world.

2.7.2 Simulation properties

The world proxy

Entities are not given direct access to the World class. They are instead

given access to a world proxy. All communication between entities and the

world must go through the world proxy. The purpose of the world proxy

is to allow entities to access the services of the world, without the entities

being able compromise the integrity of either the world or other entities.

The world proxy prevents entities gaining gain access to the properties of

the world that should be hidden from the entities and prevents entities from

getting direct references to other entities. It is a precaution to make it more

difficult for entity code to compromise the integrity of the world or other

entities.

An entity calls the takeAction() method in the world proxy to notify the

simulation engine of the actions it intends to take. Actions are discussed in

more detail in section 2.7.2.

Entities may use the methods provided by the world proxy to query about

the conditions in the world. The kinds of information obtainable about the

world include:
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• whether there are any entities belonging to a specific category in the

proximity. For example, an artificial life agent may query the world

proxy whether there is any food within a fixed radius of the agent.

The identifiers of the matching entities are returned to the querying

entity.

• the relative distance from the entity to another entity. The querying

entity must know the identifier of the target entity. The world or the

entity may impose conditions on how close the target entity must be

in order for its position to be ‘visible’.

• general information about the world, for example the dimensions of

the world and the duration of the simulation.

• odour information. Some entities emit an odour. An entity may re-

quest the world to calculate the odour gradient at a given point.

Entity interactions

The botsim simulation framework aims to give maximum flexibility to the

ways in which entities may interact. Since the framework aims to allow many

different kinds of custom coded entities, it must also allow for different kinds

of custom coded entity interactions.

A botsim interaction occurs between two entities. One entity initiates the

interaction, the other is the target. Both the initiator and the target may

be affected by the interaction.

The framework provides an abstract class called Interaction as a generali-

sation of entity interactions. The interaction class is given a direct reference

to both entities. An interaction implementation must define these three

methods:
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validate() This method should check the properties of the initiating and

target entities and determine whether the interaction is valid.

proximityNeeded() Calculates the minimum distance between the initiat-

ing entity and the target entity for the interaction to be possible.

doAction() This method performs the interaction. It is executed by the

simulation if the constraints imposed by the previous two methods are

satisfied. The Interaction class has references to both entities in

the interaction, giving it the power to directly call any of the public

methods of either entity. This gives the interaction programmer a great

amount of flexibility over how the interaction affects the entities.

The interaction class is sufficiently general to capture many different kinds

of actions. Examples of the kinds of interactions that can be implemented

include:

• eating food;

• communication between entities;

• one entity killing the another entity; and

• mating.

An interaction may be invoked by an entity through the takeAction()

method in the world proxy.

Sensory processing

The botsim framework leaves sensory processing as the responsibility of the

entity. This is to keep the simulation engine simple and to give maximum

flexibility to the simulation framework. The botsim framework allows enti-

ties to know the precise relative positions of other entities in the simulation.
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In what form this information is passed on to the entity decision making

logic is up to the entity programmer:

• The programmer may opt to give the entity ‘magic perception’ and

pass the locations of the other entities directly to the decision making

code. In this case low level perception is ignored entirely.

• Alternatively, the programmer may wish to have more realistic sensory

processing. In this case the programmer needs to simulate the entity’s

sensors. The positions of the other entities may be used to calculate

what what the entity is able to sense.

2.7.3 Running a botsim simulation

The initial settings of a botsim simulation are described using configuration

files. Botsim parses these files to create an initial world. The simulation

is then executed and a recording is produced. The recording may be used

to replay what happened in the simulation using the graphical interface or

may be analysed by another program. Figure 2.8 illustrates this process of

running a botsim simulation as a data flow diagram.

Setting up a simulation

A botsim simulation may be set up using configuration files. There are two

main configuration files: the world configuration file and the entity file. In

addition, each entity may have its own configuration file to configure the

properties of the entity.

The world configuration file sets the properties of the world (such as the

world dimensions and the number of time steps.)

The entity file lists all the entities and generators in the world. Each line of
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the file specifies an entity, its Java class, its initial position in the world and

an optional configuration file for the entity. Figure 2.9 shows an example

entity file.

Simulation execution

A botsim simulation runs on a single threaded process. The simulation

executes as a series of time steps. At each time step, entities may perform

actions and their positions are updated. At each time step, the simulation

attempts to resolve entity actions as if they were executed simultaneously.

The simulation event loop executes in the following order:

1. The generators are polled as to whether they want to add any new

entities to the world.

2. The act() method of each active entity is called. At this point the

active entities may request interactions with other entities. The inter-

actions are placed in a list, they are resolved later. The active entities

are also polled to obtain their intended movements. Again, the actual

movements are resolved later in the loop.

3. The intended actions are resolved. For each action the simulation

engine checks whether the requested action is possible. For an action

to be possible the validate() method must succeed and the target

entity and the initiating entity must pass within the required distance

of each other during the time step. For example, if an entity tries

to eat, the simulation engine will check the trajectories of the entity

and the food during the course of the time step and calculate whether

the entity passes within eating distance at any time. All actions are

resolved, regardless of whether the initiating entity is eliminated from

the simulation during the time step. For example, if two entities try

48



2.7. THE BOTSIM FRAMEWORK

to kill each other during the same time step, then both kill actions will

be enacted and the entities will be mutually annihilated. The order in

which the actions are resolved is randomised rather than giving entities

a priority. This is to give each entity an equal chance in the case where

multiple entities try to simultaneously access a limited resource.

4. The positions of active entities are updated.

5. The positions of all the entities are recorded. Entities that implement

the Stated interface also have their states recorded.

The result of a simulation execution is stored in a recording. The recording

contains the positions of the entities at each time step and their states. The

entities themselves may also record additional instrumentation.

Botsim interfaces

A botsim simulation may run using a graphical interface or by scripting a

short program to setup the simulation.

The library interface

Botsim is a class library for programming simulations. A botsim program

can run without writing a display to a graphical interface. The programmer

may script batch jobs which output to text files. This gives botsim the

facility to run large sequences of simulations. This capability is useful for:

• executing a simulation scenario with random influences multiple times

to collect a large sample of evaluation data; and

• writing parameter optimisation algorithms.
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To create a botsim simulation, the programmer needs to create an instance

of the World class. The World constructor is passed, as arguments, the

configuration settings of the world and a list of the entity initialiser objects.

Entity initialiser objects are tuples which contain the name of the entity, its

Java class, its position and its parameter settings. The runSim() method is

called to run the simulation. Figure 2.10 lists a fragment of code that sets

up and runs a botsim simulation.

The graphical user interface

A graphical user interface is an important tool for gaining an intuitive un-

derstanding of how entities interact in a simulation.

The botsim framework provide a graphical interface for playing back a sim-

ulation recording. The graphical interface is written as a Java applet so

that it may be viewed in a web browser. Botsim uses only Java 1.1 classes

so that it will run on the older versions of the Java Virtual Machine that

are pre-installed with the most popular web browsers. A screen-shot of the

graphical interface is shown in figure 2.11.

The graphical interface animates the simulation by showing the positions of

all the entities in a series of time steps. Each entity is drawn in the world

at the position it was recorded at that time step. How an entity is drawn is

determined by the implementation of its draw() method.

The graphical interface has VCR like controls for playing back the simu-

lation. The functions included are play, pause, step, step backwards, fast

forward and rewind.

The graphical interface may be used to play the recording of a previously run

simulation or to run a new simulation. New simulations are not animated in

real-time. Instead, a recording is generated pre-time, by silently executing
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the simulation in its entirety. This recording is then played to the user.

Executing the simulation usually takes less than a second and the delay

is not noticeable to the user. The simulation therefore appears to play in

real-time.

If you wish to know about the crayfish escape circuit and all its adventures,

you must read the next chapter.
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Figure 2.1: The architecture of the prey. (a) Hiding bot. By default the bot
hides; if the bot is hungry, the forage behaviour takes control
of the actuators. (b) The running away bot. Run away takes
control of the actuators if the predator is seen. (c) The memory
bot. If the predator was seen recently the forage behaviour is
suppressed. (d) The dodging bot. Dodge takes precedence over
all other behaviours.
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Figure 2.2: The survival times and cause of death the hiding bot. At low
hunger thresholds the most common cause of death is starvation.
At high hunger thresholds the most common cause of death is
falling prey to the predator.
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Figure 2.3: Running bot. The survival times and the cause of death versus
the hunger threshold.
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Figure 2.4: The survival times and cause of death versus memory threshold
for the memory bot (TH = 6).
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Figure 2.5: Memory bot (TM = 0.5). How the survival times and cause of
death vary with the hunger threshold.
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Figure 2.6: Dodging bot (TM = 0.5). How the survival times and cause of
death vary with hunger threshold.
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ActiveEntity
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Figure 2.7: The botsim framework has a World class, which defines an empty
environment and contains the code for the simulation engine. In
the world exist zero or more entities. Entities may be static or
active.

World configuration file

simulation

Initialise
Entity list file

Entity configuration files

Run simulation Recording

initial state
of the world

Figure 2.8: A high level data flow diagram of running a botsim simulation.
Botsim reads configuration files to obtain the initial world set-
tings and executes the simulation to produce a recording.

"generator", "sim.entities.FoodReplacer", null, "foodgen.dat"
"prey", "sim.simple.DodgingBot2", (250,250), "dodgingbot.dat"
"predator", "sim.entities.Predator", random, "predator2.dat"
"shelter", "sim.entities.Shelter", (250,250), "empty"

Figure 2.9: An example entity file. This file describes a simple world with
a predator, a prey, a shelter and a food generator. Each line
lists the entity name, the Java class, the initial position and the
entity configuration file.
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// Read the world configuration file

Parameters params =
ConfigReader.readParameters("worldcfg.dat");

// Read the entity file

Vector ents = ConfigReader.readEntities("entlist.ent");
// Create the world

World world = new World(params, ents);
// Run the simulation

world.runSim(null);

Figure 2.10: An example Java code fragment which creates and runs a bot-
sim simulation.
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Figure 2.11: The graphical user interface to the botsim simulator.
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CHAPTER 3

Neurobiology of the Crayfish Escape

Circuit

The crayfish escape behaviour is a mechanism for the animal to escape

from predators. The neural circuit controlling the escape behaviour

has been the topic of extensive study in neuroscience. The circuit is very

well understood, (at least compared with most other neural circuits.) This

chapter reviews the current knowledge in neuroscience of how the crayfish

escape circuit operates. The aim is to describe how the circuit functions from

neurophysiological perspective. Before we can do that we first introduce

some background of how neurons function. We also introduce some general

information about crayfish biology and ecology, to put later discussions of

the escape circuit in context.

Many biological terms are defined in this chapter. These terms are also

listed in the glossary in appendix D.
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3.1 An introduction to the neuron

Neurons are incredibly complex. This is a greatly simplified description of

how they function, that focuses on the aspects that are relevant to under-

standing the rest of this thesis. Along the way, new terminology is intro-

duced.

3.1.1 Overview of nervous systems

Complex animals have nervous systems. Nervous systems are responsible

for processing sensory stimuli, making decisions and co-ordinating muscle

movements.

From a functional perspective, one may think of the nervous system as an

elaborate network for storing and processing information. Information is

passed around as electrical signals. In addition to electrical signalling there

is also chemical signalling. Chemical signals are able to trigger new electrical

signals or change the structure of the network itself. Information is added

to the nervous system when sensory organs convert stimuli into electrical

signals. The nervous system is able to effect movement by transmitting

electrical signals to the muscles.

Neurons are the basic building block of the nervous system. Neurons are

specialised cells that can receive and transmit electrical signals. Neurons

interconnect to form networks which together comprise the nervous system.

In this thesis, the cells we are mainly concerned with are neurons; sometimes

the words ‘cell’ and ‘neuron’ are used interchangeably.

Each neuron is responsible for integrating the electric currents it receives

from other neurons. The integration process is complex. Different neurons

integrate their inputs in different ways. The integration result is communi-
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cated to the neurons it gives output to.

A neuron performs its integration asynchronously. Inputs may arrive during

any slice of time. Unlike a micro-computer, the nervous system contains no

central clock to synchronise the system.

There is an important subclass of neurons that are spiking neurons. Spiking

neurons transmit electrical signals to their target cells, with which they

communicate, in an ‘all-or-nothing’ manner. In a spiking neuron, if the sum

of the neuron’s inputs exceeds a threshold, a ‘spike’ is generated, which is

communicated to the target neurons. The crayfish escape circuit is composed

of spiking neurons.

Neurons communicate at their connections, called synapses. At synapses,

electrical signals carry from one neuron to another. Synapses may be electri-

cal or chemical and there are many subtypes. The variety of synapse types

means that there is a huge selection of different mechanisms in the nervous

system by which neurons can communicate. The current induced at synapses

is a function of time. The currents induced at different types of synapses are

characterised by different functions. The currents differ in their duration,

peak amplitude and in the shape of their rise and fall. Synapses are not

the only mechanism by which neurons can communicate. Neurons may also

communicate through less direct mechanisms, such as through chemicals in

the bloodstream.

The nervous system is not static. Neurons can grow or die. New neurons

can form. The synapses between neurons can strengthen or weaken. New

synapses can form between neurons. The way in which neurons integrate

their input can change. Changes can be permanent or temporary. The

dynamism of the nervous system is regulated by chemical signals between

neurons and by chemical signals from other organs in the body.
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In the coming sections we explain the mechanisms by which neurons operate.

3.1.2 Description of an individual neuron

A neuron consists of a soma (or cell body), dendrites, and an axon (or

multiple axons.) These parts of the neuron are labelled in an example cell

in figure 3.1. The soma contains the cell nucleus, which contains DNA. The

DNA is read as part of the process of synthesising of proteins. The types of

proteins assembled and where they are distributed determine the function of

the cell. Extending from the soma are narrow tubes, called neurites. These

tubes are filled with fluid (called cytosol) and conduct the electrical signals

that pass through the neuron. There are two kinds of neurites: dendrites

and axons. Input signals from other neurons are typically received in the

dendrites. The dendrites subdivide into many branches to form a complex

tree. The axon carries electric signals away from the cell onto the target

neurons which the cell communicates with. Each cell typically has one axon,

that may fork several times. Axons may project to cells that are nearby or

in distant parts of the body.

Neurons differ greatly in their size and morphology (shape). Neurons serving

different functions usually have vastly different morphologies. Even amongst

neurons performing the same function there is considerable variation in the

morphology. Figure 3.2 contains pictures of some different neurons.

The cell is enclosed by a barrier called the membrane. The membrane is

studded with proteins, which perform various functions. Some of these pro-

teins form channels. These are tiny holes in the membrane through which

ions may pass. There are many different kinds of channels, that have differ-

ent permeabilities to different ions.

The concentration of ions differs on the inside and outside of the cell. The
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axon

spike initiation zone
soma

dendrites

Figure 3.1: The anatomy of an invertebrate neuron. The neuron shown is
the crayfish lateral giant. Picture: (Antonsen, 2003)

(a) (b) (c)

Figure 3.2: There is a great variation in the morphology of neurons. (a)
A crayfish parasol cell. (b) A mammalian Purkinje cell. (c) A
pyramidial cell from the mammalian cerebral cortex.
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Figure 3.3: The neuronal membrane at rest. The membrane contains ion
channels permeable (mostly) to potassium (K+) ions. Due to
the higher intracellular K+ concentration, K+ ions diffuse out
of the cell. The extracellular build-up of positively charged ions
creates an electric field, causing a drift current that counters the
diffusion current.

concentration of sodium (Na+) is higher outside the cell than inside the cell.

Potassium (K+) has a high concentration inside the cell and a low concen-

tration outside. Other important ions include calcium (Ca2+) and chloride

(Cl−). Due to the differences in ion concentrations, ions diffuse through the

membrane. This diffusion of ions causes a buildup of charge, which creates

an electric field across the cell membrane. This electric field drives ions in

the opposite direction to the diffusion currents. When electric field gener-

ated current is in balance with the diffusion current the membrane is at its

equilibrium potential, (or resting potential.) A typical cell membrane resting

potential is around -65 to -70 millivolts. A conceptual diagram showing the

cell membrane at equilibrium is shown in figure 3.3.

At rest, the membrane is said to be polarised, due to there being large

numbers of oppositely charged ions on opposing sides of the membrane.

Increasing the membrane potential above its resting potential is known as

depolarisation. Causing the membrane potential to drop further below the

resting potential is hyperpolarisation.
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Relative to the total number of ions inside and around the cell, only a small

number of ions need to cross the membrane to cause a large change in the

membrane voltage potential. Importantly, large changes in the membrane

voltage potential occur without significantly impacting the ion concentra-

tions both inside and outside of the cell.

The differences in ion concentrations are created and maintained by ionic

pumps. These are proteins in the membrane that transport ions across the

membrane against their concentration gradients, at the expense of metabolic

energy. For example, the sodium-potassium pump exchanges an intra-

cellular sodium ion for an extra-cellular potassium ion. The ion pumps

act as the ‘quiet achievers’, which work in the background, to maintain the

ion concentration gradients, on which the working of the nervous system

depends (Bear et al., 1996).

One of the main ways in which neurons transmit information is through

spikes. In the dendrites, signals from other cells result in the generation of

currents. These currents spread across the cell, depolarising the membrane.

The start of the axon is called the spike initiation zone. If the membrane at

the spike initiation zone is excited past a threshold then a spike is generated.

This spike travels down the axon. Information is passed to other cells onto

which the axon connects.

A spike is characterised by a sharp increase in the membrane potential, fol-

lowed by a sharp decline. Spikes are caused and propagated by phenomena

known as action potentials. Action potentials are generated in the follow-

ing way. (Refer to figure 3.4 for a diagrammatic explanation.) A spike

starts in the spike initiation zone (also known as the initial axon segment

or the integrating segment.) This is usually located at the start of the axon.

The membrane at the spike initiation zone is active. An active membrane

contains voltage-gated sodium channels. These are channels than have open
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and closed states. The channels are permeable to sodium ions when they are

open and impermeable when they are closed. The state of channel depends

on the membrane potential. When the membrane potential is at rest these

channels are closed. Higher membrane potentials cause more channels to

open. When an active membrane is depolarised, some of the voltage-gated

sodium channels begin to open. The concentration of sodium is higher out-

side the cell, thus opening sodium channels causes an influx of sodium ions.

If the membrane is depolarised past a threshold then a chain reaction is

started. The opened sodium channels cause sodium currents which further

depolarise the membrane which causes more sodium channels to open. The

trickle of ions becomes a flood and the membrane potential is raised by over

one hundred millivolts. A spike has been generated. (Refer to graphs (3)

and (4) in figure 3.4 to see the shape of spike.)

We have explained how a spike rises, we now explain how it falls. Two

mechanisms are involved. Firstly, the voltage-activated sodium channels

only stay open for a short period. After about one millisecond they de-

activate and return to a closed state. Secondly, the active membrane also

contains voltage-gated potassium channels. These channels are also acti-

vated by a membrane depolarisation, but their opening is delayed. When

the spike is at its peak, the potassium channels open, causing potassium ions

to flow out of the cell. The outward movement of the positively charged ions

causes the membrane potential to drop back to its resting potential. When

the sodium and potassium channels return to their closed states, the cell is

ready to generate the next spike.

A mathematical description of the sodium and potassium channel dynamics

is given in section 4.1.1.

Once the action potential is initiated it propagates along the axon. The

membrane along the axon is also active. Ions that flux into the cell at the
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Figure 3.4: The generation of an action potential. (1) Spikes in the incoming
axons cause depolarisations in the dendrites. (2) The depolari-
sation spreads to the spike initiation zone, causing the voltage-
gated sodium channels to open. (3) The inflowing sodium ions
cause a spike which declines as the voltage-gated potassium
channels open. (4) The spike propagates down the axon.

spike initiation zone diffuse to the adjacent axon area, thereby depolarising

the axon membrane to threshold. This activates the sodium currents causing

a spike in the axon membrane potential. In this manner the spike is able to

travel, as a wave, to the end of the axon. The active currents allow spikes

to travel long distances without diminishing.

The dendrites affect the integration properties of the cell. Currents gen-

erated by the input from other neurons often need to travel through the

dendrites before reaching the spike initiation zone. The morphology and
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properties of the dendrites determine how the cell integrates its inputs. In

the classical model of a neuron, the dendrite membrane is passive. Passive

membrane contains no active channels. Thus, according to this model, cur-

rents initiating in the dendrites diffuse through the cell with attenuation.

Ions leak out through the dendritic membrane as they diffuse towards the

spike initiation zone. More recent research has shown that many dendrites

do in fact contain different kinds of active channels. The classical model

nevertheless serves as a useful reference point in the mental conception of

how a neuron functions.

Functionally, neurons may be divided into three main subclasses: afferents,

interneurons and motorneuron. Afferents carry sensory signals toward the

central nervous system. Motorneurons (also called ‘efferents’) are neurons

which connect onto muscle cells. Interneurons are all the neurons in between.

3.1.3 Synapses

Synapses are connections between neurons, through which electric currents

in one neuron can generate electric currents in another. Synapses are the

principal mechanism of neural communication.

Synapses may form at almost any part of a neuron. Most commonly,

synapses connect an axon to the dendrites of another neuron. There also ex-

ist axon to axon synapses, axon to soma synapses and, in rare cases, dendrite

to dendrite synapses.

The site on the membrane where a synapse forms is known as the synaptic

terminal. Each of the two neurons, which are connected by the synapse,

have a synaptic terminal. Transmission is usually uni-directional, (or at

least more common in one direction.) Usually transmission is from an axon

terminal to a target neuron. The axon terminal is said to be pre-synaptic
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and the terminal at the target cell is post-synaptic.

Synapses can either be electrical or chemical.

An electrical synapse, or gap junction, is a connection between cells which

allows electric current to flow directly from one neuron to another. At each

terminal of the gap junction, there are pores, called connexons. These pores

are wide enough to allow the passage of all the major ions and some small

molecules. Electrical transmission is extremely fast and reliable.

Connexons are made out of proteins called connexins. There are different

kinds of connexins. The type of connexins present determine the electrical

conductance properties of the gap junction. Gap junctions can be ohmic

(i.e. have a constant resistance) or be of variable conductance. In rectify-

ing gap junctions, the conductance is dependent on the voltage difference

between the pre and post synaptic terminals. The effect of this is that the

conductance is higher for transmission in one direction than the other. Rec-

tifying junctions play an important role in the crayfish escape circuit. This

is explained in more detail in section 3.3.4.

Positive current flowing into the post-synaptic cell causes a depolarisation.

This is called an excitatory post synaptic potential (EPSP).

In gap junctions current can flow in both directions. Nevertheless, there

is still usually a direction in which the current most commonly flows, so

there are still designated pre-synaptic and post-synaptic terminals. When

current flows in the usual direction this is called orthodromic transmission.

When current is transferred in the opposite direction (post-synaptic to pre-

synaptic) this is antidromic transmission.

Chemical synapses are somewhat more complicated and there are many sub-

types. In chemical transmission the pre-synaptic terminal releases molecules,

called neurotransmitters, that cause a temporary change in the post-synaptic
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membrane.

Neurotransmitter molecules are packed into capsules called ‘synaptic vesi-

cles’. The pre-synaptic terminal is arrayed with synaptic vesicles (see fig-

ure 3.5a.) The contents of a vesicle are released all at once, causing neuro-

transmitter release to occur in quanta.

The arrival of an action potential at the pre-synaptic terminal triggers neu-

rotransmitter release. The membrane depolarisation opens voltage-gated

calcium channels, causing an influx of calcium (Ca2+) ions. Calcium is

thought to catalyse the vesicles to release their contents. The vesicles fuse

with the pre-synaptic membrane and neurotransmitter molecules spill into

the synaptic cleft (the narrow space between the pre and post synaptic ter-

minals.) Figure 3.5b shows a diagram of neurotransmitter release.

The neurotransmitter molecules bind to receptor sites at the post-synaptic

terminal. This causes a change in the post-synaptic cell.

The response in the postsynaptic cell depends on the kind of neurotransmit-

ter in combination with the kind of receptors at the post-synaptic terminal.

The receptor effect falls into two categories:

transmitter-gated ion channels: the binding of the neurotransmitter molecules

to the receptors cause ion channels to open. Synapses may be either

excitatory or inhibitory, depending on the kind of ion channels acti-

vated. If a positive current is activated (such as when sodium chan-

nels are opened) a rise in the post-synaptic membrane potential is

caused, i.e. a EPSP. It is also possible for the channels to cause neg-

ative currents (such as by opening chloride channels), resulting in an

inhibitory post synaptic potential (IPSP). Figure 3.5c shows a diagram

of transmitter-gated ion channels opening.

G-protein coupled receptors: the neurotransmitter binds with the re-
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Figure 3.5: Chemical synaptic transmission. (a) The pre-synaptic termi-
nal at an axon and the post-synaptic terminal at the target
cell. (b) The arrival of an action potential at the pre-synaptic
terminal opens voltage-gated calcium channels. The influx of
calcium causes some synaptic vesicles to fuse with the pre-
synaptic membrane and release neurotransmitter molecules into
the synaptic cleft. (c) The neurotransmitters bind to receptors
on transmitter-gated sodium channels, causing them to open
and effecting an EPSP.
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ceptor causing small molecules, called G-proteins, to be released in

the post-synaptic interface. The G-proteins then interact with other

proteins in the cell (called ‘effectors’) which causes a change in the

cell. The effectors may activate an ion channel or cause ‘second-

messengers’ to be released. Second messengers diffuse through the

cytoplasm. They can regulate or modulate ion channels or change the

cell in other ways, such as altering the cell’s metabolism. In compari-

son to transmitter-gated ion channels, G-protein effects are generally

slower and longer term.

There are many kinds of neurotransmitters. At present, over fifty molecules

that have been identified as neurotransmitters and the number is growing

with research. The neurotransmitters that are known to be involved in

the crayfish escape circuit are: acetylcholine (ACh), gamma-aminobutyric

acid (GABA) and serotonin (5-HT). Acetylcholine is usually an excitatory

neurotransmitter and is used at the neuron to muscle synapses. GABA is

an inhibitory transmitter. Serotonin has modulatory effects.

There may be many different receptor types corresponding to a neurotrans-

mitter. The same neurotransmitter can have different kinds of effects at

different synapses depending on the types of receptors.

From a functional perspective, electrical and chemical transmission each

have their advantages and disadvantages. Electrical transmission is faster.

Ions are transferred directly from one cell to another. There is no delay

in this process. In transmitter-gated chemical transmission, the process

of opening ion channels results in a delay (in the order of a millisecond.)

Electrical synapses are common in circuits where time time is extremely

critical, such as the crayfish escape circuit. Electrical synapses are limited

in the kind of response they can effect in the post-synaptic cell. Electrical

synapses are always excitatory and the duration and magnitude of the post-
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synaptic response is dictated by the pre-synaptic spike.

Chemical synapses come in many types and subtypes, which vary greatly

the response they produce in the post-synaptic cells. The characteristics

of the response depend on the ion channels that are opened instead of the

pre-synaptic spike. Chemical synapses may be excitatory or inhibitory. The

duration of the post synaptic response may be much longer than the trig-

gering pre-synaptic spike. If the chemical synapse has G-protein receptors,

chemical transmission may not directly trigger an electrical signal but in-

stead change the cell in another way. For example, the cell’s spiking thresh-

old may be changed. The characteristics of chemical transmission depend

on what combination of neurotransmitter and receptors that are used in the

synapse.

Neurohormones are another mechanism in nervous systems for communica-

tion. Whereas at a synapses one neuron communicates directly with one

other neuron, neurohormones are used to communicate with populations of

neurons. Neurohormones are neurotransmitters that are secreted by spe-

cialised neurons into the bloodstream causing them to be distributed widely

and reach many neurons. Neurons that have receptors for the released neu-

rohormones will be affected. Due to there being different receptor types,

neurohormones can have many different affects on different cells. Sleep is

an example of a behaviour that is affected by the release of neurohormones.

Serotonin and octopamine are neurohormones that are thought to be in-

volved in the regulation of the crayfish escape circuit.

3.2 An introduction to crayfish

Crayfish are freshwater dwelling decapods that are closely related to lob-

sters. Crayfish inhabit streams, rivers, swamps, ponds and dams. They are
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scavengers and predators, and are themselves subject to heavy predation.

To avoid predators, they hide, build burrows which they defend with their

pincers, and also escape with a repertoire of rapid responses.

PHYLUM Arthropoda

SUBPHYLUM Hexapoda Arachnida Crustecea Chelicerata

CLASS Insecta Malacostraca Horseshoe Crabs

SUBCLASS Eumalcostraca

SUPERORDER Eucarida

ORDER Decapoda

SUBORDER Dendrobranchiata Pleocyemata
(prawns, shrimps)

INFRAORDER Palinura Astacidea Brachyura
(crabs)

FAMILY Palinuridæ Nephropidæ Parastacidæ Cambaridæ Astacidæ
(spiny lobsters) (clawed lobsters)

GENUS Jasus Cherax Procambarus

SPECIES J. edwardsii C. destructor P. clarkii

Figure 3.6: The scientific classification of freshwater crayfish and their rela-
tion to some other well known arthropods. Freshwater crayfish
belong to the infraorder Astacidea, together with clawed lob-
sters. Cherax destructor and Procambarus clarkii are the species
commonly used in experiments because of their abundance in
their respective continents.

Across the world there are approximately 500 species of crayfish. Figure 3.6

shows the taxonomic classification of crayfish and their relation to some

other well known arthropods. Crayfish belong to the order Decapoda, a

large group of crustaceans with five pairs of thoracic limbs. Other decapods

include prawns, shrimps, crabs and lobsters. Freshwater crayfish belong to

the families Parastacidæ, Cambaridæ and Astacidæ. Crayfish from family

Astacidæ are found in Europe and western North America. Crayfish from

family Cambaridæ are distributed across eastern North America and east
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Asia. The southern hemisphere is inhabited exclusively by species belong-

ing to Parastacidæ. Cherax destructor, also known as the ‘yabby’, is most

common species found in Australia. It is also the species usually used in

neurobiological studies conducted in Australia. Procambarus clarkii is a

species often used in North American studies. In Australia, the word ‘cray-

fish’ is also the common name for the ocean dwelling Jasus edwardsii (or

‘rock lobster’), but that’s not the animal we’re referring to in the following

discussions. (Huxley, 1896; Edgar, 2000; Merrick, 1993; Maddison, 2001)
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Figure 3.7: Anatomy of the crayfish. The species shown is Cherax destruc-
tor.

Figure 3.7 labels some of the main features of the crayfish anatomy. Crayfish

have an exterior hard shell known as the exoskeleton that protects and

supports the internal organs and structures. The exoskeleton is naturally

divided into two distinct regions: a solid and continuous part at the front,

called the carapace, that encases the head and thorax, and a jointed hind

part, called the tail or abdomen. The crayfish has five pairs of thoracic
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limbs. The rear (or posterior) four pairs of limbs are walking legs, known

as the pereiopods. The front (or anterior) limbs are the chelipeds and end

in claws, they form the crayfish’s chief weapon in defence and offence. The

front of the carapace ends in a sharp spine, extending like a beak, called the

rostrum. Below the rostrum on each side is a pair of eyes that are mounted

on moveable stalks. Below the eyes are two pairs of feelers, one short pair,

the anntenules and a much longer pair, the antennae. The antennae are

over half as long as the body, and can explore a considerable area in poor

visibility. The abdomen is segmented into six segments. Attached under the

middle four abdominal segments are a short pair of limbs called the pleopods

or swimmernets. The pleopods assist the crayfish in propelling forward, and

are used by a berried female crayfish to carry her eggs. The sixth segment

has larger appendages, called the uropods, which together with the flaps on

the terminal segment, called the telson, form the tail flap. The tail is used

to rapidly thrust the crayfish through the water to escape sources of danger

(Merrick, 1993; Holdich and Reeves, 1988; Withnall, 2000; Huxley, 1896).

The crayfish is equipped with sensory organs that allow it to see, hear, smell

and touch. Mechanosensory hairs, or setae, are scattered over the crayfish’s

body and appendages. These hairs are able to detect disturbances. The

antennules contain a complex array of olfactory receptors. The crayfish

have a primitive ear. Crayfish have compound eyes. Crayfish compound

eyes are similar to those of other arthropods (such as insects.) Although

the details of how compound eyes exactly work is still the topic of research

several general points have emerged: (i) they are able to sense light over

a wide wavelength (greater than the visible spectrum, (ii), they provide a

mosaic image with a wide field of view, and (iii) they are very sensitive to

movement and changes in light intensity (Huxley, 1896; Merrick, 1993).

Four types of hairs found on telson. Some respond to low frequency (0-2 Hz)
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Figure 3.8: When referring to parts of the crayfish, directions are necessary.
Biologists have given names to the directions along the three
axes of an animal’s body. The direction towards the rostrum
is rostral or anterior. Towards the rear is said to be caudal
or posterior. An imaginary line running down the rostrum to
the rear of the crayfish, called the mid-line, divides the animal
into symmetrical halves. The direction towards the mid-line is
medial, away from the mid-line is lateral. The direction towards
the top of the animal is dorsal, towards the bottom is ventral.
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movement, others appear to be acceleration sensitive and have an optimal

response at 80 Hz. Low frequency sensors are suppressed by high frequency

stimulation (Wine, 1984).

The life-cycle of a crayfish progresses through a series of moults, during

which the animal increases in size. During a moult a crayfish sheds its

exoskeleton. Crayfish hatch from eggs in late spring and undergo seven

to eight moults in their first year of life. The exact number of moults is

governed by temperature. The growth cycle is repeated in subsequent years

with the frequency of moults decreasing as size increases, to eventually one

moult per year. After undergoing a moult a crayfish is vulnerable to attacks

and cannibalism. It takes approximately three days for the new shell to

harden. The nutrients in the shedded shell are recycled. Empty shells are

eaten by crayfish, often by the crayfish that moulted it. (Lowery, 1988;

Merrick, 1993)

Crayfish reach sexual maturity in their third or fourth year. The time of

mating is dependent on the water temperature. Spawning usually peaks in

late spring to early summer. During spawning, the male crayfish places a

spermatophore between the female’s fourth and fifth pair of walking legs.

The female breaks open the spermatophore and mixes the sperm with the

eggs she expels. The fertilised eggs become firmly attached to the pleopods

and are thus carried under the abdomen. Depending on temperature, eggs

take approximately 20-40 days to hatch. The young will remain attached to

their mother for the first three moults of their life. (Withnall, 2000; Lowery,

1988)

Crayfish are omnivorous. They are scavengers and opportunistic predators.

Their diet is diverse and adaptable. Three modes of feeding have been

identified: browsing, hunting and bulldozing. When browsing they wander

gathering food consisting mainly of detritus (decomposing plant and animal
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material) but they will also graze on underwater plants if available. A study

in Sweden, where the stomach contents of a large sample of crayfish were

examined, revealed that, for the total population, plant material accounted

for about two thirds of the total food consumed. The plant material was pre-

dominantly made up of decomposed leaves, roots and bark. Crayfish hunt a

diverse range of smaller animals. Their most commonly cited prey include

molluscs, aquatic insect larvae, worms, small crustaceans and amphibian

tadpoles. Crayfish are also cannibalistic: large crayfish will kill and con-

sume smaller ones. Other crayfish make up a substantial part of a crayfish’s

diet. When subjected to starvation a crayfish will bulldoze. This involves

the crayfish scraping the material deposited on its exoskeleton and eating it.

