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Abstract— We consider “opportunistic” downlink scheduling
of data traffic in a wireless network. In particular, we focus
on the delay performance of such schedulers. First a channel-
dependent scheduling algorithm is considered which maximizes
throughput by always transmitting to the user with the best
channel conditions. The delay distribution of this scheduling
rule is analyzed and asymptotic results are given when the
number of competing users becomes large. Simulations show
these asymptotic results are a good approximation for even a
small number of users. This scheduling rule may result in unfair
treatment of users that have relative bad channels for a long
period of time; to remedy this we propose a simple utility-based
scheduling algorithm. The motivation is to maximize the time-
averaged utility, where utility is a decreasing function ofthe delay
incurred when serving a request. The scheduling algorithm takes
into account both the utility function and the channel state. We
give simulation results which characterize the performance of the
scheduling algorithm. The effect of the temporal correlation of
the channel on the performance is also studied.

I. I NTRODUCTION

In this paper we consider downlink wireless data scheduling.
For delay tolerant applications, scheduling algorithms can
exploit channel variations across the user population and
attempt to transmit to users when they have “good” channel
conditions. Such “opportunistic” scheduling algorithms have
received much attention recently (e.g., [14],[15]) and are part
of most third generation wireless standards.

Much of the prior work on scheduling has focused on
throughput or fairness for users with “elastic” traffic. In this
paper, we consider the delay performance of opportunistic
schedulers. First, we consider a simple scheduling rule (the
Max R Rule) that transmits to the user with the best channel
at any time. It is easily shown that the Max R Rule maximizes
throughput given a constraint on the total downlink transmis-
sion power. We derive the resulting delay distribution for this
scheduling rule; in particular, we consider a system where the
number of competing users becomes large and characterize
the asymptotic delay distribution. Although the Max R Rule
is very efficient in utilizing the limited radio resources, it is
biased against users that remain in an unfavorable channel
condition; such users may be blocked for a long time and
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experience indefinite delay. This unfairness presents a signifi-
cant problem especially in a low-tier mobility environment. To
overcome this, we introduce utility function that is expressed
in terms of delay. The longer the delay, the lower the derived
utility. Using this utility, we propose a simple utility-based
scheduler (the U’R Rule), which attempts to maximize the
time-average utility. The scheduler takes into account both the
channel conditions and the utility received by each user. The
utility function indicates the sense of ”urgency” of a request,
while the channel state influences the efficiency of resource
utilization given that the request is served.

A sampling of other work that has addressed downlink
scheduling for wireless networks includes [3], [4], [5], [11]. In
all of this work, scheduling algorithms attempt to exploit the
“multiuser diversity” that is present in a fading environment.
The authors in [3], [4], [5] consider scheduling schemes that
give preferences to users with favorable channel conditions
where the channel is modeled as a simple two-state process
with a “good” and “bad” channel state. This simplification,
although it provides insight, often becomes inadequate in
realistic systems. More refined scheduling rules, which make
use of combined knowledge of the queue length, waiting time
and channel conditions are presented in [7], [8], [9], [10].
Fairness is an important issue for scheduling in general. For
example, it is often desirable to provide worst-case guarantees
on throughput and delay and to achieve some degree of
separation between flows. The authors of [11] propose a
framework for achieving this end by emulating the generalized
processor sharing (GPS) model ([12], [13]) proposed for wire-
line allocations. In our work, we also consider scheduling
based on waiting time and channel conditions. However, our
work differs from the previous work in that we adopt a utility-
based approach. Maximizing the utility rate automatically
trades-off fairness for throughput, where the nature of the
tradeoff is embedded in the definition of the utility function.

The rest of the paper is organized as follows. In Sect. II,
we describe a downlink single-cell model. In Sect. III, we
consider the Max R Rule and analyze the delay performance.
In Sect. IV, we propose the U’R rule which makes use of both
the channel condition and the utility function. We also present
simulation results that show how the temporal correlation of
the channel affects the performance of different scheduling
rules. Conclusions are given in the last section.



II. SYSTEM MODEL

We consider the downlink of a single-cell using Time
Division Multiplexing (TDM). We assume that there areK
users with packets to transmit. A scheduler, which resides in
the base station (or base station controller), decides at the start
of each scheduling interval which of the Head of Line (HOL)
packets to serve. We assume that the base station transmits to
one user at a time with the full available power.

The packets are assumed to have fixed lengthL, whereL
is small enough so that the channel stays relatively constant
during a packet transmission. Each packet transmission time is
thereforeT = L=R, whereR is the rate at which data can be
transmitted to the scheduled user with very small probability
of error. The rateR depends on the channel gainh and the
specific coding and modulation scheme chosen for a user. We
assume thatR increases withh, and their relation is given
by R = C(hP ), where P is the total available downlink
transmission power, andC(�) is an increasing function. We
assume thatR (or equivalentlyh) is available to the scheduler.

III. T HE MAX R RULE

A. Throughput Optimization

In this section, to simplify our analysis we assume that once
the base station starts transmitting to useri, it must complete
the transmission of one packet at rateRi. Upon completion,
a new decision is made as to which is the next scheduled
packet. A scheduling interval (“time slot”) is therefore the
packet service time, which varies in duration according to the
available rates. The amount of data served in each time slot,L, stays fixed. This differs from systems such as HDR ([1],
[2]), where the time slots are of fixed duration (1.67ms) and
the packets served in each slot may differ in size.�

Let Ri;j be the transmission rate at which useri could
receive data if scheduled in time slotj. We definethe Max
R Rule, to be the scheduling policy which serves useri� given
by: i� = arg maxi2f1;::: ;KgRi;j ; for all j: (1)

where any ties can be broken arbitrarily. It is easily seen that
the Max R Rule maximizes the total system throughput.

