
Fast and Efficient Compression of Floating-Point Data

Peter Lindstrom
LLNL

Martin Isenburg
UC Berkeley

Abstract

Large scale scientific simulation codes typically run on a clus-
ter of CPUs that write/read time steps to/from a single file
system. As data sets are constantly growing in size, this in-
creasingly leads to I/O bottlenecks. When the rate at which
data is produced exceeds the available I/O bandwidth, the
simulation stalls and the CPUs are idle. Data compression
can alleviate this problem by using some CPU cycles to re-
duce the amount of data that needs to be transfered. Most
compression schemes, however, are designed to operate of-
fline and try to maximize compression, not online through-
put. Furthermore, they often require quantizing floating-
point values onto a uniform integer grid, which disqualifies
their use in applications where exact values must be retained.

We propose a simple and robust scheme for lossless, on-
line compression of floating-point data that transparently
integrates into the I/O of a large scale simulation cluster.
A plug-in scheme for data-dependent prediction makes our
scheme applicable to a wide variety of data sets used in visu-
alization, such as unstructured meshes, point sets, images,
and voxel grids. We achieve state-of-the-art compression
rates and compression speeds, the latter in part due to an
improved entropy coder. We demonstrate that this signif-
icantly accelerates I/O throughput in real simulation runs.
Unlike previous schemes, our method also adapts well to
variable-precision floating-point and integer data.

CR Categories: E.4 [Coding and Information Theory]:
Data compaction and compression

Keywords: high throughput, lossless compression, file com-
paction for I/O efficiency, fast entropy coding, range coder,
predictive coding, large scale simulation and visualization.

1 Introduction

Data sets from scientific simulation and scanning devices are
growing in size at an exponential rate, placing great demands
on memory and storage availability. Storing such data un-
compressed results in large files that are slow to read from
and write to disk, often causing I/O bottlenecks in simula-
tion, data processing, and visualization that stall the appli-
cation. With disk performance lagging increasingly behind
the frequent doubling in CPU speed, this problem is ex-
pected to become even more urgent over the coming years.

A large scale simulation may run on a cluster of hundreds
to thousands of supercomputer nodes that write the results
of each time step to a shared file system for subsequent anal-
ysis and visualization [24]. Typically this involves storing
large amounts of single- or double-precision floating-point
numbers that represent one or more variables of simulation
state per vertex/cell. When the CPU speed with which the
simulation can be updated exceeds the available I/O band-
width, the simulation stalls and the CPUs are idle.

Data compression strategies have the potential to combat
this problem. By making use of excess CPU cycles, data can
be compressed and uncompressed to reduce the number of
bytes that need to be transferred between memory and disk

or across file systems, effectively boosting I/O performance
at little or no cost while reducing storage requirements.

The visualization community has developed compression
schemes for unstructured data such as point sets [6, 3], tri-
angular [27, 18], polygonal [19, 13], tetrahedral [11, 2], and
hexahedral [14] meshes and for structured data such as im-
ages and voxel grids [8, 12]. However, most of these schemes
are designed to maximize compression rate rather than data
throughput. They are commonly applied as an offline pro-
cess after the raw, uncompressed data has already been
stored on disk. In order to maximize effective throughput,
one must consider how to best balance compression speed
and available I/O bandwidth, and at the same time support
sufficiently efficient decompression. While higher compres-
sion rates improve effective bandwidth, this gain often comes
at the expense of a slow and complex coding scheme.

Furthermore, prior methods often expect that vertex po-
sitions and field values can be quantized onto a uniform in-
teger grid for efficient (but lossy) predictive compression.
This modifies the original data as the non-linear precision of
floating-point numbers cannot be preserved. In many science
and engineering applications, however, exact values must be
retained, e.g. for checkpoint dumps of simulation state and
for accurate analysis and computation of derived quantities
such as magnitudes, curls, fluxes, critical points, etc. The
use of uniform quantization is also prohibited for data sets
that exploit the non-linearity of the floating-point represen-
tation to allocate more precision to important features by
specifically aligning them with the origin. Quantization can
also change geometric relationships in the data (e.g. triangle
orientation, Delaunay properties). Finally, scientists are of-
ten particular about their data and will simply refrain from
using a compression scheme that modifies their data.

To address these needs, we propose a novel and surpris-
ingly simple scheme for fast, lossless, online compression of
floating-point data using predictive coding. It provides a
well balanced trade-off between computation speed and data
reduction and can be integrated almost transparently with
standard I/O. Our scheme makes no assumption on the na-
ture of data to be compressed, but relies on a plug-in scheme
for computing data-dependent predictions. It is hence ap-
plicable to a wide variety of data sets used in visualization,
such as unstructured meshes, point sets, images, and voxel
grids. In contrast to many previous schemes, our method
naturally extends to compression of adaptively quantized
floating-point values and to coding of integer data.

We present results of lossless and lossy floating-point com-
pression for scalar values of structured 2D and 3D grids,
fields defined over point sets, and for geometry coding of
unstructured meshes. We compare our results with recent
floating-point compression schemes to show that we achieve
both state-of-the-art compression rates and speeds. The
high compression speed can be attributed in part to the use
of an optimized, high-speed entropy coder, described here.
As a result, our compressor is able to produce substantial
increases in effective I/O rate for data-heavy applications
such as large scale scientific simulations.