Crayfish prefer to feed at night or in low visibility conditions. There is con-

siderable evidence that the diet of crayfish varies with age. Juvenile crayfish

feed predominantly on aquatic invertebrate prey whereas adult crayfish feed

predominantly on vegetation and detritus. It is hypothesised that this is

because the latter’s movements are less rapid and precise compared with

juveniles. (Goddard, 1988; Merrick, 1993)

Crayfish are preyed upon by a great variety of animals, both aquatic and

terrestrial. Crayfish are most vulnerable during juvenile stages and during

the immediate post-moult period. Larger crayfish are one kind of commonly

encountered dangerous predator. In their juvenile stages they often fall prey

to invertebrates such as dragonfly nymphs or water bugs. Fish such as trout,

pike, perch, catfish, bass and eels eat crayfish. Crayfish are also preyed

upon from the air. Crayfish make up a substantial proportion of the diets

of certain species of ibises, herons and egrets. Other birds such as crows

and gulls will opportunistically feed upon crayfish. Other predators include

reptiles, frogs and water associated mammals. (Hogger, 1988)

When crayfish live in a community they co-exist under a social dominance

81



CHAPTER 3. NEUROBIOLOGY OF THE CRAYFISH ESCAPE
CIRCUIT

hierarchy. An animal’s social status governs its access to the limited re-

sources, such as food and shelter. The dominance hierarchy is determined

by fights between crayfish. An agonistic encounter between two animals

proceeds according to strict rules of conduct. The typical scenario of an

encounter follows a sequence of escalating behaviours starting with exten-

sive threat displays upon first contact and terminating in a brief session of

unrestrained combat (Huber and Kravitz, 1995). Following a series of fights,

one of the crayfish emerges as the dominant. Subsequently, the fighting be-

tween the animals will diminish in frequency and duration (Issa et al., 1999;

Herberholz et al., 2001). When faced with an encounter with the dominant

animal, the subordinate animal will usually just back away.

The transition the losing crayfish makes being a dominant contender to a

subordinate is swift. In observations of crayfish fighting, there is an identifi-

able moment when a crayfish gives up fighting and submits to the dominant

(Herberholz et al., 2001). The dominance decision is followed by a change in

the behaviour patterns of the animals. The subordinate animal ceases en-

gaging in any aggressive behaviours such as approaching or making attacks

and increases its frequency of submissive behaviours such as tail-flipping and

retreating. The rapid change in behaviour is suggestive of a switch of neural

state in the subordinate animal.

The internal dominance decision made in a crayfish also affects non-agonistic

behaviours. The tendency of a crayfish to burrow, a behaviour not associated

with fighting, changes in parallel with the dominance decision (Herberholz

et al., 2003). Prior to the establishment of the dominance order, both the

future dominant and future subordinate may engage in building burrows.

After the dominance decision, the subordinate animal will cease burrow-

ing. The dominant animal’s burrowing activity will increase. The change in

burrowing activity occurs simultaneously with the changes in agonistic be-
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haviour that signals the dominance decision. The simultaneous transitions

in agonistic and non-agonistic behaviour suggests that the changes may be

mediated by the same neural mechanisms (Herberholz et al., 2003).

3.3 The neural mechanisms of the crayfish escape

reflex

The crayfish produces a powerful tail-flip to avoid rapid strikes from preda-

tors. This behaviour is known as the escape response. The neural circuitry

that controls this behaviour has been the subject of extensive research in

invertebrate neuroscience.

In this section we give a review of the current scientific knowledge of the

crayfish escape circuit. We begin by giving an overview of the circuit. We

then describe the sensory part of the circuit followed by the motor part

of the circuit. Rectifying gap junctions have been identified as playing a

key role in the circuit’s function and their role is discussed. The escape

circuit is modulated by other parts of the nervous system. We describe

the modulation it receives and their neurological mechanisms. Finally, we

discuss the escape circuit as an example of decision making.

The description of the escape circuit in this section goes beyond what we

model in this thesis. We give a complete description of the escape circuit

as a platform for future work in modelling the crayfish escape circuit and

to provide context for our model. The biological models in this thesis are of

the sensory part of the LG circuit which is described in section 3.3.2. Our

models rely heavily on rectifying junctions, which are described in detail in

section 3.3.4.

The interested reader is referred to the reviews by (Wine and Krasne, 1982)
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MG tail−flip

stimulus time 60 mspre−stimulus 20 ms 40 ms 80 ms

LG tail−flip

Figure 3.9: Crayfish tail-flips. The MG circuit responds to stimulus to the
front of the animal and propels the crayfish backwards. The LG
circuit responds to stimulus to the abdomen and lifts the crayfish
forwards and upwards. Pictures from (Jackson and MacMillan,
2000).

and (Edwards et al., 1999) for further descriptions of the crayfish escape

circuit.

3.3.1 Overview of the escape circuit

Within the scientific literature, three distinct crayfish escape circuits have

been identified, each of which controls a variation of the escape response.

They are known as the Lateral Giant (LG) circuit, the Medial Giant (MG)

circuit and the non-giant circuit. The giant circuits produce a very fast,

highly stereotyped responses. An LG tail-flip propels the crayfish forward,

the MG tail-flip propels the crayfish backwards. The non-giant circuit pro-

duces a range of tail-flip movement patterns. Figure 3.10 shows an overview

of the neural circuitry that controls a crayfish escape tail-flip. (Krasne and

Wine, 1984; Wine, 1984)

The crayfish body is divided into segments. Each segment of the crayfish

has a mini-brain called a ganglion. The crayfish central nervous system

(CNS) is made up of a series of ganglia connected by the nerve cord. Each

ganglion is divided into symmetrical halves called hemi-ganglia, one for the
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Figure 3.10: The neural circuits controlling the crayfish escape behaviour.
The labelled cells are named as follows. MSI: mechanosensory
interneurons. NG: non-giant. MG: medial giant. LG: lateral
giants. SG: segmental giants. MoG: motor giant. FF: fast
flexors.
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left half of the segment and one for the right half. Neurons can be grouped

in bilaterally homologous pairs, i.e. , each neuron is mirrored in the other

hemi-ganglion. The giant circuits (the MG circuit and the LG circuit) are

called such because each feature a pair of giant axons that run down the

crayfish’s spinal cord. These axons are large enough to be visible by the

naked eye. The medial giants are a single pair of neurons. Their axons

run through all the abdominal segments. The lateral giants are in fact a

chain of neurons. Each abdominal segment has a pair of lateral giants, one

in each hemi-segment. However the lateral giants are tightly connected by

electrical junctions in a ladder-like structure causing the lateral giants to,

in effect, act as a single neuron. If a spike is generated in one of the lateral

giant axons, it will quickly generate spikes in the lateral giants in all the

other abdominal segments. The lateral giant circuitry is better studied and

better understood than that of the medial giant. However the two circuits

are assumed to be similar in nature.(Wine and Krasne, 1982)

The LG and MG are the decision points for the circuits which they control

(Krasne and Wine, 1984). For this reason they are are command neurons.

Command neurons are single cells that can effect a complete complex be-

haviour. (Wiersma, 1961) first proposed the concept of command neurons

when he discovered that electrical stimulation of single nerve cells elicited

a recognisable behaviour. (Kupfermann and Weiss, 1978) extensively eval-

uated the command neuron concept and proposed the definition:

a neuron that is both necessary and sufficient for the initiation

of a given behaviour

The respective tail-flips that the LG and MG command are generated if and

only if they fire. Sensory information feeds into these cells. The LG and

MG command neurons integrate the sensory input and determine whether

to evoke a short latency escape response. (Fraser, 1982; Krasne and Wine,
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1984)

The lateral giant circuit and the medial giant circuit produce highly stereo-

typed responses of extremely short latency. The giant circuits make no eval-

uation of the location or the nature of the stimuli. The giants will generate

a near identical response for all ranges of triggering stimuli. This lack of

stimulus evaluation allows the circuits to have extremely fast responsiveness.

For the lateral giant circuit as little as 5 milliseconds elapse from the time

of stimuli to when the muscles are potentiated, and another 10 milliseconds

elapse to the start of movement.(Krasne and Wine, 1984) The medial giant

circuit responds to stimuli on the carapace and front of the crayfish and

propels the crayfish backwards. The lateral giant circuit responds to stimuli

on the abdomen and propels the crayfish upwards and forwards. (Wine and

Krasne, 1982)

The non-giant circuitry supports a wide range of response patterns and their

exact parameters of the response vary, probably largely continuously, as a

function of stimulating events. The non-giant circuit also controls the es-

cape swimming that follows any tailfan. The non-giant circuit’s increased

accuracy and greater flexibility comes at the cost of a slower reaction time.

The delay between the triggering stimuli and the onset of movement is typ-

ically about 50-200 milliseconds, at least 10 times longer than the delay of

the giant circuit tail-flips. The non-giant circuit is complex and compara-

tively little is known about its structure. The non-giant circuit is probably

composed of a collection of different neural circuits. (Edwards et al., 1999;

Wine and Krasne, 1982; Wine, 1984)

3.3.2 The sensory section of the escape circuit

A LG tail-flip is triggered by sharp taps to the abdomen. The LG receives

its sensory input from mechanosensory hairs on the abdomen. The sensory
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Figure 3.11: The sensory section of the crayfish LG escape circuit.

input is given to the LG through two main pathways: (1) mechanosensors

synapse directly onto the LG, these neurons are called the primary afferents,

and (2) mechanosensors (including some of those which synapse directly on

the LG) synapse onto sensory interneuron cells which synapse onto the LG.

Figure 3.11 shows a simplified diagram of the sensory portion of the LG

circuit.

The direct connection from the mechanosensors is through rectifying elec-

trical synapses (Edwards et al., 1991). Electron microscope imaging shows

that there are also chemical synapses between the mechanosensors and the

LG in parallel to the electrical synapses (Lee and Krasne, 1993). The role

of these chemical synapses remains unclear. Electrophysiological recordings

indicate that the electrical synapses play the dominant role (Edwards et al.,

1991).

The synapses between the mechanosensors and the sensory interneurons are

chemical. Acetylcholine (ACh) is the neurotransmitter used. These connec-

tions are depression prone, the strength of the connection diminishes with

use. Axons from the interneurons form rectified electrical synapses onto
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the LG. For an adult crayfish the sensory interneurons constitute the main

synaptic drive onto the LG. The depolarisation needed in the LG at the

spike initiation zone is about 8 millivolts. Each sensory interneuron gener-

ates an EPSP of up to 0.75 millivolts. Primary afferents monosynaptically

connected to the LG produce an EPSP of up to 2 millivolts. It therefore

takes a minimum of 10 to 12 simultaneous inputs to cause an LG spike

(Wine and Krasne, 1982).

The shape of the LG’s response reflects that there are two main sensory path-

ways onto the LG. The excitation in the LG in response to stimuli occurs in

components called α, β and γ (see figure 3.12.) The α and β responses are

caused by the primary afferents and the sensory interneurons, respectively.

The γ component is a longer lasting smaller depolarisation. The γ com-

ponent is caused by polysynaptic connections through interneurons. Some

of the same sensory interneurons that contribute to the β component also

contribute to the γ component. (Edwards et al., 1991)

There are about 1000 sensory hairs on the abdomen, connected to mechanosen-

sory neurons, that provide sensory signals to the LG. Two main kinds of

sensory hairs have been identified on the abdomen. There are feathered

hairs that are directionally sensitive and respond to low frequency water

movements. The most numerous type of hair is smooth. These respond

to touch and high frequency water movement. Most afferents terminate in

their ganglion, but some run anteriorly for several segments or posteriorly

for one segment. (Wine and Krasne, 1982; Wine, 1984)

In the crayfish tailfan, the primary afferents are organised into groups called

‘nerves’. Each nerve corresponds to a different sensory area on the tailfan.

There are five of these nerves and each nerve is comprised of approximately

fifty afferents. The lateral giant dendrites have five main branches. Each

nerve connects to one of the main branches of the lateral giant, i.e. afferents
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Figure 3.12: Recordings of the LG in response to (a) a sub-threshold stim-
ulation and a (b) threshold stimulation which causes a spike.
The LG response is rises in steps, with the first component
caused by the primary afferents (α) and the second rise caused
by the sensory interneurons (β). It may be noted that the LG
spike rides off the β. The rest of the response is classified as the
γ, which is caused by many different polysynaptic interneuron
excitations. Recordings from (Herberholz, unpublished).
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Afferent diameters (µm)
min max mean

Small afferents N/A N/A 4.7
Large afferents N/A N/A 12.3
Overall 2 18 5.6

Table 3.1: Summary of the measurements of the dimensions of the affer-
ents, from (Antonsen and Edwards, 2003) (in 4 cm Procamburas
Clarkii.) The afferents can be divided into two populations, one
with a large diameter and one with a smaller diameter.

from the same nerve by and large synapse to the same main branch on the

lateral giant. Electrophysiological experiments indicate that the afferent-to-

afferent connections are mostly limited to afferents within the same nerve,

i.e. afferents are likely to make connections to other afferents within the

same nerve but are unlikely to form connections with afferents outside their

nerve (Antonsen and Edwards, 2003).

There is a wide variability in the dimensions of the afferents in crayfish(Antonsen

and Edwards, 2003). The distribution of the afferent diameters is bimodal.

One population of afferents have wide diameters and the afferents in the

other population have narrower diameters. Table 3.1 summarises the distri-

bution of the dimensions of the afferents.

The sensory interneurons are not an homogeneous population, the cells re-

spond differently to stimuli. The functional purpose of having some of the

sensory excitation going through an interneuronal pathway is not well un-

derstood. It is assumed that the interneurons perform some kind of pre-

processing such as combining sensory input or abstracting information from

it. Two distinct types of sensory interneurons have been identified electro-

physiologically. Neurons of one type have passively conducting dendrites and

a single spike initiation zone. The other type of interneuron is ‘pan-spiking’,

they have highly electrogenic dendrite membrane and multiple spike initia-

tion zones. The functional significance of having these two different classes
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of neurons is not understood. In general, selectivity of the primary affer-

ents is retained by the interneurons and in some cases it is enhanced. Some

interneurons respond to breaking water, some respond to touch, some re-

spond to pinching. Some of the interneurons respond to high frequency

water vibrations, some respond to low frequency vibrations. Not all sensory

interneurons are discriminative, some are broadly tuned. The proportions of

the different kinds of interneurons that connect to LG is not known. (Wine

and Krasne, 1982; Wine, 1984)

The mechanosensors and the sensory interneurons are not the exclusive pre-

neurons of the LG. Some of the interneurons also excite neurons in other

circuits, and not all of the mechanosensors synapse onto the LG. In intra-

cellular recordings of the LG membrane potential after a sensory nerve is

stimulated, the arrival of the PSP from the primary afferents, and the PSP

from the interneurons can be seen as separate rises in the potential. (Wine

and Krasne, 1982)

The primary afferent axons connect together to form a lateral excitatory

network (Herberholz et al., 2002). Afferents make direct connections to other

afferents through ohmic gap junctions. Each afferent connects to between

two and fifteen other afferents. The effect of the network is that stimulated

afferents recruit non-stimulated afferents. The recruited afferents amplify

the LG response by adding to both the α component and by adding the

input to the sensory interneurons, thereby amplifying the β component.

In addition to there being direct connections between afferents, afferents are

also indirectly coupled through the LG dendrites (Herberholz et al., 2002).

Experiments show that depolarising the LG dendrites increases recruitment

and hyperpolarising the LG dendrites decreases recruitment.

The lateral excitatory network shows that decision of whether to escape is

not exclusively determined by the LG (Herberholz et al., 2002). The sensory
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cells are themselves involved in processing the sensory signals. The escape

decision is distributed across the sensory cells.

The LG is very selective in what it reacts to. Only an abrupt onset of a

large group of highly synchronous sensory input will cause the LG to spike.

Inputs that are a millisecond out of synchrony will fail to spike the LG.

Inputs desynchronised by as little as 0.1 milliseconds will produce EPSPs

about 25% lower (Edwards et al., 1998). The LG circuit acts as a high-pass

filter. The LG is also somewhat sensitive to the direction of stimuli (Wine

and Krasne, 1982).

Five potentially important features of the afferent circuitry have been iden-

tified that may contribute to its sensitivity to highly synchronous stimuli:

1. the chemical synapses between mechanoreceptors and sensory interneu-

rons show rapid depression (Wine and Krasne, 1982; Wine, 1984).

2. the LG has a high spike initiation threshold and a short membrane time

constant. This causes effective summation to require closely spaced

input.

3. activity in afferents evokes recurrent presynaptic inhibition onto affer-

ent terminals.

4. excitation of the lateral giant dendrites is followed by inhibition, caused

by inhibitory interneurons (Vu et al., 1997). (See section 3.3.5 for de-

scription.)

5. the electrical synapses onto the LG are rectifying. (Edwards et al.,

1998) showed that the rectifying electrical synapses contribute to co-

incidence detection in other cells in the crayfish. It is possible that

the rectifying electrical synapses also contribute to the coincidence

detection that is apparent in the LG.
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The MG receives sensory signals from head and thorax. The stimuli that

triggers a MG tail-flip is not entirely understood. It is known to be triggered

by rapid moving visual stimuli, taps to the antennae and sharp taps to the

carapace. However in recent studies of crayfish interaction (Herberholz et al.,

2001), where a high speed video camera was used to record the interactions,

for a large number of MG tail-flips observed the triggering stimulus was not

identifiable. The MG neurons have a single input region and spike-initiation

zone. Intracellular recordings of the MG response to stimulus show an early

stable component and a later decrementing component. This is similar to

the α and β components of the LG response, suggesting that the MG circuit

has the same basic organisation at the LG circuit (Wine and Krasne, 1982).

3.3.3 The motor section of the escape circuit

Once triggered, escape has highest priority of any behaviour pattern in the

animal’s repertoire. All other competing patterns are inhibited or overrid-

den. If spiked, the MG and the LG activate motorneurons in the abdomen

to unleash a tail-flip. The MG and LG also send inhibitory signals to many

other neurons across the crayfish’s central nervous system.

With respect to the sensory part of the escape circuit, the LG and MG have

completely separate pathways. On the motor side of the circuit the LG and

MG share a lot of common circuitry.

A tail-flip involves the use of two groups of muscles: the flexion muscles and

the extensors.

At the neurological level, a giant circuit tail-flip can be described as five

steps (Wine, 1984):

1. sensory triggering of the flexion command axons
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2. excitation of flexion muscles

3. short-lasting inhibition of extensor system

4. delayed, long-lasting inhibition of flexor system

5. delayed feedback excitation of the extensors.

A giant generated tail-flip is usually followed by escape swimming. This is

a series of tail-flips that continue the escape motion. The escape swimming

is controlled by the non-giant circuit (Krasne and Wine, 1984).

The MG and the LG command the excitation of the flexor muscles through

two main pathways. The main path is through the motor giant (MoG).

There is a secondary pathway through the fast flexor motorneurons (FF).

Both pathways are innervated in parallel. The LG and MG each make a

strong connection onto the motor giant through a rectified electrical junc-

tion, called the giant motor synapse (GMS). The motor giant is believed to

be activated exclusively by the giants. No other circuits excite this neuron.

The motor giant projects onto almost all of the phasic flexion muscles in

its hemi-segment. A single impulse through this pathway is sufficient to

produce strong contractions of the flexors, which causes a tail-flip. The me-

dial giant excites the motor giants in every segment, whereas the LG only

excites the motor giants in the anterior segments. This causes different tail

motions for the LG and MG tail-flips. For an LG tail-flip the end of the tail

remains straight, pushing the crayfish forward and up. For an MG tail-flip

the tail curls completely, dragging the crayfish rapidly backwards. (Krasne

and Wine, 1984)

The LG and MG also use the fast flexor (FF) motorneurons. The role the FF

motorneurons play in a giant tail-flip is unclear. The LG and MG connect

to the FF motorneurons through a premotor neuron called the segmental

giant (SG) and also make a weak direct connection. The SG excites FF
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motorneurons asymmetrically. Most of FF motorneurons have asymmetric

dendritic domains. This possibly allows for direction sensitivity during non-

giant escape. The role of the segmental giant is also unclear. Its possible

roles include reducing the electrical load on the motor giant and giving a

single point of control for activating the FF motorneurons. (Krasne and

Wine, 1984)

Before a flexion is completed, all elements of flexion circuit is inhibited by

long lasting IPSPs. These are triggered by the command signal and persist

for duration of flexion re-extension (Wine, 1984).

The extensor muscles are not directly activated by the command neurons.

The extensor muscles receive no excitation directed from the LG or MG

during giant tail-flips. Instead, the extensor muscles are believed to be driven

by sensory feedback. The sensory feedback is depression prone. During non-

giant tail-flips, the sensory feedback is believed to be inhibited, to allow the

non-giant circuitry to directly drives the extensor muscles (Wine and Krasne,

1982).

The LG and MG activate many other effects in addition to activating the

motorneurons in the tail. The giants send massive inhibitory signals across

the nervous system of the crayfish. The extensor-muscle stretch receptors

are inhibited. The MG and the LG both inhibit themselves, each other and

the motor giant. This ensures there will be only one or a few command neu-

ron spikes and only a single motor giant spike. This prevents a continuous

cycle of escape circuit reactivation (called recurrent inhibition, described

further in section 3.4.2.) The primary afferents and mechanosensory in-

terneurons are also inhibited. The afferents are inhibited presynaptically.

This contributes to preventing re-excitation of the circuit and also prevents

use-dependent habituation of mechanosensors (see section 3.4.3.) The LG

and MG have also been shown to promote the limbs, they synapse directly
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onto limb promoter neurons (Edwards et al., 1999).

Electrical synapses are used throughout the motor circuitry. Electrical trans-

mission is fast and reliable making it suited for reflex decision making.

Chemical transmission is only used by the motorneurons to activate the

muscles.

It can be noted that the non-giant circuitry is recruited by the giant system

but not vice versa. The motor giants are highly a specialised output of

the giant system. The non-giant system outputs only to the fast flexors.

The basic circuit for conducting tail-flips is the non-giant circuit. The non-

giant circuit recruits the fast flexor (FF) motorneurons to excite the flexor

muscles. The fast flexor system controls tail-flips and is completely separate

to neurons that control slow movement of the tail. There are between 5 and

8 fast flexor motorneurons per hemi-ganglion (depending on the segment),

each projects onto a separate section of the flexor muscles. The non-giant

tail-flips are produced entirely by the FF motorneurons. The motor giants

are strongly inhibited prior to and during non-giant tail-flips. (Krasne and

Wine, 1984; Wine and Krasne, 1982)

3.3.4 Rectifying electrical gap junctions

Electrical synapses are used throughout the crayfish escape circuits. Exper-

imental findings indicate that the majority of these are rectifying electrical

synapses. Recent evidence suggests that the rectifying synapses may play

a key role in the operation and even the decision making in the circuit.

Rectifying electrical synapses have the obvious advantage of giving fast uni-

directional transmission, but recent evidence indicates they may also play

other more subtle roles including acting as a mechanism for coincidence

detection, for synchronising inputs and as a modulation mechanism.
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A rectifying gap junction is an electrical gap junction that has variable con-

ductance that increases with the voltage difference between the pre-synaptic

terminal and post-synaptic terminal. The conductivity is not dependent on

the absolute voltage of either the pre-synaptic cell or the post-synaptic cell

but the voltage difference between the cells. Electrical synapses that rectify

were first discovered in the giant motor synapse of the crayfish (Furshpan

and Potter, 1959). An experiment using voltage-clamp analysis found the

conductance of the giant motor synapse to be governed by equation 3.1

(Giaume et al., 1987). The gap junctions between the mechanosensory in-

terneurons and the lateral giants were found to be described by the same

equation (Edwards et al., 1991).

gj = gmin +
gmax − gmin

1 + e−A(Vpre−Vpost−V0)
(3.1)

Where gj is the conductance of the junction, gmin is the minimal transynaptic

conductance, gmax is the maximal transynaptic conductance, A and V0 are

constants.

Equation 3.1 describes the steady state conductance of a rectifying gap

junction (Giaume et al., 1987). The conductance of rectifying gap junctions

increases with a temperature sensitive delay. At temperatures typical of

the crayfish’s environment the conductance change occurs very rapidly. At

20 degrees Celsius, junctional currents across the giant motor synapse were

already found to be constant 1 millisecond after step changes to the voltage

across the junction was applied (Giaume et al., 1987; Edwards et al., 1999).

The physical mechanisms that operate rectifying gap junctions are poorly

understood. There is no accepted theory of how they work.

Rectifying gap junctions are used throughout the LG circuit. Experimental

evidence suggests that all the electrical junctions from sensory neurons onto
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LG rectify (Edwards et al., 1991), i.e. , the monosynaptic primary afferent

connections, the disynaptic connections through the sensory interneurons

and the polysynaptic connections (the γ components.) Rectifying gap junc-

tions are also extensively used throughout the motor part of the LG circuit.

The giant motor synapse, that connects the LG to the motor giant, recti-

fies in the forward direction. The synapses along the secondary pathway of

motor excitation also rectify. The synapses between the LG and the seg-

mental giant and the segmental giant and the fast flexor motorneurons are

forward rectifying (Heitler et al., 1991). Interestingly, the segmental giants

on opposing sides of the mid-line may also be connected by rectifying junc-

tions. Depolarising current injected into a segmental giant neuron spreads to

its homologue more effectively than hyperpolarising current (Heitler et al.,

1991). This suggests that the segmental giants may be connected by a

pair of oppositely directed rectifying junctions, possibly via the fast flexor

motorneurons. (This hypothesis was successfully tested in a computer sim-

ulation (Heitler et al., 1991).) It would seem that the general rule for the

LG circuit is that the electrical synapses rectify. The major exceptions are

the electrical synapses that connect an LG neuron to the LG neurons in the

adjacent segments and to the LG neuron in the opposite hemi-ganglion in

the same segment. These synapses do not rectify. (Edwards et al., 1991)

The synaptic connections between the neurons in the afferents and the LG

are forward biased. The synaptic connections in the motor part of the cir-

cuit are reversed biased. The LG and MG have very hyperpolarised resting

potentials: LG has resting potential been measured to be about -85 milli-

volts and MG has a similar resting potential. The primary afferents and

sensory interneurons have resting potentials in the range -65 millivolts to

-75millivolts (Herberholz, personal communication), causing the rectifying

synapses onto the LG to rest in a state of forward bias. The neurons in the

motor part of the LG circuit also have resting potentials above LG. The mo-
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tor giant has a resting potential of about -73 millivolts, the segmental giant

a resting potential of about -82 millivolts and the fast flexor motorneurons

a resting potential of about -76 millivolts. This causes all the rectifying

synapses in the motor part of the circuit to be in a state of reverse bias

when at rest. The generality of the purpose of the reverse biasing is not

known. One effect is to increase the safety factor by which the synapse

prevents back-propagation. The most critical synapses in the motor part of

the escape circuits, the LG and MG synapses to the motor giant, have the

greatest transjunctional potential at rest. (Heitler et al., 1991)

The rectifying gap junctions are thought to perform a number of functions

in the operation of the LG circuit. Firstly, being electrical synapses, they

provide a mechanism for fast and reliable transmission.

When two neurons are connected by a non-rectifying electrical synapse the

two cells are permanently coupled together. That is, any depolarisation or

hyperpolarisation in one cell will quickly spread to the other cell, and vice

versa, (as is the case with the LG neurons.) When the synapses are recti-

fying the cells are only coupled under certain conditions, that is when the

transynaptic potential is at the right level. This allows for some potentially

interesting effects.

Rectifying gap junctions provide unidirectional transmission. This prevents

unwanted antidromic transmission. The rectifying junctions prevent spikes

in the LG exciting the afferents, and help prevent spikes in the motor giant

from re-exciting the LG (Edwards et al., 1999).

Rectifying gap junctions allow the LG to be excited by a small subset of

its inputs. When the LG is being excited only the synapses from the active

inputs are in a state of high conductance. The synapses to the non-active

inputs are in a state of low conductance. Thus the inward currents to LG, in

response to active inputs, are prevented from being antidromically shunted
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down the low resistance contacts of the non-active inputs, as would happen

if the synapses did not rectify (Edwards et al., 1991).

The rectifying gap junctions may also act as a mechanism for coincidence de-

tection in the LG. Rectifying synapses select for phasic input, because slower

synaptic currents, created by depolarising after potentials are more severely

attenuated than fast currents. (Edwards et al., 1991) It has been shown with

computer models that the intrinsic characteristics of rectifying junctions at-

tenuate responses to stimuli that occur within as little of 0.1 milliseconds

out of synchrony (Edwards et al., 1998). The model featured a target neu-

ron receiving input from two afferent neurons through rectifying electrical

synapses. If input is simultaneous both synapses will be highly conductive,

causing the EPSP that each afferent neuron creates to sum. If inputs are

slightly asynchronous, then the EPSP caused by the second synapse will be

reduced because: (1) the first input will have partially depolarised the target

neuron, therefore the transynaptic potential across the second synapse will

be less, reducing the synaptic conductance (see equation 3.1), (2) the lower

transynaptic potential reduces the driving force across the synapse, and (3)

at the arrival of the second input the first synapse will still be in a state of

higher conductance creating a shunt for the inward current of the second in-

put. Greater delays between the first and second input reduce the inhibitory

effect of the first input onto the second. It is hypothesised that this effect

takes place in the summing of afferent input in the LG, where early inputs

partially depolarise the dendritic tree, thereby reducing the effectiveness of

later inputs. (Edwards et al., 1998; Edwards et al., 1999)

The impact of the rectifying junctions on coincidence detection is likely to

be greater for inputs that are spatially closer. Depolarisation is greater at

dendrites than at integrating segment. Out of phase inputs from the same

source will be more severely attenuated than out of phase inputs synapsing
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on different parts of the synaptic tree. The depolarisation in the dendrites

at the synapse point of the late input will be greater in the former case. This

would cause the rectifying junctions to have a greater impact in reducing

the effectiveness of the late input. (Edwards et al., 1991)

The rectifying gap junctions provide a mechanism for modulating the re-

sponse of a cell. Changing the depolarisation level of a cell modulates its

response to inputs. Changing a cell’s membrane potential changes the tran-

synaptic potential across its rectifying junctions which changes their conduc-

tance. It has been experimentally shown that minor changes to the resting

potential of the LG can have a major effect in increasing or reducing the

PSPs in response to input. Depolarising the post-synaptic cell reduces trans-

mission through the rectifying junctions by (1) reducing the conductance

across the synapse, (2) reducing the amount of time the synapse is in a high

conductance state, and (3) reducing the driving force across the synapse.

This effect has been seen to be used in the LG and probably exists in other

other parts of the escape circuits as well. The rectifying junctions cause

depolarisation in the LG caused by the γ component to have a inhibitory

effect on late afferent input. The effect can also be seen in regard to depolar-

ising inhibitory post synaptic potentials (d-IPSPs), which are used widely in

the escape circuits. d-IPSPs are generated through chemical synapses using

GABA as the neurotransmitter. GABA’s main effect is to open the chlo-

ride channels, which has a inhibitory effect on excitatory inputs. However

chloride’s resting potential is above the LG’s resting potential, so opening

these channels has the effect of raising LG’s membrane potential by about

10 millivolts. This reduces the transmission through rectifying junctions.

Hence with rectifying junctions, d-IPSPs have the duel effect of reducing

transmission from the afferents and neutralising the depolarisation in the

cell. d-IPSPs are transmitted to the LG after an initial excitation and dur-

ing tonic inhibition. d-IPSPs seem to be widely used throughout the escape

102



3.3. THE NEURAL MECHANISMS OF THE CRAYFISH ESCAPE
REFLEX

circuit. (Edwards, 1991; Edwards et al., 1999)

3.3.5 Selecting for phasic stimuli

The lateral giants are highly sensitive to strong stimuli of abrupt onset

(called phasic input) and insensitive to gradually increasing continuous in-

puts. A number of characteristics of the circuit contribute to this effect.

Firstly, charge is not allowed to gradually build up at the spike initiation

zone. The LG has a short membrane time constant and a low input re-

sistance causing incoming charge quickly redistributes throughout the cell’s

large structure and leak out. (Edwards et al., 1991)

Second, the sensory neurons also invoke inhibiting neurons, which send a

delayed inhibition to the LG (Vu et al., 1993; Vu et al., 1997). This is called

post excitatory inhibition (PEI). Post-excitatory inhibition is activated dur-

ing falling phase of beta-component. The inhibiting neurons synapse onto

the outer regions of the dendritic tree, close to where the excitatory in-

put from the sensory neurons (which also excited the inhibiting neurons)

synapse. This has the effect of making the inhibition location specific (Vu

et al., 1993). The excitatory inputs from adjacent mechanosensors synapse

at nearby locations on the dendritic tree of the LG. Hence if a mechanosensor

at the back of the abdomen is activated, and a short time later mechanosen-

sors at a nearby location is activated together with one at the front of the

abdomen, then the signal from the back of the abdomen will be inhibited

much more than the signal from the front. The major role ascribed to post

excitatory inhibition is to discount gradually increasing stimuli.

The post-excitatory inhibition is mediated by GABA and activates chloride

channels. The opening of the chloride channels causes excitatory input to be

shunted out of the cell. Due to chloride’s high reversal potential, the inhibi-
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tion is also depolarising. The depolarisation contributes to favouring phasic

input over gradually increasing tonic input. The depolarisation reverse bi-

ases the rectifying synapse, this has greater effect on slower currents than

phasic currents. The depolarisation increases the resistance of synapses. The

depolarisation may also deactivate the sodium channels, thereby increasing

the LG threshold. This has been shown to occur in the MG (Edwards et al.,

1991).

Finally, rectifying junctions have been shown to behave as coincidence de-

tectors under certain conditions (as was described in section 3.3.4.)

3.4 Modulation of the escape circuit

The escape behaviour is highly modulated. The thresholds of the escape

circuits are adaptive to the circumstances of the animal. The escape may be

either inhibited or sensitised. The triggering of escape behaviour modulated

by a wide range of influences. An escape tail-flip is an expensive action to

perform and it interferes with the animal’s other behaviours. The modu-

lation of the escape thresholds provides the crayfish mechanisms for min-

imising the number of occurrences of an escape tail-flip in non-advantageous

circumstances.

In this section we first describe the conditions which affect the escape be-

haviour threshold. Later sections give more details and describe what is

known of the mechanisms that modulate these changes.

3.4.1 Conditions that modulate escape behaviour

The triggering of escape is adjusted by many factors and circumstances:

• directly after a tail-flip has been invoked many parts of the circuit are
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massively inhibited to prevent repeated triggers of the tail-flip, this is

called ‘recurrent inhibition’,

• the sensory input to the escape circuits habituate,

• when a crayfish is performing another behaviour the escape threshold

may be modulated,

• the social status of the crayfish modulates the escape threshold, and

• the physical condition of the animal changes the threshold.

Escape is not the only defensive behaviour of the crayfish. When faced with a

threat crayfish may also opt to walk backwards or go into a defence posture,

in which it raises its claws and faces the direction of the source of danger.

The LG tail-flip is inhibited when the crayfish is backward walking or in

a defence posture (Beall et al., 1991). Preliminary evidence suggests LG

escape is centrally inhibited during stimulation of interneurons that initiate

backward walking motor program (Beall et al., 1991). Nothing is known of

how tail-flip is inhibited during defense posture.

When the crayfish is moving its legs or is swimming the LG escape circuit

is inhibited (Fricke et al., 1982). The inhibition is caused at least in part

by proprioceptive hairs that pre-synaptically inhibit transmission at first

central synapse.

