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Abstract

This paper studies fitness inheritance as an efficiency enhancement technique for genetic and
evolutionary algorithms. Convergence and population sizing models are derived and compared
with experimental results. These models are optimized for greatest speed-up and the optimal
inheritance proportion to obtain such a speed-up is derived. Results also show that when
the inheritance effects are considered in the population sizing model, the number of function
evaluations are reduced by 20% with the use of fitness inheritance. Results indicate that for a
fixed population size, the number of function evaluations can be reduced by 70% using a simple
fitness inheritance technique.

1 Introduction

A key challenge in genetic and evolutionary computation (GEC) research is the design of competent
genetic algorithms (GAs). By competent we mean GAs that can solve hard problems, quickly,
reliably, and accurately, and much progress has been made along these lines (Goldberg, 1999). In
essence competent GA design takes problems that were intractable with first generation GAs and
renders them tractable, oftentimes requiring only a subquadratic number of fitness evaluations. But
in large scale problems, the task of computing even a subquadratic number of function evaluations
can be daunting. This is especially the case if the fitness evaluation is a complex simulation, model,
or computation. This places a premium on a variety of efficiency enhancement techniques. In
this paper, one such efficiency enhancement technique called fitness inheritance is modeled and
optimized for greatest speedup. In fitness inheritance, an offspring inherits a fitness value from its
parents rather than through function evaluation.
The objective of this study therefore is to model fitness inheritance and to employ this model

in predicting the convergence time and population size required for the successful design of a GA.
We start by modeling fitness inheritance and deriving the convergence time and population sizing
models. Subsequently, we derive an optimal proportion of inheritance and comment on the actual
speed-up obtained through inheritance. The speed-up that could be obtained for a fixed population
sizing is also discussed.

2 Literature Review

Smith, Dike, and Stegmann (1995) proposed fitness inheritance in GAs. They proposed two ways
of inheriting fitness, one by taking the average fitness and the other by taking weighted average of
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the fitness of the two parents. They showed some theoretical justification for their approach. Their
results indicated that GAs with fitness inheritance outperformed those without inheritance. How-
ever, they did not investigate the effect of fitness inheritance on convergence time and population
sizing. Also, the questions as to how many children should have inherited fitness, and how much
speed-up one can get remained unanswered. Though the study by Smith, Dike, and Stegmann
(1995) showed very encouraging results, unfortunately there have been very few studies on fitness
inheritance. Zheng, Julstrom, and Cheng (1997) used fitness inheritance for the design of vector
quantization codebooks.

3 Modeling Fitness Inheritance

In the proposed approach, a proportion, pi, of randomly selected individuals, receive inherited
fitness and the rest are assigned the true (evaluated) fitness. In the remainder of this paper, actual
fitness refers to the fitness that a individual would have had if it was evaluated, i.e, if its fitness was
not inherited. In this section, we assume that the inherited fitness is taken to be the average of the
building block (BB) fitness. We assume this to develop a theory behind fitness inheritance and in
the implementation the inherited fitness is taken to be the average fitness of the two parents. The
building block fitness is taken to be the average fitness of all the individuals in the population that
possess the schemata under consideration. Also, in the remainder of the paper, unless otherwise
mentioned, all the experimental results are with crossover probability of 1.0.
The model derived is applicable to uniformly scaled problems of fixed string length and known

BB size. Specifically OneMax (counting of bits) is employed but the model can be extended to
other problems in a straightforward manner. We further assume that the actual fitness distribution,
F, is Gaussian with mean µf,t and variance σ

2
f,t.

F = N
(

µf,t, σ
2
f,t

)

,

and that the distribution of fitness with inheritance, F′ is Gaussian with mean µf ′,t and variance
σ2

f ′,t.

F ′ = N
(

µf ′,t, σ
2
f ′,t

)

.