2 Related Work

This paper is primarily concerned with lossless floating-point
compression and we now discuss prior work in this area.
While our scheme extends to lossy compression of quantized
float-point data and integer coding, covering the extensive
work done in these areas is beyond the scope of this paper.

One approach to lossless float compression is to expand
the non-linear floating-point representation to a wider lin-
ear integer representation, and to use standard compres-
sion schemes for uniformly quantized data. Usevitch [29]
proposes expanding single-precision floats to large, 278-
bit integers scaled by a least common exponent for cod-
ing JPEG2000 floating-point images. Similarly, Trott et
al. [28] suggest expanding single-precision floats to common-
exponent double-precision numbers whose 52-bit mantissas
are assumed to be sufficient for representing the range of
the single-precision data. Liebchen et al. [20] take a hy-
brid approach by choosing a suitable quantization level for
MPEG audio data, applying integer compression on the
quantized data, and compressing floating-point quantization
residuals using Lempel-Ziv coding. The audio compressor by
Ghido [10] makes a similar analysis pass over the data to dis-
cover its range and intrinsic precision to eliminate redundant
bits, which due to limited sampling accuracy often occur in
audio data. Gamito and Dias [9] propose a lossless wavelet
coding scheme for use in JPEG2000 that separates sign, ex-
ponent, and mantissa, and that identifies regions of constant
sign and exponent for efficient mantissa compression.

2.1 Streaming Floating-Point Compression

The latter three approaches [20, 10, 9] are not applicable in
a streaming I/O setting as they require multiple passes over
the data. Streaming compression, where data is compressed
as it is written, avoids excessive delay due to buffering, is
memory efficient and therefore scalable, and integrates eas-
ily with applications that produce (and consume) streams
of data. Recent techniques for streaming compression of ge-
ometric data [12, 17, 15] compress vertex coordinates and
field values using predictive coding. To operate losslessly on
floating-point data these schemes need compatible predic-
tive coders. We here review three floating-point compression
schemes that are suitable for streaming compression. Later,
we will compare our new compressor with these methods.

RKB2006 [22] The scheme by Ratanaworabhan et al.
is noteworthy for its generality and independence of a geo-
metric structure. This method compresses any linear stream
of data by constructing a hash key from the last few sam-
ple differences in an attempt to find recurring patterns in
the data. This allows geometry-free prediction, which works
well if the data is traversed in a coherent manner so as to
expose patterns, but it is not clear how well this scheme gen-
eralizes to coding of unstructured data (e.g. meshes) that
has no natural traversal order. Prediction residuals are com-
puted via an exclusive or operation, and are encoded using a
fixed-width leading-zero count followed by raw transmission
of all trailing bits, which makes for efficient I/O.

EFF2000 [7] The main difference in the method by En-
gelson et al. lies in the predictor used. Instead of hashing,
values in time-varying data are predicted using 1D polyno-
mial extrapolation of corresponding values in previous time
steps. As in [22], residuals are computed by treating the
binary representation of actual and predicted floats as in-
tegers. Two’s complement integer subtraction results in a
compressible run of leading zeros or ones. The drawback of
both techniques is that they can not exploit the non-uniform

distribution of leading bit counts, and that they are wasteful
when the number of precision bits is not a power of two.

ILS2005 [16] Our previous scheme for single-precision
floating-point compression tends to give the best compres-
sion rates compared to other schemes at the expense of
higher computational complexity. The idea is to sepa-
rate and compress in sequence the difference in sign, expo-
nent, and mantissa between a float and its prediction using
context-based arithmetic coding [31]. A successful predic-
tion of the exponent, for example, is used as context for
coding of mantissa differences. While effective at eliminating
redundancy in the data, the implementation is riddled with
conditionals and overly complicated bit manipulations, re-
quires entropy coding of 3–5 symbols per float (even though
many of these symbols are incompressible), uses up to 500
different contexts, and maintains probabilities for as many
as 20,000 distinct symbols. Moreover, extending this scheme
to double- and variable-precision floating-point numbers and
integer data would require careful design decisions.

By contrast, the new algorithm presented here is more
general in the sense that it compresses floating-point and in-
teger values of any precision, and is also much simpler in the
sense that it requires fewer operations per compressed value
and fewer lines of code. As a result it is significantly faster
and more memory efficient while yielding comparable com-
pression rates. We now describe our method in detail and
will return to comparisons with prior methods in Section 5.

3 Floating-Point Compression Algorithm

Our compression algorithm has been designed for IEEE
floating-point numbers [1], although should be easily gen-
eralizable to similar formats. An IEEE single (double) pre-
cision number is made up of a sign bit s, an ne = 8 (11)
bit exponent e, and a nm = 23 (52) bit mantissa m that
generally represent the number

(−1)s2e−2ne−1−nm+1(2nm + m) (1)

From here on, we will use the term “float” to generically
refer to single- or double-precision floating-point numbers.

Our float compressor is not dependent on a particular pre-
diction scheme or data type. To give this discussion context
and focus, we will assume that the data to be compressed is
a 3D regular grid of single- or double-precision floating-point
scalar values; compression of other data types is discussed
in Section 5. For completeness, we here also describe a pre-
diction scheme for use with structured data.

In brief, our method works as follows. The data is tra-
versed in some coherent order, e.g. row-by-row, layer-by-
layer, and each value to be compressed is first predicted
from a subset of the already encoded data, i.e. the data
available to the decompressor. The predicted and actual
values are transformed to an integer representation during
which the least significant bits are optionally truncated if
lossy compression is desired. Residuals are then computed
and partitioned into entropy codes and raw bits, which are
transmitted by the fast entropy coder discussed in Section 4.