Feeding causes the LG escape response to be suppressed. The suppression

of escape appears to be related to the consumption of food rather than

searching for food. Animals that are actively searching for inaccessible food

do not show elevated thresholds. The non-giant escape is suppressed when

the crayfish is feeding on a large piece of food, but is enhanced for when the

crayfish is feeding on small pieces of food, with which the animal can escape.

For the LG escape, size of food had no effect escape threshold. (Krasne and
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Lee, 1988)

The rise in the sensory threshold required to trigger a tail-flip during feeding

is reliable. The suppression appears to be result of reduced transmission to

the LG from the primary afferents and sensory interneurons. Other parts

of the circuit have been shown to be unaffected. There are changes in the

thresholds of the sensory interneurons or in the transmission between the

LG and the motor circuit neurons. It is unknown what causes the reduced

transmission of sensory input to the LG. Control may be mediated by a

serotonergic pathway. (Krasne and Lee, 1988)

When a crayfish is restrained the LG escape response is inhibited.

The escape threshold is modulated in response to the circumstances of the

animal. When the animal is required to be more bold, the escape threshold

may be raised. When the crayfish is hungry and searching for food the

escape thresholds are raised (Wine and Krasne, 1982). Females in berry

(carrying eggs) also have a higher escape threshold.

In other circumstances, where the crayfish is vulnerable, the escape threshold

is lowered. Freshly molted animals have very low escape thresholds (Wine

and Krasne, 1982).

The escape response changes as the animal grows. Young crayfish invoke the

escape very frequently. The escape threshold is very fickle for small crayfish.

As the animal grows the escape threshold rises.

There are many different mechanisms that facilitate the modulation of the

escape circuits. In comparison to the rest of the circuit the modulatory

mechanisms are less understood and the subject of ongoing research. Most

of the modulating interneurons have not been identified (nor is it likely that

they soon will be.) Some modulation is mediated by pathways coming from

anterior ganglia (i.e. the brain), other kinds of modulation are more local in
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origin. (Wine and Krasne, 1982)

3.4.2 Inhibition

When a tail-flip is invoked, the command circuits are massively inhibited

(Roberts, 1968), this is called recurrent inhibition. Recurrent inhibition

prevents a new tail-flip movement starting while a tail-flip is in progress.

Recurrent inhibition prevents the massive sensory stimuli the animal experi-

ences while performing a tail-flip from perpetually re-exciting the command

neurons. Such continual re-initiation would obviously interfere with per-

forming a tail-flip. Recurrent inhibition directly affects LG but also other

sites.

Following an LG spike, the LG and the motor giant are inhibited. This

ensures there are only one or a few LG spikes and only ever one motor giant

spike. The inhibition at the LG takes place close to the spike initiation

zone (Vu and Krasne, 1993b). The proxal placement causes the inhibition

to always be effective. Even very strong stimuli are unable to cause the LG

to spike. Large depolarisations at the dendrites are ineffective at the spike

initiation zone as they are shunted out of the cell. The inhibition is mediated

by GABA and causes chloride channels to open (Roberts, 1968). Due to

chloride’s reversal potential being higher than the LG’s resting potential,

the inhibition is depolarising.

An LG spike also causes inhibition at the primary afferents. The inhibition

is again GABA-ergic and activates chloride channels, which causes a depo-

larisation. It is therefore referred to as the primary afferent depolarisation

(PAD). The PAD inhibition is long lasting (in the order of tens of millisec-

onds) and typically causes a 3-5 millivolt depolarisation (Kennedy et al.,

1980). The PAD inhibition descends from inhibitory interneurons which are

excited through poly-synaptic pathways which must be ultimately be driven
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by the giant neurons (Kirk and Wine, 1984; Kirk, 1985).

3.4.3 Habituation

The mechanosensory neurons that excite the LG reduce their input onto LG

in response to repeated stimulation. This is known as habituation.

Repeated tapping on the abdomen reduces the probability of an LG escape

response. In experiments it has been shown that tapping the abdomen once

per minute can drive the responsiveness to near zero. Three hours after

the tapping has ceased there is little recovery in the response. Habituation

occurs even if the nerve connection to the thorax is cut. This points to

the source of habituation as being local rather than descending from higher

centres in the nervous system. (Wine and Krasne, 1982)

Habituation is understood to be caused, at least in part, by a diminished

release of neurotransmitters from the pre-synaptic terminal between the

mechanosensors and the sensory interneurons (Zucker, 1972b). The chem-

ical synapses between the sensory afferents and the interneurons are pre-

synaptically depressed.

Habituation is specific to the sensory afferents that are repeatedly stimu-

lated. Other sensory afferents are not affected.

Habituation helps filters out sustained stimuli. This is a sensory adjustment

so that continuous sensation, which is unlikely to be caused by an approach-

ing predator, is ignored in making the escape decision. Due to the point of

depression being at the synapses, the output of the sensory afferents to other

systems is unaffected (Wine and Krasne, 1982).
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3.4.4 Neural mechanisms of modulation

Three neurotransmitters have been identified to exhibit a modulating effect

on the LG escape circuit: GABA, serotonin and octopamine.

The escape response is known to be reliably inhibited during feeding and

restraint. This modulation is called ‘tonic inhibition’ (Krasne and Wine,

1975). Tonic inhibition originates from rostral ganglia (Krasne and Wine,

1975; Vu and Krasne, 1993b). A GABA channel from the rostral ganglia to

the abdominal segments mediates tonic inhibition (Vu and Krasne, 1993a).

Tonic inhibition takes effect at the LG dendrites, far from the spike initiation

zone (Vu and Krasne, 1993b). GABA receptors open chloride channels in the

LG dendrites which increases the membrane conductance at the dendrites

(Vu and Krasne, 1993a). The effect of this is that currents, caused by

excitatory input, are shunted out of the cell, greatly reducing their effect.

Both the α and β inputs onto the LG are depressed by tonic inhibition (Vu

and Krasne, 1993a). Tonic inhibition does not directly affect the sensory

afferents or the motor neurons (Krasne and Wine, 1975).

The placement of tonic inhibition in the LG dendrites, as opposed to close

to the spike initiation zone, may serve two functions. The distal placement

of tonic inhibition allows it to be overridden if there is a large enough stim-

ulus. Intuitively, this is a good property, as during feeding false escapes are

especially undesirable, but the animal should still be able to escape when

seriously endangered. In contrast, recurrent inhibition, which should never

be overridden, occurs close to the spike initiation zone. The distalness of

tonic inhibition could also be used to selectively suppress parts of the sen-

sory system (Vu and Krasne, 1993b). Different sensory neurons synapse at

different places in the LG dendritic tree. Sensory neurons that synapse close

to the point of inhibition would have their input severely inhibited. Input
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from other sensory neurons would be less affected.

Animals can be provoked into tonically inhibiting by giving them small

object to hold in their chelipeds (Vu and Krasne, 1993b). This supports the

hypothesis that the closing of the claws is the trigger for tonic inhibition

(Wine and Krasne, 1982).

Tonic inhibition has also been shown to affect learning. Habituation is

thought to take place at the synapses between the primary afferents and

the sensory interneurons. It was supposed that this was mediated entirely

by local synaptic plasticity. However in experiments, animals that had

their GABA-ergic channel cut, did not habituate as much as intact animals

(Krasne and Teshiba, 1995). Tonic inhibition was found to be responsible

for a large part of habituation. It is possible that tonic inhibition is used

as a transient step, while the synapses are being modified. This experiment

showed that learning is caused by the events at higher centres of the nervous

system rather than exclusively by local plasticity.

Serotonin has also been supposed as the neurotransmitter effecting tonic

inhibition (Glanzman and Krasne, 1983). Serotonin receptors are known

to occur in the LG and applying serotonin to LG also almost mimics tonic

inhibition exactly, however other experiments do not support serotonin as

the mediator (Vu and Krasne, 1993a). It is likely that the serotonin receptors

in the LG are used for something. The hypotheses for their purpose include:

being used for long term regulation of the LG excitability, or perhaps in some

way linked with crayfish’s ability to inhibit more strongly, more rapidly over

repeated restraint sessions (Vu and Krasne, 1993a).

Serotonin has been shown to have a number of effects on the LG escape

circuit. The effects also depend on the animal’s social status, as is described

in section 3.4.5.
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Serotonin inhibits the LG escape response. When serotonin was injected

into the crayfish’s ventral artery, the EPSPs recorded in the LG were re-

duced (Glanzman and Krasne, 1983). Serotonin only affected the sensory

interneuron (β) component of the LG input. EPSPs caused by the direct

mechanosensory inputs were not affected. Serotonin raises the thresholds

of the sensory interneurons. This suggests that serotonin causes synaptic

transmission to be depressed between sensory interneurons and LG or be-

tween afferents and sensory neurons. Serotonin does not alter the rate of

habituation.

Octopamine has been shown to enhance the excitability of LG escape re-

sponse. In experiments, injecting octopamine into the crayfish’s ventral

artery, caused the EPSPs recorded in the LG to increase (Glanzman and

Krasne, 1983). Octopamine mainly effects interneuron (β) component of

LG EPSP. The direct mechanosensory (α) component is only slightly raised

(Glanzman and Krasne, 1983). Octopamine reduces the thresholds of the

sensory interneurons.

Serotonin and octopamine may affect other parts of the escape system. Sero-

tonin may enhance tonic flexion. Octopamine may depress tonic flexion and

enhance tonic extension. (Glanzman and Krasne, 1983)

The modulatory effect of serotonin differs depending on the animals social

status (see section 3.4.5) and on the way it is applied. Serotonin can be

either inhibitory or excitatory depending on the concentration and duration

of the injection (Teshiba et al., 2001).

Serotonin and octopamine have been shown to modulate the threshold of

the escape system. We know that the animal does modulate its escape

threshold. The hypothesis is that serotonin is used by the animal to mediate

suppression of LG escape and octopamine may mediate sensitisation of LG

escape (Glanzman and Krasne, 1983). There is no direct evidence however
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that the crayfish releases octopamine to mediate this effect.

3.4.5 Dominance and serotonin

Serotonin has been linked with the aggression and dominance related be-

haviours in crayfish. Injections of serotonin in crayfish and lobsters evokes a

dominant posture and promotes aggression (Livingstone et al., 1980; Kravitz,

1988).

The effect of serotonin varies according to social status of animal. Serotonin

causes a rise in the LG excitability in subordinates but inhibits the LG re-

sponse in dominant or isolated animals (Yeh et al., 1997). In freely behaving

animals, subordinates show a substantial fall in LG excitability while they

are engaged in fighting (Krasne et al., 1997). In contrast, dominant ani-

mals experience only a slight fall in LG excitability (Krasne et al., 1997).

It is hypothesised that these changes in the LG excitability are mediated

by serotonin, although there is no direct evidence to this effect. Outside

of agonistic encounters, the LG threshold appears to be independent of its

social status (Krasne et al., 1997). While a subordinate animal’s LG escape

is repressed during fights, the excitability of the non-giant escape circuit

is enhanced. The subordinate animal frequently invokes non-giant tail-flips

(Yeh et al., 1997; Herberholz et al., 2001).

The different effects caused by serotonin is due to there being different popu-

lations of receptors. Experiments suggest that there are at least two different

kinds of serotonin receptors acting on the LG circuit (Yeh et al., 1996; Yeh

et al., 1997). One receptor type inhibits the LG response, and the other

enhances it. The different responses to serotonin in dominants and subordi-

nates may be due to there being different compositions of the quantities of

the different receptor types.
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The story gets more complicated. The prior social experiences of a crayfish

affects its response to serotonin (Yeh et al., 1996; Yeh et al., 1997). The

inhibitory effect of serotonin experienced by subordinates is reversible. Sub-

ordinates who later become dominants experience enhancement to the LG

response when serotonin is applied. The enhancement affect of serotonin in

dominants is irreversible. Dominants who later become subordinates still

respond with enhancement when serotonin is applied.

That the LG escape response is inhibited in subordinates and sensitised in

dominants seems counter-intuitive. A possible explanation is that it is a

consequence of competition between giant escape and non-giant escape. In

fighting, subordinates evoke tail-flips far more often than dominants. The

majority of these are non-giant tail-flips (Herberholz et al., 2001). The

greater flexibility and precision of the non-giant escape circuit makes it the

seemingly preferable choice for an animal that knows it will be doing a lot

of tail-flipping. The LG escape could be inhibited to promote the use of

non-giant escape (Krasne et al., 1997). In contrast, dominants are able to

go about their business, anticipating that they will not be disturbed, and

rely on the giant circuits to respond to unexpected danger (Krasne et al.,

1997).

3.4.6 The development of the escape circuit

The crayfish escape circuit changes as the animal develops. During the larval

stage, lobsters do not elicit LG or MG tail-flips (Jackson and MacMillan,

2000), they use only the non-giant circuitry. At the next stage of devel-

opment however, the post-larval stage, lobsters and crayfish show the same

ranges of responses as adults. Lobster larvae do also not appear to habituate

their escape response (Jackson and MacMillan, 2000).

In observations of crayfish and lobsters, juvenile crayfish tail-flip very fre-
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quently (Lang et al., 1977; Jackson and MacMillan, 2000). As the animal

grows tail-flips are used less frequently. Adult crayfish invoke tail-flips much

more rarely. Adults are more inclined to defend themselves from threats

(Lang et al., 1977).

The reduced frequency of tail-flipping that occurs as a crayfish grows, co-

incides with an increase in the LG threshold. The rise in threshold can be

accounted for by the growth of the LG (Hill et al., 1994; Edwards et al.,

1994b). A small cell requires less current to charge it up to firing threshold.

The growth of the LG is nonuniform. The dimensions of the axon increase

at a greater rate than the dendrites. The effect is, the input resistance of

the LG is much lower an adult crayfish than in a juvenile. The strength

of the input onto the LG does not increase at a rate that compensates for

the cell’s larger electrical load. As a consequence, the stimulus strength

required to invoke an LG tail-flip increases as the crayfish gets older. In ju-

venile crayfish, the α input alone, caused by the direct connections from the

mechanosensors, is sufficient to fire the LG. In adult crayfish, the α input

alone will never fire the LG. An LG spike always rides off the β component,

caused by the sensory interneurons (Hill et al., 1994; Edwards et al., 1994b).

3.4.7 Priming the non-giant circuit

It appears that the non-giant circuit is able to be primed to respond faster.

In experiments, the response of the non-giant circuit was almost as fast

as the giant circuits if the crayfish was kept in the presence of a predator

before it attacked (Herberholz et al., 2004). This may be explained by the

crayfish sensing that it is in the presence of a predator and that an attack

is therefore likely. Accordingly, it primes the non-giant circuit so that it is

able to respond faster. This may involve pre-calculating the direction of the

escape. Priming the non-giant circuit would allow the combination of the
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non-giant circuit’s accuracy with giant speed. However, in the context of

tests conducted in the experiments, non-giant tail-flips were less effective in

avoiding capture than either LG or MG tail-flips.

3.4.8 LG potentiation

It has also been shown that the LG can become sensitised in response to

stimulation.

(Krasne and Glanzman, 1986) showed that strong AC shocks to the abdomen

can cause sensitisation in the LG escape response. A single traumatic shock

to the abdomen, reliably causes a fall in the LG threshold. The threshold

typically recovers in about one hour. Repeatedly applied traumatic shocks

caused greater drops in the LG threshold and the sensitisation was long last-

ing. A full threshold recovery took up to 24 hours. Crayfish with initially

higher thresholds tended to show greater threshold drops. The sensitisation

of the LG appears to be caused by an enhancement of the chemical trans-

mission between the mechanosensors and the sensory interneurons (Miller

et al., 1987). Traumatic shocks can also cause the sensory interneurons to

be sensitised. When the nerve cord between to the thorax and abdomen

was cut, there was a reduced amount of sensitisation in LG and the sensory

interneurons (Krasne and Glanzman, 1986). This suggests that sensitisation

is mediated through a neural pathway descending from more rostral ganglia.

Octopamine may be the neurotransmitter responsible for mediating sensi-

tisation. The functional purpose of sensitisation may be to compensate for

habituation.

The LG escape response can also undergo long term potentiation (LTP)

(Yeh et al., 2002). The synaptic strength at the rectifying junctions be-

tween the primary afferents and the LG increases in response to rhythmic

sub-threshold stimulation. Over the course of an hour, such stimulation can
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cause the EPSPs in LG to increase by 60%. The potentiation persists for

six hours. LTP requires coincident pre-synaptic and post-synaptic depolar-

isation.

3.5 Discussion of the crayfish escape circuit archi-

tecture

Six key features are apparent of the architecture of the crayfish escape cir-

cuit.

Firstly, the crayfish escape circuit is optimised for a short latency response.

The physical characteristics of components of which the circuit is constructed

cause the response to be as fast as possible:

• The chain of neurons between the stimuli and response is very short.

There are only four synapses between the mechanosensors and the

muscles.

• Electrical synapses are used throughout the escape circuit. Electri-

cal synapsing is extremely fast and reliable. Electrical circuits are

used wherever possible. Chemical synapses are used only between

the mechanosensors and the sensory interneurons and at the neuro-

muscular junctions.

• Giant axons carry the signals of the escape command neurons. Wide

axons facilitate fast, reliable conduction.

Secondly, in the MG and LG circuits, the decision of whether to escape is

made at a single point of control. Within their respective circuits, the LG

and MG command neurons exclusively determine whether or not an escape

tail-flip will be invoked.
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Thirdly, the test criteria that the giant escape circuits use to determine

whether to invoke a tail-flip is relatively simple. The LG circuit continuously

filters its sensory input for an abrupt massive stimulus. There may also be

a spatial component to the criteria (Wine and Krasne, 1982). The test is

calculated within chains of three neurons and two synapses.

Fourthly, there are multiple escape circuits. The different circuits serve

different roles. Two circuits, the LG and the MG, evoke highly stereotyped

responses but they are extremely fast in their response. The non-giant

circuit is much more versatile in the kind of responses it commands, but

it is slower. The escape responses exist within the context of the crayfish’

overall defensive strategies. Other defensive behaviours within the crayfish’

behavioural repertoire include backward walking, swimming and defence

posturing. We can think of these behaviours existing within a hierarchy.

The more complex defensive behaviours offer greater versatility and are more

intelligent in their response. It is preferable to identify a source of danger

early, and tactically withdraw to the burrow than to rapidly shoot backwards

and end up who knows where. The giant escape circuits fulfill the role of

the last resort. When ambushed by a predator and faced with death it is

better to respond quickly than smartly. An escape tail-flip is the final role

of the dice before submitting to capture.

Fifthly, the escape response overrides any other behaviour that the cray-

fish is engaged in. Once invoked, escape takes the highest precedent and

completely takes over the behaviour of the animal.

Finally, the escape circuits are heavily modulated. The test of whether

to escape is relatively simple but it is not static. The crayfish’ nervous

system’s evaluation of the animal’s overall state is used to modulate the

escape threshold. Whilst performing an escape tail-flip, starting another

one is completely blocked. The inhibition or sensitisation may be general or
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specific. The circuit may make the escape response less excitable to some

specific inputs or to all inputs.

(Bennett, 1984) observed that startle responses are present in many different

kinds of animals (including humans) from different parts of the ‘evolutionary

tree’. He compared the startle responses in different animals to identify

common attributes. Some of the key features we have identified in the

crayfish escape circuit are common to the organisation of startle responses

in general. In most animals, the axons carrying the startle response signal

are usually of large diameter axons to facilitate rapid conduction. Electrical

synapsing is frequently used for its faster transmission and reliability. Startle

responses often use command neurons: which function as a single decision

point. Not all startle responses are stereotyped: mammalian startle response

is highly dependent on the state of the organism.

In the LG and MG circuits, the decision to enact a tail-flip behaviour is made

by command neurons. The behaviours can be selectively controlled by its

trigger(s), and occurrence of behaviour are signalled uniquely by the firing

of the trigger(s) (Krasne and Lee, 1988). Are behaviours in general driven

by command neurons? Consideration of vector coding predicts that more

than one command neuron should be involved in most behaviours (Fraser,

1982). (Edwards et al., 1999) identifies that animals have a spectrum of

premotor organisations, which can be grouped into three categories:

• parallel distributed networks, in which shifts in the pattern of activ-

ity are caused by corresponding shifts in a pattern of activity of a

population of premotor interneurons,

• command systems: categorically different movements are selected and

guided by patterns of activity in distinct groups of neurons, and

• command neurons.
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(Edwards et al., 1999) hypothesises that it may emerge that localist architec-

tures are used when discrete numbers of categorically different responses are

to be produced and intermediates would be maladaptive. Distributed archi-

tectures are used when response properties vary continuously with stimulus.

The crayfish escape circuits also offer themselves as a case study of how

an animal chooses between different conflicting behaviours. Different be-

haviours are incompatible because they move the same body parts and be-

cause they are adaptive responses to different sensory stimuli (Beall et al.,

1991). In the crayfish it can be observed that the escape circuits inhibit

each other and other parts of the nervous system. Conversely, the LG has

been shown to be inhibited during feeding and restraint. (Edwards, 1991)

postulates that the crayfish and other animals may use mutual inhibition

among behavioural command systems as the mechanism for switching be-

tween incompatible behaviours.

In relative terms, the crayfish escape circuit is one of the simpler neural

circuits found in biology. It is however by no means trivial, as is evident

from its description. The interactions between the components of the sys-

tem and other parts of the crayfish nervous system are complex. The escape

circuit exhibits many interesting properties, such as learning and modula-

tion. Its interaction and involvement with other behaviours, such as fighting

and dominance, make it an interesting system to study combinations of be-

haviours. The crayfish escape circuit serves as a good model system to study

many of the interesting properties exhibited by biological systems.

This description of the crayfish escape circuit highlights two aspects that are

true of neuroscience in general. One should keep in mind that the crayfish

escape system is one of the simplest and best understood neural systems.

Firstly, the interactions of the nervous system are extremely complex. There

are interactions between many cells in different ways. Secondly, what we
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understand is much less than what we do not understand. There are many

unanswered questions in regard to the function of the crayfish escape circuit.

Our understanding of how the circuit functions is continuously evolving with

research. Inevitably, the descriptions and models become more complicated.

3.6 Reflex behaviours in artificial systems

Almost every complex animal, from disparate parts of the evolutionary tree,

has some form of startle response (Bennett, 1984). Reflex behaviour is

clearly important in animal behaviour. They are probably important in

artificial systems as well.

Escape and reflex response shave obvious and analogous applications in

robots. One can easily imagine that robots, for example a mine-sweeping

robot, being threatened with physical danger. (Hoy, 1993) argues that the

equivalent of an escape behaviour has a role in other artificial systems as

well. Hoy argues that artificial systems should have an escape system that is

activated when the integrity of the agent is threatened. The escape system

would cause the agent to diverge from its normal operations and take evasive

action. As an abstract example, imagine a web agent whose purpose is to

collect information about rental rooms from the web. The agent may start

at real estate portals and follow links to real estate pages where it parses

the pages and collects the information. The equivalent of an escape system

may be to have a component of the system that tests whether the agent is

still processing real-estate pages, or has it followed links that have landed

the agent in a completely unrelated portion of the web. The response may

be to backtrack to a place where the agent is sure it is processing real-estate

pages.

The crayfish escape circuit offers insights into how to design reflex behaviours
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for artificial systems. Drawing on what we have identified as the key points of

the crayfish escape circuit’s architecture (see section 3.5) and generalisations

(Bennett, 1984) of other escape circuits, we propose these guidelines of how

to construct reflex behaviour in robots and agents.

1. The escape functions should not interfere with the general function of

the agent while an escape manœuvre is not actually in play.

2. An escape response should be fast. This is relevant to real-time sys-

tems, such as robots. In a real-time system, an escape should be fast

in its triggering and its execution. In the crayfish escape system, the

circuit is highly optimised for the maximum possible speed to give it

an edge in avoiding predators.

3. The escape system needs to continuously monitor the agents environ-

ment to determine whether the system is at risk an an escape should

be triggered.

4. The trigger for an escape should be relatively simple to calculate. In a

real-time system this is a necessity to facilitate a fast response. In any

system, a simple test for escape is desirable so that it does consume

all the processing resources. In the crayfish escape circuit, the test for

escape is calculated within a network of neurons three layers deep.

5. An agent may be presented with multiple sources of danger. Or dif-

ferent dangerous scenarios from the same source. The crayfish escape

system suggests that one should not try to handle all dangerous sce-

narios with one mechanism, but rather have multiple mechanisms for

each scenario. Such a decomposition is conducive to keeping the test

to trigger escape simple. The crayfish escape system has at least three

different escape circuits to respond to different kinds of predator at-

tacks.
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6. When an escape is triggered, it needs to be able to take over the entire

system, and do so near instantaneously. In the crayfish an escape

tail-flip causes the crayfish to stop whatever it was previously doing.

A massive inhibitory signal is sent across the nervous system of the

animal to prevent other muscle movements that might interfere with

a tail-flip.

7. An escape reflex needs to be modulated.

We have seen in the simulations in the scenario in chapter 2 that when one

adds effective escape behaviour to a system, the agent is able to use a near

optimal strategy in how it approaches its primary functions. From an archi-

tectural design perspective, escape and reflex behaviours are a mechanism

for decoupling the agent’s primary functions from how to respond when the

system’s integrity is threatened. Escape and reflex behaviours are analagous

to exception handling in computer programs.

If you wish to learn about the endeavours of Artificial Intelligence researchers,

in their quest to build artificial systems that recreate natural intelligence, you

must read the next chapter.
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Previous Models

In this chapter we introduce computational neuroscience, describe previous

models of the crayfish escape circuit and review some previous studies in

adaptive behaviour.

4.1 Computational Neuroscience

The field of computational neuroscience is concerned with simulating neu-

rons and neural circuits on a computer.

4.1.1 Modelling techniques

A dendrite conducts ions. Electricity conducts along a dendrite in a similar

manner to which it conducts along a cable. If we represent a dendrite as

a cylinder then cable theory (Thomson, 1855) can be applied to calculate

an exact analytical solution to the electrical potential along the dendrite as
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a function of space and time in response to an arbitrary current injection

(L. Davis and Lorente de Nó, 1947; Rall, 1957; Rall, 1989; Rall and Agmon-

Snir, 1998).

Cable theory only allows us to find analytical solutions to dendrites shaped

as a cylinder. To be able to model a branching structure, it is necessary

to calculate the equivalent cylinder (Rall and Rinzel, 1973; Rall, 1989; Rall

and Agmon-Snir, 1998). This method can only be applied if the dendritic

branching structure adheres to strict geometric constraints. Unfortunately,

real dendritic structures rarely conform to these rules. It is still possible

to find analytical solutions to arbitrary structures using recursive methods,

however the solutions become extremely complex and unwieldy. Analytical

solutions cannot be found when there are any voltage dependent channels in

the membrane, so these methods cannot be applied to an active membrane

or at synapses. To be able to model complex dendritic trees with active

channels other methods are necessary.

The idea of compartmental modelling is to represent the electrical properties

of a neuron as a series of connected compartments (Segev and Burke, 1999).

The compartments are made small enough so that the portion of the neuron

represented by a compartment is considered to be at isopotential. Current

injected into the compartment may conduct along the dendrite to adjacent

compartments, or leak out through the cell membrane. Along each path the

current faces an impedance. The impedance of the path along the dendrite

is modelled by a resistor, called axial resistance. The impedance of current

leaking out of the cell is modelled by a resistor, called membrane resistance,

in parallel with a capacitor, called membrane capacitance. Figure 4.1 shows

a three compartment model of a section of dendrite.

The impedance values of the compartment depend on the electrical proper-

ties of the cell and dimensions of the dendrite. The axial resistance is given
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Figure 4.1: A three compartment model of a section of dendrite. The den-
drites morphology is modelled as three cylinders. Each cylinder
is represented as an electrical compartment.

by:

Ra =
L/2

π(D/2)2
ra =

2L
πD2

ra (4.1)

where Ra is the axial resistance in MΩ, ra is the axial resistivity in Ωcm, L

is the compartment length in micrometres and D is the dendrite diameter

in micrometres.

The membrane resistance is calculated by dividing the cell’s membrane re-

sistivity by the compartment’s area:

Rm =
rm

πDL
(4.2)

where Rm is the membrane resistance in MΩ and rm is membrane resistivity

in Ω.cm2.

If we invert equation 4.2, we have an expression for conductance, called the

leak conductance gL.

gL =
1

Rm
=

πDL

rm
(4.3)
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The membrane capacitance is calculated by:

Cm = πDLcm (4.4)

where Cm is the compartment’s membrane capacitance in µF, and cm is the

membrane capacitance per unit of area in µF.cm−2.

At each compartment, the currents and membrane potentials can be de-

scribed by a set of differential equations. These equations can be integrated

numerically. On a computer, the response to arbitrary input in complex

dendritic structures can be calculated in this way.

We now consider active membrane. In a compartment representing active

membrane, we add voltage dependent channels in parallel to the leak resis-

tance.

Hodgkin and Huxley (1952) proposed a mathematical model to describe

the voltage dependent sodium and potassium channels that are responsible

for generating action potentials. They used data from the recordings in

the squid giant axon as the basis of their model. Hodgkin and Huxley

proposed that each sodium channel had three activation components and

one inactivation component. For the channel to be active all three activation

components had to be in the ‘on’ state and the inactivation component

had to be in the ‘off’ state. A potassium channel was made up of four

activation components and no inactivation components. The probability

of an activation component changing state is related to the voltage of the

membrane.

Let us consider a section of the membrane with millions of sodium and

potassium channels. Let us use the variable m to represent the proportion of

sodium activation components in the on state and the variable h to represent

the proportion of sodium inactivation variables in the off state. At any

126



4.1. COMPUTATIONAL NEUROSCIENCE

given time the sodium conductance can be calculated as the product of the

maximum conductance (where all the sodium channels are open) and the

proportion of channels that are open, which is given by the product m3h.

Hodgkin and Huxley proposed the following set of differential equations to

describe the membrane potential of an active membrane.

Cm
dV

dt
= −gL(V − VL) − gNam

3h(V − VNa) − gKn4(V − VK) (4.5)

dm

dt
= αm(V )(1 − m) − βm(V )m (4.6)

dh

dt
= αh(V )(1 − h) − βh(V )h (4.7)

dn

dt
= αn(V )(1 − n) − βn(V )n (4.8)

Where V is the membrane potential, t is time, Cm is the membrane capaci-

tance, gL is the membrane leak conductance, VL is the membrane leak resting

potential, gNa is the maximum sodium conductance, VNa is the sodium rever-

sal potential, gK is the maximum potassium conductance, VK is the potas-

sium reversal potential, n is the potassium activation variable and αm(V ),

βm(V ), αh(V ), βh(V ), αn(V ) and βn(V ) are voltage dependent functions

governing the rate of change of the sodium and potassium activation and

inactivation variables.

For the squid axon the α and β functions, the activation variables m, h and

n, can be described as follows:

αm(V ) =
Aαm(V − V0αm)

e(V −V0αm)/Bαm − 1
(4.9)
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βm(V ) = Aβme(V −V0βm)/Bβm (4.10)

αh(V ) = Aαhe(V −V0αh)/Bαh (4.11)

βh(V ) =
Aβh

e(V −V0βh)/Bβh + 1
(4.12)

αn =
Aαn(V − V0αn)

e(V −V0αn)/Bαn − 1
(4.13)

βn = Aβne(V −V0βn)/Bβn (4.14)

4.1.2 Neuron modelling software

The Hodgkin-Huxley equations have no analytical solution. To calculate

the time course of the membrane potential it is necessary to numerically

integrate the equations. It is thus necessary to write a computer program

to numerically integrate the membrane equations.

Programs to simulate neuron membrane properties have been written many

times. A number of libraries and tools have emerged that save one from

having to write the numerical integration engine from scratch. The two

most popular general purpose neural simulators are GENESIS (Bower and

Beeman, 1998) and NEURON (Hines, 1984; Hines, 1993; Hines, 1994; Hines,

1998; Carnevale and Hines, 2003).

GENESIS and NEURON have equivalent functionalities. The programmer

defines the compartmental structure of the neurons being simulated, the
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external components, what values need to be recorded and the integration

method. The simulation engine converts the description into a simulation

of an RC circuit with variable conductances and numerically integrates the

currents to compute the simulation results. The programmer defines the

simulation components and setup in scripts. NEURON and GENESIS each

come with their own scripting languages.

GENESIS and NEURON each come with a library of built-in components

that are commonly used in neuronal models. The libraries include frequently

used membrane channel types. NEURON and GENESIS have predefined

passive membrane channels and Hodgkin-Huxley sodium and potassium

channels. NEURON and GENESIS are both extensible. New channel types

can be written in C and integrated into the simulation. The simulation li-

braries also provide other components that can be used in the simulation

such as synaptic mechanisms, voltage clamps and current clamps. Both

NEURON and GENESIS allow the programmer to write new components

in C.

4.1.3 Model parameter searching

The data used as the basis of neural models is often incomplete. There are

usually many parameters whose biological values are not precisely known.

Their values are typically known to be constrained within a range. The

modeller must choose parameters that cause the model to act in a way that

is consistent with experimental observations. There are often multiple sets

of parameters which satisfy the constraints. The process of finding suitable

values is called parameter fitting. There are many techniques for doing this,

including:

1. tuning the parameters by hand,
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2. using automated techniques to map out the parameter space or sub-

sections of it, and

3. using an automated search algorithm (for example gradient descent or

genetic algorithms) to find the ‘best fit’ parameter values.

4.1.4 Previous models of the crayfish escape circuit

There have been previous computational models of portions of the crayfish

escape circuit.

There have been a number of models examining the role of rectifying junc-

tions in the escape circuit. (Edwards et al., 1991) examined the function of

rectifying electrical synapses onto LG. The function of the rectifying electri-

cal synapses between LG and the motor giant (MoG) motor neurons has also

been simulated (Edwards, 1990a; Edwards, 1990b; Heitler and H.Edwards,

1998). (Heitler et al., 1991) examines the role of the rectifying junctions

between the segmental giant (SG) and the fast flexor motor neurons (FF).

(Edwards et al., 1998) showed, with single compartment models, that recti-

fying junctions can enhance coincidence detection.

(Edwards and Mulloney, 1987) simulated synaptic integration between the

SG and the FF motor neurons.

(Vu and Krasne, 1993b) simulated some aspects of synaptic integration by

LG to show the effects of proxal versus distal inhibition.

The effects of growth in the lateral giant has been studied in computational

models (Edwards et al., 1994a; Edwards et al., 1994c; Hill et al., 1994).

The models predict that the lateral giant’s spiking threshold rises in larger

animals as the electric load increases disproportionately to the size of its

inputs.
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MacMillan and Patullo (2001) created a simulation of the control of the

position and movement of the abdomen, with the goal of obtaining insights

for robotic design. MacMillan and Patullo observe that the crayfish obtains

very fine control with very few control elements. They argue that under-

standing this has obvious benefits for robotic design. They conclude that

further studies in both biology and neural simulations are necessary in or-

der to obtain the necessary understanding to exploit the full potential of the

crayfish’s circuit design.

4.1.5 Models of coincidence in other animals

Coincidence detection has been studied in other neural circuits. Mammals

and birds use the small time difference at which a sound arrives at its op-

posite ears to estimate the location of the source. Barn owls are often used

as a case study of this phenomenon due to their keen ability to use sound

to localise their prey at night. The calculation relies on coincidence detec-

tor neurons in the auditory system that respond maximally to simultaneous

inputs from both ears. The coincidence detection neurons in the barn owl

have been modelled. The coincidence detector cells should fire when inputs

from two independent sources coincide but not fire when inputs from the

same source coincide.