The above assumptions are justified since crossover has a normalizing effect. We can write

µf ′,t = µf,t(1− pi) + µi,tpi, (1)

σ2
f ′,t = (1− pi)σ

2
f,t + piσ

2
i,t, (2)

where µi,t, and σ
2
i,t are the mean and variance of fitness respectivley, of individuals whose fitness is

inherited. Since the inherited fitness, fi, is equal to the average of BB fitness we can write

fi =
1

`

∑̀

j=1

f̂ (BBj) , (3)

where, ` is the string length, and f̂ (BBj) is the estimated BB fitness which can be written

f̂ (BBj) = f (BBj) + (`− 1)p, (4)

where, f (BBj) is the actual BB fitness, p is the proportion of correct BBs, and the term (`− 1)p
incorporates the noise arising from other BBs. Using the above relation, fi for uniformly scaled
problems can be written as

fi =
f

`
+ (`− 1)p. (5)

2



The mean inherited fitness, µi,t is given by

µi,t =
1

n

n
∑

j=1

fi,j ,

=
1

n

n
∑

j=1

[

fj

`
+ (`− 1)p

]

,

=
1

`





1

n

n
∑

j=1

fj



+ (`− 1)p,

= `p = µf,t, (6)

where n is the population size. Using the above relation in eqn. (1), we get

µf ′,t = µf,t. (7)

The inherited fitness variance, σ2
i,t can be derived as follows,

σ2
i,t =

1

n

n
∑

j=1

f2
i,j − (`p)2,

=
1

n

n
∑

j=1

[

fj

`
+ (`− 1)p

]2

− (`p)2,

=
p(1− p)

`
. (8)

Using the above relation in eqn. (2) we get,

σ2
f ′,t = (1− pi)σ

2
f,t + pi

p(1− p)
`

≈ (1− pi)σ
2
f,t (9)

Using the notion of selection intensity, I (Bulmer, 1980), we can write the expected average fitness
with inheritance after selection as

µf ′,t+1 = µf ′,t + Iσf ′,t,

= µf ′,t + I
√

1− piσf,t. (10)

Since both the actual fitness and inherited fitness distributions are normally distributed, bivariate
normal distribution can be used to obtain the expected actual fitness value of F at generation t+1,
given µf ′,t+1,

E(F/µf ′,,t+1) = µf,t+1 = µf,t +
σF,F ′

σ2
f ′,t

(µf ′,t+1 − µf ′,t).

It can be easily seen that the covariance, σF,F ′ is (1− pi)σ
2
f . Using this relation and eqn. (10),

µf,t+1 = µf,t + (µf ′,t + I
√

1− piσf,t − µf ′,t),

= µf,t + I
√

1− piσf,t. (11)

We now proceed to derive the convergence and population sizing models.
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Figure 1: Verification of Proportion of correct BBs predicted by eqn. (13) with empirical results
plotted as a function of generation number for different values of inheritance proportion. The exper-
imental results are average over 50 runs. The discrepancy between the theoretical and experimental
results are due to hitch-hiking and can be eliminated by ensuring a good mixing of BBs.

3.1 Time to Convergence

In this section we derive convergence model for the OneMax problem with fitness inheritance. For
OneMax domain, we can write

µf,t = `pt, σ2
f,t = `pt(1− pt),

where, ` is the string length, and pt is the proportion of correct alleles in the population at generation
t. Since the initial population is generated with uniform distribution, p0 = 0.5. Using the above
relation in eqn. (11),

pt+1 = pt + I

√

(1− pi)

`

√

pt(1− pt),

pt+1 − pt = I

√

(1− pi)

`

√

pt(1− pt).