While the steps of our algorithm are quite simple, efficient
implementation requires some care. Therefore, we include
source code to document each of the main steps. We begin by
discussing the predictor used in our regular grid compressor.

3.1 Prediction

For regular grids we use the Lorenzo predictor [12], which is
a generalization of the well-known parallelogram prediction
rule [27] to arbitrary dimensions. The Lorenzo predictor

// compress 3D array of scalars

void compress(const FLOAT * data, front& f, int nx, int ny, int nz)

{

f.advance (0, 0, 1); for (int z = 0; z < nz; z++) {

f.advance (0, 1, 0); for (int y = 0; y < ny; y++) {

f.advance (1, 0, 0); for (int x = 0; x < nx; x++) {

FLOAT pred = f(1, 0, 0) - f(0, 1, 1) + // Lorenzo prediction

f(0, 1, 0) - f(1, 0, 1) +

f(0, 0, 1) - f(1, 1, 0) +

f(1, 1, 1);

FLOAT real = * data ++; // fetch actual value

real = encode(real, pred); // encode difference

f.push(real); // put on front

}

}

}

}

Listing 1: Data prediction and compression loop for 3D grids.

estimates a hypercube corner sample from its other, previ-
ously encoded corners by adding those samples that are an
odd number of edges from the sample and subtracting those
that are an even number of edges away. As only immediate
neighbors need to be maintained for prediction, the compres-
sor (and decompressor) must not keep track of more than
an (n − 1)-dimensional front (slice) from the n-dimensional
data [12]. Previously encoded samples fx−i,y−j,z−k relative
to the current sample fx,y,z are indexed as f(i, j, k) in
Listing 1 by representing the front as a circular array.

To bootstrap the predictor and allow boundary samples
to be predicted, one usually lowers the dimension of the
Lorenzo predictor, so that the first layer is predicted using
2D prediction and the first row using 1D prediction. The first
sample encoded is predicted as zero. Unfortunately, on 3D
data this results in eight different predictors and hence eight
conditionals in the inner loop, which degrade performance.
We make the observation that (n− 1)-dimensional Lorenzo
prediction is equivalent to n-dimensional prediction with the
nth dimension samples set to zero. Hence, by padding the
data set with one layer of zeros in each dimension, a single
n-dimensional predictor can be used for all samples. Instead
of copying and padding the entire data set, this padding can
be done efficiently only to the front. The calls f.advance in
Listing 1 perform this zero padding and advance the front
by one layer, row, or column. In case of lossy compression,
where we allow truncation of the floats, we must update the
front (the f.push call) with the lossily encoded samples since
those are the only samples available to the decompressor.

By default our compressor performs prediction using
floating-point arithmetic. The order of operations and the
precision used must match exactly between compressor and
decompressor. This may be difficult to achieve due to
compiler optimizations, roundoff policies, availability of ex-
tended precision (as on Intel architectures), and other plat-
form dependent differences in floating-point arithmetic. In
such cases, one may perform predictions using integer arith-
metic at a small cost in compression rate by first mapping the
floats to their binary representation. This mapping, which
is applied to both predicted and actual samples regardless
of how prediction is done, will be discussed next.

3.2 Mapping to Integer

We could compute prediction residuals via floating-point
subtraction, however this might cause underflow with irre-
versible loss of information that precludes reconstruction of
the actual value. Instead, as in [7, 22], we map the predicted
and actual floats p and f to their sign-magnitude binary
integer representation. On platforms implementing sign-
magnitude integer arithmetic, we could now simply compute
integer residuals via subtraction, however most current plat-
forms implement two’s complement arithmetic. To address
this, we map the sign-magnitude representation to unsigned

// encode actual number ‘real’ given prediction ‘pred’

FLOAT encode(FLOAT real, FLOAT pred)

{

UINT r = forward(real); // monotonically map floats to their ...

UINT p = forward(pred); // ... unsigned binary representation

if (p < r) { // case 1: underprediction

UINT d = r - p; // absolute difference

unsigned k = msb(d); // find most significant bit k

encode(zero + (k + 1), model); // entropy code k

encode(d - (1 << k), k); // code remaining k bits verbatim

}

else if (p > r) { // case 2: overprediction

UINT d = p - r; // absolute difference

unsigned k = msb(d); // find most significant bit k

encode(zero - (k + 1), model); // entropy code k

encode(d - (1 << k), k); // code remaining k bits verbatim

}

else // case 3: perfect prediction

encode(zero, model); // entropy code zero symbol

return inverse(r); // return possibly quantized value

}

Listing 2: Predictive floating-point coding scheme.

integers by flipping either the most significant bit (for pos-
itive floats) or all bits (for negative floats). The result is a
monotonic mapping of floats to unsigned integers that pre-
serves ordering and even linearity of differences for floats
with the same sign and exponent. This approach is also
similar to [16], however we benefit by allowing a carry to
propagate from mantissa to exponent in case p and f are
close but separated by an exponent boundary, which would
be signaled as a large misprediction in [16].

In case lossy compression is desired, we discard some of
the least significant bits during the mapping stage. This can
be thought of as logarithmic rather than uniform quantiza-
tion, which in our experience is the quantization preferred
by scientists. They often describe the precision of their data
as the number of decimal digits in scientific notation.