In models, the coincidence detection is accounted for by having the inputs

from different sources synapse at different dendritic branches (Carr and

Boudreau, 1993; Agmon-Snir et al., 1998; Simon et al., 1999; Peña et al.,

2001). Alternative dendritic branches causes synchronous inputs from differ-

ent sources to sum more linearly and the other branch acts as a current sink

when inputs are asynchronous or from the same source. Inputs synapsing

at the same location sum nonlinearly. This is because the depolarisation is

largest at the synapse point. The driving force is proportional to the volt-
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age difference across the membrane. Thus if two inputs synapse at the same

locations, they will reduce each others driving force, causing them to sum

nonlinearly. When inputs synapse at different branches, they are electroton-

ically separated, and the depolarisation that one input causes at the other

branch is not very great. Hence, inputs on alternative dendritic branches

do not significantly reduce each other’s driving force. Simultaneous inputs

from both ears therefore sum effectively. Simultaneous inputs from the same

ear sum ineffectively.

More detailed simulations show that active potassium currents may be

involved in discriminating between asynchronous and synchronous inputs

(Grau-Serrat et al., 2003).

4.1.6 Simulations of other biological systems

There have been many previous simulations of parts of nervous systems in

different animals with the goal of obtaining insights into the general design

of animal behaviour.

(Laurent, 1993) examined integration in spiking and non-spiking local neu-

rons in the locust central nervous system. Their studies highlighted the im-

portance of cellular and synaptic properties for the function of the network.

The main design principles that emerged from (Laurent, 1993)’s studies in-

cluded:

• Tactile and proprioceptive signals are sparsely distributed. The signals

are sparse and specific. Each interneuron may share sensory input, but

each interneuron has a different receptive field. The same receptors

may act differently on different interneurons.

• The network lacks internal feedback pathways.
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• The coexistence of spiking and non-spiking integrative modes in the

same networks must be important.

(Lockery, 1993) created an artificial neural network model of an escape reflex

in the leech.

(Ritzmann, 1993) examined the neural organisation of cockroach escape and

its role in context-dependent orientation.

(Morse et al., 1998) created a neural network model of part of the nervous

system of the nematode C. elegans to study robust navigation based on

smell and chemical sensory information.

4.2 Adaptive behaviour models

Artificial Intelligence has existed as a discipline since the 1950’s.

The aim of artificial intelligence is to build computer systems that display

the kind of intelligence we expect in humans.

Central to artificial intelligence is the idea of an agent. An agent is an entity

situated in an environment (Wooldridge and Jennings, 1995; Wooldridge,

1999; Russell and Norvig, 2003). An agent is able to sense and act on its

environment. An agent is a broad term which can be applied to include

robots and also software agents, such as web agents.

The predominant approach to artificial intelligence has been to create a

symbolic representation of the state of the world and apply logical reasoning

to the symbolic model.

A major change in the approach to artificial intelligence was instigated by

Rodney Brooks during the late 1980s (Brooks, 1986). Brooks conjectured

that the intelligence displayed by ‘simple’ animals, such as insects, was vastly
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superior to the state-of-the-art in artificial systems. Brooks argued that

rather than try to emulate human intelligence we ought to first try to repli-

cate the levels of intelligence displayed by ‘simple’ animals. Brooks argued

that rather than having a complex symbolic model of the world, a robot

should use the world as its own model. Brooks proposed a subsumption

architecture. Brooks’ subsumption architecture attempted to decompose

behaviour into layers. The lower layers were responsible for the most ele-

mentary functions, for example obstacle avoidance. The higher layers were

responsible for higher level reasoning, for example navigating to the goal.

Brooks work inspired a new approach to robotics, called behaviour based

robotics, where an agent’s the problem is decomposed by behaviours.

The subsumption architecture was an example of behaviour based robotics.

A behaviour based robot has a set of behaviours. The environment deter-

mines which behaviour should have control at any given time. Behaviour

based robots differ from purely reactive systems because ‘they can use dif-

ferent forms of internal representations and perform computations on them

in order to decide what effector action to take.’ (Mataric, 1992)

(Nolfi, 1997) further explored the concept of behaviour based robotics. Nolfi

hypothesised that to obtain robust solutions behaviours should be broken

down ‘proximally’ rather than ‘distally’, i.e. in terms of sensorimotor loops

instead of high level observed behaviours. Mobile robots are able to affect

which kind of stimuli they are exposed to, i.e. sensory state, consequence

agents are able to produce behavioural sequences without using memory.

Some sensory states are more important than others. (Nolfi, 1997) pro-

posed an ‘emergent modular architecture’, i.e. an architecture where a neu-

ral network is constrained such that each motor neuron is associated with a

separate small group of control neurons. Their experiments supported their

claim that emergent modular architectures have improved performance.
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Beer (Beer, 1990; Beer et al., 1989) argued for studying ‘simple animals’.

He argued to examine an existing intelligent system in nature to look for

clues in how to build an artificially intelligent system. Beer (Beer, 1990) in

his PhD thesis successfully modelled insect walking, arguing that it is a step

to understanding intelligence as adaptive behaviour.

There is now a sub-discipline of artificial intelligence that is concerned with

the simulation of adaptive behaviour in animals (Meyer and Wilson, 1990;

Meyer et al., 1992; Cliff et al., 1994; Maes et al., 1996; Pfeifer et al., 1998;

Berthoz et al., 2000; Floreano et al., 2002).

4.3 A comparison of biological and artificial neu-

rons

Looking at neurons for inspiration in regard to performing computation is

not new. (Rosenblatt, 1962) presented the idea of a perceptron: an ab-

straction of a neuron. Networks of perceptrons were shown to be capable of

solving certain problems. (Minsky and Papert, 1969) mathematically anal-

ysed the capabilities of the perceptrons and proved which classes of problems

can and cannot be solved with perceptrons. The field remained largely dor-

mant until it was revived by Rumelhart and McClelland (1986a, 1986b) who

extended the theory of perceptrons and demonstrated it could be used to

solve complex problems.

There are some fundamental differences between the computations of a neu-

ral network based on classical perceptrons versus how a biological neural

networks functions. The perceptron model, and variations of it, has many

useful applications. It is however insufficient to capture the entire function-

ality of biological neural networks. We highlight nine differences between

artificial and biological networks.

135



CHAPTER 4. PREVIOUS MODELS

1. Artificial neural networks process their data synchronously. Biological

neural networks are asynchronous. In an artificial neural network the

information propagates between layers synchronously. In biological

neural networks cells communicate completely asynchronously. Al-

though examples exist in biological circuits where computation is syn-

chronised (e.g. coincidence detectors and central pattern generators),

there is no central clock whereby all neurons communicate at the same

time.

2. A biological neuron integrates its input in a highly nonlinear way. Ac-

tive channels in the dendrites and variable conductance at transmitter

gated channels cause PSPs to sum in highly nonlinear ways. In biolog-

ical neurons, integration is complex even without any active channels.

With only passive membrane the dendritic tree is a linear system, how-

ever it is a very complicated linear system. An accurate model of the

integration of input onto a passive dendritic structure is a complicated

procedure. It is doubtful whether a neuron’s integration process can

be modelled accurately with a simple to compute function.

3. A biological neural network has many different kinds of synapses. In

artificial neural networks synapses differ only by their weight (see fig-

ure 4.2.) Since artificial networks are synchronous, the function of

excitation versus time varies only by its magnitude. In biological neu-

rons different synapse types have vastly varying excitatory responses.

There are many different kinds of neurotransmitters and there are dif-

ferent types of receptors for each neurotransmitter. Each receptor type

responds differently. These combinations of neurotransmitters and re-

ceptors cause different synapse types to vary greatly in the duration

and the shape of the post-synaptic excitation.

4. In biological neural networks, communication at the synapses is not
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Figure 4.2: In artificial neural nets, synapses only differ by their weight
(see graph above). In biological neural networks, the input at a
synapse is a continuous function of time (see graph below).
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limited to excitatory or inhibitory currents. Neurotransmission may

effect a second-messenger response. In a second messenger response

no PSP is generated directly but another process is activated which

may change the intrinsic properties of the target neuron.

5. There are neurohormones which are able to affect many different cells

across the entire brain in different ways. Neurohormones usually cause

modulation. Different cells are usually modulated in different ways by

the same neurohormone because the response in a cell depends the

receptor types and the density of these receptors at the target cell.

There is equivalent to neurohormonal transmission in artificial neural

networks.

6. In biological neuron PSPs sum over different time courses, due to their

asynchronous computation. In an artificial neural network weights are

added in a single time step and all inputs are effectively given the same

duration. In a biological neuron the duration of the PSP is different for

different synapses depending on the channels involved. Furthermore,

whereas in an artificial neuron weights are effectively a step function,

in a biological neuron the magnitude of the PSP varies over a time

course, although it can often be modelled with exponential functions.

7. Biological neurons are be modulated. The properties of a cell can be

changed in many alternative ways by neuromodulators. Neuromodu-

lation can affect synapses or the integration properties of the neuron.

For example, a cell may be made more responsive (potentiation) or

less responsive (depressed.) The duration of modulation is depends on

what neuromodulators and receptors are involved.

8. Related to modulation is habituation. In biology, a neuron may be-

come less (or more) responsive to input if it is contagiously activated.
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9. Biological neural networks are dynamic. A biological neural network is

continuously changing. In addition to modulation and habituation the

actual structure of the network and cells is changing. Dendrites grow.

New synapses form. Synapses are removed. Synapses are strength-

ened, synapses are weakened. The structure of a biological neural

network is not static.

Each of these described biological mechanisms has been shown to have func-

tional significance. The classical perceptron model does not capture the

properties described in the afore mentioned points. One could still argue

that biological neural networks and perceptron-based artificial neural net-

works differ in their mechanisms but ultimately achieve the same results.

Although a matter of conjecture, it is difficult to computationally reconcile

these fundamentally different systems. These differences between biological

nervous systems and classical artificial neural networks offer clues as to what

may be need to be added to artificial systems to achieve more robustness.

Much recent work by artificial neural network researchers works towards

addressing this gulf that exists between biological and artificial neural net-

works. Some comtemporary models attempt to incorporate the basical bio-

gological mechanisms within their assumptions. (Elliot and Shadbolt, 2003a;

Elliot and Shadbolt, 2003b) include neurotrophic processes in their neural

network models. Activity dependent feedback dynamically adjusts synaptic

strength. The inclusion of neurotropic mechanisms was shown to vastly im-

prove robustness. In experiments with robots, the neural networks evolve

to be well-tuned to the specifics of the hardware and the environment.

If you wish to learn how the lateral giant can be modelled with resistors and

capacitors then you must read the next chapter.
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CHAPTER 5

Compartmental models of the

Lateral Giants

The biological models in this thesis are of the sensory part of the lateral

giant (LG) circuit (see figure 3.11.) We focus on the sensory part of the

circuit to consider how the crayfish arrives at its decision to invoke an LG

tail-flip.

The key cell in the escape circuit of the crayfish is the LG. It is the deci-

sion point to trigger escape behaviour. Much information is known about

the neuroanatomy and physiological properties of the LG. Accordingly, the

key step in this research is to build compartmental models of the LG. The

compartmental models are described in this chapter.

Much is known about the structure and physiology of the LG. Much more

is unknown. It is necessary to make assumptions and simplifications. The

models attempt to replicate the cell’s observed behaviour. The model de-

signs are constrained by what is known. The gaps of the unknown are filled
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with plausible choices that produce a model that behaves in a way that is

similar to the experimentally observed cell.

As we discussed in Chapter 4, computer programs are appropriate for solv-

ing the differential equations governing the neuronal membrane potentials

in the case that there is not an analytical solutions. Two models were built.

The first attempts to capture the essential features of the LG morphology.

It was created before a complete set of neuroanatomical measurements was

available. The model was created using GENESIS and is described in sec-

tion 5.1. This model is included because it is simpler than the complete neu-

roanatomical model yet it exhibits many of the same properties. The second

model has its morphology taken directly from biophysical measurements. It

is written using the NEURON simulator and described in section 5.2.

The models described in this chapter are used as the basis for simulations

addressing specific questions in chapters 6 and 7.

5.1 Basic compartmental model of the lateral gi-

ants

The lateral giants are large complex cells. A picture of one of the cells dye-

filled may be seen in figure 5.1. The cell’s structure can be qualitatively

described as follows:

• The cell has a large wide axon.

• The axon is fed by 5 large dendritic branches. These branches converge

on the main dendritic branch at roughly the same point.

• At the end of the dendritic tree are a large number of very narrow

dendritic tips.
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Figure 5.1: A picture of the Lateral Giant cell filled with dye. Picture from
(Antonsen, unpublished.)

Two approaches were taken to building compartmental models of the lateral

giants. The first was to create a simplified model that includes all the

features of its qualitative description. The second was to create a model

of the cell’s structure directly from the pictures taken of the dye-filled cells

using a software tool (refer to section 5.2.)

There are of course many different variations of the lateral giant cell. Each

crayfish has a pair of lateral giants in each abdominal segment. There are

small variations in the lateral giant structure between segments. The di-

mensions and number of branches in the lateral giants change as a crayfish

grows. The dimensions of the lateral giant modelled were based on the lat-
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eral giants in the final abdominal segment of a 6 centimetre Procambarus

Clarkii. This was chosen because there was the most data available.

5.1.1 Abstracted morphology model description

The LG is modelled as a structure built of connected cylinders and these

cylinders are modelled with electrical compartments. A diagram of the

simplified model adopted of the lateral giant cell is shown in figure 5.2. The

simplified structure has the qualitative attributes of the lateral giant cells.

The following constraints were put on the structure and dimensions of the

cell:

• The axon width used matched an actual cell’s width.

• The diameter of the base of the dendrites matched that of an actual

cell.

• There are five main dendritic branches.

• The number of dendritic tips approximately matched that of an actual

cell.

• The length and diameter of the dendritic tips approximately matched

the average dimensions of these attributes for actual cells.

In the model the dendritic base branches out into five symmetric branches.

Each of these branches out into 10 symmetric sub-branches. Each of these

sub-branches branch out to 10 narrow dendritic tips. The lengths and diam-

eters used for the segments of the dendritic tree at various branching levels

were chosen by measuring the lengths of segments in dye-filled photos of the

lateral giants and by consulting with crayfish biologists. Table 5.1 shows

the dimensions used in the model for the various stages in the branching
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Branching level Number Length (µm) Diameter (µm)
Base 1 100 20
Major branches 5 20 10
Minor branches 50 8 1
Tips 500 6 0.4

Table 5.1: The dimensions used for the branches in the model of the lateral
giant dendritic tree.

structure of the model lateral giant. These values are based on the mea-

sured observations from the lateral giant anatomy (Antonsen 2000, personal

communication).

minor branch

major branch group

group

major branch

minor branch

axon

soma

base dendrite

Figure 5.2: The symmetrically branching structure used to model the LG.

The dendrites were assumed to have a passive membrane, i.e. they passively

conduct current. There is recent evidence to suggest that, contrary to classi-

cal models, most dendrites have some active channels. Active channels were

not included in the modelling of the dendrites. This simplification is both
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necessary and justified. First, nothing is known about any active channels in

the LG dendrites. There is no evidence available to show their existence, let

alone details of their properties. Second, electrophysiological experiments

show that the response of the lateral giants to current injection is highly

linear (Heitler et al., 1991), suggesting that active channels do not play a

major role in the conduction of the sensory signals. Finally, understanding

a passive membrane model of the dendrites is a prerequisite to any active

membrane models (Segev and Burke, 1999).

The cytoplasmic resistivity of the dendrites was assumed to be 60 Ωcm,

an experimentally measured value for crustaceans (Katz, 1966). This is

the same value that has been used in previous models of the lateral giants

(Edwards et al., 1994b; Hill et al., 1994).

The number of compartments used to model any segment of the dendritic

tree is such that for all compartments, the electrotonic length of the dendritic

segment being modelled did not exceed 0.05λ. The electrotonic length (L)

is defined as the physical length (l) divided by the space constant (λ), as

shown in equation 5.1. The space constant is the distance over which the

voltage level of a signal will decay by a factor of 1
e . It may be calculated

from membrane resistance (RM), the axial resistance (RA) and the dendrite

diameter using equation 5.2. Using segments of electrotonic length 0.05λ

gives high accuracy results whilst keeping the number of compartments to

a level that is computationally possible (Segev and Burke, 1999).

L =
l

λ
(5.1)

λ =

√
(d/4)RM

RA
(5.2)
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The lateral giant is known to have a very short membrane time constant.

The axon is modelled as a series of compartments of wide diameter. The

final model had a very long axon, with a diameter initially matching that of

the base of the dendrites, widening out over the initial section of the axon to

100 µm. The continuation of the axon maintains this diameter. The total

length of the model axon was 5mm. This is the approximate length of a

lateral giant axon in a real crayfish of the size being modelled. A case can

be made that this very large charge sink should be greater still: the axon

terminates at electrical gap junctions onto other lateral giants, allowing the

ions to freely flow into the next cell. However (as is discussed in a following

paragraph) the effect on the response at the dendrites caused by an axon

approaching infinite length compared to one of the length in the model is

not significant. Since the additional charge sinking capacity of synapses onto

the adjacent lateral giants would be less than an infinite axon, this factor

can be safely ignored.

The axon has a big effect on the response properties of the cell. Due to the

low resistance of the axon compared to the dendrites, it acts as a charge sink.

Ions from presynaptic cells enter at the dendrites. Due to the narrowness of

the dendrites, high membrane potentials are created. However the charge

quickly dissipates down the low resistance axon. Due to the axon’s extremely

large size in comparison to the dendrites, as the charge distributes evenly

through the cell the membrane potential very quickly drops to a minuscule

fraction of what it was at the dendrites. The effect of the large axon is

to thus cause any significant membrane potentials in the dendrites to be

extremely short lasting.

The effect of the axon and the sensitivities of the choices made were exam-

ined in more detail. The cell’s response to input was made with three other

variations of the lateral giant cell:
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Axon model EPSP (mV)
Axon model adopted 0.89
No axon 5.20
Infinite axon 0.89
Axon with uniform diameter 0.36

Table 5.2: The effects of the axon on cell’s response to input. Table com-
pares the EPSP caused by a single spiking afferent at the base of
the dendrites for the model used to alternative modelling choices
for the axon.

1. A cell with no axon,

2. A cell with an infinite axon, and

3. A cell with an axon of uniform width.

Table 5.2 shows the EPSP generated at the base of the dendrites in response

to a single firing afferent for these different axon models. It can be observed

that the existence of the axon has a large effect on the magnitude of the

EPSP. The EPSP in a model cell with an axon is less than a fifth of one

without one. The difference between an EPSP in the model cell and a cell

with an infinite axon is not very great. This is because the length of the axon

in the model is comparable to the space constant. Modelling the axon as

initially narrow and broadening out also has a significant effect. The higher

resistance of the initial segment of the axon causes the EPSPs recorded at

the base of the dendrites to be slightly higher.

Figure 5.3 shows how the shape of the EPSP changes depending on how

the axon is modelled. A model cell without the axon has sustained slowly

decaying EPSPs. Model cells that include the axon have short duration

rapidly decaying EPSPs. This is because in model cells with an axon charge

can dissipate down the axon, where as in a cell without an axon it can only

leak out through the membrane. The length and shape of the model of the

axon do not appear to have a significant effect on the shape of the EPSP.
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Figure 5.3: The shape of EPSPs in cells with different axon models. The
graphs plot the response at the base of the dendrites to a single
spiking afferent.
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The resting potential for the model lateral giant cell was set at -80mV. This is

a typical resting potential recorded for the lateral giants in neurophysiology

experiments (Heitler et al., 1991; Zucker, 1972a). This resting potential

was achieved in the model by setting the membrane leakage voltage for

each compartment in the lateral giant to -80mV. Because there are no other

channels in the model this is enough to achieve the correct resting potential.

Very simple models were used for the afferents. The question being explored

in the model was how do the lateral giants combine the input given to them

by the afferents and interneurons. The afferents were assumed to be sensory

messengers, conveying stimulus to the interneurons and lateral giants. Hence

the complexities of the afferents’ morphology were ignored. being explored

was how do the lateral giants As described in section 3.3.2 the afferents

can be broadly divided into two categories. In the model, all afferents were

made to be identical. This decision was made to keep the model simple. An

extension of the work would explore what effects the afferents of different

sizes have on the behaviour of the circuit. Only the axon part afferents

were modelled, because this is the part that connects with LG. The afferent

axons were modelled as a cylinder of uniform diameter spanning 300 µm. Six

similar linearly connected compartments were used to model each afferent.

Figure 5.4 shows the compartmental model used for afferents.

Dye-filled pictures of the afferents show that they do not terminate at the

lateral giants. The afferents are not exclusively used by the lateral giants:

their axons synapse onto the lateral giants, but most continue after this

point to make synapses with other neurons. The model afferents make their

synapses onto the lateral giant in the fourth compartment. The two following

compartments provide an alternative sink for the current travelling down the

axon.
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Figure 5.4: The compartmental model of the afferent axons. Each afferent is
represented by six identical compartments connected together in
a chain. The compartments contain Hodgkin-Huxley channels.

All the compartments in the model of the afferent axons are active, to allow

them to propagate a spike. Hodgkin-Huxley sodium and potassium channels

are used.

The shape of the spikes seen in crayfish tail afferents are atypical compared

to spikes exclusively caused by the fast sodium and delayed potassium chan-

nels. Figure 5.5 shows the shape of a crayfish afferent spike compared to a

spike caused by Hodgkin and Huxley sodium and potassium channels. The

spikes are sharper, have a shorter duration and do not undershoot. This

suggests that there are additional currents involved. Calcium currents are

likely to be involved (Edwards, 2000, personal communication). There are

probably other currents acting as well.

To get accurate simulations of the reaction to afferent spikes in the LG it is

necessary to make the shape of voltage-time curves of the simulated affer-

ent spikes to those of actual ones. The ideal way to do this is to correctly

model all the currents and channels involved in an afferent spike. However

since little is known about the currents acting in the afferents this would be

a difficult and lengthy task. Since we are most interested in the response

of the LG, a compromise solution was adopted. The constants, used in

the Hodgkin-Huxley equations for the sodium and potassium channels, were

modified to give the simulated afferent spikes a shape similar to actual ones.

An alternative approach would have been use a real spike recording to di-

rectly set the voltage of an afferent. However the load on the afferent cell
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Figure 5.5: Recordings of the membrane potential during (a) a crayfish af-
ferent spike, and (b) a spike in a simulated cell with standard
squid Hodgkin-Huxley channels. Note that the crayfish afferent
spike is of very short duration and does not undershoot.
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changes as the resistance of channels changes. This effect would not be cap-

tured if the voltage was set directly. The compromise solution approximates

this effect.

The Hodgkin-Huxley equations (see section 4.1.1), which describe action

potentials in a squid neuron, were used as the basis for modelling the ac-

tion potentials of crayfish afferents. The constants were adjusted so that a

simulated spike be of a similar shape to that of spikes real crayfish afferent

cells. Figure 5.6 compares a simulated spike using modified Hodgkin-Huxley

channels to a real crayfish afferent spike recording. Appendix B.2.1 lists the

values of the constants used.
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Figure 5.6: A comparison of a simulated crayfish afferent spike versus a real
laboratory recording of a crayfish afferent spike. The shape and
duration of the spikes are closely matched. The simulated spike
was obtained by using Hodgkin-Huxley channels with modified
values for the constants in equations 4.9 to 4.14.

The membrane constants of the lateral giant were chosen so that the model

matches the experimental membrane time constant.
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5.2 An accurate morphology compartmental LG

model

The model described in section 5.1 generalises the essential elements of the

lateral giant’s morphology. In this section we describe a more accurate

model, composed directly from the morphological data. In section 5.2.1 we

describe how our model can be linked with other cells.

The compartmental model was developed in two stages. The first stage is

to produce a morphological model, without electrical properties, using bio-

physical measurements. A set of 17 confocal stacks of a dye-filled lateral

giant neuron, taken from a 4 cm animal, was imported into the Neurolucida

(Microbrightfield Inc., 2003) software package. A projection of the confo-

cal stacks is shown in figure 5.7. Neurolucida was used to manually trace

around the dendritic structure of the lateral giant to measure the dendrite

diameters and lengths. Neurolucida compiles these measurements to con-

struct a morphological model of the cell as a composition of cylinders. A

three dimensional rendering of the morphological model of the lateral giant

can be seen in figure 5.8.

A schematic view of the morphological model is shown in figure 5.9. The

morphological model is made up of a total of 1114 branch segments.

Th second stage of the development of the model was importing the mor-

phological model into NEURON to produce a compartmental model. A

script written in Java was used to convert from the Neurolucida format into

a NEURON compartmental model. The number of compartments for each

branch segment, was expressed as a function of the axial resistance and the

membrane resistance. No compartment is allowed to be longer than 0.05

of the steady-state electrotonic length constant, λ. The number of com-

partments changes dynamically with the values set for axial resistance and
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Figure 5.7: A projection of 17 confocal stacks showing a dye filled lateral
giant neuron.
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(a)

(b)

Figure 5.8: A 3D rendering of the morphological model of the lateral giant
(large neuron in red). Also shown in the picture is a model of a
primary afferent axon (in green.)
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Axon

Soma

Figure 5.9: A schematic diagram of the lateral giant. Branch lengths and
diameters are drawn to scale.
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membrane resistance. In practice most branch segments were represented

with a single compartment. Multiple diameter measurements within branch

segments were handled using NEURON’s pt3dadd() function. NEURON

combines the subsections to calculate the total capacitance, membrane re-

sistance and axial resistance for the compartment.

The following choices were made in the lateral giant model generated by the

script:

• A passive membrane was used in the lateral giant dendrites.

• Hodgkin-Huxley channels were used in the lateral giant axon. The

parameters were adjusted so that the shape of the action potential

conforms with experimental recordings using the same procedure as

described in section 5.1.1.

• The value used for axial resistivity was 60 Ωcm. This is the mea-

sured cytoplasmic resistivity in the crayfish medial giant (Glantz and

Viancour, 1983) and consistent with other measures of cytoplasmic

resistivity in crustaceans (Katz, 1966).

• The membrane resistivity was adjusted so that the response of the

simulated cell to a current clamp was consistent with experimental

recordings.

5.2.1 Selecting LG synapse points

When we want to use our model of the lateral giant in a multi-cell simulation,

it is necessary to connect the lateral giant to other cells. To do this we need

to decide the points on the lateral giant dendrites where the other cells

connect to, i.e. the synapse points. In our multi-cellular models the lateral

giant receives its input from primary afferents. We therefore need to identify

158



5.2. AN ACCURATE MORPHOLOGY COMPARTMENTAL LG
MODEL

the points at which the primary afferents synapse onto the lateral giant.

The exact points on the dendritic tree where afferents make synapses is

not included in the morphological data. Precise data of all the synapse

locations is difficult to obtain. Using anatomical observations (Antonsen

and Edwards, 2003) of where synapses occur in the lateral giant, a method

was formulated to identify synapse location candidates in the model. This

method was then applied to the model to pick a set of synapse locations.

The method used to pick the candidate set is described in the following

algorithm:

let dsynthr be a threshold diameter value
let the set B contain all the dendritic branches within the five main
branches
foreach bi ∈ B do

let di be the diameter of the branch bi

let the set C contain the diameters of bi’s child dendrites
if ∃dj ∈ C such that dj < dsynthr or

bi is a terminal branch and di ≥ dsynthr

then
the branch bi is a synapse point candidate

end
end

Figure 5.10 marks the locations of synapse point candidates after applying

the algorithm.

5.2.2 Simplifying the model

For many simulations we are only interested in what happens in part of

the lateral giant. For example we may be providing all of our input onto

only one major branch. In that case we are probably interested in how

PSPs and current spread throughout the stimulated branch and how it is

integrated at the integrating segment and the axon, but we are probably not

very interested in what happens in detail at the non-stimulated branches.
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Branch 5 synapse

Branch 1 synapse

Branch 2 synapse

Branch 3 synapse

Branch 4 synapse

Key

Figure 5.10: The candidate synapse location points on the lateral giant,
identified with the algorithm described in section 5.2.1.
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Calculating how current spreads over the entire tree is very computationally

expensive.

There are various methods for reducing the number of compartments in

a model neuron (Bush and Sejnowski, 1993). The approach we use is to

approximate the complex structures of the parts of tree that we are not

interested in with two or three compartments. We ensure that the electri-

cal load of the approximating compartments matches that of the original

structure.

For most of our simulations we were only interested in what happens in

one of the lateral giant’s major branches. For each other major branch we

approximated it with a three compartment model using the following steps:

1. The transfer function of the detailed compartmental model of the

branch was found. This was determined by applying a step current

and recording the response. Since our model of the lateral giant den-

drites is passive, the electrical circuit is composed entirely of resistors

and capacitors. It is therefore a linear time invariant system, albeit a

very complicated one. The response of a linear time invariant system

to a step function gives the transfer function.

2. A three compartment model that has a transfer function which closely

matches that of the original branch model was found. Each compart-

ment has three free variables: the axial resistance, the membrane re-

sistance and the capacitance. This gives a total of nine free variables.

The Principle Axis method (Brent, 1973) was used to find suitable

values for these parameters. The Principle Axis method is able to find

the minimum of a multi-variable function, f(x), without requiring

the derivative. The NEURON simulator provides an implementation

of the Principle Axis method, from the SCoP Math Library (National

Biomedical Simulation Resource, Duke University), in its toolkit. This
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tool was used to estimate the parameter values. The function given

to the optimiser to solve was the sum of the mean squared difference

between the step response of the original branch morphology and the

three compartment approximation.

This method was used to simplify four of the major branches and the soma

branch. This left one major branch still modelled in detailed morphology.

Figure 5.11 shows a diagram of the simplified model. The simplified model

contains 281 compartments versus the original’s 1113. Running a simulation

with the simplified model is approximately four times as fast as with the full

lateral giant morphology.

Tests were conducted to verify that the simplified model performed similarly

to the original. Both variants of the model were current clamped and voltage

clamped and the responses in the dendrites in branch 2 were recorded. For

each voltage clamp and current clamps a step signal and 500 Hz sinusoidal

signal were given. This was to test the cell response to both direct current

and high frequency alternating current. The recorded output of the two

models was almost inseparable. Figure 5.12 shows a comparative plot of

the response of the two models to sinusoidal current. The response of the

original model to the 500 Hz sinusoidal current was very slightly faster: the

original model’s response led the simplified model by approximately 0.01

milliseconds.

5.3 Simulating the rectifying junctions

The rectifying junctions have been identified as an important functional

component of the lateral giant escape circuit. The behaviour of the rectifying

junctions are described in section 3.3.4. Equation 3.1 defines the variable

conductance across the rectifying gap synapses.
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Figure 5.11: The morphological model of the lateral giant is simplified by
keeping the detailed morphology of only one of the major
branches (branch 2) and replacing each of the other major with
three compartments that closely approximate their electrical
load.
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Figure 5.12: The responses of the full morphology model and the simplified
model to a 500 Hz sinusoidal current injection are plotted on
the same axes. Only by enlarging the graph to a very short
time scale (see (b)) is one able to distinguish the results.

Neither GENESIS or NEURON has built-in support for rectifying junctions.

The rectifying junctions were implemented as extension objects. A rectify-

ing synapse was implemented as a pair of customised current sources. One

current source was located at the pre-synaptic terminal and another at the

post-synaptic terminal. The rectifying junction objects were given pointers

to the voltages at the pre-synaptic and post-synaptic terminal. At each sim-

ulation time step the synapse conductance was calculated. This was done

by calculating the steady state conductance as defined by equation 3.1 and

then updating the instantaneous conductance. The instantaneous conduc-

tance converges exponentially towards the steady state conductance with a

time constant τ . Equation 5.3 shows how the instantaneous conductance is

calculated:

g[t] = g[t − 1] + ∆g
∆t

τ
(5.3)

∆g = gsteady − g[t − 1]

τ =




τopen if gsteady > g[t − 1]

τclose otherwise
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Where g[t] is the conductance of the synapse at time t, gsteady is the steady

state conductance calculated according to equation 3.1 and ∆t is the nu-

merical time step of the simulation.

The current injected into each cell was calculated according to Ohm’s Law as

the product of the synapse conductance and the voltage difference between

the pre and post synaptic compartments. At the post-synaptic terminal the

injected current is thus:

i[t] = (Vpre − Vpost)g[t] (5.4)

Where Vpre is the pre-synaptic membrane potential and Vpost is the post-

synaptic membrane potential.

According to Kirchoff’s Current Law, the net current going into the post-

synaptic terminal is necessarily equal to the net current leaving the pre-

synaptic terminal. For computational efficiency the conductance was only

calculated at the post-synaptic terminal. The pre-synaptic rectifying junc-

tion object was given a pointer to the conductance at the pre-synaptic ter-

minal and this value was used to calculate current.

The source code of the NEURON implementation of rectifying gap junction

objects is listed in appendix C.1.

5.4 Dendritic tips

One striking feature of the lateral giant’s anatomy is that there are very

narrow (less than 1 µm in diameter) dendrites at the ends of the tree. This is

in stark contrast to the wide dendritic base of the tree and giant axon the cell

projects. The afferents make their synapses near these very narrow dendrites

(Herberholz et al., 2002; Atwood and Pomeranz, 1977). Figure 5.13 shows
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some narrow dendrites wrapping around an afferent. At the point of contact

the dendrite forks into very narrow branches and these branches wrap around

the afferent. There is some ambiguity over the actual synapse location.

There are effectively three possibilities:

1. there may be a single large synapse at the fork;

2. there may be smaller synapses along the fine dendrites; or

3. synapses may exist at the fork and along the fine dendrites.

We investigate what effect the location in the dendrites of the afferent to

lateral giant synapses has on the cell’s integration of input.

5.4.1 Simulation setup

The model consisted of a single afferent connecting onto a single branch

of the lateral giant. A branch from the morphologically realistic model of

the lateral giant was selected to be included in the model. The branch

selected was a likely synapse point as identified by the method described

in section 5.2.1. The rest of lateral giant structure modelled with three

compartments to model its electrical load. The simplification method used

is described in section 5.2.2. The setup of the model components is drawn

in figure 5.14.

The afferent was connected to the lateral giant branch with rectifying junc-

tions (as described in section 5.3.) The parameters used for the rectifying

junctions were τopen = 0.5ms, τclose = 0.5ms, V0 = 0, A = 0.15mV−1 and
gmax

gmin
= 100. Alternative values were used for gmax, varying from 0.01 to 0.15

µS.

The synapses were located at the three different possible configurations.

This is illustrated in figure 5.14. Let us call a single synapse at A ‘config-
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Figure 5.13: An image of dye filled afferent axons and the lateral giant den-
drites showing the contact point between an afferent and the
lateral giant. At the contact point the lateral giant dendrite
forks into very narrow branches which wrap around the afferent
axon. Picture: (Antonsen and Edwards, 2003).
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uration 1’, multiple synapses at locations B ‘configuration 2’, and synapses

at both locations A and B ‘configuration 3’.

The sum of the synapse conductances used in the three alternative config-

urations was made to be equal. Let us use the notation gA1 to denote the

maximum synapse conductance at point A for configuration 1. To ensure

that the total conductance for configuration 2 is equal to that of configura-

tion 1:

gB2 =
gA1

3
(5.5)

For configuration 3, the conductance at A was made to be double that of

the conductance of a synapse at point B. Hence:

gA3 =
2gA1

5
(5.6)

gB3 =
gA1

5
(5.7)

For each configuration the afferent was fired and the simulated EPSPs in

the lateral giant dendrite were recorded so that the effects of the synapse

location could be compared.