Approximating the above equation as a differential equation yields

dp

dt
=
I
√
1− pi√
`

√

p(1− p). (12)

Integrating the above equation and using the initial condition p|t=0 = 0.5 we get,

pt = sin
2

(

π

4
+
I
√

(1− pi)t

2
√
`

)

. (13)

The above equation is compared to the experimental results in fig. 1 at different inheritance
proportions pi. The proposed convergence model slightly overestimates the proportion of correct
BBs for GAs with tournament selection and uniform crossover. This discrepancy between the
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Figure 2: Convergence time for a 100-bit OneMax problem for different proportion of inheritance
predicted by eqn. (14) compared to experimental results. The empirical results are averaged over
50 runs.

theoretical and empirical results can be eliminated by employing recombination procedures than
ensure that the BBs are well mixed (Thierens, 1995).
We can derive an equation for convergence time, tconv, by equating pt = 1, and inverting eqn.

(13),

tconv =
π

2I

√

`

(1− pi)
. (14)

If pi is taken as 0 then the above relation reduces to π
√
`/(2I) which agrees with existing con-

vergence time models (Muhlenbein & Schlierkamp-Voosen, 1993; Miller & Goldberg, 1996a; Miller
& Goldberg, 1996b). The convergence time observed experimentally is compared to the above
prediction for a 100-bit OneMax problem in fig. 2. Again the discrepancy between the empirical
and analytical results occurs due to hitch-hiking and can be reduced by ensuring a good mixing of
building blocks.

3.2 Population Sizing

It is well known that population size is a major determinant of the quality of the solution obtained.
Therefore it is essential to appropriately size the population to incorporate the effects of fitness
inheritance. Goldberg, Deb, and Clark (1992) proposed population sizing models for different
selection schemes. Their model is based on deciding correctly between the best and the second
best BBs in the same partition. They incorporated noise arising from other partitions into their
model. However, they assumed that if wrong BBs were chosen in the first generation, the GAs
would be unable to recover from the error. Harik, Cantu-Paz, Goldberg, and Miller (1997) refined
the above model by incorporating cumulative effects of decision making over time rather than in
first generation only. They modeled the decision making between the best and second best BBs in
a partition as a gambler’s ruin problem. This model is based on the assumption that the selection
process used is tournament selection without replacement. Miller (Miller, 1997) extended this
model to predict population sizing in the presence of external noise. The population sizing model
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Figure 3: Verification of the population sizing model (eqn. 16) for various inheritance propor-
tions with empirical results. Experimental results depict the population size required for optimal
convergence with failure rate of 0.001 and are averaged over 50 runs.

derived by Miller is reproduced below.

n = −2
k−1 log(ψ)

√
π

dmin

√

σ2
f ′ ,

where n is the population size, k is the BB length, ψ is the failure rate, dmin is the distance between
the best BB and the second best BB (Goldberg, Deb, & Clark, 1992), and σ2

f ′ is the variance of

the noisy fitness function. Not only σ2
f ′ , but also dmin depends on pi. For OneMax problems dmin

was empirically determined to be

dmin = (1− p3
i )
√

1− pi. (15)

The population sizing equation can now be written as

n = −2
k−1 log(ψ)

√
π

(1− p3
i )

√

σ2
f . (16)

The above population sizing is compared to the results obtained for a 100-bit OneMax problem
in fig. 3. From the plot we can easily see that our population sizing model fits the experimental
result accurately. Using the convergence time and population sizing model derived in this sec-
tion, we evaluate the inheritance proportion that requires least number of function evaluations (or
equivalently, yields greatest speed-up) in the next section.

4 Optimal Inheritance Proportion

We can intuit that given a problem there should be a value (or a range) of inheritance proportions
that are more efficient than the others. Too low a pi or too high a pi would not reduce the number
of function evaluations. Our aim is to determine the inheritance proportion such that the total
number of function evaluation required is minimized. Here we assume that the cost of inheritance
is insignificant. This is justified by the fact that inherited fitness is just an average of the fitness
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Figure 4: Optimal inheritance proportion, p∗i as a function of string length ` obtained by numerically
solving eqn. (19). p∗i is independent of ` for moderate to large values of `.