3.3 Residual Computation and Coding

Once the actual and predicted values f and p have been
mapped to integers, we apply a two-level compression

scheme to the integer residual d̂ (Listing 2). Using one
symbol (and probability) per residual is not practical in
our scheme for two reasons. First, because of the poten-
tially large range (−2n, +2n) of residuals for n-bit data, the
probability tables would become prohibitively large. Sec-
ond, because there are generally many more possible resid-
uals than actual floats in a data stream, most residuals are
expected to appear only once, making probability model-
ing unreliable at best. To address this problem, we use a
two-level scheme that groups residuals into a small set of
intervals. A residual can then be represented by interval
number and position within the interval. We considered us-
ing the optimal two-level scheme by Chen et al. [4], which
partitions a distribution so as to minimize the coding cost,
but opted for a static and simpler scheme. Observing that
most residual distributions are geometric and highly peaked

around d̂ = 0, grouping residuals into variable-size intervals
±[2k, 2k+1) makes for both a simple and effective scheme.
This approach, equivalent to coding the number of leading

zeros of |d̂|, is essentially the one taken by [7, 22], although
our scheme differs in one important aspect: the manner in
which the first-level intervals are coded.

Formally, we define the integer residual d̂ as:

d̂ = f̂ − p̂ = s(2k + m) (2)

where s ∈ {−1, 0, +1} encodes the sign of d̂, 0 ≤ k < n is the

position of the most significant bit of |d̂|, and m is a length-
k bit string. k can be computed quickly either by repeated
right shifting or using the bsr Intel assembly instruction.
Whereas both [7, 22] would encode the tuple 〈s, k〉 using a

fixed number of bits, we exploit the non-uniform distribu-

tion of k and use entropy coding. If d̂ = 0, we entropy code
only a single symbol g = 0. Otherwise, we first entropy
code a symbol g = s(k + 1), followed by transmitting verba-
tim the remaining k bits representing m. (Note that k may

be zero, e.g. when d̂ = 1, in which case no additional bits
are transmitted.) Whereas we could fold 〈s, k〉 into n dis-
tinct symbols via modular arithmetic, as in [7, 16], or using
exclusive-or differencing, as in [22], we use all 2n+1 symbols
and rely on the range coder to (nearly) eliminate the cost of
coding large, infrequent residuals. As we shall see later, us-
ing entropy coding to compress g can considerably improve
the overall compression rate at little or no expense in speed.

While the raw bit stream M could be transmitted inde-
pendently of the symbol stream G, interleaving and synchro-
nizing the two streams is a non-trivial problem considering
the stream G produced by our range coder contains sym-
bols of “fractional” bit length. Moreover, our range coder is
sufficiently fast that coding raw bits does not pose a signifi-
cant overhead. In general, these raw bits do not have much
regularity that could be exploited for further compression.
One notable exception is the case when the data intrinsically
has less than full precision, in which case additional entropy
coding can remove redundant bits [10, 16].

4 Fast Entropy Coding

Range coding [21] is an efficient variation on arithmetic cod-
ing [31] that outputs data in byte increments. As in arith-
metic coding, an interval [l, l+r) is maintained that uniquely
represents a string of encoded symbols. During encoding of
one of a set of possible symbols, the interval is partitioned
such that symbols are assigned non-overlapping portions of
the interval in proportion to their probability, and the inter-
val is then narrowed to the sub-interval corresponding to the
encoded symbol. The process repeats for the next symbol.
Any number within the final near-infinite-precision interval
then encodes an entire symbol sequence.

In practice, fixed-point integer arithmetic is used to rep-
resent a subset of [0, 1). To avoid working with infinite pre-
cision, the most significant bits of the interval can be output
whenever they agree in both l and l + r. One problem arises
when r becomes small but l and l+r straddle a bit (or byte,
in case of range coding) boundary. To avoid running out of
finite precision for r, two solutions have been proposed: (1)
Output a zero bit and later correct it once it is determined
that a carry would have turned this bit into a one. This
may in the worst case require buffering many bits. This ap-
proach is implemented in Schindler’s range coder [23], which
was used in our previous compressor [16]. (2) Since encoder
and decoder are synchronized and agree on the value of r,
they can both detect this condition and handle it by simply
reducing r just enough that a carry can no longer occur. This
computationally more efficient method was first proposed by
Subbotin [26], and is the one used in our new compressor.
We improve upon Subbotin’s implementation by splitting
the two conditions for outputting a byte and reducing the
range r, and by making the observation that if no bytes can
be output and the integer r < 216, the subsequent reduction
of r implies that the top two bytes, and only the top two
bytes, can always be output. Because these tests are per-
formed for every encoded symbol, whether entropy coded
or transmitted raw, this seemingly trivial improvement can
have a measurable impact.

The code for our range coder is shown in Listing 3. Not
included here is the code for probability modeling, which is
done by the quasistatic probability modeler from [23].