To evaluate the effects of synapse location on antidromic transmission the

simulated lateral giant was spiked. This was repeated for all three possible

synapse location configurations. The PSPs in the afferent were recorded so

they could be compared.

5.4.2 Simulation results

Figure 5.15a compares the EPSPs produced in the lateral giant for the three

synapse configurations considered. The EPSPs produced in LG when the

contact point is at the wider dendrite (contact point A) are larger than those

obtained when the contact points are out in the fine dendrites (contact point
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Rm1 Cm1 Rm2 Cm2

Ra3

Rm3 Cm3

Ra1

Three compartment approximation
of LG load

Ra2

Synapse locations B Synapse location A

Figure 5.14: Three alternative configurations were tried for the locations of
synapse points: (1) at location A: single synapse located on
the larger branch, (2) at locations B: three smaller synapse
located on the ends of the fine dendrites and (3) a combination
of locations A and B.
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Figure 5.15: A comparison of the orthodromic EPSPs produced in the lat-
eral giant dendrites for the three alternative synapse location
configurations. (a) Shows the EPSPs when the total synapse
conductance is kept equal for all three configurations. (b) Com-
pares the shape of the EPSPs when the synapse conductance
of alternative locations is unequal but adjusted so that all con-
figurations produce a EPSP of equal magnitude.

B.) This is true if for each synapse location setup we use an equal total

conductance. Although the size of the EPSP is changed, the EPSP shape

appears similar for all three synapse location schemes.

To test whether the EPSP shape is in fact unchanged and whether equivalent

EPSPs can be obtained using contact points at B if higher conductance

values are used, we increased the conductances for the fine dendrite synapses.

Figure 5.15b compares the EPSPs when the conductances at B have been

increased. One can see that there are no major differences in the shape of

the EPSP regardless of the synapse location.

This result demonstrates that fine dendrite synapses can produce similar

EPSPs as a synapse located at the fork provided the conductance at the

fine dendrite synapse has been upwardly adjusted. The factor by which

the fine dendrite conductance needs to be increased (fine dendrite synapse

conductance divided by large dendrite synapse conductance) increases with

the large synapse conductance. There exists a threshold beyond which even

an infinitely conducting fine dendrite synapse is unable to equal the EPSP
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Figure 5.16: The increased conductance required at the fine dendrite
synapses (B) in order to obtain the same sized EPSPs as when
the dendrites are located at the branch fork (A).

of a large dendrite synapse. This point is reached when the resistance of the

through the fine dendrites exceeds the resistance through the large dendrite

synapse. Figure 5.16 plots the relationship between large dendrite synapse

conductance and the equivalent required fine dendrite synapse conductance.

The antidromic EPSPs in the afferent, caused by spiking LG, are similar in

size regardless of the synapse location (see figure 5.17a.) Although the EP-

SPs are slightly larger when the synapses are located at the larger dendrite,

the difference is only very minor. However if one uses higher conductances

at the fine dendrites, such that the orthodromic PSPs are of equivalent size,

then the antidromic EPSPs will be higher for the fine dendrite pathways

(see figure 5.17b.)

The results for configuration 3 sit neatly between those of configurations 1

and 2. Having synapses at both the larger dendrite and on the fine dendrites

is not as efficient as having only a large synapse at the large dendrite, but
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Figure 5.17: A comparison of the antidromic EPSPs produced in the lat-
eral giant dendrites for the three alternative synapse location
configurations. (a) Shows the EPSPs when the total synapse
conductance is kept equal for all three configurations. (b) Com-
pares the size of the antidromic EPSPs if the synapse conduc-
tances have been adjusted to produce equivalent orthodromic
PSPs.

more efficient than having synapses only at the fine dendrites.

5.4.3 Discussion

The location of the synapse in the dendrites does not have a big effect

on the shape of the EPSP. However synapses located in the fine dendrites

will produce smaller orthodromic PSPs than synapses located at a larger

dendrite, if the total synapse conductance is the same for both cases. The

synapse location has very little effect on antidromic transmission.

By using a higher conductance at a fine dendrite synapse it is possible to pro-

duce equivalent sized PSPs as a lower conductance large dendrite synapse.

This is possible so long as the axial resistance through the fine dendrite

pathway does not exceed the resistance of the large branch synapse. How-

ever a higher conductance at the fine dendrites causes the antidromic PSPs

to be larger. Thus, it is not possible to choose conductance values such that

fine dendrite synapses operate equivalently to large dendrite synapses if one
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considers transmission in both directions.

The cause of the differing results for antidromic and orthodromic transmis-

sions is the rectifying junctions. The rectifying junctions’ complex dynam-

ics and varying conductance cause radical changes in the circuit for differing

transmission directions. In tests where the rectifying junctions were replaced

with purely ohmic gap junctions, changing the synapse locations caused

proportionally equal changes to the PSP magnitude for both transmission

directions.

These results have implications for the models of the lateral giant circuit

described in the following chapters. If what we are only considering trans-

mission in one direction in our model then the location of the synapse is not

important. In effect, the synapse location is merely a multiplying factor ap-

plied to the synapse conductance. If the model results are dependent on both

orthodromic and antidromic transmission then the location of the synapse

needs to be considered as an extra variable that will affect the results.

If you would like to know how the model lateral giants are able to detect

simultaneous excitation you will have to read the next chapter.
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CHAPTER 6

Coincidence detection in the Lateral

Giant

We now focus our model on simulating coincidence detection in our compu-

tational models. In particular we will examine the role that the rectifying

junctions play in coincidence detection. The lateral giant has been shown

to be an effective coincidence detector (Edwards et al., 1998). This is a crit-

ical capability in the circuit in being able to robustly distinguish a predator

attack. Being able to reproduce this capability in our models would be a

useful result in our quest of understanding robust biological systems.

We now test the effect that the rectifying junctions can have on coinci-

dence detection in simulations of our morphological and anatomically real-

istic model of the lateral giant. This chapter describes simulations which test

hypotheses regarding the role of rectifying junctions in coincidence detec-

tion. Previous simulations (Edwards et al., 1998), using single compartment

models of neurons, have shown that rectifying junctions can affect coinci-
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dence detection. We now test what role the rectifying junctions play in the

lateral giant using realistic models of the morphology. We will attempt to

determine what parameter settings of the rectifying junctions give the best

results for effective coincidence detection.

We examine coincidence detection in the two alternative models of the lat-

eral giant described in chapter 5. We simulate coincidence detection in the

simplified model in section 6.3 and in the morphologically accurate model

in section 6.4. 1

The setup of the simulations in the two models differ, to allow us to ask

slightly different questions. A consequence of this is that not all of the

results are directly comparable between the two models.

The questions we want to address are:

• Can we demonstrate that we can reproduce the functionality of coin-

cidence detection, that is observed in a crayfish, in an artificial system

based on simulating the crayfish neurons?

• What effects do rectifying junctions have on the summation of inputs

to the lateral giant? How does the response obtained when rectifying

junctions are used compare to that obtained when ohmic gap junctions

are used?

• Can rectifying junctions enhance coincidence detection in the lateral

giant?

• What are the necessary parameter settings to obtain good coincidence

detection?

1The coincidence detection simulations done using the simplified model in section 6.3
were done prior to the direct neuroanatomical data being available. There is some overlap
between the results in sections 6.3 and 6.4. Both sections are included to show that the
conclusions drawn in this chapter hold for both models.
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• Do the rectifying junctions provide a sufficient explanation of how the

lateral giant achieves coincidence detection?

• Are the rectifying junctions necessary to explain coincidence detec-

tion?

• How do the simulation results obtained from the abstracted morphol-

ogy model compare to those from the morphologically realistic model?

The rest of this chapter is concerned with answering these questions. We

first present some definitions so that we may objectively measure coincidence

detection. We then explain the parameters that govern the behaviour of the

rectifying junctions. We then set up a series of simulations using both our

abstracted morphology model and our realistic morphology model to address

the questions we have just mentioned. We then draw on the results of these

simulations to answer these questions.

6.1 Quantifying Coincidence Detection

In order to determine under what conditions the lateral giant acts best as

a coincidence detector, it is necessary to define some quantitative measures.

To this end we now introduce two metrics.

The efficiency ratio is a measure of how effective the lateral giant is at

summing multiple inputs. Imagine that we have two groups of afferents:

group 1 and group 2. If we stimulate the afferents in group 1, then we effect

a PSP in the lateral giant, let v1 be the peak PSP. Let v2 designate the PSP

that results when group 2 is stimulated. Finally, let us call vpeak the PSP

obtained when both groups are stimulated at some time, ∆t, apart. Let us
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define the efficiency ratio, E, as:

E(∆t) =
vpeak(∆t)
v1 + v2

(6.1)

An efficiency value of 1 signifies a perfect linear summation of the two groups

of inputs. We would always expect the efficiency to be less than 1 (barring

active currents or weird nonlinear effects.) An efficiency value of 0.5 is the

lower bound of inefficiency. If the efficiency is 0.5, then the PSP obtained

from stimulating both groups is no greater than the response of stimulating

just one of the groups.

A good coincidence detector has a high efficiency when the two groups are

fired simultaneously and a rapidly declining efficiency as the interval of time

between firing the two groups is increased.

The coincidence ratio is a measurement of the comparative decline in PSP

magnitude that occurs when the two groups of afferents are fired out of co-

incidence. The coincidence ratio is defined as the ratio of the peak PSP ob-

tained when the two inputs are separated by a time ∆t to the PSP obtained

when the two inputs are applied synchronously as shown in equation 6.2.

C(∆t) =
vpeak(∆t)
vpeak(0)

(6.2)

where C is the coincidence ratio and vpeak is the peak PSP. Figure 6.1 graph-

ically illustrates the measures from which the coincidence ratio is calculated.

If we combine equations 6.1 and 6.2, the coincidence ratio may also be

expressed in terms of efficiency:

C(∆t) =
E(∆t)
E(0)

(6.3)

By definition, the coincidence ratio is always 1 at ∆t = 0. In a coincidence
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detector, the coincidence ratio will decline as ∆t is increased. Assuming

our two inputs are equal, then 0.5 is the lower bound on the value of co-

incidence ratio. This value indicates that if we desynchronise the input by

∆t the second input causes no increase to the peak response. Conversely,

a coincidence ratio of 1, for some ∆t, indicates that the two inputs sum

together just as efficiently as when they were synchronised. Coincidence

ratios greater than 1 signify that the responses sum more effectively when

the input is desynchronised to when it is synchronous, i.e. the circuit is

acting as an ‘anti-coincidence’ detector. A good coincidence detector has a

coincidence ratio approaching 0.5 as we increase ∆t.

Figure 6.1: Measuring coincidence detection. The coincidence ratio is the
ratio of the asynchronous input PSP (vpeak(∆t)) to the syn-
chronous input PSP (vpeak(0)).
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6.2 The rectifying junction parameters

The sigmoidal equation (see equation 3.1) that describes the conductance

across a rectifying synapse is governed by six constants:

• gmin

• gmax

• A

• V0

• τopen

• τclose

We now explain how each of these constants affect the operation of the

synapse. gmin and gmax determine the minimum and maximum conductance

of the synapse, respectively. V0 is the voltage activation threshold. When

the voltage difference between the pre and post synaptic terminal is equal

to V0, then the synapse operates at its mean conductance (i.e. gmin+gmax

2 .)

Increasing V0 causes the synapse to require a greater voltage difference to

move into a high conductance state. The constant, A, determines the slope

of the transition between low conductance and high conductance. A higher

value of A narrows voltage range over which the synapse changes from low

conductance to high conductance. These four constants govern the steady

state conductance of the synapse. Figure 6.2 illustrates how these constants

affect the steady state conductance response of the synapse. τopen and τclose

are the time constants. They determine how quickly the junction moves

from its current conductance to the steady state value. There are different

time constants for when the synapses move to a more open state or a more

closed state.

180



6.2. THE RECTIFYING JUNCTION PARAMETERS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

-100 -50  0  50  100

C
on

du
ct

an
ce

 (
uS

)

Vpre - Vpost (mV)

g
max

g
min

0V

g
mean

A

Figure 6.2: The steady state conductance of a rectifying junction versus
the voltage difference between the pre and post synaptic termi-
nals. The steady state conductance curve is governed by four
constants: gmin, gmax, V0 and A. gmin and gmax determine the
minimum and maximum conductances, respectively. Changing
V0 moves the curve to the left or right. A affects the slope of
the transition from minimum to maximum conductance. The
curve plotted has gmin = 0.01µS, gmax = 0.1µS, V0 = 0 and
A = 0.1mV−1.
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It is sometimes useful to re-factor the conductance variables in terms of

gmean and gmax

gmin
, where gmean is defined as:

gmean =
gmax + gmin

2
(6.4)

This allows one to change the amount of rectification of the synapse while

keeping the mean conductance constant, thus allowing a fairer comparison

of two synapses of different rectification.

It is not possible to experimentally directly measure the parameters of the

rectifying junctions onto the lateral giant. This is due to them being located

at the ends of the lateral giant dendrites. These dendrites are too small and

narrow to probe with an electrode. It is therefore not possible to directly

measure the voltage characteristics across the junctions and thereby infer

their parameters. In our simulations we therefore use the experimentally

measured parameters of the giant motor synapse (Furshpan and Potter,

1959) as a starting point for the lateral giant junction parameters. Parame-

ter searching and estimation is then used to optimise the rectifying junction

parameters to obtain agreement with the biological observations.

6.3 Coincidence detection in the abstracted mor-

phology model

We now test coincidence detection in the abstracted morphology model, that

is described in section 5.1.1. Our aim is to determine what contribution the

rectifying junctions make to coincidence detection. We measure our model

lateral giant’s response to different input stimulations. To determine the

necessary parameter settings for effective coincidence detection, different

rectifying junction parameter settings are tried.
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To test this question, a simulation was setup, comprising of the lateral giant

and a group of afferent axons providing input. The afferent axons were mod-

elled as described in section 5.1.1. The afferents formed rectifying synapses

(as described in section 5.3) onto the terminal ends of the finest lateral giant

dendrites. The constants used to model the membrane properties are listed

in appendix B.1. The simulation was run by spiking a subset of the afferents

and recording the response in the lateral giant.

As a starting point, we recorded the response of the lateral giant to afferent

input using rectifying junctions with parameters similar to that measured

in the giant motor synapse (GMS). The coincidence ratio and efficiency was

calculated for these settings.

We then searched for parameter values that would give better coincidence

detection by conducting a parameter search. Parameter exploration was

undertaken in two stages:

1. Different combinations of the rectifying junction parameters were tried

to determine which settings give the best coincidence detection.

2. For some specific rectifying junction settings, as determined by the

previous step, the integration response of the lateral giant was evalu-

ated for different input combinations.

In our search for the best coincidence detector, we calculated the coincidence

ratios in response to a specific kind of input to the lateral giant: two groups

of ten afferents. In order to be able to calculate the coincidence ratio,

the two groups were fired synchronously and 0.5 milliseconds apart. All

twenty afferents connected to dendrites on the same major branch. Terminal

dendrites from different minor branches were equally represented in choosing

the synapse points. Figure 6.3d illustrates where the afferents make their

synapses. This input represents a medium level of input to a branch of the
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Parameter Values Units Number of
data points

gmax 1, 2.15, 4.64, 10, ... , 1000 nS 10
gmax/gmin 1, 10, 100, 1000 1 4
V0 0, 5, 10, 15, ... , 70 mV 15
A 0.02, 0.04, 0.1, 0.2, 0.5, 1, 2, 4 mV−1 7
τopen 0, 0.1, 0.2, 0.3, 0.4, 0.5 ms 6
τopen/τclose 0.5, 1, 2, 4, 8 1 5
Total number of combinations 105000

Table 6.1: The tested rectifying junction parameter values.

lateral giant, separated by an interval where strong coincidence detection is

expected to occur. The limited number of inputs reduces the computational

expense, which is desirable in a large parameter search. This choice of input

was therefore deemed a suitable input for repeated testing, in search for

effective coincidence detection.

For this specific kind of input, different combinations of the rectifying junc-

tion parameter settings, were tried. Each parameter was varied along a

range, using its experimentally measured value at the GMS as a mid-point

(Giaume et al., 1987). The range by which each parameter was varied,

extended beyond the bounds of biologically plausibility. This was done in

order to gain an understanding of how the parameter can affect the results

at the extremities. Table 6.1 tabulates the tested range for each rectifying

junction parameter. In each simulation run, the parameter settings were

applied to all of the rectifying junctions. All synapses were assumed to be

identical.

For each parameter combination the PSPs caused in the lateral giant den-

drites were recorded and the coincidence factor was calculated using the

method described in section 6.1. We then examined the results to search

for which parameters give the lowest coincidence ratios. We are thus able

to ascertain, which parameter settings give the best coincidence detection
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under the described input conditions.

For parameter setting identified as giving good coincidence detection, a sec-

ond stage of parameter exploration, concerning the input, was undertaken.

The aim was to determine how the circuit acts as a coincidence detector to

different kinds of input. Different combinations of input were given to the

lateral giant to test how it integrates these inputs and how different inputs

affect coincidence detection.

The different combinations of input that can be given to the lateral giant is

of course infinite. This holds true even within the subset of inputs consisting

two groups of afferents, where within each group all afferents are fired simul-

taneously. A scheme for parameterising the input space is thus warranted.

The input was parameterised according to the following variables:

• The time interval, ∆t, between stimulating the first input and the

second input.

• The number of afferents, n1, involved in the first input.

• The number of afferents, n2, involved in the second input.

• How widely the distributed the first input is. Input may be distributed:

(a) to be within the same minor branch group (see figure 5.2), (b)

within the same major branch group (see figure 5.2), or (c) across the

entire tree.

• The distribution of the second input.

• The separation of the two inputs, i.e. the location of the second input,

relative to the first input. The second input may be: (a) on the same

minor branch as the first input, (b) on the same major branch as the

first input, or (c) be on a different major branch.
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Input Parameter Values Number of
data points

∆t (ms) 0, 0.1, 0.2, 0.3, ... , 1.0 11
n1 0, 1, 2, 5, 10, 20, 50 7
n2 1, 2, 5, 10, 20, 50 6
Input 1 distribution minor branch, major branch, whole tree 3
Input 2 distribution minor branch, major branch, whole tree 3
Input separation same minor branch, same major branch, tree 3
Total number of combinations 12474

Table 6.2: The input combinations for which the model lateral giant was
tested.

Figure 6.3 show diagrams of differently distributed and separated input com-

binations. Table 6.2 lists the input combinations for which the response of

the lateral giant was tested.

6.3.1 Simulation Results

When the parameter values of the giant motor synapse (GMS) are used for

the rectifying junctions there is little coincidence detection. For ∆t = 0.5

milliseconds, coincidence detection ratio is around 0.78-0.8 for most of the

input patterns tried. Coincidence detection is less effective for input patterns

where a large number of afferents are concentrated on a small area of the

dendrites. Figure 6.4 shows how the coincidence detection ratio varies for

patterns of input. The EPSPs caused by the two inputs at various parts

of the LG tree are plotted in figure 6.5a. There is no significant decline in

conductance across the synapse for the second input. This can be seen in

the conductance plot in figure 6.5b.

The coincidence detection performance of rectifying junctions, with GMS

parameter settings, is similar to that of ohmic junctions. To be able to

compare the rectifying junction to an ohmic junction, the mean conductance

(as calculated by equation 6.4) of the rectifying junction was used for the
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Figure 6.3: Two inputs can be combined differently by varying their spatial
distribution and spatial separation.
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Figure 6.4: The coincidence detection ratio for different patterns of input
(see figure 6.3) using rectifying junction parameters similar to
those in the GMS.

ohmic junction. Figure 6.6 plots the coincidence detection ratio for different

input patterns. The curves look very similar to those for rectifying junctions,

with the coincidence detection ratios being only marginally higher.

The parameter search revealed that rectifying junctions can cause very ef-

fective coincidence detection, with appropriately set parameters. For certain

combinations of parameters, coincidence detection ratios as low as 0.61 were

achieved. Such effective coincidence ratios were only attainable using very

low conductance values that caused low EPSPs and unrealistically steep

values for A. By constraining the solutions to only include solutions that

cause EPSPs of at least 50mV in the dendrites and not allowing A to ex-

ceed 0.2mV−1 coincidence ratios of approximately 0.70 were achieved. The

parameters of the best solution that satisfies these constraints are listed in

table 6.3. The noteworthy features of this solution include: (1) a very high

value for V0, (2) the low synapse conductance and (3) the fast opening and
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Figure 6.5: The response of the model lateral giant dendrites to two groups
of input (10 afferents per group, each group is distributed onto a
separate minor branch as drawn in figure 6.3b.) The values used
for the rectifying synapses are those measured at the giant motor
synapse. The PSPs at various points in the LG dendrites is
plotted in (a), (b) plots the conductance change at the rectifying
synapses. (Parameter settings used: A = 1mV−1, V0 = 25mV,
gmax = 100nS, gmin = 5nS, τopen = 0.2ms, τclose = 0.75ms.)
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Figure 6.6: The coincidence detection ratio for different patterns of input
using ohmic gap junctions. (g = 50nS)

A V0 gmax gmax τopen τclose

0.2mV−1 70 mV 46 nS 0.46 nS 0.2 ms 0.4 ms

Table 6.3: Parameter settings that gave the best coincidence detection

closing time constants. The effect of these attributes is that a very high

differential between the pre and post synaptic cells is needed before the rec-

tifying junctions start to open. This causes the junctions to open quite late.

This combined with the very low resting conductance means that significant

currents only start moving into the LG dendrites late into the rising phase

of the pre-synaptic spike. The fast closing time causes the junction to start

closing again even before the spike is completely over (see figure 6.8b.) The

combined effect of this is to shorten the duration of the EPSP, as can be seen

in figure 6.8a. Short duration EPSPs need to be highly synchronised to sum

effectively. Asynchronous inputs sum poorly, as can be seen in figure 6.8a.

The optimised rectifying junctions were compared with high resistance ohmic

gap junctions to assess whether the improved coincidence detection is caused
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Figure 6.7: The coincidence detection ratio for different patterns of input
(see figure 6.3) using optimised rectifying junction parameters.

by the rectification or the low conductance. Figure 6.9 plots the coincidence

ratios calculated for ohmic junctions. With low conductance ohmic junctions

are able to achieve coincidence ratios of about 0.8, which is of no improve-

ment on high conductance ohmic gap junctions. The rectifying junctions

thus perform substantially better at coincidence detection than ohmic junc-

tions of comparable conductance.

The parameter search also revealed an alternative rectifying junction con-

figuration that produced effective coincidence detection. In the alternative

solution the rectifying junctions are half open at rest. This is achieved by

having a value of V0 close to 0. The junctions have a large value for τopen

and a small value for τclose making them also slow to open and fast to close.

Early stimulation is able to enter the LG because the junctions are open by

default. However the early current causes the LG dendrites to depolarise

closing the gap junctions, making it difficult for late stimulation to enter the

LG. The graph in figure 6.10a shows the EPSPs at various stages in the LG
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Figure 6.8: The response of the model lateral giant dendrites to two groups
of input when the rectifying synapse parameters are optimised
for effective coincidence detection. The PSPs at various points
in the LG dendrites is plotted in (a), (b) plots the conduc-
tance change at the rectifying synapses. (Parameter values:
A = 0.2mV−1, V0 = 70 mV, gmax = 46.4nS, gmin = 0.464nS,
τopen = 0.2ms, τclose = 0.5ms. Each input group contains 10
afferents which synapse onto separate minor branches of the LG
as drawn in figure 6.3b.)
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Figure 6.9: The coincidence detection ratio for different patterns of input
(see figure 6.3) using low conductance ohmic gap junctions.

dendritic tree when these open by default junctions are used. Figure 6.10b

contains a graph that shows the how the conductance across the junctions

is affected. This is an interesting result because it identifies a new possible

dynamics of how rectifying junctions can enhance coincidence detection.

The simulation findings did not corroborate a previous hypothesis of how

coincidence detection may occur in the LG. The hypothesis being the post

synaptic depolarisation caused by the early inputs reduces the cross synap-

tic voltage difference for the late inputs, thereby reducing the maximum

conductance of the synapse, thereby reducing the current that is transmit-

ted. The lateral giant’s large axon acts as a current sink which very quickly

drains charge from the dendrites. For inputs separated by 0.2 milliseconds

or more, the depolarisation in the dendrites caused by the first input is no

longer significant when the second input arrives.
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Figure 6.10: The response of the model lateral giant dendrites to two groups
of input. The rectifying junctions are configured such that they
are open at rest and are closed when the synapse is reverse
biased. The PSPs at various points in the LG dendrites is
plotted in (a), (b) plots the conductance change at the rec-
tifying synapses. (Parameter values: A = 4mV−1, V0 = 0,
gmin = 10nS, gmin = 0.01nS, τopen = 0.5ms, τclose = 0.25ms.
Each input group contains 10 afferents which synapse onto sep-
arate minor branches of the LG as drawn in figure 6.3b.)
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6.3.2 Discussion

These simulations show that rectifying junctions can contribute to coinci-

dence detection in a simulated cell with a lateral giant like structure. Rec-

tifying junctions with well selected parameter settings perform significantly

better at coincidence detection than ohmic gap junctions.

Coincidence detection in the simulation was not achieved in the same way

as demonstrated by (Edwards et al., 1998). The large axon combined with

the LG’s fast membrane time constant causes charge to rapidly disperse

from the LG dendrites. Depolarisations in the LG dendrites are very tem-

porary. There is only a slight effect of early depolarisation preventing the

gap junctions opening for out of synchronisation input.

The parameter search revealed two alternative tactics for achieving coinci-

dence detection using rectifying junctions in the lateral giant. In the first,

the rectifying junctions are given a low resting conductance and a high volt-

age activation threshold. This has the effect of shortening the duration of

post-synaptic potentials in the lateral giant dendrites, thereby requiring in-

puts to be highly synchronised to sum effectively. In the alternative solution,

the rectifying junctions are open at rest. Depolarisation of the lateral gi-

ant dendrites by early input causes the gap junctions to close, blocking the

path of later input. The principles are similar in concept to the effect sim-

ulated by (Edwards et al., 1998), the subtle difference is that the rectifying

junction’s ‘door’ is closed instead of being prevented from being opened.

The biological evidence (Herberholz et al., 2002) suggests it is unlikely that

the rectifying junctions in the lateral giant are configured in a manner con-

sistent with the first solution. The extremely high voltage activation thresh-

old would make the conduction of antidromic currents virtually impossible.

This would contradict the experimental observations, which suggest that
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these synapses conduct significant currents bi-directionally. In this regard,

the second solution is consistent with the biological information.

An implication of the rectifying junctions being open at rest is that this

would cause a continuous current between the afferents and the lateral gi-

ant. The 10 mV difference between the resting potentials of the two cells

in combination with open connecting synapses would cause there to be a

constant current from the afferents to the lateral giant. If this is true, the

fine dendrites at the edge of the LG tree, where the afferents are thought to

synapse play an important functional role. These narrow dendrites greatly

increase the resistance between the afferents and the lateral giant integrat-

ing segment. The higher resistance would reduce the current flow at rest

and prevent a short circuit.

6.4 Coincidence detection in the morphologically

realistic model

We now examine coincidence detection in our morphologically realistic model

of the lateral giant (described in section 5.2.) In the previous section we have

demonstrated that rectifying junctions can enhance coincidence detection in

the abstracted morphology model. We now conduct a set of similar simula-

tions to test whether we can reproduce these results in the morphologically

realistic model.

The specific questions we wish to address with our simulations are:

• Can rectifying junctions enhance coincidence detection in the context

of using the morphologically realistic model of the lateral giant?

• What are the necessary parameter values to give to the rectifying

junctions to cause them to enhance coincidence detection?
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• Can the rectifying junctions cause the lateral giant to act in other

ways, i.e can the rectifying junctions affect other things other than

just coincidence detection?

• How does each parameter affect the results?

• How do the results obtained from simulations to the morphologically

realistic model compare with those obtained from the abstracted mor-

phological model?

6.4.1 Simulation setup

Our simulation is set up with a model nerve comprising of fifty afferent axons

connecting onto our model of the lateral giant (as described in section 5.2.)

The afferent model is described in section 7.1.1. Each afferent makes a

rectifying synapse (described in section 5.3) onto the lateral giant. The

afferents form synapses at locations identified by the criteria described in

section 5.2.1.

To address our aim of determining what parameter settings are necessary

to obtain good coincidence detection, we set up a parameter search. The

six parameters (see section 6.2), that govern the rectifying junctions, were

varied with the values listed in table 6.4. Trials were conducted in which the

rectifying junctions were parameterised with each combination of the values

listed. The parameter values were tested over a range that extended beyond

the limits of biologically plausible values. For example, it may be noted

that we include testing with instantaneously opening and closing junctions.

Testing to extreme limits increases our confidence that we have not missed

the best solution and allows us to assess the impact of the parameters at

their extreme limits.

In our tests the lateral giant received input from two groups of spiking
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area
enlarged

(a) (b)

(c) (d)

Figure 6.11: The synapse points on the lateral giant at which afferent input
is received. (a) shows the entire schematic layout of the lateral
giant tree. The area where the synapse points are concentrated
is marked out with a box drawn in dashed lines. This area is
enlarged in the subsequent sub-figures. (b), (c) and (d) show
the specific locations of the synapse points for two groups of one
afferent, two groups of five afferents and two groups of twenty
afferents, respectively. The locations of the first input group
synapses are marked with white circles. The locations of the
second input group synapses are marked with grey circles.
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Parameter Values Units
gmean 0.05, 0.1, 0.2, 0.4 µS
gmax/gmin 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000 1
V0 0, 10, 20, 30, 40, 50, 60, 70 mV
A 0.05, 0.1, 0.125, 0.25, 0.5, 1 mV−1

τopen 0, 0.125, 0.25, 0.5, 1 ms
τclose 0, 0.125, 0.25, 0.5, 1 ms

Table 6.4: The tested rectifying junction parameter values.

Input parameter Values Units
Afferent group size 1, 5, 20 1
Temporal separation 0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 ms

Table 6.5: The parameters of the input stimulus given to the circuit to test
coincidence detection.

afferents. Each afferent group contained an identical number of afferents.

All afferents within a group were fired simultaneously but the two groups

were stimulated at different times. The input to the circuit was varied by

changing the number of afferents in each group and the interval by which

their firing is separated. Table 6.5 lists the precise input parameters tested.

We tested the response of the lateral giant to a pair of afferents, to two

medium sized groups of afferents and to two large groups of afferents. In all

three cases, the afferent synapses were chosen to be closely located to each

other. We did not test the response to inputs synapsing at locations spread

far apart on the lateral giant tree (as we did with the tests on abstracted

morphology model in section 6.3.) The exact afferent synapse locations of

the stimulated afferents are marked in figure 6.11.

In all simulations, all fifty afferents and their connecting synapses to the

lateral giant were included in the model. Afferents were included regard-

less of whether they were stimulated or not. This was necessary because

unstimulated afferent synapses provide an exit for depolarising current and

add significantly to the electrical load in the lateral giant dendrites. To only

include the stimulated afferents in the model would provide inaccurate and
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skewed results. Such results could not be used to fairly compare the effects

of increasing the number of afferents stimulated.

As may be noted from table 6.5, the separation time between input groups

was varied from being synchronous to the inputs being 0.8 milliseconds

apart. The longest separation time approximately corresponds to the length

of an afferent spike. Longer input separation intervals were considered un-

interesting as it exceeds the window in which we are looking for coincidence

detection effects and by far exceeds the time frame in which coincidence

detection occurs in the animal. More points were chosen at closely spaced

separation times to determine how narrow a separation time is sufficient for

coincidence detection effects to emerge.

A simulation was run to test each combination of the parameters listed in

tables 6.5 and 6.4. In total this comprises 1,008,000 simulation runs. For

each simulation run the peak EPSP was recorded at three different locations

in the lateral giant, including at the based of the stimulated major branch,

at the spike initiation zone and at the base of the axon. Figure 6.12 marks

the recording points. The coincidence and efficiency ratios (see section 6.12)

were calculated at each of these recording points.

6.4.2 Simulation results

Overall, the results reflect the findings of the abstracted morphology model

simulations (see section 6.3), which is somewhat comforting. Due to the

sheer quantity of the results produced by the parameter search, we describe

the subset that addresses the questions we are interested in. We present the

results by:

• describing the results that gave the best coincidence detection,

• describing the effects of each rectifying junction parameter on the re-
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Figure 6.12: The points on the lateral giant where the maximum EPSPs
were recorded.
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sults, and

• reporting some of the unusual results observed in the parameter space.

As described in our simulation setup, we recorded the EPSPs at three loca-

tions in the lateral giant (refer to diagram in figure 6.12.) When we compare

the recorded PSPs at these points, the EPSPs are higher at the more distal

points in the LG dendrites and decline as we move proxally towards the

axon. The efficiency ratios are greater at the recording points closer to the

axon. However, this decline in EPSP magnitudes and the increase in calcu-

lated efficiency ratios are uniform. There is a high correlation between the

values corresponding to the different points (the Pearson correlation coeffi-

cient of the efficiency ratios calculated at recording points 1 and 2 is equal

to 0.99.) The coincidence ratios stay relatively constant across the record-

ing points. In the following reporting of results, we refer to the efficiency

and coincidence ratios calculated at the base of the major branch (recording

point 1 in figure 6.12) unless otherwise stated.

The best coincidence detection

The parameters settings that give the best coincidence detection, (as defined

by equation 6.2 for ∆t = 0.4 ms), for each of the three different numbers of

stimulated afferents tested, are listed in tables 6.6 and 6.7. Table 6.6 includes

results from instantaneously opening and closing rectifying junctions in the

rankings. This is of course biophysically impossible. Table 6.7 excludes these

results. The most effective coincidence detection occurs when the rectifying

junctions are open at rest, have a fast closing time and a slow opening time.

The best coincidence detection of all is caused by instantaneously closing

rectifying junctions (see table 6.6.)

We now describe how the rectifying junctions cause coincidence detection,
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Afferents gmean
gmin
gmax

A V0 τopen τclose C E(0)
fired (µS) (/mV) (mV) (ms) (ms) (∆t = 0.4 ms)

2 0.05 1000 0.15 0 1 0 0.5652 0.9735
10 0.05 10 0.25 0 1 0 0.6971 0.7665
40 0.05 20 1 0 1 0.25 0.7111 0.7782

Table 6.6: The parameter settings that gave the best coincidence detection
for the three tested scenarios of afferents fired.

Afferents gmean
gmin
gmax

A V0 τopen τclose C E(0)
fired (µS) (/mV) (mV) (ms) (ms) (∆t = 0.4 ms)

2 0.05 1000 0.25 0 1 0.125 0.6435 0.9113
10 0.05 200 0.15 0 1 0.125 0.6977 0.7539
40 0.05 20 1 0 1 0.25 0.7111 0.7782

Table 6.7: The parameter settings that gave the best coincidence detection,
when instantaneously opening and closing rectifying junctions are
excluded.

when configured with the parameters listed in tables 6.6 and 6.7. When the

input is synchronised, all the junctions are open and a large PSP is caused

in the lateral giant (see figure 6.13a.) When the inputs are desynchronised,

open junctions receive the early input causing the lateral giant dendrites

to depolarise. The reverse bias across the junctions from non-stimulated

afferents causes them to close (including the junctions that will deliver the

late input.) When the late input arrives the junctions are still closed and

the input is ineffective (see figure 6.13b.)