values of the two parents, a computationally trivial task when compared to the usual function
evaluation. We reiterate that fitness inheritance is needed in cases where function evaluation takes
a long time (eg., a large real-world problem), or when only some individuals can be evaluated (eg,
interactive GAs). Total number of function evaluations required is given by

Nfe = n [(tconv − 1)(1− pi) + 1] ,

= n [tconv(1− pi) + pi] . (17)

From previous sections, for a given problem,

tconv =
c2√
1− pi,

n =
c3

1− p3
i ,

where c2 and c3 are π
√
`/(2I) and −2k−1 log(ψ)

√

πσ2
f respectively. Using the above equations, the

total number of function evaluations is given by,

Nfe =
c3

1− p3
i

[

c2
√

1− pi + pi

]

. (18)

The optimal proportion of inheritance is then given by solving,

∂Nfe

∂pi
= 0,

3p2
i

[

c2(1− pi) + pi

√

1− pi

]

+

(1− p3
i )
[

−0.5c2 +
√

1− pi

]

= 0. (19)

The above equation can be solved for two asymptotic cases: (1) the string length, ` = 0, then
c2 = 0, and the optimal evaluates to p

∗
i = 0. (2) The problem is of infinite string length, then
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Figure 5: Total number of function evaluations predicted by eqn. (17) is compared to empirical
results as a function of inheritance proportion. The experimental results depict the total number of
function evaluations required for optimal convergence of a 100-bit OneMax problem with a failure
rate of 0.0001. The empirical results are averaged over 50 runs.

c2 =∞. For this case eqn. (19) reduces to

3p2
i (1− pi)−

1

2

(

1− p3
i

)

= 0, (20)

p2
i −

1

5
pi −

1

5
= 0. (21)

The above quadratic equation can be easily solved, and the optimal proportion for this case comes
out to be p∗i = 0.558. For other values of string length, eqn. (19) cannot be solved analytically,
and hence it has been solved numerically for different problem sizes. The optimal proportion of
inheritance obtained by solving the above equation numerically is plotted as a function of string
length is shown in fig. 4. We can see that for moderate to large sized problems the optimal
proportion of inheritance, p∗i lies between 0.54-0.558, i.e.,

0.54 ≤ p∗i < 0.558 (22)

The above result (eqn. 22) suggests that pi is independent of problem size for problems of moderate
to large size. The predicted number of function evaluations is compared with experimental results
for a 100-bit OneMax in fig. 5, for a 40-bit trap function with BB size 4 with a crossover probability
of 0.9 in fig. 6(a), and for a 40-bit trap function with BB size 4 with tournament size of 8 and
crossover probability of 1 in fig. 6(b). Even though our model was derived for OneMax problems,
it holds even for other problems with different parameter settings as shown by the plots. This
exemplifies the robustness and usefulness of the proposed model. Another point to be noted is that
the optimal inheritance proportion is between 0.54-0.558 in all cases.
Another interesting fact to note is that the number of function evaluations with inheritance is

only around 20% less than that without inheritance. In other words the speed-up defined as the
ratio of number of function evaluations with pi = 0 to the number of function evaluations at optimal
pi is around 1.2. This implies that we get a moderate advantage by using fitness inheritance. The
existence of an optimal pi and the moderate value of speed-up are in contrast with the earlier
studies on inheritance. A detailed discussion on this is presented in the next section.
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Figure 6: Total number of function evaluations predicted by eqn. (17) is compared to empirical
results as a function of inheritance proportion. The experimental results depict the total number of
function evaluations required for optimal convergence of a 40-bit trap function with a BB size of 4,
and a failure rate of 0.0001. The empirical results are averaged over 50 runs. Crossover probability
is (a) 1.0, and (b) 0.8. The results indicate that the optimal proportion of inheritance given by
eqn. (22) is in fact approximately valid for other uniformly scaled problems with BB size greater
than one and different GA parameter values.