// encode a symbol s using probability modeling

void encode(unsigned s, model * m)

{

range /= m->tot; // tot = sum of pmf

low += range * m->cdf[s]; // cdf = cum. distribution function P(x < s)

range *= m->pmf[s]; // pmf = probability mass function P(x = s)

update(s, m); // update probabilities

normalize (); // normalize interval

}

// encode an n-bit number s : 0 <= s < 2^n <= 2^16

void encode(unsigned s, unsigned n)

{

range >>= n; // scale interval

low += range * s; // adjust lower bound

normalize (); // normalize interval

}

// normalize the range and output data

void normalize ()

{

while (((low ^ (low + range)) >> 24) == 0) {

putbyte (); // top 8 bits of interval are fixed ;...

range <<= 8; // ... output them and normalize interval

}

if ((range >> 16) == 0) {

putbyte (); // top 8 bits are not fixed but range ...

putbyte (); // ... is small ; fudge range to avoid ...

range = - low; // ... carry and output top 16 bits

}

}

// output most significant byte

void putbyte ()

{

putchar(low >> 24); // output top 8 bits

low <<= 8; // shift out top 8 bits

}

Listing 3: Fast range coder used in our compressor. The range coder
makes use of an external probability modeler that periodically (e.g.
every 1K symbols) updates the pmf and cdf arrays.

5 Results

We evaluated our compressor against our own implemen-
tations of the three streaming schemes [7, 16, 22] and the
generic zlib compressor (the scheme used in Unix gzip). We
compressed 2D and 3D single- and double-precision data sets
from the fluid dynamics simulation code Miranda [5] and the
last time step of the hurricane Isabel data used in the Visual-
ization 2004 contest [30]. We also compressed a large point
set from an atomistic simulation of shock propagation, as
well as the vertex coordinates of benchmark triangle meshes
lucy and david (see [17]) and tetrahedral meshes torso and
rbl (see [15]). Whereas the original scheme by Engelson et
al. [7] uses 1D temporal prediction, we used Lorenzo predic-
tion on the grid data for all schemes but [22], whose main
distinguishing feature from [7] is its hash-based predictor.
We did this because we did not have access to multiple time
steps for all data sets, and also to factor out the impact of
different data predictors and their dependence on temporal
versus spatial resolution. For all schemes but [22], we used
as predictor the previous sample for the partially coherent
point stream, parallelogram prediction [27] for the triangle
meshes, and the base triangle midpoint [11] for the tetrahe-
dral meshes. Our experiments were run on a dual 3.2 GHz
Intel Xeon with 2 GB of main memory and a Seagate Chee-
tah 10K.6 Ultra 320 SCSI disk.

5.1 Compression Rates

Results of lossless compression on several quite different data
sets (Figure 1) are presented in Table 1 and Figure 2. The
Miranda Rayleigh-Taylor simulations involve two fluids of
different density that initially are separated into mostly ho-
mogeneous regions. Hence the density fields have low en-
tropy and compress well. Most of the other fields span neg-
ative and positive numbers, resulting in a large number of
different exponents (nearly all 32 respectively 64 bits are
used for the single- and double-precision data). We note
that the hurricane data uses the value 1035 to indicate land
at ground level (roughly 0.4% of all values). We did not

(a) 2D Density (b) 2D Vorticity (c) 3D Density (d) 3D Pressure (e) 3D Diffusivity (f) 3D Viscocity

Figure 1: Visualizations of 2D data (as pseudocolored height fields) and 3D data (volume rendered) used in our experiments.

data set compressed size (MB) and compression time (seconds)