We defined a good coincidence detector to have an efficient response to

synchronised input, with a rapidly declining efficiency as we desynchronise

our input. In our results we were able to fit the lateral giant with parameters

that cause it to meet this objective. When we choose parameters that give

good coincidence detection, then the summed PSP recorded in the lateral

giant declines along a bell shaped curve (see figure 6.14) as one increases

the time interval, ∆t, by which the two input groups are separated.

One can optimise the parameter settings to deliver the best coincidence de-
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Figure 6.13: The junctional conductance versus time (top graphs) and the
resulting PSPs (bottom graphs) in response to (a) ten syn-
chronised afferents (b) two groups of five afferents (synapsing
at the points shown in figure 6.11c) desynchronised by 0.4 mil-
liseconds. The plots of the conductance, at all ten junctions
receiving afferent input, are overlayed. For each input group
(Group 1 and Group 2) the PSP recorded at one of the re-
ceiving dendrite branches is plotted. We also plot the PSP at
the base of main branch 1. (Parameter settings: gmax

gmin
= 200,

A = 0.15mV−1, V0 = 0, τopen = 1ms, τclose = 0.125ms.)
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Figure 6.14: The coincidence detection performance of the lateral giant to
two groups of five inputs when the rectifying junction param-
eters have been optimised. (Parameter settings: gmax

gmin
= 200,

A = 0.15mV−1, V0 = 0, τopen = 1ms, τclose = 0.125ms.)

tection for firing small numbers of afferents or large numbers of afferents.

The best parameters settings are different for the the alternative scenarios of

the number of afferents stimulated. Tables 6.6 and 6.7 show the parameter

choices that gave the best coincidence detection (for ∆t = 0.4 milliseconds)

for two stimulated afferents, ten stimulated afferents and forty stimulated af-

ferents. Figure 6.15a graphically illustrates how the best parameter settings

vary for the different numbers of stimulated afferents. The best values for

three of the parameters stay constant. For all numbers of stimulated affer-

ents, the mean conductance is low (gmean = 0.05µS), the voltage activation

(V0) is zero and there is a slow junction opening time constant (τopen = 1

ms.) The best value for the other three parameters, however, changes with

the number of afferents stimulated. A larger value of A is required as the

population of stimulated afferents is increased. The best rectification value

(gmax

gmin
) varies widely as we change the number of afferents stimulated. This
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needs qualification however, as exact amount of rectification, beyond a fac-

tor of ten has little impact on the operation of the circuit. Any amount of

rectification, beyond a factor of ten, will produce similar coincidence ratios,

(assuming the other parameters are kept constant.) One surprising result is

that for the larger group of stimulated afferents, a junction closing time con-

stant of 0.25 milliseconds does better than instantaneous closing. It should

be noted that the improvement in coincidence detection, obtained by using

non-instantaneous closing, is ever so slight.

The highest obtainable coincidence ratio is generally higher for small groups

of stimulated afferents than for large groups. Tables 6.6 and 6.7 and fig-

ure 6.15b show that better coincidence ratios are obtainable for small groups

of stimulated afferents than for large groups. Similarly, the efficiency declines

as the number of afferents stimulated is increased.

Instantaneously closing junctions deliver the best coincidence detection. Us-

ing instantaneously closing junctions gives a dramatic advantage when only

two afferents are stimulated, as may be observed by comparing the coin-

cidence ratios in tables 6.6 and 6.7. The advantage is not as significant

when there are a greater number of afferents stimulated. An explanation for

this may be that in the two afferent scenario, the synapse points are closely

spaced, whereas in the forty afferent scenario the synapse points are spread

across an entire major branch of the lateral giant.

The coincidence detection ratio, C, is a function of the input stimulus sepa-

ration time, ∆t, as defined in equation 6.2. Figure 6.14 plots the coincidence

ratio as a function of the input separation time, for the lateral giant using

data obtained from our results. We observe that the coincidence ratio de-

clines with ∆t, along a bell shaped curve. The parameter values that give the

best coincidence detection, differ depending on which the separation time

we wish to optimise for. For example, the parameter settings that give the
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Figure 6.15: (a) The parameter settings that gave the best coincidence de-
tection for the three tested scenarios of afferents fired. (b) The
best coincidence ratios obtained (C), for the three tested sce-
narios of afferents fired, and their corresponding efficiency ratio
for synchronised input (E(0)).
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best coincidence detection for ∆t = 0.4 ms may not give the best possible

coincidence detection for ∆t = 0.2 ms. Table 6.8 tabulates the parameter

settings that gave the best coincidence detection for each ∆t tested. An

inspection of the table shows that there are two kinds of solutions: one that

does well for small ∆ts and one that does well for large ∆ts. The thresh-

old at which the latter outperforms the former lies somewhere in the space

0.1ms < ∆t < 0.2ms. The solutions that give good coincidence detection

for small input delays have:

• a high maximum conductance,

• a very large value for A,

• a high voltage activation threshold, V0,

• a very fast junction opening time constant, and

• a long junction closing time constant.

This is in contrast to parameters that give the best coincidence detection

for larger input delays, which have:

• low conductance,

• a low voltage activation threshold,

• a slow junction opening time constant, and

• a fast junction closing time constant.

The transition between the two kinds of solutions is clearly delimited as can

be seen in the graph in figure 6.16a.

That it is possible to configure the rectifying junctions such that they dis-

criminate between perfectly synchronised input and only slightly out of

208



6.4. COINCIDENCE DETECTION IN THE MORPHOLOGICALLY
REALISTIC MODEL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

timing (ms)

Best parameter values for coincidence detection

g_mean (uS)
g_max/g_min / 1000

A (/mV)

V0 / 10 (mV)
tau_open (ms)
tau_close (ms)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

timing (ms)

C E(0)

(b)

Figure 6.16: (a) The parameter settings that gave the best coincidence de-
tection for the different input separation timing, ∆t. (b) The
best coincidence ratios (C) obtained, for the input separation
timings tested, and their corresponding efficiency ratio for syn-
chronised input (E(0)).
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∆t gmean
gmin
gmax

A V0 τopen τclose C(∆t) E(0)
(ms) (µS) (/mV) (mV) (ms) (ms)
0.025 0.4 500 1 70 0 1 0.7590 0.6663
0.05 0.2 100 1 70 0 1 0.8384 0.6503
0.1 0.2 100 1 70 0 1 0.8271 0.6503
0.2 0.05 1000 0.25 0 1 0 0.7881 0.7162
0.4 0.05 10 0.25 0 1 0 0.6971 0.7665
0.8 0.05 2 0.15 0 1 1 0.5645 0.9376

Table 6.8: The parameter settings that gave the best coincidence detection
for different input separation times, ∆t. if instantaneous opening
and closing of the rectifying junctions is excluded.

phase input is a remarkable result. In effect we have a kind of ‘super-

coincidence’ detector. As is tabulated in table 6.8, desynchronising the in-

put by as little as 0.025 milliseconds can cause the response to be almost

a quarter lower, for some parameter settings. To understand how this can

occur, let us examine what happens to the conductance at the synapses in

this scenario. Figure 6.17 compares the conductance changes at the rectify-

ing synapses in response to synchronised and slightly desynchronised input.

When the input is desynchronised, the junctions from the latter group of

stimulated afferents fail to open. Due to the depolarisation of the lateral gi-

ant dendrites, the cross junctional voltage difference never reaches the high

activation threshold required. In this configuration, the junctions operate

as hypothesised by (Edwards et al., 1998). However, this result is achieved

only through unrealistic parameter settings, namely: instantaneously open-

ing gap junctions, a high value for A, a large rectification factor and a very

high activation threshold. These factors combine to cause the junctions to

instantaneously switch from being completely closed to completely open.

Such kinetics are biologically implausible.

Although it is theoretically possible to achieve a high coincidence ratio for

very small values of ∆t, the efficiency of that circuit in summing synchro-

nised input is very low. Firing all ten afferents causes the PSP to be just is
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just 1.3 times higher than if only five afferents are fired. This is an undesir-

able property of a good coincidence detector.

The effects of the rectifying junction parameters

We now investigate how each of the six parameters affects the results. We

wish to determine how sensitive the results are to each of the parameters.

We use the parameter settings that give the best coincidence detection as

our starting point (for ∆t = 0.4 milliseconds, see table 6.7 for the parameter

values.) For each parameter, we vary the value, while keeping the values

of the other parameters constant. It should be noted that we are only

observing the trends that occur around the best found coincidence detection

point. Our observations need to be qualified: trends caused by changing

a parameter value around best settings point may not occur, or even be

reversed, in other regions of the parameter space.

Figure 6.18 shows how the rectification of the gap junctions affects the coin-

cidence detection of the lateral giant. The first observation from this graph

is that rectification has a big impact. Circuits with rectifying junctions

have far better coincidence detection than occurs with non-rectifying junc-

tions (i.e. gmax

gmin
= 1). A number of other specific observations can be made.

Firstly, rectification decreases the efficiency of the circuit. Synchronised in-

puts sum almost linearly when the junctions are non-rectifying. When the

junctions have a high rectification the efficiency of summing synchronised

input drops to about 0.75. Secondly, rectification improves the coincidence

detection of the circuit. When the junctions are non-rectifying, the summed

PSP gradually declines as the separation between the input timing, ∆t, is

increased. For rectifying junctions, the PSPs drops off much more sharply

as ∆t is increased. The summed PSP starts to drop off sharply as ∆t ex-

ceeds 0.1 ms. At ∆t = 0.4 ms the high rectification curves bottom out. In
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Figure 6.17: The conductance changes in the rectifying synapses and PSPs
in the lateral giant when the rectifying junctions are configured
to cause coincidence detection for small input separation tim-
ing (∆t). These graphs compare the responses to the firing of
ten afferents when the are fired simultaneously or as two groups
separated by ∆t = 0.025 ms. (a) The conductance change at
the synapses for simultaneous input, (b) The PSPs in the lat-
eral giant for simultaneous input, (c) The conductance change
at the synapses when the two afferent groups are fired 0.025 mil-
liseconds apart, (d) The PSPs in LG when the afferent groups
are fired apart. For (a) and (c) the conductances of synapses
from group 1 afferents are plotted with solid lines and group
2 synapse with dotted lines. For (b) and (d) the PSP at the
post synaptic site of a group 1 afferent is plotted with a thin
solid line, the PSP from a group 2 afferent with a dotted line
and the PSP at the base of the main branch is plotted with a
thick solid line. (Parameters used: gmean = 0.4µS, gmax

gmin
= 500,

A = 1mV−1, V0 = 70 mV, τopen = 0, τclose = 1 ms.)
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Figure 6.18: The effect of rectification, gmax

gmin
, on coincidence detection.

excess of this input timing separation the latter input causes only a marginal

increase to the PSP in the lateral giant dendrites. This is in stark contrast

to the non-rectifying curve where the bottom still has not been reached at

∆t = 0.8 ms. Finally, it can be observed that increasing rectification has

diminishing returns. Increasing rectification beyond a factor of about ten

does not have a very great effect. The differences between the rectification

of a factor of fifty and a thousand is marginal. The curves for gmax

gmin
= 50

and gmax

gmin
= 1000 are fairly similar (and as are all the non-plotted curves in

between.)

Figure 6.19 plots the efficiency of the lateral giant summing two groups of

input for different junctional conductances. In general two groups of input

sum more efficiently at lower conductance values, this is especially true for

synchronised summation. When the inputs are separated by 0.4 milliseconds

or more the conductance has little impact on the efficiency. Because a lower

junctional conductance causes increased efficiency for synchronised input

(∆t = 0) but has little effect on asynchronous input (∆t ≥ 0.4 ms) lower

conductances give better coincidence detection.
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Figure 6.19: The effect of the mean junctional conductance, gmean, on coin-
cidence detection.

Increasing the rectifying junctions’ voltage activation threshold, V0, reduces

the coincidence detection of the lateral giant. Increasing V0 reduces the

PSPs in the lateral giant, as can be seen in figure 6.20. A high voltage

activation threshold causes the junction to be closed at rest. This combined

with the slow junction opening time constant that we are using, causes

the junctions to be too slow to open in response to a pre-synaptic spike.

The junctions never reach a state of high conductance because the spike

has passed before the conductance can significantly increase. Thus at high

values of V0 (combined with our other parameter values) the junctions act

like a high resistance ohmic junctions. As can be seen in figure 6.20 this

causes the PSPs to be lower and the response versus ∆t curve to be shaped

like that of a non-rectifying junction (compare with gmax

gmin
= 1 in figure 6.18.)

Tampering with the value of the parameter, A, has mixed consequences on

the coincidence detection properties of the circuit. In the context of the other

parameter settings, higher values of A result in larger PSPs in the lateral

giant dendrites, as is recorded in figure 6.21. Higher PSPs occur in response

214



6.4. COINCIDENCE DETECTION IN THE MORPHOLOGICALLY
REALISTIC MODEL

 0

 1

 2

 3

 4

 5

 6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

P
S

P
 (

m
V

)

timing (ms)

V0=0
V0=10
V0=20
V0=30
V0=40
V0=50
V0=60
V0=70

Figure 6.20: The effect of the activation threshold, V0, on the PSPs in the
lateral giant caused by two groups of five afferents coincidence
detection.

to both synchronised and asynchronous input. By our definition, the best

coincidence detection occurs when the ratio of the synchronised PSP to the

asynchronous PSP is at its highest: this occurs when the value of A lies in the

mid-range of the values tested. Higher values of A give larger PSPs because

the junctions require a smaller voltage differential between the pre and post

synaptic cells to switch into a state of high conductance. Lower values of A

cause the junction conductance to be less affected by changes in the voltage

differential. As the value of A tends to zero, the junction behaves more like

an ohmic gap junction. The consequences of this effect can be observed in

figure 6.21: for the lowest value of A plotted (A = 0.05mV−1)), the shape

of the response curve resembles the response of an ohmic junction (compare

with ohmic curve in figure 6.18.)

The junction opening and closing time constants also greatly affect the re-

sponse of the lateral giant. In the context of our other parameter settings,

the slower the the junction is to open, the better the coincidence detection
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Figure 6.21: The effect of the parameter, A, on the PSPs generated in the
lateral giant dendrites for different input separation timings.

(see figure 6.22a.) A slower opening time constant causes the lateral giant

to be more efficient at summing synchronised input and less efficient at sum-

ming asynchronous input. This is a desired property in a good coincidence

detector. A slow opening time constant is crucial for the performance of the

circuit. Input from the first group of afferents depolarises the lateral giant

dendrites, which reverse biases the junctions gating the late input, causing

them to close. A slow opening time constant prevents these closed junctions

from reopening too quickly when the late inputs arrive, thus blunting the

impact of the late inputs.

The effect of the closing time constant is more ambiguous. (see figure 6.22b.)

A slower closing time constant causes synchronised input to sum more ef-

ficiently, but it also causes asynchronous input to sum more efficiently. A

good coincidence detector minimises ratio of the efficiency of asynchronous

input and synchronised input. Around this point in the parameter space,

the closing time constant is correlated with both. The best value occurs

when a balance is reached. In the context of the other parameter values this
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is at τopen = 0.125 milliseconds.

Unusual effects

With carefully selected parameter values we have seen that rectifying junc-

tions can enhance coincidence detection. It is a false impression to think

rectifying junctions enhance coincidence detection under any parameter set-

tings. The results show that the circuit can be made to behave in a wide

range of ways, depending on the parameter settings.

Rectifying junctions, with alternatively chosen parameter settings, can also

cause the lateral giant to behave as a very poor coincidence detector, or

an ‘anti-coincidence’ detector. Within the parameter space, there exist

combinations where the rectifying junctions cause the lateral giant to re-

spond better to asynchronous input than synchronised input. Figure 6.23

graphs the response of the lateral giant dendrites under such conditions. In

this example, the lateral giant responds extremely inefficiently to synchro-

nised input. The circuit’s efficiency to synchronised input is 0.55 (i.e. firing

ten afferents together, instead of five, only increases the PSP by 10%.)

However the lateral giant responds very efficiently to asynchronous input

(E(∆t = 0.4ms) = 0.8.) We have thus turned the circuit into a good anti-

coincidence detector.

To understand how rectifying junctions can cause the lateral giant to re-

spond better to asynchronous input it is helpful to look at the behaviour of

the junctions themselves. Figure 6.24 plots the conductances of the rectify-

ing junctions in response to synchronous and asynchronous inputs, and the

resulting PSPs in the lateral giant dendrites. From these graphs it can be

seen that when all ten afferents are fired simultaneously, the junctions do

not reach the same level of conductance as they do when the two groups of

afferents are fired at different times. While synchronising the input causes
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Figure 6.22: The effect of (a) the junction opening time constant, τopen, and
(b) the junction closing time constant, τclose, on coincidence
detection.
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Figure 6.23: Under some conditions, the rectifying junctions can cause the
lateral giant to respond better to asynchronous input than syn-
chronised input. (Parameters used: gmean = 0.2µS, gmax

gmin
=

1000, A = 1mV−1, V0 = 70 mV, τopen = 0, τclose = 0.25 ms.)

the lateral giant dendrites to receive the currents from ten afferents simul-

taneously, the lower conductance reduces the amount of current transferred

from each afferent. Thus, when one fires ten afferents simultaneously, in-

stead of five, most of the gain obtained by firing more afferents is offset by

lower conductance at the synapses.

This raises the question, how does synchronised input cause lower synaptic

conductances? The steady-state synaptic conductance is a function of the

the trans-synaptic voltage difference (see equation 3.1.) In figure 6.25a, it

can be seen, that the trans-synaptic voltage difference is marginally lower

in response to synchronised input than to asynchronous input. Ten simul-

taneously firing afferents causes a greater depolarisation in the lateral giant

dendrites, which reduces the voltage difference between the pre and post

synaptic cells. The difference between the peak voltage difference in re-

sponse to synchronous and asynchronous input is only slight: 71.9 versus

74.8 millivolts. To understand how such a small difference can affect the
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Figure 6.24: For parameter settings that cause the lateral giant to respond
better to asynchronous input, the junctional conductance ver-
sus time and the resulting lateral giant dendrite PSPs are plot-
ted. (a) Plots the junctional conductance and PSP in response
to synchronised input. (b) Plots the junctional conductance
and PSP in response to input desynchronised by 0.4 millisec-
onds. (Parameter settings: gmean = 0.2µS, gmax

gmin
= 1000,

A = 1mV−1, V0 = 70 mV, τopen = 0, τclose = 0.25 ms.)
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junctional conductance it is necessary to view a plot of the conductance

equation, when it is given, the currently discussed, anti-coincidence detec-

tion parameter values. Figure 6.25b plots the relationship between synap-

tic conductance and the voltage difference. It may be observed that the

conductance makes a very sharp transition from low conductance to high

conductance when the trans-synaptic voltage difference surpasses 70 milli-

volts. Thus, although synchronising the input causes only a slight change

in the trans-synaptic voltage difference, the change occurs within the range

where the conductance function is at its most sensitive. A small change in

the trans-synaptic voltage difference causes a large change in the synaptic

conductance.

Taken all together, when the afferents are synchronously fired, there is a

slightly larger depolarisation in the lateral giant dendrites, which reduces

the magnitude of the peak trans-synaptic voltage difference, which reduces

the conductance of the synapses, which causes each afferent to contribute

less current to the lateral giant. When the afferents are fired in two groups,

the synapses operate at a higher conductance, generating larger currents.

Each group of five afferents fired separately contributes almost as much

current as ten afferents are fired simultaneously. Thus, firing the afferents

in two groups, causes a larger current transfer overall.

It should be restated at this point that this effect is entirely theoretical, and

highly unlikely to occur naturally as it relies on a combination of parameter

values outside of the biologically plausible range. Anti-coincidence detection

is an artifact of the extreme parameter values chosen.

We have shown that depending on how we choose our parameters, rectifying

junctions can facilitate coincidence detection or anti-coincidence detection.

We now show that with another set of parameters they can cause the lat-

eral giant to respond to inputs of different synchronisation in a manner
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Figure 6.25: (a) The trans-synaptic voltage difference plotted over time in
response to ten afferents fired synchronously, and in response
to two groups of five afferents fired 0.4 milliseconds apart.
(b) The steady-state conductance relationship to the trans-
synaptic voltage difference, (refer to equation 3.1.) The con-
stants used cause the lateral giant to act as a ‘anti-coincidence’
detector: gmean = 0.2µS, gmax

gmin
= 1000, A = 1mV−1, V0 = 70

mV, τopen = 0, τclose = 0.25 ms.
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than can only be described as ‘weird’. Figure 6.26 plots a scenario where

the lateral giant efficiency fluctuates with the input synchronisation. The

explanation for this rather unusual looking graph is that the governing pa-

rameter settings give rise to two different previously discussed phenomenon.

The rectifying junctions act as hybrids of ‘anti-coincidence’ detectors and

‘super-coincidence’ detectors. When the input groups are slightly out of syn-

chronisation (∆t = 0.05 milliseconds) the depolarisation caused by the early

input reduces the junctional conductance of the late input, in a manner that

is similar to the previously discussed results shown in figure 6.17. When the

inputs are broadly separated, the depolarisation in the lateral giant dendrites

has passed, and thus the late input can be effective. In these circumstances,

the circuit acts like the just discussed ‘anti-coincidence’ detector. Like anti-

coincidence detection and super-coincidence detection, the hybrid behaviour

relies on a conductance curve with a high activation threshold (V0 = 70 mil-

livolts) and a very steep transition (A = 1mV−1). Again, it is an interesting

phenomenon of the model, but unlikely to occur biologically.

6.4.3 Conclusions

The simulation results answer the questions we set out at the start of this

section.

Rectifying junctions can significantly add to coincidence detection in our

morphologically realistic model of the lateral giant.

In general, the best coincidence detection occurs when the parameters are

set so that the junctions are partially open at rest, and close quickly when

reverse biased. Early input depolarises the lateral giant dendrites causing

the junctions to close, thus blocking the pathway for late inputs. This

result is in agreement with one of the solutions obtained with the abstract

morphology model.
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Figure 6.26: The efficiency of summing two groups of afferent inputs as a
function of the time interval separating (∆t) their firing. Under
the chosen rectifying junction parameter values the efficiency
fluctuates with ∆t. (Parameter setting: gmean = 0.4µS, gmax

gmin
=

1000, A = 1mV−1, V0 = 70 mV, τopen = 1 ms, τclose = 1 ms.)

Finally, our results show that the effect of rectifying junctions on coincidence

detection can vary widely depending on what parameter values are chosen

to govern their conductance-voltage relationship. With the appropriately

chosen parameters, they can greatly enhance coincidence detection. With

other parameter settings, the rectifying junctions can cause the lateral giant

to sum non-simultaneous inputs better than simultaneous ones, and act like

a ‘anti-coincidence’ detector. The effects of this give rise to interesting but

difficult to intuitively predict phenomena. One thing can be stated with

absoluteness: their effect is not neutral.

6.5 General discussion and conclusions

In this chapter we have explored the role that rectifying junctions can play

in our model in regard to coincidence detection.
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In the results of our simulations, it is clear that rectifying junctions have a

great impact on the way the lateral giant receives input from the afferents.

The exact nature of this change depends on the parameter settings of the

junctions. With rectifying junctions we were able to achieve outcomes that

were impossible using ohmic gap junctions.

We have shown in, two different multi-compartment models of the lateral

giant tree, that rectifying junctions can cause coincidence detection. This

complements previous simulations (Edwards et al., 1998), that demonstrated

rectifying junctions can causing coincidence detection in single compartment

models.

Our simulations show that the rectifying junctions play a critical role in

coincidence detection. If we use ohmic gap junctions in place of rectifying

junctions, to connect the afferents to the lateral giant, then we are unable

to get as effective coincidence detection. Indeed, it is only through the use

of rectifying junctions that we are able to achieve the degree of coincidence

detection that matches the biological observations. We have demonstrated

that rectifying junctions are a necessary condition of coincidence detection.

In our simulations we have identified that there are alternative ways of

achieving coincidence detection with rectifying junctions. The method that

gave both good results and is biologically feasible, has the rectifying junc-

tions partially open at rest. The depolarisation caused by early input re-

duces the conductance across the junctions making later input less effective.

Achieving coincidence detection in this manner was demonstrated in both

the abstracted morphology model and the morphologically accurate model.

The idea of having the junctions open at rest is a new hypothesis in regard

to the operation of the lateral giant circuit. The electrophysiological data

available (Edwards and Herberholz, personal communication) is consistent

with this hypothesis.
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The rectifying junctions must not only act as coincidence detectors but they

must also be conducive to admitting enough current to fire the lateral giant.

Excellent coincidence detection that produces EPSPs that are too small to

reach firing threshold is not helpful to the animal. A general trend that was

observed in our results was that lower junctional conductance gave better

coincidence detection but lower EPSPs. A trade-off is necessary in choosing

a junctional conductance that delivers good coincidence detection but still

allows the lateral giant to get to firing threshold.

The conceptual model performs comparably to the morphologically accurate

one in the scenarios tested in this chapter. The best junction parameter val-

ues for coincidence detection have similar values when we compare the re-

sults of the parameter searches of the two models. Hence we can say, at least

in the context of coincidence detection, the conceptual model successfully

captures the essential features of the lateral giant morphology.

Rectifying junctions are simple devices that have very useful applications.

The time and voltage variance of the rectifying junctions gives rise to com-

plex dynamics. In our simulations, we have demonstrated that rectifying

junctions are very effective as coincidence detectors. We have also demon-

strated that rectifying junctions can serve other functions. Rectifying junc-

tions are very versatile devices. Other functions we have demonstrated in-

clude: selecting for inputs that are out of coincidence or selecting for multi-

ple kinds of input phasicness, e.g. responds well to highly phasic input and

widely desynchronised input but poorly to slightly desynchronised input.

We have demonstrated that rectifying junctions are highly configurable in

their stringency requirements of the synchronisation of their input. Our

simulated rectifying junctions can be set up to discriminate for inputs to be

within 0.05 milliseconds within each other or to have less stringent require-

ments as to how synchronised the input must be.
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The amount of coincidence detection we achieve with our model compares

favourably with the biological data. In lateral giant, inputs desynchronised

by as little as 0.1 milliseconds, produce EPSPs that are about 25% lower

(Edwards et al., 1998). In our simulations we are able to replicate the

narrowness of the lateral giant’s response to phasic input and the drop in

EPSP that occurs when the input is out of phase. We have demonstrated

that rectifying junctions provide a sufficient explanation of how coincidence

detection occurs in the lateral giant.

Our model and simulation results make a number of predictions that have

implications for the neurobiological understanding of the lateral giant escape

circuit. Firstly, our simulations predict that the rectifying junctions are at

least partially open at rest. Our first prediction has implications that give

rise to our second prediction. If the gap junctions are open at rest then this

combined with the fact that the afferents and lateral giant have different

membrane resting potentials, then there would be a continuous current flow

between the two cells.

Finally, although we have shown that rectifying junctions are very effective

at coincidence detection, we have also demonstrated that they can be con-

figured to serve a wide range of functions. Gap junctions have been shown

to widely exist in the nervous systems of many different animals (Bear et al.,

1996). There have been shown to be many different kinds of gap junctions.

Their voltage dependent conductive properties vary widely depending on

the makeup of their connexins (Ebihara, 2003). We have shown that recti-

fying junctions can play different functional roles depending on the kinetic

properties of their trans-junctional conductance. We predict that rectify-

ing junctions play different important functional roles across many neural

circuits. Experiments where connexins are replaced with other kinds of con-

nexins cause functional deficits in animals (Plum et al., 2000; White and
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Bruzzone, 2000; White, 2003). The results of these experiments are consis-

tent with our hypothesis.

We have demonstrated that we can achieve coincidence detection in our

artificial scenario. We have shown, in our computational model, that the

rectifying junctions can make a large contribution to coincidence detection.

A highly coincidental sensory stimulus is a key signature of a predator as-

sault. Detecting this efficiently and robustly is an important property of

the crayfish escape system. We have demonstrated that we can explain and

reproduce this important property in an artificial system.

If you wish to learn how a network of afferents can collaborate to influence

the escape decision you will have to read the next chapter.
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CHAPTER 7

Modelling the afferent network

This chapter describes a computational model of the afferent network.

The primary afferents in the lateral giant circuit (Herberholz et al., 2002) are

connected to form a lateral excitatory network, whereby stimulated afferents

recruit non-stimulated afferents, thereby amplifying the response. Afferents

make direct connections to other afferents and indirect connections through

the gap junctions to the lateral giant dendrites (Herberholz et al., 2002;

Antonsen and Edwards, 2003).

The model described in this chapter is used to consider these questions:

• What are the necessary model conditions and parameter settings in or-

der for the model to produce recruitment as observed experimentally?

This is addressed in section 7.2.2.

• The afferents are connected both directly and indirectly through through

the lateral giant dendrites, what are the relative contributions of these

two couplings to recruitment? Sections 7.2.3 and 7.2.4 address this
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question.

• Could afferents in one nerve recruit afferents in another? The coupling

between nerves is examined in section 7.2.5.

• How does the response of afferent network change with different phasic

input patterns? This is addressed in section 7.3.

• How does the response of afferent network change with different spatial

input patterns? This question is answered in section 7.4.

• What effects do different connection patterns between afferents have

on recruitment in afferent network? This is explored in section 7.4.1.

• What is the function of the interneurons in the circuit? This is ad-

dressed in section 7.5.

7.1 Model description

As described in section 3.3.2, the afferents in the crayfish tailfan are organ-

ised into five ‘nerves’, each of which contains about fifty afferents. In each

nerve, the afferents are organised into a network. Each afferent network

functions mostly independently of the networks in the other nerves. We

made a model of an afferent network in one of the nerves. The networks in

the other nerves are assumed to operate in a similar fashion. Our model ig-

nores the occasional direct connections between afferents in different nerves

(Antonsen and Edwards, 2003), whose impact on the operation of the circuit

we assume to be insignificant. In our model, as is thought to be the case in

the biological circuit (Antonsen and Edwards, 2003), nerves interact with

each other by antidromic currents via the lateral giant. This interaction is

modelled in section 7.2.5.
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The afferent network was modelled using the NEURON simulator (Hines,

1993; Hines, 1994; Hines, 1998). Figure 7.1 depicts an overview of the

afferent network model components and how they are connected. The model

is comprised of a group of fifty afferents and a model of the lateral giant.

A morphologically accurate model of the lateral giant was used in the simu-

lations. The LG model used is described in section 5.2. The afferent model

is described in section 7.1.1.

The model afferents are connected together in a network. In most simula-

tions afferents were connected together in a regular pattern, whereby each

afferent was connected to n of its nearest neighbours. Alternative connec-

tion patterns and their consequences on the afferent network response are

simulated in section 7.4.1.

The model afferents also make weakly rectifying synapses onto the lateral

giant. These connections cause the afferents to be coupled indirectly via the

lateral giant, as has been shown in biological experiments (Herberholz et al.,

2002).

The interneurons are not included in simulations until their role is exam-

ined in section 7.5. Excluding the interneurons makes the model simpler

and allows us to examine the role of the afferent network in isolation. By

studying the afferent network in isolation we can determine what kind of in-

put the afferents provide to the interneurons. The communication between

the afferents and the sensory interneurons is unidirectional. The synapses

are chemical which means there are no antidromic currents to consider. It is

therefore a reasonable to assume that the operation of the afferent network

can be studied independently of the interneurons.

The interneurons are a vital part of the lateral giant circuit. They generate

the β component of the lateral giant input, which is the most significant
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Afferents

LG

Figure 7.1: The schematic layout of the circuit used to simulate the affer-
ent network. A group of fifty afferents (only seven shown in
light blue) are connected together and form weakly rectifying
synapses onto one of the major branches of the lateral giant
(LG.) A morphologically accurate LG model is used.

component. We treat the interneurons as a ‘black box’. The interneurons are

considered as a complex function that integrates the input provided to it by

the afferents and communicates the result to the lateral giant. Our simplified

treatment of the interneurons is not only reasonable but also necessary. The

level of knowledge needed to make an accurate quantitative model of the

interneuron integration is lacking.

Formally, the simulation can be thought of as a function. Let x(t) be the

vector of input functions, representing the external stimuli functions given

to the afferents. Let y(t) represent the outputs of the simulation that we

choose to measure. Let the vector θ describe the parameters characterising

the setup of the simulation. The output of the simulation can be thought of

as a function of the input stimuli, x(t), and the simulation parameters, θ.

Equation 7.1 formalises this relationship. This is depicted in a diagram in

figure 7.2.
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x (t)n

x (t)1

2x (t)
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y (t)

y (t)3x (t)

Input stimuli Simulation black box

my (t)

Measured outputs

Figure 7.2: The relationship between the vector of input stimuli x(t) and the
vector of measured outputs y(t). The simulation is considered
a black box.
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Figure 7.3: A schematic diagram of how the afferents are modelled. The
model is divided into three sections: (A) a wide axon projecting
from the sensory hairs, (B) an intermediate zone, where the axon
narrows, and (C) a narrow section modelling the terminal end
of the afferent.

yi(t) = fi(θ, h1(t) ∗ x1(t), . . . , hn(t) ∗ xn(t)) (7.1)

Where yi(t) represents the ith simulation output, xj(t) represents the jth

simulation input, θ is the parameter vector, f is a function that produces

the output of the simulation and hj(t) is a transfer function.

7.1.1 Afferent model

The afferents are modelled as tubes with a narrowing at their terminal ends.

The afferent model is similar to the model used in Chapter 5. In both cases,

the afferents are modelled as tubes with active Hodgkin-Huxley sodium and

potassium channels. A higher density of compartments is used at the ter-

minal ends. This is done because the afferents connect to each other at the

terminal ends, so the morphology at this part of the cell may play a critical

role in the activation of spikes. The narrowing of the afferent’s diameter is

included in the model. Two extra sections are added: a narrow section at

the end, and a transitory section, where the diameter narrows from the wide

diameter to the narrow diameter (see figure 7.3.) It is not known whether

the narrow end of the afferent is passive or active. Both possibilities were

experimented with and this choice did not appear to have a large impact on

the simulation results.
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The variability in the afferent dimensions (Antonsen and Edwards, 2003) was

ignored in the afferent network simulations. To simplify the simulation all

afferents were given identical dimensions. All afferents were given a diameter

of 5 micrometres, and a length of 3 millimetres. These chosen dimensions are

consistent with the overall mean dimensions of the afferent populations in

actual crayfish (see section 3.3.2). Giving all afferents consistent dimensions

reduces the complexity of the network which lessens the variability of the

afferent network output. The simplification makes it easier to study the

effects of the other parameters, for example the effect of the connection

pattern between afferents.

7.2 The necessary conditions for recruitment

One of the key questions being addressed by the simulation is to identify the

subset of the parameter space that causes the recruitment response of the

model afferent network agrees with the experimental observations (Herber-

holz et al., 2002). In biology, recruitment does not occur unless the nerve

is stimulated above a threshold. If the stimulus magnitude is increased

beyond that point, non-stimulated afferents are recruited, thereby enhanc-

ing the PSPs in the lateral giant. When all available afferents have been

recruited, the saturation point is reached. Beyond this point, further in-

creases in the magnitude of nerve stimulation do not recruit any additional

afferents (Herberholz et al., 2002). We expect our simulation to produce

a stimulation-recruitment response with similar characteristics. As we in-

crease the fraction of afferents stimulated to be above threshold, there should

be a steep transition from virtually no recruitment to maximum recruitment.