5 Apparent Speed-up

In the previous section we presented the speed-up we can obtain if we choose the population size
appropriately. This is the speed-up that we can obtain from a GA algorithmist point of view. A
GA practitioner, unlike a GA algorithmist, views GAs as means to reach an end. He usually fixes
the population size and then opts for fitness inheritance. From a GA practitioner’s point of view,
the speed-up obtained through fitness inheritance can be much higher. We call this speed-up, that
is obtained through a fixed population size as apparent speed-up.
Function evaluations taken for different population sizes plotted as a function of pi for a 100-bit

OneMax problem is shown in fig. 7. The plot indicates only those points for which the population
converged to the optimal solution in all 50 runs. The apparent optimal inheritance proportion,
papp

i , is given by the inverse of the population sizing model, eqn. (16).

papp
i = 3

√

1− κ

n
, (23)

where κ is a constant dependent on the problem type, and the solution quality desired, and is
related by κ = −2k−1 log(ψ)

√
π. There are two asymptotic cases for the above result. One, when

the population size is less than κ, then fitness inheritance does not yield any speed-up and in fact
can result in premature convergence. The other case is when the population size is very large when
compared to κ. In this case a very high inheritance proportion can be used and high speedup values
can be obtained.
The apparent optimal inheritance proportion predicted by eqn. (23) is compared to experimen-

tal results for a 100-bit OneMax in fig. 8. The value κ for this problem is 81.63. The experimental
results indicate the inheritance proportion that required lowest number of average function evalu-
ations to converge to optimal solution in all 50 runs. From fig. 7, it can be seen that if we choose
an arbitrarily high population size, say 300, then fitness inheritance can yield a speed-up of around
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Figure 7: Total number of function evaluations for various proportion of inheritance at different
population sizes. The experimental results are average of 50 runs and are compared to the results
predicted using eqn. (17). Experimental results include only those points for which all 50 runs
converged to the optimal solutions.
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Figure 8: Apparent optimal inheritance proportion, papp
i , predicted by eqn. (23) compared to

empirical results. The empirical results depict the inheritance proportion that requires minimum
number of function evaluations to converge to the optimal solution for a 100-bit OneMax problem.
The experimental results are averaged over 50 runs. The value of κ is 81.63.
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3.3. If we have a still higher population size, then the speed-up will be higher. This result agrees
with that obtained by Smith, Dike, and Stegmann (1995), in which they had considered a 64 bit
OneMax problem and taken the population size of 500. A 100-bit OneMax without inheritance
requires a population size of about 80 which implies that a 64 bit problem would need a still lower
population size. The reason why Smith, Dike, and Stegmann (1995) did not get an optimal pro-
portion of inheritance was due to the fact that they took a very high population size and did not
compare the minimum population size required for different proportions of inheritance. In other
words, they did not consider the effect of fitness inheritance on population sizing.

6 Future Work

In the present study we have analyzed fitness inheritance for OneMax problems and the proposed
model can be extended to other problems (eg., non-uniformly scaled problems). Further investiga-
tion is required for determining analytically the signal to noise-ratio used in the population sizing
model. The inheritance procedure used in the present study is a simple one, and a study on more
complex inheritance techniques still remains to be done.

7 Conclusions

In this paper, we have developed a theoretical basis for fitness inheritance, and derived models for
convergence time and population sizing. This model has been analyzed and optimized for greatest
speed-up and that yields savings on 20% in terms of number of function evaluations. Though by
itself this speed-up value seems to be modest, it can be coupled with parallelism, time continuation,
and other evaluation relaxation schemes. In such a scenario the effective speed-up obtained will
be a product of all individual speed-ups and even a speed up of 1.2 can be important. We have
been careful to include the effects of fitness inheritance on quality-duration theory in predicting the
above results. However, GA practitioners usually fix the population size and then try inheritance.
Under these conditions apparent speed-up is much greater (as high as 3.3), a result that agrees
with the earlier empirical study of Smith, Dike, and Stegmann (1995).
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