name
unique entropy range

min max
size time

zlib [RKB2006] [EFF2000] [ILS2005]
new

(%) (bits) (bits) (MB) (sec) scheme
m2d density 3.89 3.49 21.83 8.7E-01 1.2E+00 19.6 0.71 1.6 0.86 4.3 0.49 4.4 0.56 1.3 1.08 1.3 0.56
m2d vorticity 99.20 22.25 31.05 -1.4E+02 2.5E+01 19.6 0.71 18.4 2.14 11.8 1.21 15.5 1.29 12.9 2.22 13.8 1.49
m3d density 7.67 5.16 23.60 1.0E+00 3.0E+00 364.5 12.81 50.4 17.55 100.5 9.06 96.3 8.48 35.7 19.03 35.5 9.25
m3d pressure 27.29 23.91 31.06 -3.7E+00 2.3E+03 364.5 12.80 229.2 99.76 95.6 9.31 87.9 8.87 40.1 18.79 40.4 9.96
m3d diffusivity 36.87 23.19 30.02 0.0E+00 6.8E+00 364.5 12.68 297.6 42.90 250.8 19.09 239.3 15.02 198.8 31.92 203.0 18.47
m3d viscocity 50.07 24.86 28.59 8.6E-15 2.9E+00 364.5 12.62 314.0 46.09 249.4 18.95 246.1 14.68 209.2 32.66 207.5 19.45
h3d temp 65.70 23.54 31.56 -7.7E+01 1.0E+35 95.4 3.77 75.8 14.56 59.3 4.64 53.0 4.27 44.1 8.04 44.1 5.06
h3d pressure 81.82 24.13 31.58 -3.4E+03 1.0E+35 95.4 3.78 82.3 12.00 64.3 5.14 52.9 4.87 45.0 7.78 45.2 5.34
h3d x velocity 84.18 24.18 31.55 -5.3E+01 1.0E+35 95.4 3.89 86.1 11.27 67.4 6.22 63.3 4.59 54.5 8.86 55.4 5.44
h3d y velocity 84.32 24.18 31.55 -4.6E+01 1.0E+35 95.4 3.83 84.5 11.42 67.1 5.74 62.3 5.04 53.5 8.64 53.8 5.53
h3d z velocity 86.82 24.24 31.54 -3.2E+00 1.0E+35 95.4 3.87 88.4 10.76 85.6 8.50 76.9 5.29 68.9 9.83 69.1 6.65
M3d density 40.14 18.84 52.59 1.0E+00 3.0E+00 288.0 11.28 136.8 41.91 160.3 11.63 121.6 10.94 - 105.2 11.63
M3d pressure 100.00 25.17 63.00 -2.2E+00 2.2E+00 288.0 11.20 272.6 35.18 237.3 14.91 225.1 16.59 - 208.4 17.20
M3d x velocity 100.00 25.17 63.00 -2.2E+00 2.3E+00 288.0 10.83 275.6 32.30 230.4 14.73 215.1 15.91 - 197.7 16.84
M3d y velocity 100.00 25.17 63.00 -2.1E+00 2.3E+00 288.0 10.54 275.1 32.19 223.1 14.27 215.2 15.16 - 197.7 16.65
M3d z velocity 100.00 25.17 63.00 -5.2E+00 9.0E+00 288.0 10.32 275.5 32.62 226.6 14.74 213.7 16.05 - 196.8 16.14
a3d x position 61.10 23.82 31.01 -4.8E-02 4.6E+02 107.7 7.07 84.3 21.18 76.0 7.88 78.8 7.61 67.3 12.88 68.6 9.07
a3d y position 45.90 23.32 26.99 3.7E-02 2.1E+03 107.7 7.08 65.9 30.76 60.4 6.97 56.4 6.31 47.0 10.49 46.9 7.73
a3d z position 61.68 23.84 27.48 9.1E-05 4.6E+02 107.7 7.46 94.6 19.86 82.6 9.00 86.1 8.25 75.7 13.80 78.2 9.93
a3d y velocity 64.65 23.87 30.96 -1.5E-01 1.4E-01 107.7 7.30 95.7 19.88 93.8 10.07 99.1 9.65 84.3 14.93 87.6 9.92
a3d temp 64.91 23.94 27.41 3.0E-03 7.1E+03 107.7 6.69 95.7 19.76 91.6 10.27 95.9 8.34 84.6 15.02 84.6 10.31
a3d energy 3.45 18.57 21.79 -3.6E+00 -2.7E+00 107.7 7.15 77.9 38.59 74.1 7.98 71.8 7.01 60.8 12.66 60.5 8.30
lucy 61.39 24.38 31.09 -6.1E+02 1.2E+03 160.5 - 137.8 - 99.5 - 90.0 - 73.6 - 77.8 -
david1mm 25.23 17.08 31.11 -4.4E+03 1.8E+03 322.5 - 144.9 - 155.7 - 163.4 - 108.6 - 131.9 -
torso 84.72 18.48 31.08 -2.7E+02 5.8E+02 1.9 - 1.7 - 1.5 - 1.5 - 1.3 - 1.3 -
rbl 71.90 20.14 25.99 1.48E+00 3.6E+02 8.4 - 7.1 - 5.8 - 5.6 - 4.7 - 4.8 -

Table 1: Compression results for the Miranda (m2d, m3d, M3d) and hurricane (h3d) structured grid data, the atom (a3d) point set, the lucy
and david triangle meshes, and the torso and rbl tetrahedral meshes. All data sets except M3d are represented in single precision. The [ILS2005]
scheme operates on single precision only, hence the missing values. The mesh compression timings are entirely dominated by connectivity
coding, hence we do not include them here. The range measures (the logarithm of) the number of floating-point values between the minimum
and maximum value. Note that the first-order entropy is limited by the total number of samples in a data set.

specialize the compressors to ignore these values.
As can be seen, our compression rates are comparable

to those of [16] and significantly better than both [7, 22].
We achieve lossless reductions in the range 1.4–15 and on
average a compressed size of 10.7 bits/float on the Miranda
single-precision data and 18.0 bits/float on the hurricane
data. Using the previous sample to predict the next, our
compression results on the point data are dictated by the
geometric coherence of the data stream. The atom data
set is bucketed and roughly organized along one axis, but
is locally not particularly coherent. We achieve an average
compression of 1.5. More sophisticated point compression
techniques based on local point reordering and higher-order
prediction would likely improve compression rates. On the
double-precision Miranda data, the lossless reduction is only
1.4–2.7, with an average size of 40.3 bits/double.

Double-precision floating point data is more challenging
to compress as the increase from 23 to 52 mantissa bits adds
29 low-order bits to each value. It is well known that predic-
tive coding mainly “predicts away” high-order bits so that
the relative reduction rate decreases as low-order bits are
added [13, 16]. Of course, it is possible that the low-order

bits exhibit some predictable pattern, e.g. when some or all
29 additional low-order bits are everywhere zero, as would be
the case if single-precision floating-point numbers were cast
to double precision. A similar situation arises in Marching
Cubes isosurface extraction from regular grids, for which
two of three coordinates of each vertex have much less pre-
cision than can be represented in floating-point, resulting in
predictable (though not necessarily all zero) low-order bits.
(Even scanned surfaces, including lucy and david, are typi-
cally extracted from a volumetric representation.) Arguably
such data sets should use an integer rather than floating-
point representation, although for simplicity or for other
reasons it is common practice to use floating-point. Con-
trary to [16], which uses entropy coding for all bits of the
residual, our new coder sacrifices such potential compression
gains for speed by storing these repeated low-order bits in
raw and uncompressed form. However, the massive data sets
from scientific simulation that motivated our work on high-
speed compression, as well as the tetrahedral meshes, rarely
exhibit significant low-order redundancy, as also evidenced
by our results.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2d density 2d vorticity 3d density 3d pressure 3d diffusivity 3d viscocity total

co
m

pr
es

se
d

si
ze

zlib [RKB2006] [EFF2000] [ILS2005] new scheme

Figure 2: Compression rates for the Miranda
single-precision data.