Our aim is to determine what parameter settings are necessary for a recruit-

ment response that matches this description. We also wish to learn how each

parameter affects recruitment.
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In order to be able to formulate objective criteria by with which we can

evaluate the model results it is necessary to define a quantitative measure

of recruitment. Let recruitment gain, G, be defined as the total number of

afferents that fire divided by the number of afferents initially stimulated:

G =
nstimulated + nrecruited

nstimulated
(7.2)

Where nstimulated is the number of afferents initially stimulated and nrecruited

is the number of afferents recruited.

7.2.1 The parameter space

The setup of the afferent network simulation is parameterised by many vari-

ables.

Some of the simulation parameters, θ, include:

Rectifying junction parameters: The parameters governing the voltage

dependent conductance across the rectifying junctions that connect

the primary afferents to the lateral giant (see section 5.3.)

Afferent-afferent conductance: the ohmic resistance connecting affer-

ents.

Number of connections: the number of connections between afferents.

The membrane properties of the LG: including the capacitance, the

axial resistance, the passive membrane resistance, the leakage current

and the properties of the active membrane channel.

The membrane properties of the afferents: each of the membrane pa-

rameters described for the LG also applies to each afferent.

236



7.2. THE NECESSARY CONDITIONS FOR RECRUITMENT

The dimensions of the afferents: the size and morphology of the model

afferents.

Connection organisation: the organisation of the connections between

afferents. Some possible organisations include:

• a regular pattern, where afferents are arranged in a hexagonal

grid and connect with n of the adjacent afferents. Such an or-

ganisation is unrealistic but easier to understand.

• completely random connection organisation, where each afferent

has an equal chance of connecting to any other afferent, regardless

of proximity.

• a probabilistic connection organisation, where the probability of

two afferents being connected is proportional to the distance sep-

arating them. Such a scheme is biologically plausible.

We setup simulation with the following simplifications and assumptions:

• The properties of all rectifying junctions were made to be identical

• All afferents were given identical properties, i.e. all afferents were of

the same length and diameter and had the same membrane properties.

• The ohmic connections between afferents were given identical prop-

erties, i.e. the same conductance was used for all afferent-afferent

synapses.

Even with these simplifications, the parameter space is too large to com-

prehensively search. There are two alternatives: (1) to search for ‘optimal’

parameters using a parameter optimisation algorithm such as a genetic algo-

rithm (section 4.1.3 discusses parameter searching methods), or (2) to map

out a subset of the parameters. We opted for the latter approach. The
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parameter space was mapped out rather than optimised for two reasons.

Firstly, mapping out the parameters is more conducive to analysing how

each parameter affects the results. Secondly, there are multiple solutions

which give results that are compatible with the experimental observations.

We desire to know the set of possible parameter settings rather than have

just one or a few solutions.

Four simulation parameters were chosen to be mapped out:

• the number of connections between afferents,

• the conductance between afferents (gaff),

• the maximum conductance of the LG-afferent synapses (gmax - see

section 5.3), and

• the rectification across the LG-afferent synapse (gmax/gmin - see sec-

tion 5.3.)

The these parameters are the most relevant to the questions presented in

the introduction. Table 7.1 summarises the range over which the selected

parameters were searched. The parameter search ranges were determined

by choosing as a ‘reasonable’ value as a midpoint. ‘Reasonable’, as deter-

mined by the biological constraints and the results of tests in preliminary

simulations. Values greater and less than this value were then searched to

the bounds of plausibility. Parameters were varied on either a linear or log

scale. The steps between values were quite large. It was necessary to bal-

ance on the one hand, choosing enough values to gain an understanding of

how the parameter affects the network, and on the other hand, limiting the

size of the search space.

All other parameters of the simulation was kept constant. Refer to ap-

pendix B.3 for the values used.
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Table 7.1: The parameter space mapped out in the afferent network simu-
lations

Number
Parameter Min Max Distribution of points

Stimulated afferents (n) 0 50 linear 11
Number of connections (c) 0 12 linear 13
Afferent-afferent conductance (gaff ) 0.05 µS 0.8 µS log 5
Afferent-LG max. conductance (gmax) 0.0125 µS 0.8 µS log 7
Rectification factor (gmax

gmin
) 1 1000 log 10

Total number of simulations 50050

The input to the circuit was a group of simultaneously spiking afferents. The

input was changed only by increasing the number of afferents spiked. The

afferents which were initially stimulated were chosen randomly. So that the

response of the networks with different parameter settings could be directly

compared, the same random seed was used to choose the initially spiked

afferents for all parameter settings. For example, when five afferents were

spiked the same five were spiked for all simulation runs.

For each simulation run we record the following:

• the number of afferents recruited (r), and

• the PSP at the base of the lateral giant dendrites (vlg). Since the

interneurons are not included in the simulation this is only a measure

of the α-PSP.

A simulation was run for each of 50050 parameter possibilities, and the

above outputs were recorded for each simulation.

The number of connections between afferents was one of the varied param-

eters. For all numbers of connections, a uniform connection pattern was

used. This connection organisation is described in section 7.4.1 and drawn

in figure 7.21.
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7.2.2 Overall results

The recruitment response varied greatly with the different parameter values

tested in the parameter space. A general trend that occurred very frequently

throughout the parameter space was that the onset of recruitment was very

sharp. In the simulated network as the number of stimulated afferents was

increased past a certain threshold, the recruitment gain made a very steep

transition from from unity (that is no recruitment) to its maximal value.

The band at which recruitment occurs is very narrow. We refer to this

phenomenon, as ‘hair trigger’ recruitment. Hair trigger recruitment was a

robust property of the network that occurred for a wide range of param-

eters. Hair trigger recruitment is also what has been shown to occur ex-

perimentally (Herberholz et al., 2002). We can therefore say that for many

different parameter settings, the response of the simulated afferent network

was consistent with the experimental results. Figure 7.4 shows an exam-

ple recruitment gain curve. Figure 7.5 shows the recruitment gain curves

for all setups of the simulation within the subspace of having six afferent

connections. Let us call the threshold of the number of stimulated afferents

required for recruitment to start occurring the ‘trigger threshold’ (shown

graphically in figure 7.4.) Changing the parameters of the network changed

the slope of the curve and the trigger threshold. In this and the following

sections we will talk more of the characteristics of these relationships.

The shape of the recruitment gain curves is well expressed with the equa-

tions:

G(x) =
x + r(x)

x
(7.3)

r(x) = p(x)(1 − x) (7.4)

Where x is the fraction of afferents stimulated, r(x) is the fraction of re-
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Figure 7.4: An example recruitment gain curve of the simulated afferent
network. Along the X-axis is the number of neurons initially
stimulated. Along the Y -axis is the recruitment gain. It can
be seen that the recruitment gain makes a steep transition from
no recruitment to peak recruitment as the number of stimulated
afferents passes the trigger threshold.
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Figure 7.5: The good, the bad and the ugly. The recruitment gain curves
for 6 afferent connection networks for all parameters searched.

cruited afferents and G(x) is the recruitment gain. The function p(x) is the

probability of a non-stimulated afferent being recruited. These equations

model recruitment as the product of the fraction of non-stimulated afferents

and the probability of such afferents being recruited.

We found that the probability of recruitment was best modelled with a

sigmoidal function:

p(x) =
pmax

1 + e−k(x−xR)
(7.5)

Where pmax is a constant which represents the maximum recruitment prob-

ability, k is a constant which determines the steepness of recruitment and

xR is proportional to the trigger threshold.

Figure 7.4 shows a recruitment gain curve obtained from the computational

model fitted with equations 7.3, 7.4 and 7.5.

A quantitative method is needed to determine whether a simulated network’s

gain response meets the criteria for hair trigger recruitment. This method
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can then be applied to the simulation results to determine which parame-

ter subspace produces recruitment curves consistent with the experimental

observations.

One simple method is to measure the steepness of the change from minimum

to maximum recruitment. This may be achieved by calculating the gradient

of the graph as it moves from some arbitrary small recruitment gain to an

arbitrary large value.

Our aim is to quantify the rapidness of the change from low recruitment to

high recruitment. In order to compare the rapidness of this change in curves

with different trigger thresholds it is necessary to first normalise the gain.

Curves with an earlier trigger threshold are likely have a higher maximum

gain. As can be seen in equation 7.2 the maximum possible gain at any

point is ntotal
nstimulated

. One method of normalisation is for the data points of

each curve to be divided by the maximum gain for that curve:

z(x) =
G(x) − 1
Gmax − 1

(7.6)

Where z is the normalised gain, Gmax is the maximum gain of the curve and

x is the fraction of afferents stimulated (x = nstimulated
ntotal

.) Since the smallest

possible gain for all curves is unity, this can be subtracted from the value.

This method normalises the gain to have a value of between 0 and 1 for all

curves.

We can then quantify the steepness by calculating the gradient of the curve

as it moves from a chosen small value, zsmall to a chosen large value, zlarge.

In practice the values for zsmall and zlarge that were used were 0.1 and 0.9,

respectively.

Due to the sparseness of the data points, the exact point at which the

graph reaches zsmall and zlarge is usually not exactly known. However their
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values can be approximated through interpolation, (refer to illustration in

figure 7.6.) Hence, let steepness, S, be defined as:

S =
∆z

∆x
=

zlarge − zsmall

xlarge − xsmall
(7.7)

Where xsmall and xlarge are defined such that z(xsmall) = zsmall and z(xlarge) =

zlarge.

Interpolation has limited accuracy, especially for a very steep curves, where

the recruitment transition may take place entirely between data points.

However, due to the sigmoidal shape of recruitment curves the method un-

derestimates the steepness. It is thus useful for obtaining a lower bound of

a curve’s steepness.

Table 7.2 tabulates the steepness range of the recruitment curves for all the

parameters tested. These results show that by this measure, the majority of

the curves have a steep transition from minimal to maximum recruitment.

Let us consider a gradient of 4 as the threshold for a steep curve, (this

corresponds to 80% of the recruitment gain rise occurring within a ∆x of

0.2 or less.) By this criteria, we can say that 76% of the curves made a steep

recruitment transition.

For some of the curves the recruitment gain never exceeded 1, i.e. no extra

neurons were ever recruited. No steepness value can be calculated for these

curves. These curves are shown in the data as having a value on ‘NA’ and

represent approximately 7% of the curves. Most of these curves come from

afferent networks with zero connections between afferents.

One limitation of the previously described steepness measure is that there is

no discernment between curves that have a high maximum gain and curves

that have low maximum gain. An alternative method for normalisation

is to divide all values by the maximum achievable gain at the maximum
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Steepness range number of curves fraction of curves
NA 318 0.0699

0 < S < 1 0 0.0000
1 ≤ S < 2 19 0.0042
2 ≤ S < 3 159 0.0349
3 ≤ S < 4 584 0.1284
4 ≤ S < 5 254 0.0558
5 ≤ S < 6 907 0.1993
6 ≤ S < 7 286 0.0629
7 ≤ S < 8 205 0.0451
8 ≤ S < 9 36 0.0079
9 ≤ S < 10 612 0.1345

S > 10 1170 0.2571

Table 7.2: Steepness range of recruitment curves
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Figure 7.6: Method for measuring the steepness of the graph. Where steep-
ness, S is defined as the gradient ∆z

∆x as the gain rises from the
values Gsmall to Glarge.
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gain point rather than by the maximum gain of the curve. The maximum

achievable gain is:

G�
max =

ntotal

nmax
=

1
xmax

(7.8)

Where nmax is the number of afferents stimulated when the maximum gain

of the network is achieved.

Normalised gain then becomes:

z�(x) =
G(x) − 1
G�

max − 1
(7.9)

Where z� is the normalised gain and G�
max is the maximum achievable gain

at the maximum point.

The steepness value then becomes:

S� =
∆z

∆x
=

z�
large − z�

small

xlarge − xsmall
(7.10)

Using this method 45% of curves had a steepness value of 4 or greater.

This is a much smaller proportion than the previous method. The steepness

was unmeasurable for 54% of curves because the gain never reached the 0.9

threshold of maximum achievable gain. Table 7.3 tabulates the distribution

of curve steepnesses using the second method.

How recruitment affects the α-PSP

Recruitment causes additional primary afferents to fire, which amplifies the

LG PSP. We now use simulations to examine the relationship between re-

cruitment and the LG PSP.

The recruited afferents may synapse onto interneurons or the directly onto

lateral giant itself (or do both.) In the former case, the β input to LG
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Steepness range number of curves fraction of curves
NA 2439 0.5360

0 ≤ S� < 1 0 0.0000
1 ≤ S� < 2 10 0.0022
2 ≤ S� < 3 27 0.0059
3 ≤ S� < 4 48 0.0105
4 ≤ S� < 5 74 0.0163
5 ≤ S� < 6 409 0.0899
6 ≤ S� < 7 173 0.0380
7 ≤ S� < 8 120 0.0264
8 ≤ S� < 9 45 0.0099
9 ≤ S� < 10 486 0.1068

S� ≥ 10 719 0.1580

Table 7.3: Distribution of steepness using method 2

is enhanced, in the latter, the α is enhanced. The effect of recruitment

on the α response is easily simulated. How the β is affected is difficult to

accurately simulate because it depends on how the interneurons integrate

their inputs. The interneuron integration is not currently understood at a

sufficient level of detail to be able to predict the effect on the β response.

We therefore concentrate our simulations on predicting recruitment’s effect

on the α response.

Figure 7.7 graphs the peak α-PSP in the LG dendrites versus the fraction of

afferents stimulated. The total number of afferents spiked is plotted against

the same axes. There is a steep increase in the number of afferents spiked

when recruitment takes hold. However, there is no corresponding steep in-

crease in the peak α-PSP. The α-PSP continues to increase, more or less

linearly, as a function of the fraction of afferents initially stimulated. The

α PSP continues to increase with the number of afferents initially stimu-

lated even after all non-stimulated afferents have been recruited. This is

in contrast to recruitment where once all available afferents are recruited

the network is saturated, thus increasing the fraction of afferents stimulated

has no further effect on the total number of afferents spiked. The recruited
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Figure 7.7: A comparison of how the peak α-PSP (in the LG dendrites) and
the number of afferents spiked increase with the fraction stimu-
lated. (Parameter settings used: 8 afferent-afferent connections,
gaff = 0.05µS, LG gmax = 0.025µS, gmax

gmin
= 4.64.)

afferents do not appear to have a significant impact on the α-PSP. There

are some cases where recruitment causes a slight increase in the α-PSP (see

figure 7.8 for an example.) The sizes of the increases are not proportional

to the amount of recruitment.

The lack of an increase in the α-PSP corresponding to recruitment is caused

by the recruited afferents spiking later than the stimulated afferents. This

causes directly stimulated spikes and recruited spikes to be out of phase. The

coincidence detection properties of the lateral giant (as seen in section 5.3)

causes the out of phase input from the recruited afferents to have little extra

effect on the peak PSP.

Even though recruitment has little effect on changing magnitude of the peak

α-PSP, it does change the shape of the PSP by prolonging it. A sustained α

PSP may have an important effect on the α’s summation with the interneu-
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Figure 7.8: In some cases the recruited afferents increase the α PSP in the
LG dendrites. This graph plots the fraction of afferents stim-
ulated versus afferent-LG synapse conductance versus the α-
PSP. Jumps in the α-PSP attributed to recruitment can be seen
for high values of LG synapse conductance. (Parameter set-
tings used: 6 afferent-afferent connections, gaff = 0.1µS, LG
gmax

gmin
= 46.4.)
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ron induced β-PSP. (This is discussed in section 7.5.)

7.2.3 Effect of afferent-afferent coupling

The effect of afferent-afferent coupling on the recruitment response of the

circuit was examined by varying the number of afferent connections and the

conductance of these connections.

The simulation results show that in most cases recruitment increases as the

afferent-afferent conductance is increased. Similarly, increasing the number

of afferent to afferent connections, generally, increases the recruitment. This

is an expected result. Figure 7.10 plots the recruitment gain versus these

two variables for a slice of the parameter space.

There are some circumstances where adding more afferent connections and/or

increasing the conductance of the connections actually reduces the recruit-

ment of the network. If there are a large number of afferent connections and

each connection is of a very high conductance then the electrical load on

a stimulated afferent may become too high. Adding further connection be-

tween afferents may actually reduce recruitment for two reasons. Firstly, the

amount of current a spiked afferent is able to feed to its neighbours is lim-

ited by the conductance of its sodium channels. If the electrical load placed

on the afferent by the connections to its neighbours starts to approach this

limit, then adding additional connections will reduce the amount of current

that each neighbour receives. Secondly, extra afferent connections reduces

the resistance of each cell. Therefore each cell will require more current to

bring it to spiking threshold. Recruitment is reduced because non-stimulated

cells, connected to a spiked cell, receive a smaller current when they require

a higher current.

As an example, consider two spiked afferents which make high conductance
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(a)

(b)

Figure 7.9: The effects of the recruitment on the α-PSP in the LG and
the LG dendrites. (a) Shows the PSP at the base of one of
the LG branches and base when the afferents are unconnected
and hence there is no recruitment. (b) Shows the PSP for a
connected afferent network where there is recruitment.
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Figure 7.10: The recruitment gain increases with afferent-afferent conduc-
tance and with the number of afferent-afferent connections. A
slice of the parameter space through these two axes is plotted
here. The values of the other parameters are: fraction stimu-
lated (x) = 0.4, LG gmax = 0.1µS, gmax/gmin = 46.4
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connections to the same non-spiked afferent. If the spiked cells connect

to only a few other non-spiked afferents then they may be able to recruit

this cell which they both connect to. However, if they are connected to a

large number of afferents, each by a high conductance connection, then they

may not be able to pass on as much current and may not recruit any other

afferents.

Figure 7.11 plots two examples of where adding extra connections to the

network actually reduces the recruitment performance.

It should be stressed that the effect of adding extra connections and getting

diminished recruitment only happens in special cases. For most parameter

settings, afferents are not overloaded. The general rule is that adding more

connections enhances recruitment.

7.2.4 Effect of afferent-LG coupling

The simulation results show that the synapses between the lateral giant

and the afferents are an important pathway for recruitment. Antidromic

currents through the lateral giant synapses help bring unstimulated afferents

to threshold. Recruitment increases significantly as the conductances of the

afferent to lateral giant synapses are increased. Figure 7.12 plots recruitment

curves with different values of conductance at the LG synapses.

The afferent to lateral giant synapses significantly contributed to recruitment

for all sections of the parameter space. Increasing the conductance of these

synapses causes recruitment peak to be earlier and larger. The contribution

of the lateral giant synapses to recruitment becomes less important when

the afferents are strongly coupled, i.e. when the afferent synapses have high

conductance.

The coupling between afferents, through the lateral giant synapses, is insuf-

253



CHAPTER 7. MODELLING THE AFFERENT NETWORK

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0  2  4  6  8  10  12

R
ec

ru
itm

en
t g

ai
n

Number of connections

g_aff=0.8uS, g_lg=0.8uS
g_aff=0.4uS, g_lg=0.1uS

Figure 7.11: In some circumstances adding extra connections actually re-
duces the gain of the network (for a certain fraction stimu-
lated.) This graph plots two examples. The red line plots
a network where both the afferent-afferent synapses and the
afferent-LG synapses have very high conductance (gaff = 0.8µS,
LG gmax = 0.8µS, gmax

gmin
= 10.) When 0.3 of the afferents

are stimulated, the maximum gain is achieved with 4 connec-
tions. The recruitment performance declines as more afferents
are added. The green line plots another example, where the
maximum gain is reached when there is only one connection
(0.3 of afferents stimulated, gaff = 0.4µS, LG gmax = 0.1µS,
gmax

gmin
= 100.)
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Figure 7.12: Antidromic currents through the LG synapses facilitates re-
cruitment. As the conductance through LG synapses is in-
creased recruitment increases. The parameters of the recruit-
ment curves graphed vary only by their value of the LG synapse
conductance gmax. The values of the other parameters are:
gmax/gmin = 46.4, Afferent synapse conductance gaff = 0.05µS,
Number of afferent connections = 6.

ficient to achieve recruitment by itself. In simulations where afferents made

no direct connections to each other, and were coupled only through the lat-

eral giant, no recruitment usually was achieved. Only when extremely high

conductance values were used for the lateral giant synapses (gmax ≥ 0.4µS)

was there a small amount recruitment. Even in these cases, relatively few af-

ferents were recruited. Full recruitment was never reached. At the maximum

gain, there were still more afferents available for recruitment. Figure 7.13

plots the recruitment gain for networks where afferents are coupled only

through the lateral giant.

The rectification factor (gmax

gmin
) of the afferent to lateral giant synapses signifi-

cantly impacts on the performance of the network. The highest recruitment

results occurred when there was no rectification. Networks without any
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Figure 7.13: Recruitment caused through the lateral giant synapses alone.
This graph shows recruitment gain versus fraction stimulated
and afferent-LG synapse conductance for networks with no di-
rect afferent to afferent connections. Only if extreme values are
used for LG conductance is some recruitment achieved.
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Figure 7.14: Lower rectification gives better recruitment. The recruitment
curves for different rectification factors are plotted. The val-
ues of the other parameters are: LG gmax = 0.1µS = 46.4,
Afferent synapse conductance gaff = 0.2µS, Number of afferent
connections = 6.

rectification at the LG synapses had higher gain and the peak was reached

earlier. This result is expected since no rectification allows higher antidromic

currents. There is a quite sharp drop-off as one introduces some rectifica-

tion. The point at which adding extra rectification has no additional effect

on reducing recruitment occurs quite early. In some simulations it was as

early as gmax

gmin
= 4.64. That is for some simulations, choosing a rectification

factor of 4.64 produced an identical recruitment response as choosing 1000.

For all the parameter space tested, increasing the rectification factor beyond

46.4 had no effect on recruitment. These results should be qualified within

the context of the values chosen for the other rectifying junction parame-

ters. Figure 7.14 plots some recruitment curves with differing rectification

factors.

The synapses between the afferents and LG are a potential mechanism for
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modulating the escape response. We have shown that changing the conduc-

tance of the synapses has a dramatic effect on the size of PSPs in the LG.

Serotonin is known to depress the response of LG. The synapses between the

afferents and LG is a possible site where serotonin may be acting. The ex-

perimental changes in the response of LG can be accounted for by changing

the conductance of the synapses. Simulations that decrease the conductance

are consistent with the experimental application of serotonin.

7.2.5 Inter-nerve interactions

Afferents have been shown to recruit other afferents within the same nerve

but what is the nature of interaction of afferents between nerves? In the

model, the only source of such interaction is through the lateral giant synapses.

If the afferents in one nerve are stimulated, it is useful to know what size

PSPs are produced in the dendrites of the major branches of the other nerves

and what size PSPs antidromically propagate into the afferents themselves.

This may be tested with a simple simulation. By stimulating one of the

branches with afferent input and recording the potentials at synapse po-

sitions in the other branches. Only the PSPs by direct primary afferent

connections are simulated, i.e. the α-PSPs. Figure 7.15 shows the locations

of the recording points.

The results of this simulation show that a significant portion of the PSP in

the stimulated branch spreads to the other branches. Figure 7.16 plots the

PSPs at all the recording points. The PSP at B, (i.e. the branch that is

closely connected with the stimulated branch), is almost equal in magnitude

to the stimulated branch.

Figure 7.17 summarises the attenuation of the PSP at A to the other record-

ing sites. The attenuation at the four other branches is averaged. Because
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B
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A stimulated
branch

E

D

F

G

Figure 7.15: A simple simulation to test how the PSPs generated in one
branch spread to other branches. Seven recording points record
the PSPs at locations on the LG tree. Point A is at a synapse
position in the stimulated branch. Points B, C, D and E are at
selected synapse points on the other branches. Points F and G
are at lower order branches from which A is descended.
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Figure 7.16: The α-PSPs at all the recording points as a function of what
fraction of the afferents on the stimulated branch were stimu-
lated.

the attenuation at B is so much less than for the other branches, it is also

plotted separately. One can see that for all the branches excluding B, the

PSP attenuates to between 0.6 to 0.7 of the PSP at A. This means that a

significant fraction of PSP generated at a stimulated branch makes it into

other branches. The amount of attenuation does not appear to change sig-

nificantly as the stimulation at A increases. For point B, the attenuation

is to approximately 0.9 of the PSP. Hence, in this particular simulation,

the adjacent branch is depolarised almost as much as the stimulated branch

itself.

These simulations show that if one branch of the LG is depolarised, a sig-

nificant fraction of the PSP spreads to the other branches. Indeed, adjacent

branches may be excited almost as much as the stimulated branch. It was

shown (see section 7.2.4) that the antidromic currents through the lateral

giant play a significant role in enhancing the recruitment of non-stimulated
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sites of the other branches. The lower line excludes point B.
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afferents. Given that it appears that most of the PSP generated at the stim-

ulated branch spreads to the other branches, one can expect afferents in the

non-stimulated nerves to receive antidromic currents as well. These currents

would assist recruitment in the other nerves. These antidromic currents in

themselves would not be enough to cause recruitment in the other nerves.

However if the nerve is partially stimulated, i.e. some of its afferents are

spiked, these antidromic currents may assist in bringing the nerve over the

‘trigger threshold’.

These results are suggestive of nerves assisting each other in recruitment.

Nerves may be communicating with each other through the lateral giant.

For example, if one nerve is stimulated sufficiently for all its afferents to

be recruited, and the other nerves are partially stimulated but not to the

trigger threshold necessary for recruitment, the fully stimulated nerve would

cause antidromic currents to spread into the unstimulated nerves which may

bring them up to the trigger threshold.

7.3 The afferent networks response to phasic input

In section 7.2 we tested the afferent network’s response to synchronous in-

put. We now address the question of how the afferent network responds to

asynchronously fired afferents. The questions we consider are:

• Does the network’s performance decline as the input becomes more

asynchronous?

• Does the afferent network assist in coincidence detection?

To address these questions, an afferent network was set up with midpoint

parameters (gaff = 0.1µS, LG gmax = 0.2µS, gmax

gmin
= 100, 6 afferent-afferent

connections, see section 7.2.) The performance of the network was measured
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Table 7.4: The values of the input parameters used to test the afferent net-
work’s response to phasic input.

Parameter Values tested Number of points
Stimulated afferents 0, 1, 2, ... , 50 51
Spread of firing times (ms) 0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 7

in response to input that could be characterised by two parameters: the

number of afferents stimulated and the synchronisation of the input. The

specific afferents that were stimulated were picked at random. The timing of

afferents fired was spread about a central point. The amount by which the

afferent timings were spread out was varied over different simulation runs.

This was done by distributing the firing times about a central point and

varying the standard deviation of the spread. Table 7.4 shows the values

used to test these parameters. Each input parameter combination was tested

100 times. For the results the mean and standard deviation were calculated.

Figure 7.18 shows the how the gain curves change as the afferents are stim-

ulated with different degrees of synchronisation. The input can be made

0.05 ms asynchronous and not have any statistically significant effect on re-

cruitment, as compared with perfectly synchronised input. There is a slight

decline when one makes the input 0.1 milliseconds asynchronous. There is

no statistically significant difference in recruitment until the asynchrony is

made 0.1 milliseconds or greater. (A Student t-test was used to compare the

recruitment for 0, 0.025 and 0.05 ms. The greatest statistical distance any

two points were apart was t = 1.48.) When the asynchrony is increased to

0.4 milliseconds the peak recruitment gain is less than half the synchronised

maximum recruitment gain, and the peak is reached later. When the input

is desynchronised by 0.8 milliseconds, very little recruitment occurs.

Figure 7.19 shows how the PSP in the dendrites declines as the stimulus

becomes desynchronised. These PSPs are part of the α-component of the LG

depolarisation. The PSPs in the LG decline as the input is desynchronised.
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Figure 7.18: The gain curves of the afferent network for input of different
synchronisation. Each point is the mean of 100 simulation runs.
The error bars show the 95% confidence interval.

The decline is bell shaped. The decline is steepest between 0.05 milliseconds

and 0.4 milliseconds. When the stimulus is spread out with a standard

deviation of 0.8 milliseconds, the PSP in the dendrites declines by as much

as 47% of the synchronised response.

These simulations show that the model afferent network responds better

to synchronised stimuli than desynchronised stimuli. Recruitment is higher

and the α-PSPs in the dendrites are higher when the afferents are fired

simultaneously. The input needs to be spread out with a standard deviation

of about 0.4 milliseconds to observe a major declines in recruitment and

PSPs. Whilst the afferent network favours phasic input, the decline is not

sharp enough to explain the coincidence detection observed experimentally.

In experiments (Edwards et al., 1998), input separated by as little as 0.1

milliseconds was sufficient to cause a major decline in the recorded PSPs.

Our model of the afferent network does not explain that phenomenon.
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Figure 7.19: The PSP in the LG dendrites as a function of the fraction of
afferents stimulated and input synchronisation. Each point is
the mean of 100 simulation runs.

7.4 Connection patterns and stimuli patterns

The response of the afferent network is not just a function of the number

of afferents stimulated but also which specific afferents are stimulated. How

the network responds to a specific set of stimulated afferents is determined

by the organisation of the afferent connections.

To demonstrate this, imagine a group of fifty afferents arranged in a hexago-

nal grid. Consider two alternative connection organisations. In the first, the

connections are highly ordered and regular, afferents form one connection

to each of their adjacent neighbours in the hexagonal grid. In the second

connection organisation, the connections are randomised. That is, we have

the same number of total connections but an afferent is just as likely to be

connected to an afferent on the other side of the grid as it is to connect to

its neighbours.
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Now we excite each network with two different stimulus patterns. For each

stimulus we excite 24 afferents. For the first stimulus pattern, the excited

afferents are picked at random. For the second pattern, we choose the excited

afferents to be clustered on one side of the network.

What is the response of the two networks to these two different stimulus

patterns? Figure 7.20 shows the results. The regularly organised network

responds very well to the random input, all afferents are recruited. However

it responds very poorly to the clustered input, only two afferents are re-

cruited. The randomly organised network responds reasonably well to both

input patterns. The random input recruits 22 afferents. The clustered input

recruits 17.

This rather contrived example demonstrates that the connection regime of

the network can have a big effect on how it responds to different input

stimuli.

7.4.1 Network connections

The connections between the afferents facilitate spiking afferents to recruit

previously non-excited afferents. The recruitment of additional afferents

has the effect of amplifying the input given to the lateral giant and the

interneurons. The pattern by which the afferents are connected together

determine the nature of the amplification and the input patterns which will

cause this amplification effect to be realised.

One task for the model is to examine the effect that the connection pattern

between neurons exacts on the behaviour of the network. The exact nature

of the connection pattern between the afferents is still the subject of research

and debate. The findings of (Antonsen and Edwards, 2003) and (Herberholz

et al., 2002) indicate that the connection pattern is nonuniform. Afferents
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(a) (b)

(c) (d)

Figure 7.20: The response of two different networks with differently organ-
ised connections to two different stimulus patterns. Red circles
represent the initially stimulated afferents. Green circles rep-
resent afferents that are recruited. (a) A regularly connected
network’s response to random to clustered stimuli, (b) a ran-
domly organised network’s response to clustered stimuli, (c) a
regularly organised network’s response to random stimuli, and
(d) a randomly organised network’s response to random stim-
uli. (Parameter settings used: gaff = 0.2µS, RJ gmax = 0.2µS,
gmax

gmin
= 100
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are connected to between 2 and 14 other afferents. Aside from the number

of connections, there is also the question of whether there is any grouping of

afferents. There is some evidence that afferents are more likely to connect

to another afferent close by than one far away. But is there a more distinct

grouping order than this? One hypothesis is that the afferents are grouped

into ‘bundles’, and each afferent within the bundle is connected to all the

other afferents in the bundle. However it has been shown that, in some

cases at least, if afferent A is connected with afferent B, and afferent B is

connected with afferent C, then afferent A does not necessary make a direct

connection with afferent C (Antonsen and Edwards, 2003). This shows that

if there is bundling it is not perfect, but does not exclude the possibility of

imperfect bundling.

We have already demonstrated in section 7.4 that extreme differences in the

stimulus pattern can give extremely different results for different connection

patterns. It is possible to design the network connections to be specifically

biased for certain combinations of input. Without direct evidence of such a

deliberate organisation let us examine the response of the afferent network

to stimulus patterns of randomly selected afferents. We have seen that

differently selected stimuli can have extremely different responses. It would

be useful to measure the variance of the response of the network to randomly

distributed stimulus patterns. Three alternative network connection regimes

are considered.

The first connection pattern simulated is a uniform one, where afferents

each make a standard number of connections to other afferents, i.e. afferents

each have the same number of connections. The afferents are placed in a

hexagonal grid, and attempt to connect to a fixed number of neighbouring

afferents. Afferents placed on the edge of the grid may not be able to

make the full number of connections, but all afferents not on the edge will

268



7.4. CONNECTION PATTERNS AND STIMULI PATTERNS

(a) (b)

(c) (d)

Figure 7.21: Some uniform connection patterns used for the afferent net-
work. For each pattern, each afferent attempts to make a fixed
number of connections to adjacent afferents. Shown are the
patterns for (a) 3, (b) 4, (c) 6 and (d) 12 connections.

make the same number of connections. Variations were made on how many

connections each afferent makes. Different patterns were set up for between

3 and 12 connections. Figure 7.21 shows the connection patterns for some

of these variations.

An alternative configuration of the connections of the network where the

connections are chosen probabilistically, with connections more likely be-

tween afferents that are closer. Such a connection scheme is biologically

plausible. We choose an exponential function to represent the probability
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of ith and jth afferents forming a connection:

p(i, j) = p0 exp(
rij

L
) (7.11)

Where rij is the distance between afferents i and j, p0 is the maximum

probability and L is the length constant. Figure 7.22 shows the connections

between afferents for a network formed with this method.

The final connection regime considered is where connections are randomised.

Each afferent makes c connections, however the target of each connection

is chosen from the entire population of afferents with each afferent having

an equal probability as being selected as the target. The network shown

in Figures 7.20b and 7.20d is an example of a network organised to with

this regime. Biologically, such a connection scheme is unlikely as there is

likely to be biases which make some connections more likely than others.

We consider this organisation because it is the extreme of randomisation.

The biological network is likely to be randomised to some extent, although

we do not know to what degree. It is useful to know the behaviour at the

extreme.

For each connection organisation we determine the variance of the recruit-

ment gain at various initial stimulus fractions. The same total number of

connections were used for all three networks. This is the number of connec-

tions in a uniformly connected network with 6 connections per afferent. For

each configuration and at each stimulus fraction 100 simulations were run.

For each simulation the initially stimulated afferents were picked at random.

We then calculate the standard deviation for each configuration.

Figure 7.22: A probabilistic afferent network, where the probability of two
afferents forming a connection is inversely proportional to the
distance between them.
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Figure 7.23: The recruitment gain curves for different connection organisa-
tions. The standard deviation of the gain is plotted as error
bars. The probabilistically and randomly connected networks
have a similar response. The uniformly connected network has
a less steep transition to maximum recruitment and a larger
standard deviation for most fractions stimulated. (Parame-
ters used: gaff = 0.1µS, LG rectifying junction gmax = 0.2µS,
gmax

gmin
= 100
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Figure 7.24: The standard deviation of the recruitment gain as a function
of the fraction of afferents stimulated for different connection
organisations. Variation is the highest when recruitment gain
is at a maximum. The uniformly connected network has higher
standard deviations for most fractions stimulated.
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Figure 7.23 compares the recruitment gain curves for the different connection

organisations. The probabilistic and random organisations are of a similar

shape. The uniformly connected network makes a less steep transition to

maximum recruitment. Figure 7.24 compares the standard deviations of the

recruitment gains for the differently connected networks. For most fractions

stimulated the uniform network has the highest variance. However the ran-

dom and probabilistic networks have the highest peak standard deviation.