0.01%

0.10%

1.00%

10.00%

100.00%

8 12 16 20 24 28 32

precision (bits)

co
m

pr
es

se
d

si
ze

[EFF2000] 2d density 2d vorticity 3d density 3d viscocity
new scheme 2d density 2d vorticity 3d density 3d viscocity

Figure 3: Lossy compression rates for our
scheme (black) and [7] (blue). Note that the
vertical scale is logarithmic.

0

2

4

6

8

10

12

2d density 2d vorticity 3d density 3d pressure 3d diffusivity 3d viscocity total

sp
ee

d
(m

ill
io

n
flo

at
s/

se
co

nd
)

uncompressed zlib [RKB2006] [EFF2000] [ILS2005] new scheme

Figure 4: Compression speed for the Miranda
single-precision data.

5.1.1 Lossy Compression

Figure 3 shows that our scheme gracefully adapts to decreas-
ing levels of precision when discarding the least significant
mantissa (and eventually exponent) bits. For n bits of pre-
cision, the schemes [7, 22] minimally require log2 n bits to
code the number of leading zeros, whereas our scheme can
exploit the combination of low entropy in the leading-zero
count and the elimination of the low-end mantissa bits that
are most difficult to predict and compress.

5.2 Compression Speed

Figure 4 shows the speeds of compressing from memory to
disk in millions of floats per second, including disk write
time. (Because of the simplicity of our method, its de-
compression speed is similar to its compression speed.) We
also include the raw I/O performance of dumping the data
uncompressed using a single fwrite call. Timings corre-
spond to the median of five runs. Whereas our compressor
is slightly slower than the less effective compressors [7, 22],
it is nearly twice as fast as [16] while producing similar com-
pression rates. However, in more I/O-intensive scenarios,
such as in massively parallel simulations dumping data to
the same high-performance file system (as is common), the
improved compression of our method over [7, 22] results in
a net gain in effective throughput. We integrated our com-
pression code with Miranda’s dump routines and ran perfor-
mance tests on 256 nodes of LLNL’s MCR supercomputer.
Achieving on average a lossless reduction of 3.7 on 75 GB
of data dumped, the overall dump time was reduced by a
factor of 2.7 over writing the data uncompressed.

5.3 Entropy Coding

We compared the raw throughput of our range coder and
Schindler’s [23] by (1) passing raw bytes through it with no
compression and (2) entropy coding byte sequences. In both
cases, the source data was the uncompressed floating-point
data sets used in our experiments. Timing results show that
our coder is 40% faster for raw transmission and 28% faster
for entropy coding. Meanwhile, the inefficiency of our coder
due to loss of precision and range reduction is only 26 bytes
of overhead for 1.5 GB of coded data. Its raw throughput is
only 20% less than an fwrite call, while its entropy coding
throughput of 20 MB per second, which includes probability
modeling and I/O time, compares favorably with state-of-
the-art entropy coders [25].

6 Conclusion

We have described a simple and robust method for lossless
compression of floating-point data based on predictive cod-
ing. The main characteristics of our method are (1) effec-

tive predictive coding for floating-point data, (2) efficient
arithmetic and robustness of implementation by treating
the floating-point number as an unsigned integer, (3) high-
speed adaptive range coding of leading zeros in residuals,
and (4) transmission of raw bits whenever we cannot expect
compression to result in much gain. Our scheme provides
high compression rates without sacrificing computational ef-
ficiency, thereby delivering high throughput when used in a
typical large scale simulation environment where I/O band-
width is an especially precious resource.

We achieve compression rates nearly as good as those
of [16], but at twice the speed and using a much simpler im-
plementation. Although our compression speeds are slightly
slower than those of [7] and [22], our compression rates are
significantly higher, resulting in higher overall throughput
and smaller files in bandwidth-limited environments.

Our fast range coder may also prove useful outside the
context of lossless floating-point compression. It is notably
faster than Schindler’s range coder [23] in both scenarios:
when actually making use of entropy coding to compress
data and when merely including raw uncompressible bits
into the bit stream. The achieved throughput for entropy
coding, including probability modeling and I/O time, com-
pares favorably with the state of the art.

References

[1] IEEE 754: Standard for Binary Floating-Point Arithmetic,
1985.

[2] U. Bischoff and J. Rossignac. TetStreamer: Compressed
Back-to-Front Transmission of Delaunay Tetrahedra Meshes.
Proceedings of Data Compression Conference, 93–102. 2005.

[3] D. Chen, Y.-J. Chiang, and N. Memon. Lossless Compression
of Point-based 3D Models. Proceedings of Pacific Graphics,
124–126. 2005.

[4] D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. Optimal Al-
phabet Partitioning for Semi-Adaptive Coding of Sources of
Unknown Sparse Distributions. Proceedings of Data Com-
pression Conference, 372–381. 2003.