The peak variance for all networks is near to where they approach their re-

spective maximum gains. At this point the standard deviation is of a similar

magnitude for all three networks.

Overall the standard deviation is not very great. In absolute terms the

standard deviation never gets much above 0.1. This maximum is reached

as recruitment approaches its peak. At this point the standard deviation is

equal to about 10% of the recruited afferents. This indicates that random

variation is not expected to have a great effect on the recruitment gain at

the critical threshold where recruitment takes hold. That is, recruitment is

reliable at the critical threshold.

Figure 7.25 plots the standard deviation of recruitment as a fraction of

the total recruited afferents. The standard deviation in relative terms is

higher at sub-threshold stimulation levels. This shows that sub-threshold

recruitment is less reliable. Given that during this region the number of

afferents recruited is low and thus does not add much to the gain of the

circuit, this is not a very important result.

As can been seen in figure 7.24 the variance appears to be greatest for the

uniform network, at least for most fractions stimulated. This reinforces

the anecdotal result of section 7.4. Uniformly connected networks are more

vulnerable to random variation than randomly connected networks.

The performances of the probabilistically and randomly connected networks

273



CHAPTER 7. MODELLING THE AFFERENT NETWORK

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

st
an

da
rd

 d
ev

ia
tio

n 
as

 fr
ac

tio
n 

of
 r

ec
ru

ie
d 

af
fe

re
nt

s

fraction stimulated

uniform
random

probabilistic

Figure 7.25: The standard deviation of recruited afferents as a fraction of
the afferents recruited. The standard deviation is high during
sub-threshold recruitment but low at and post threshold.

are very similar. This result complements the findings of (Watts and Stro-

gatz, 1998) which show that adding a small amount of randomness to the

linking of a network greatly increases the network’s connectivity.

Adding an element of randomisation steepens the recruitment transition.

This is a biologically desirable property as it sharpens the threshold of when

recruitment starts and reduces the risk of an accidental sub-threshold escape.

7.5 Role of the interneurons

The beta component of the excitation to the LG (see chapter 3) comes from

the interneurons. If the LG is to spike (and thus the escape response is

initiated) it is the beta component that takes it over threshold (except for

in very small animals.) The primary afferents excite the interneurons as well

as the lateral giant directly. Thus the interneurons play a vital role in the
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circuit.

We present examining of the nature of role of the interneurons as a topic for

further work.

The question to examine is how might the β response caused by the afferents

interact with the α caused by the direct afferent-LG connections. We would

like our model LG to respond to input with a nice α-β shaped PSP, as is

observed in the biological system (see figure 3.12.) It is critical in order for

LG to spike for the α and β inputs to sum effectively. The β input needs

to arrive onto the LG arrives before the excitation from the α input has

subsided. The β input’s path is much longer than the α input as it needs

to pass through a chemical synapse and the interneuron. What mechanisms

are necessary to keep the time delay caused by the longer path to a minimum

presents itself as an open question.

We propose to model interneuron in ‘cartoonish’ detail. This is to reduce

the complexity of the model. There are different kinds of interneurons and

they (probably) each integrate their input in different ways. This obviously

introduces a lot of extra complexity, which is ignored in our model. In any

case there is insufficient detail available to accurately model all the different

kinds of interneurons. In our model all interneurons are identical. The mor-

phology of the interneurons modelled at a crude level, to be approximately

similar to the sizes of interneuron A and interneuron C. The membrane

properties used are similar to the afferents. There are chemical synapses be-

tween the afferents and the interneurons. The model has rectifying electrical

synapses between the interneurons and the LG.

The interneurons add an extra layer of processing to the lateral giant circuit.

The interneurons receive their input from the afferents and pass on the

processed signal on to the lateral giant. In these simulations the interneurons

use a very simple method to integrate the afferent input. It should be noted
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that the processing done by the interneurons can be made very complex.

7.6 Discussion

Until recently it was assumed that the decision to escape or not to escape

was made by the lateral giants and the interneurons. The afferents were

assumed to be messengers conveying the stimuli. They were not thought to

have any part in the decision making process.

The lateral giant circuit makes a critical (literally life or death) decision

as to whether or not to escape. The circuit needs to make the decision

very quickly and also correctly. The simulations in this chapter show that

the lateral excitatory network is capable of being discriminate in selecting

specific combinations of stimuli.

The simulations in this chapter show that the lateral excitatory network may

play a dual role in the operation of the LG circuit. One function is to act as

an amplifier with a nonlinear gain curve. This role is identified in previous

work (Herberholz et al., 2002). Stimulated afferents recruit non-stimulated

afferents thus increasing the amount of input that the lateral giant and the

interneurons receive. The direct connections onto the lateral giant enhances

the α-response. However in simulations the magnitude of the α-PSP in LG

is not increased by very much by the recruited afferents. This is due to

the recruited spikes being slightly out of phase with the spikes of directly

stimulated afferents combined with the LG’s selectivity for phasic input.

The recruited spikes do however sustain the α-response which may cause

it to sum more effectively with the β. Furthermore, the recruitment means

that the interneurons receive more input. This is likely to cause an increased

number of interneurons to be spiked. Firing extra interneurons increases the

β-PSP in LG. In larger animals, the β is the largest component of the PSPs
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in LG and the LG fires it fires off the β. The extra interneurons fired as a

consequence of recruitment in the the lateral excitatory network may bring

the lateral giant to firing threshold.

The afferent network does not just recruit extra afferents but the nature of

this recruitment is nonlinear. In simulations we have seen that when one

stimulates a fraction of the afferents up to a threshold there is very little

recruitment. However when the threshold is exceeded recruitment makes a

very rapid transition from minimal recruitment to maximum recruitment.

There is a ‘hair trigger’ for turning recruitment on or off. This property of

the afferent network agrees with the experimental observations (Herberholz

et al., 2002). A steep transition from minimal to maximum recruitment is a

robust property of the model afferent network. This property was present for

a large fraction, indeed the majority, of the simulated networks within the

parameter space explored. The architecture of having a group of afferents

connected to another appears well suited to providing a ‘hair trigger’ ampli-

fication mechanism. This provides a desirable property in the escape circuit

for the animal: when afferent activity passes the threshold of a predator

attack, an escape response should be initiated. The afferent network sharp-

ens the threshold and reduces the risk of sub-threshold activity accidentally

triggering an escape response.

There are many other possible mechanisms for achieving amplification of

the input. For example, the LG could be given a lower threshold or the

synapses exciting the lateral giant could be made stronger. The afferent

network appears to be a more complicated way of achieving amplification

compared to these other mechanisms. However, these alternatives would

give a more linear amplification the input. They would not give the sharp

threshold ‘all-or-nothing’ amplification that the afferent network provides.

Our simulations predict that the lateral excitatory network causes the es-
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cape circuit to respond better to some specific combinations of input. The

response depends not only the number of afferents that are initially stimu-

lated but also on the specific afferents that are stimulated. Which specific

combinations of afferents firing give more or less recruitment depends on

how the network is connected.

The escape system needs to detect when a predator is attacking it. The

crayfish is receiving continuous sensory input. If needs to discern a preda-

tor attack from other sensory stimuli. The classical way this was assumed

to happen is simply that a predator attack sets off more afferents firing si-

multaneously than any other sensory stimuli. Perhaps this is all the escape

circuit detects. The afferent network has the capability to do more than

this. It is capable of being wired to respond better to specific combinations

of input. For example, perhaps an approaching predator sets off different

combinations of firing afferents than a sudden surge in the current. And

when one considers that the afferent network output still needs to be pro-

cessed through the interneurons before reaching the lateral giant, then we

have a system with potentially very rich pattern discrimination capabilities.

The lateral giant escape system may be doing more than just counting the

number of simultaneously firing afferents.

The architecture of the LG escape circuit resembles a two layered recurrent

artificial neural network. The primary afferents form the first layer and the

interneurons are the second layer. Two layered recurrent neural networks

have been demonstrated to be very powerful computational tools (D. and J.,

1986a; D. and J., 1986b; Wasserman, 1989). Neural networks can be trained

so that the network will respond positively to certain inputs and ignore

others. Artificial neural networks are very powerful at pattern recognition.

The biological escape circuit is much more complex than an artificial neural

network. We have shown that depending on how the network is wired it will
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respond differently to different inputs. Whether the wiring is coincidental or

deliberate is unknown. We hypothesise that the lateral excitatory network

is deliberately wired to respond better to certain stimuli. This hypothesis

is difficult to directly test experimentally. There is however some indirect

experimental evidence which is suggestive of this. For example, the lateral

giant response is sensitive to direction (Wine and Krasne, 1982), the afferent

network may be the mechanism that causes this. Assuming that the bias of

network is deliberate, how such wiring occurs is unknown. It may be ‘hard-

wired’, or it may be learned. When the crayfish is young the threshold for

escape is much lower and it escapes very frequently. The crayfish may learn

which triggers are false alarms and wire the afferent network to ignore such

stimuli.

The real afferent network is much more complex than what we have mod-

elled. In our simple model we have assumed that all afferents and all afferent

connections are identical. This is of course false. There is likely to be much

diversity between the afferents. This adds an extra level to the discrimina-

tion capabilities of the network. The afferent connections would effectively

be weighted. Even with our simple model we have demonstrated that the

afferent network is capable of discriminating specific input. With the added

complexity of the real system, we have the necessary neural machinery for

some complex decision making.

In our model we have made a lot of assumptions and simplifications. We

do not have a realistic model. Our model explains some of the biologically

observed phenomena of the lateral excitatory network and it makes some

predictions. However, the effects of the complexities we have ignored is

unknown.

The simulations in this chapter only only a starting point for a complete and

well defined computational model of the lateral excitatory network. Some
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of the questions that present themselves for further work include:

• The relationships between the parameters explored and the response of

the network have been qualitatively described. An extension would be

to model these relationships with mathematical equations. The final

goal would be to have a model equation which describes recruitment

as a function of the model parameters.

• In simulations we have shown that the afferent connection pattern

plays an important role in the response of the circuit. It would be use-

ful to simulate the biologically plausible afferent connection patterns

and characterise their response to different inputs.

• The afferents do not exist exclusively for the lateral giant. The af-

ferents convey sensory information to many other neural systems in

the crayfish. It is not possible for the crayfish to distinguish whether

an afferent was recruited or whether it was innervated by a sensory

stimulus. How the recruited afferents affect other systems is an open

question. Investigating the effect recruitment has on other systems is

a topic for further research.
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Conclusion

Animal behaviour is robust and adaptive. Properties that have so far been

largely elusive to artificial systems. This thesis concerns how you might

incorporate robustness into artificial intelligence. We argue that studying

the mechanisms of animal behaviour is instructive for building intelligent

artificial systems.

An example of robust behaviour is the crayfish escape response. Almost all

animals possess some form of startle response. This is compelling evidence

that reflex behaviours are an integral part of animal adaptation. For robots

one can imagine that reflex behaviours are also important. For example, a

mine clearing robot needs to be focused on implementing its general strategy

of clearing the mine field but needs to be able to respond quickly when

unexpectedly faced with a mine. A robot soccer player needs to execute the

team’s strategy of setting up a goal but also needs to rapidly evade when

tackled by an opposing player.

In our artificial world simulation, we have shown that adding escape be-
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haviours to a system performing a simple task in a hostile environment not

only increases the survivability of the agent but also impacts the strategy

of how the agent undertakes its main activity. An advanced escape system

allows the agent to ignore the threats of the environment while it is un-

dertaking its primary task. If the escape system is weak, then the agent

must incorporate a strategy for avoiding danger into its approach to the pri-

mary task. An advanced escape system decouples the problems of an agent

achieving its main goals from the problem of dealing with the danger in the

environment. Adding reflex behaviours to artificial systems, such as robots,

will be an important component of a robust architecture.

The crayfish escape circuit is an interesting case study of decision making

in animals. The circuit serves as a concrete example of an animal behaviour

where the controlling neural circuitry is mapped out and well understood.

One expects that some of the mechanisms that drive decision making in the

escape circuit generalise to other instances of decision making.

In order to fully understand how a biological system functions one needs a

computational model. The understanding neuroscientists have of neural cir-

cuits is often qualitative. Some neuroscience models are largely descriptive.

To really understand how biological neural networks perform their cognition,

quantitative models are necessary. The field of computational neuroscience

is concerned with making quantitative models of neuroscience descriptions.

In the past computational neuroscience has mostly been of interest to neu-

roscientists. We argue that it is also of interest to computer science. If one

were to construct a computational model of the crayfish escape circuit that

replicates the circuit’s functions, this would demonstrate an understanding

of the underlying decision making.

Biological systems are of immense complexity. They are much more complex

than computer programs. A useful model would produce the interesting
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characteristics of biological systems with the simplest possible design. The

problem is it is difficult to distinguish a priori what parts of the complexity

in biological systems can be ignored from the parts that are essential to their

adaptive properties. If one models superficially one can easily leave out the

essential features of the system.

The goal of this thesis was to make a complete model of the crayfish lateral

giant escape circuit to demonstrate that its robust qualities can be repro-

duced on a computer and to identify the specific properties that give rise to

robustness.

We have succeeded in creating a computational model of a subset of the

sensory part of the lateral giant escape circuit, comprising of the lateral

giant and a network of primary afferents. Our model is faithful to the known

biological mechanisms of the circuit. The neurons have been modelled as R-

C electrical circuits with electrical properties that correspond to biological

measurements.

In this thesis we have demonstrated that we can reproduce some of the

crayfish escape circuit’s interesting properties in computer models. Some of

the key components in the robust decision making of the lateral giant escape

circuit have been identified.

Coincidence detection is a key function of the lateral giant escape circuit. It

is used to detect abrupt massive stimuli which are the signature of a predator

attack. We have shown that coincidence detection can be effectively simu-

lated using rectifying junctions between the afferents and the lateral giant.

This work complements the previous studies of (Edwards et al., 1999). The

rectifying junctions are have nonlinear electrical conductivity which is fun-

damental to coincidence detection. The rectifying junctions are in a state

of high conductivity in response to simultaneous inputs, causing them to

sum effectively. In contrast, asynchronous inputs are ineffective because the
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early input partially excites the lateral giant causing reduced conductivity

across the rectifying junctions. This renders late inputs to be largely inef-

fectual. The coincidence detection properties of the rectifying junctions are

dependent on their parameter settings. For effective coincidence detection

the rectifying junctions need to have fast closing latency, a high conductance

at rest and a low conductance under reverse bias. Given other properties

the rectifying junctions perform a different function.

The direct interconnections between the afferents have also been shown to

play a fundamental role in the escape circuit’s operation. Stimulated affer-

ents recruit non-stimulated afferents thereby amplifying the sensory input

(Herberholz et al., 2002). Our computer simulations show that networking

the primary afferents sharpens the escape threshold and lessens the risk of

sub-threshold activity accidentally triggering an unwanted escape response.

Furthermore we predict that the afferent network adds the ability of the

escape circuit to not only detect temporal patterns of activation but also

spatial patterns.

The work undertaken in this thesis uncovered a number of issues. Our initial

approach to studying the crayfish escape circuit was through a high level

model. This approach however was too far removed from the biology and

had no interesting underlying complexities. This directed us to taking a

more detailed consideration of the underlying biology.

The biological details of the circuit do give rise to many interesting com-

plexities. The complexity is indeed overwhelming. Biological systems are

very detailed. Furthermore, the deeper one looks the more details that

are uncovered. At each level of detail there are complicated behaviours

that cannot be completely ignored at a higher level. For example, one may

model a neuron as a single compartment, but this ignores that neurons are

complex structures made up of dendrites and axons. One may include the
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dendritic structure and use uniform membrane properties, but this ignores

that the membrane contains many different kinds of ion channels which are

non-uniformly distributed. It is a challenge to decide what details should

be ignored and which details should be included. Furthermore, the details

of the biological mechanisms are only partially discovered. The modeller

must make assumptions and fill in gaps. It is possible that a model mimic

a biological behaviour in a way that is unfaithful to reality. Arguably how-

ever, if the model satisfactorily replicates the behaviour this is ultimately

unimportant.

Human beings like to isolate the properties of the individual components in

the design. The problem of taking this approach to understanding biology

is that nothing exists in isolation. There are so many interconnections and

everything influences everything else. As a simple example from the lateral

giant escape system, creating an isolated model of a primary afferent ignores

that the antidromic feedback it receives from the lateral giant. Studying one

component in isolation ignores that it behaves differently when it is part of

the system.

What is clear is that the primitives used in biological systems are funda-

mentally different to those in computer systems. In electronic systems the

fundamental building block is the transistor, or the NAND gate at a slightly

higher level. In making models of biological systems it is unclear what the

basic building block should be. It has often assumed to be the neuron but,

as demonstrated by the work in this thesis, an individual neuron is an im-

mensely complicated cell. Furthermore the building blocks in biology are

novel compared to the components that make up computer systems. Con-

sider the rectifying junctions which have been shown to play a pivotal role

in the function of the crayfish escape circuit. These are novel devices which

perform complex nonlinear calculations. Establishing what the necessary
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basic primitives are for creating biologically accurate models is an impor-

tant area that needs to be resolved.

In looking at a biological system in too much detail there is a possibility in

getting trapped into looking at irrelevant properties of the system. There

may be more than one way of achieving the same outcome. The biology

works to achieve a satisfactory solution out of what it has. Its solution may

not be the most optimal. Biology might have taken a different solution if

other components were available to it. As shown by (Beer et al., 1999)

it is possible to achieve similar outcomes with vastly different connection

organisations between neurons.

It is interesting to note that the escape circuit is also used in social in-

teraction in the establishment of dominance hierarchies (Issa et al., 1999;

Herberholz et al., 2001). This illustrates how biology re-uses the components

it has, which is instructive in itself. In artificial systems we do not know

how to effectively overload the same behaviour with different purposes.

There exists a wide gulf between our biological simulations and the high

level simulation described in chapter 2. The ultimate goal is to obtain an

understanding of what exactly gives biological systems their robust proper-

ties. With such knowledge we could create high level artificial systems with

biological like robustness.

The fundamental question of what biological systems possess that artificial

ones do not remains unanswered. The models presented in this thesis are in

the direction of the kind of work that we believe is necessary to uncover an

understanding of how biological systems function.

The crayfish escape circuit serves as a useful domain for simulations whose

aim is to unlock the secrets of how nervous systems function.
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APPENDIX A

Constants used in simulated

environment simulation

Constant Value Equations used

A 0.001 (2.1)

B 0.03 (2.1)

AP 1 (2.2)

L 40 (2.2)

AM 1 (2.3)

τ 15 (2.3)

TP 0.1 Figure 2.1b

Vpred 12 Section 2.2

Rpred 120 Section 2.2

Vprey 10 Section 2.2

Rprey 50 Section 2.2
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APPENDIX B

Constants used in compartmental

model simultations

B.1 Abstracted morphology LG coincidence de-

tection constants

Constant Value

Temperature: T 20◦C
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SIMULTATIONS

B.1.1 LG constants

Constant Symbol Value

Axial resistivity ra 60 Ωcm

Membrane resistivity rm 10000 Ωcm2

Membrane capicitance cm 1 µF.cm−2

Hodgkin-Huxley channel constants

Leak conductance gL 0.001 Scm−2

Leak reversal potential EL -80 mV

Maximum potassium conductance ḡK 0.036 Scm−2

Sodium reversal potential ENa 45 mV

Maximum sodium conductance ḡNa 0.120 Scm−2

Potassium reversal potential EK -62 mV

B.1.2 Afferent constants

Constant Symbol Value

Axial resistivity ra 60 Ωcm

Membrane resistivity rm 3000 Ωcm2

Membrane capicitance cm 1 µF.cm−2

Hodgkin-Huxley channel constants

Leak conductance gL 0.001 Scm−2

Leak reversal potential EL -70 mV

Maximum potassium conductance ḡK 0.036 Scm−2

Sodium reversal potential ENa 45 mV

Maximum sodium conductance ḡNa 0.120 Scm−2

Potassium reversal potential EK -62 mV
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B.2. ACCURATE MORPHOLOGY LG COINCIDENCE DETECTION
CONSTANTS

B.2 Accurate morphology LG coincidence detec-

tion constants

Constant Value

Temperature: T 20◦C

B.2.1 LG and afferent constants

Constant Symbol Value

Axial resistivity ra 60 Ωcm

Membrane resistivity rm 6000 Ωcm2

Membrane capicitance cm 1 µF.cm−2

Hodgkin-Huxley channel constants

Leak conductance gL 0.0001 Scm−2

Leak reversal potential EL -75 mV

Maximum potassium conductance ḡK 0.036 Scm−2

Sodium reversal potential ENa 45 mV

Maximum sodium conductance ḡNa 0.120 Scm−2

Potassium reversal potential EK -70 mV

B.3 Afferent network simultation constants

Constant Value

Temperature: T 20◦C
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B.3.1 LG and afferent constants

Constant Symbol Value

Axial resistivity ra 60 Ωcm

Membrane resistivity rm 6000 Ωcm2

Membrane capicitance cm 1 µF.cm−2

Hodgkin-Huxley channel constants

Leak conductance gL 0.0001 Scm−2

Leak reversal potential EL -75 mV

Maximum potassium conductance ḡK 0.036 Scm−2

Sodium reversal potential ENa 45 mV

Maximum sodium conductance ḡNa 0.120 Scm−2

Potassium reversal potential EK -70 mV

B.3.2 Rectifying junction constants

The following table shows the default constants used to govern the rectifying

junctions between the afferents and the LG (as per equation 3.1.)

Constant Value

gmax 0.33 µS

gmin 0.005 µS

V0 0 mV

A 0.15 mV−1

τopen 0.5 ms

τclose 0.5 ms
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Parts of the simulation source code

C.1 NEURON rectifying junction objects

The source for post-synaptic rectifying junction object.

TITLE Rectifying junction

COMMENT

Implementation of a rectifying gap junction as a point process.

The steady state conductance of the synapse is governed by this equation:

G_max - G_min

g(V_pre, V_post) = G_min + --------------------------------

1 + exp(-A(V_pre - V_post - V0))

where: V_pre and V_post are the pre and post synaptic potentials,

G_min and G_max represent the minimum and maximum conductances
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of the synapse and A and V0 are constants.

The instantaneous conductance of the synapse moves exponentially

towards this steady state value with the time constants tau_open

and tau_close.

rj2 should be used with an gapmir point process. rj2 is used at the

post synaptic section, and gapmir is used at the pre-synaptic section.

ENDCOMMENT

UNITS {

(mV) = (millivolt)

(nA) = (nanoamp)

(umho) = (micromho)

}

NEURON {

POINT_PROCESS rj2

NONSPECIFIC_CURRENT i

RANGE i, g, gmin, gmax, A, V0, tau_open, tau_close, g_steady, tau

POINTER vpre

}

PARAMETER {

gmin = 0.002 (umho)

gmax = 0.2 (umho)

A = 0.15 (/mV)

V0 = 0 (mV)

tau_open = 0.75 (ms)
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tau_close = 0.75 (ms)

v (mV)

vpre (mV)

}

ASSIGNED {

i (nA)

g_steady (umho)

g_diff (umho)

tau (ms)

}

STATE {

g (umho)

}

BREAKPOINT {

SOLVE states METHOD cnexp

i = -(g * (vpre - v))

}

INITIAL {

calcvars()

g = g_steady

}

DERIVATIVE states {

calcvars()

g’ = (g_steady - g) / tau
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}

PROCEDURE calcvars() {

g_steady = calcginst(vpre - v)

g_diff = g_steady - g

if (g_diff > 0.0) {

tau = tau_open

} else {

tau = tau_close

}

}

FUNCTION calcginst( vd (mV) ) (umho) {

calcginst = gmin + (gmax - gmin) / (1 + exp(-A * (vd - V0)))

}

The source for pre-synaptic rectifying junction object.

TITLE gapmir.mod reverse end of rectifying junction

COMMENT

This is the dummy end of a rectifying or gap junction. This model

contains only a current variable that is set by the other end of the

gap junction. Basically the idea is that the current at the

one end of the gap junction is the negative of the other so you only

need to calculate it once. The business end of the gap junction

assigns the current to this model.

See rj.mod

ENDCOMMENT
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NEURON {

POINT_PROCESS gapmir

NONSPECIFIC_CURRENT i

POINTER g, vpre

RANGE i

}

PARAMETER {

v (millivolt)

}

ASSIGNED {

i (nanoamp)

g (micromho)

vpre (millivolt)

}

BREAKPOINT {

i = -g * (vpre - v)

}
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APPENDIX D

Glossary

α-PSP: the PSP that the lateral giant receives that is caused by the direct

primary afferent connections.

abdomen: the tail of the crayfish.

acetylcholine (ACh): An amine that is used as a neurotransmitter at

many synapses, including neuromuscular junctions. In the LG es-

cape circuit, acetylcholine is used at the primary afferent to sensory

interneuron synapses and at the neuromuscular junctions.

action potential: a sharp rise and fall in the neuron’s membrane poten-

tial. Action potentials are mediated by the opening and closing of

sodium and potassium channels (see section 3.1.2.) Action potentials

propagate actively along axons and are an important mechanism for

passing signals to other cells. Action potentials are also called ‘spikes’.

active channel: channels in the membrane that are of variable conduc-

tance, usually voltage-dependent variable conductance.
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active membrane: a part of the membrane containing active channels.

The active channels cause inputs in a cell to be integrated nonlinearly.

Active membrane may amplify depolarisations and generate action

potentials.

afferent: an axon projecting inward to the contextual neural structure. For

example, the axons from mechanosensory neurons, projecting onto the

LG, are afferents.

agonistic behaviour: the behaviour of a crayfish confronting another cray-

fish, including threat displays, defensive posturing and fighting.

animat: an artificial animal, either simulated by a computer or embod-

ied in a robot, which must survive and adapt in progressively more

challenging environments (Cliff et al., 1994).

anterior: the direction towards the rostrum (front) of the animal. Equiva-

lent to rostral. (See figure 3.8.)

antidromic: a direction of synaptic transmission where transmission is

from the post-synaptic terminal to the pre-synaptic terminal. An-

tidromic transmission is against the usual flow of synaptic transmis-

sion.

axon: a neurite specialised to conduct action potentials away from the neu-

ron’s cell body to the target cells of the neuron.

berry: A female carrying eggs on her abdomen, encased by the swimmerets,

is said to be ‘in berry.’

β-PSP: the PSP in the lateral giant that is caused by the interneurons.

carapace: the hard exterior shell of the crayfish that encases the head and

thorax. (See figure 3.7.)
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caudal: the direction towards the rear of the animal (down the spinal cord.)

Equivalent to posterior. (See figure 3.8.)

cell: in the context of this thesis, a cell means ‘neuron’.

chemical synapse: a connection between neurons where the method of

transmission is mediated by the release of neurotransmitters. Neu-

rotransmitters are released at the pre-synaptic terminal and cause a

response (for example the opening of channels) at the post-synaptic

cell.

CNS: Central nervous system. The CNS encapsulates the brain and spinal

cord and all connecting nerve cells.

cheliped: a crayfish’s claw. (See figure 3.7.)

channel: a pore in the cell membrane, which allows the passage of ions.

Channels are often permeable only to specific kinds of ions.

connexin: the proteins from which a connexon is composed.

connexon: a channel through the membrane of two neurons at a electrical

synapses, allowing ions to pass from one cell into another. A connexon

is composed of two hemi-channels.

contralateral: in anatomy, being on the opposite side (of the mid-line.)

crayfish: a fresh water dwelling decapod closely related to the lobster.

cytosol: the fluid portion of a cell. Cytosol is a continuous aqueous solution

that is conductive to electricity.

cytoplasm: everything that is contained within the confines of the cell

membrane, excluding the nucleus. It consists of a continuous aque-

ous solution (cytosol) and the organelles. Most of the cell’s chemical

activity takes place in the cytoplasm.
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depolarise: a rise in the membrane potential from its resting potential.

dendrite: a neurite specialised to receive inputs from other neurons (Bear

et al., 1996).

detritus: decomposing plant material.

distal: the direction along a neurite away from the cell body.

disynaptic: a neural pathway that progresses through two synapses.

efferent: an axon projecting outward (from the contextual neural struc-

ture.)

electrical synapse: a direct electrical connection between two cells. Elec-

trical synapses may be ohmic or rectifying.

electrogenic membrane: a membrane that actively contributes to an elec-

tric current that it is conducting.

electrophysiology: the study of how living organisms function with regard

to electric phenomena.

equilibrium potential:

EPSP: Excitatory post-synaptic potential.

exoskeleton: a hard encasement on the surface of an animal such as an

insect or crustecean.

fire: the action of a cell generating an action potential (or spike.)

GABA: gamma-aminobutyric acid. An inhibitory neurotransmitter used

in the nervous systems of many animals, including crayfish.

ganglion: a cluster of neurons.
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gap junction: an electrical synapse. Gap junctions may be ohmic or rec-

tifying.

giant: a very large neuronal cell.

GMS: giant motor synapse. A giant synapse in the crayfish lateral giant

(LG) escape circuit that connects the LG to motor giant (MoG). This

is an electrical synapse has been shown to be rectifying.

hemi-channel: a channel in an electrical synapse in one of the two cells

being connected.

hemi-ganglion: half of a ganglion. A ganglion is usually divided into sym-

metrical halves: one on each side of the body.

homologue: when referring to neurons, describes the neuron that performs

the same function but is located on the contralateral side of the animal.

hyperpolarise: to cause a fall in the membrane potential.

integrating segment: the spike initiation zone (see spike initiation zone.)

interneuron: a neuron that is neither a primary afferent or a motorneuron.

If one thinks of the nervous system as receiving input from the primary

afferents and interacting with the environment through motorneurons,

the interneurons are all the cells in between responsible for processing

and storing the information. Most neurons in the nervous system are

interneurons.

ipsilateral: in anatomy, being on the same side (of the mid-line.)

IPSP: Inhibitory post-synaptic potential.

lateral: a direction meaning away from the mid-line. (See figure 3.8.)
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lateral giants: A group of giant connected neurons located in the crayfish

abdomen. The lateral giants are command neurons. When the lateral

giants are spiked an escape tail-flip propelling the crayfish forwards is

initiated. (Refer to section 3.3.1.)

LG: lateral giants. See lateral giants.

mechanosensory neuron: A neuron attached to a sensory hair, carrying

touch signals. In the crayfish tailfan, mechanosensory hairs detect

water movement and touch.

medial: a direction meaning towards the mid-line. (See figure 3.8.)

membrane: the barrier that encloses a cell.

membrane time constant:

membrane potential: the voltage difference between inside of the cell and

outside of the cell.

mid-line: an imaginary plane, running from the front to the rear of the

crayfish, that dissects the crayfish into two mirroring halves.

MG: Medial giant. A command neuron in the crayfish escape circuit. The

MG responds to stimulus to the front of the animal and effects tail-

flip propelling the crayfish backwards if the MG is fired. (Refer to

section 3.3.1.)

morphology: the anatomical shape of a neuron.

monosynaptic: a neural pathway between two neurons that are directly

connected by a synapse.

motorneuron: a neuron that is connected to and drives a muscle cell.

neurite: any thin tube that extends from the cell body. A neurite can be

either a dendrite or an axon.
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neurotransmitter: a chemical that used in synaptic transmission between

cells. At chemical synapses, it is released at the pre-synaptic terminal

and acts on receptor sites at the post-synaptic terminal.

nerve: In the context of the crayfish tailfan, a nerve is a group of primary

afferent axons originating from a section of the tailfan.

non-giant circuit: the neural circuits in crayfish that are responsible for

generating tail-flips that are not LG or MG tail-flips. Non-giant tail-

flips

nucleus: a roughly spherical organelle within a cell containing the chromo-

somes, which contain the cell’s DNA.

octopamine: a neurotransmitter.

ohmic gap junction: an electrical synapse that is non-rectifying.

organelle: a structure within the cell which is enclosed within its own mem-

brane. Organelles perform a specific functions within the cell.

orthodromic: a direction of synaptic transmission where transmission is

from the pre-synaptic terminal to the post-synaptic terminal. (The

usual direction of synaptic transmission.)

passive membrane: a membrane that passively conducts an electric cur-

rent. In classical models of neurons, dendrites have passive mem-

branes.

pereiopods: the four pairs of thoracic limbs that serve as crayfish’s walking

legs. (See figure 3.7.)

phasic: in phase. Typically used in the context of meaning highly synchro-

nised inputs.
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pleopods: small appendages on the crayfish’s abdomen that assist in swim-

ming. Also called swimmernets. (See figure 3.7.)

polysynaptic: a neural pathway that progresses through multiple synapses.

posterior: the direction towards the rear of the animal. (See figure 3.8.)

post-synaptic: refers to the neuron that receives synaptic input.

post-synaptic terminal: the part of the cell membrane in the post-synaptic

neuron where synaptic transmission takes place.

pre-synaptic: refers to the neuron that transmits a signal to a target neu-

ron (i.e. the post-synaptic cell.)

pre-synaptic terminal: the part of the cell membrane in the pre-synaptic

neuron where synaptic transmission takes place.

primary afferent: a sensory cell.

proxal: the direction along a neurite towards the cell body.

PSP: post-synaptic potential. The change in depolarisation at the post

synaptic cell. Usually refers to an EPSP.

receptor: a specialised protein that detects chemical signals, such as neu-

rotransmitters, and initiates a cellular response (Bear et al., 1996).

rectifying gap junction: an electrical synapse that has variable conduc-

tance that is a function of the voltage difference between the pre-

synaptic cell and the post-synaptic cell. There are rectifying gap junc-

tions on the connections from the primary afferents and the interneu-

rons onto the lateral giant.

recurrent inhibition: inhibition applied to the lateral giant escape circuit

after an escape tail-flip has been invoked to prevent repeated reacti-

vation of the lateral giant circuit.
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resting potential: the potential a neuron’s membrane converges to if it

receives no stimulation. A typical resting potential of a neuron is

around 65-70 millivolts.

rostral: the direction towards the rostrum (front) of the crayfish. Equiva-

lent to anterior. (See figure 3.8.)

rostrum: a sharp spine extending from the front of the crayfish’s carapace.

serotonin (5-HT): an amine neurotransmitter that is often used in mod-

ulatory effects.

soma: the cell body of the neuron, which contains the nucleus (refer to

figure 3.1).

spike: an action potential (see action potential).

spike initiation zone: the part of the

spiking neuron: a neuron which is able to generate action potentials (also

know as spikes.)

spiking threshold: the minimum size of stimulus that needs to be applied

to a neuron to cause it to spike.

swimmernets: small appendages on the crayfish’s abdomen that assist in

swimming. Also called pleopods. (See figure 3.7.)

synapse: A connection between neurons, by which an excitation is conveyed

from one to the other. Synapses may be chemical or electrical.

telson: the tailfan at the end of the crayfish abdomen. (See figure 3.7.)

thorax: the middle region of the body of an arthropod between the head

and the abdomen.

tonic: continuous or long term.
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tonic inhibition: distally applied inhibition to the lateral giant, mediated

by a GABA channel from rostral ganglia, that has the effect of raising

the lateral giant threshold during feeding and restraint.
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