[5] A. W. Cook, W. H. Cabot, P. L. Williams, B. J. Miller,
B. R. de Supinski, R. K. Yates, and M. L. Welcome. Tera-
Scalable Algorithms for Variable-Density Elliptic Hydrody-
namics with Spectral Accuracy. SC ’05: Proceedings of the
ACM/IEEE Conference on Supercomputing, 60. 2005.

[6] O. Devillers and P.-M. Gandoin. Geometric Compression
for Interactive Transmission. Visualization’00 Proceedings,
319–326. 2000.

[7] V. Engelson, D. Fritzson, and P. Fritzson. Lossless compres-
sion of high-volume numerical data from simulations. Pro-
ceedings of Data Compression Conference, 574–586. 2000.

[8] J. Fowler and R. Yagel. Lossless Compression of Volume
Data. Symposium on Volume Visualization, 43–50. 1994.

[9] M. N. Gamito and M. S. Dias. Lossless Coding of Floating
Point Data with JPEG 2000 Part 10. Applications of Digital
Image Processing XXVII , 276–287. 2004.

[10] F. Ghido. An efficient algorithm for lossless compression of
IEEE float audio. Proceedings of Data Compression Confer-
ence, 429–438. 2004.

[11] S. Gumhold, S. Guthe, and W. Strasser. Tetrahedral Mesh
Compression with the Cut-Border Machine. Visualization’99
Proceedings, 51–58. 1999.

[12] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szym-
czak. Out-of-core compression and decompression of large
n-dimensional scalar fields. Proceedings of Eurographics’03 ,
343–348. 2003.

[13] M. Isenburg and P. Alliez. Compressing Polygon Mesh Ge-
ometry with Parallelogram Prediction. Visualization’02 Pro-
ceedings, 141–146. 2002.

[14] M. Isenburg and P. Alliez. Compressing Hexahedral Volume
Meshes. Graphical Models, 65(4):239–257, 2003.

[15] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Shewchuk.
Streaming Compression of Tetrahedral Volume Meshes. Pro-
ceedings of Graphics Interface, 115–121. 2006.

[16] M. Isenburg, P. Lindstrom, and J. Snoeyink. Lossless Com-
pression of Predicted Floating-Point Geometry. Computer-
Aided Design, 37(8):869–877, 2005.

[17] M. Isenburg, P. Lindstrom, and J. Snoeyink. Streaming
Compression of Triangle Meshes. Proceedings of 3rd Sym-
posium on Geometry Processing, 111–118. 2005.

[18] F. Kälberer, K. Polthier, U. Reitebuch, and M. Wardetzky.
FreeLence - Coding with free valences. Eurographics’05 Pro-
ceedings, 469–478. 2005.

[19] A. Khodakovsky, P. Alliez, M. Desbrun, and P. Schroeder.
Near-Optimal Connectivity Encoding of 2-Manifold Polygon
Meshes. Graphical Models, 64(3-4):147–168, 2002.

[20] T. Liebchen, T. Moriya, N. Harada, Y. Kamamoto, and Y. A.
Reznik. The MPEG-4 Audio Lossless Coding (ALS) Stan-
dard – Technology and Applications. 119th Audio Engineer-
ing Society Convention. 2005.

[21] G. N. N. Martin. Range encoding: an algorithm for remov-
ing redundancy from a digitized message. Video and Data
Recording Conference. 1979.

[22] P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast Lossless
Compression of Scientific Floating-Point Data. Proceedings
of Data Compression Conference, 133–142. 2006.

[23] M. Schindler. Range Encoder version 1.3, 2000. URL http:
//www.compressconsult.com/rangecoder/.

[24] P. Schwan. Lustre: Building a File System for 1,000-node
Clusters. Proceedings of the Linux Symposium, 401–408.
2003.

[25] J. Senecal, M. Duchaineau, and K. I. Joy. Length-Limited
Variable-to-Variable Length Codes For High-Performance
Entropy Coding. Proceedings of Data Compression Con-
ference, 389–398. 2004.

[26] D. Subbotin. Carryless Rangecoder, 1999. URL
http://search.cpan.org/src/SALVA/Compress-PPMd-0.10/
Coder.hpp.

[27] C. Touma and C. Gotsman. Triangle mesh compression.
Graphics Interface’98 Proceedings, 26–34. 1998.

[28] A. Trott, R. Moorhead, and J. McGinley. Wavelets Ap-
plied to Lossless Compression and Progressive Transmission
of Floating Point Data in 3-D Curvilinear Grids. Proceedings
of Visualization’96 , 385–358. 1996.

[29] B. E. Usevitch. JPEG2000 extensions for bit plane coding
of floating point data. Proceedings of Data Compression
Conference, 451. 2003.

[30] Visualization Contest Data Set, 2004. URL http://vis.
computer.org/vis2004contest/data.html.

[31] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic Cod-
ing for Data Compression. Communications of the ACM ,
30(6):520–540, 1987.

http://www.compressconsult.com/rangecoder/
http://www.compressconsult.com/rangecoder/
http://search.cpan.org/src/SALVA/Compress-PPMd-0.10/Coder.hpp
http://search.cpan.org/src/SALVA/Compress-PPMd-0.10/Coder.hpp
http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html

	Introduction
	Related Work
	Streaming Floating-Point Compression

	Floating-Point Compression Algorithm
	Prediction
	Mapping to Integer
	Residual Computation and Coding

	Fast Entropy Coding
	Results
	Compression Rates
	Lossy Compression

	Compression Speed
	Entropy Coding

	Conclusion