Next, we study the delay distribution resulting from this rule
and show that the mean delay grows at rate�(K= ln(K)) y
asK !1.

B. Delay Distribution Analysis

To simplify our analysis we consider a system withK
backlogged queues. In such a system, delay is calculated from�This analysis can be generalized to the case of fixed durationtime-slots
at the expense of more complicated notation.yWe use the notationf(n) = �(g(n)) if limn!1 f(n)g(n) < 1 andlimn!1 g(n)f(n) <1, for f(n) andg(n) > 0, 8n.

the time a packet arrives at the head of the queue. We derive the
delay distribution across packets at the output of the scheduler.

Let ~Rj = maxi2f1;::: ;KgRi;j . The duration of thejth slot
when using the Max R rule is then~Tj = mini2f1;::: ;Kg Ti;j =L= ~Rj , where Ti;j = L=Ri;j . We assume thatfRi;jg is a
set of independent and identically distributed (i.i.d.) random
variables withp.d.f. fR(r). Therefore,fTi;jg are alsoi.i.d.
and havep.d.f. fT (t) = fR(Lt ) Lt2 . Here we assume that the
independence holds not only across users, but over time slots as
well. Conditioned on a packet getting scheduled in theN th slot
after it becomes the HOL packet, the total delay experienced
by this packet,D, is given byD = NXj=1 ~Tj ; (2)

whereN is a random variable denoting the number of time
slots required until a packet gets scheduled. Since theRi;j ’s
are i.i.d., the p.m.f.of N is given by:pn = Pr [N = n] = 1K �K � 1K �n�1 ; for n = 1; : : : ;1:

(3)

This is a geometric distribution with parameter1=K.
The packet delay seen at the output of the scheduler,D, is

therefore the sum of a random number (N ) of i.i.d. random
variables (~Tj). We point out thatN is independent from~Tj .
We want to derivefD(x), the p.d.f.of the total delayD.

Let F ~T (x) and f ~T (x) denote thec.d.f. and p.d.f. of ~Tj ,
respectively. LetDn =Pnj=1 ~Tj be the sum ofn independent~Tj ’s. The p.d.f. of Dn, fDn(x), is given by thei-fold self
convolution off ~T (x):fDn(x) = f ~T (x) ? f ~T (x) ? � � � ? f ~T (x)| {z }n : (4)

Using (2) and (3), thep.d.f. of D can be written in terms
of fDn(x): fD(x) = 1Xn=1 fDn(x)pn (5)

Hence, the moments ofD are given by:E(Dk ) = 1Xn=1 E(Dk j N = n)pn= 1Xn=1 E(Dkn )pn: (6)

In particular,E(D) = 1Xn=1nE( ~Tj )pn = KE( ~Tj ); (7)

and E(D2 ) = 1Xn=1�nE( ~T 2j ) + n(n� 1)E2 ( ~Tj)� pn= KE( ~T 2j ) + (2K2 � 2K)E2 ( ~Tj): (8)



Higher moments ofD can be expressed similarly in terms of
moments of~Tj .

Now we only need to specifyf ~Tj (x) to complete the anal-

ysis of the delay distribution. Recall that~Tj is the minimum
of K i.i.d. random variables; hence itsc.d.f. is given by ([18],
[19]): F ~Tj ;K(x) = Pr h ~Tj � xi = 1� [1� FT (x)]K ; (9)

whereFT (x) = R x0 fT (t) dt is thec.d.f. for Ti;j .
So far, we have completely characterized the delay distribu-

tion given a distribution on the channel rates,Ri;j . However,
this computation becomes complex asK becomes large. The
distribution for the duration of one time slot (F ~Tj ;K(x))
containsK as an exponent, therefore it becomes increasingly
difficult to evaluate moments of~Tj analytically. However,
using extreme value theory from [18], [19], we can analyze
the distribution of~Tj for largeK. Then using (7) and (8), the
asymptotic behavior ofD can also be obtained.

C. Extreme Value Analysis

As K ! 1, the distribution specified by (9) degenerates
to: limK!1F ~Tj ;K(x) = � 0 if FT (x) = 01 if FT (x) � 1:
Extreme value theory focuses on the linear transformationy = cK+dKx wherecK anddK are constants that depend onK. Appropriate choice of these constants may result in a non-
degenerate limiting distributionL(x) = limK!1 F ~Tj ;K(cK +dKx). A given c.d.f., FT (x), is said to belong to, or lie
in, the domain of attraction for minimaof a given c.d.f.L(x) if L(x) = limK!1 F ~Tj ;K(cK + dKx) = limK!1 1�[1� FT (cK + dKx)]K for given sequencesfcKg andfdK >0g ([18], [19]).

Assume flat Raleigh fading for each user, and thatRi;j is
proportional to the received SINR; this results infR(r) having
an exponential distribution, i.e.,fR(r) = 1R0 exp�� rR0� ; (10)

whereR0 = E(R).
The c.d.f. for T is then given by the Frechet distribution:FT (t) = exp��T0t � ; (11)

which hasp.d.f. fT (t) = T0t2 exp ��T0t �, whereT0 = L=R0.
Note thatE(T ) =1.

We use the following Theorem from [18], to show thatFT (t)
given by (11) lies in the domain of attraction for minima of
the Gumbel distribution.

Theorem 1:[18] A necessary and sufficient condition for a
continuousc.d.f., F (x), to lie in the domain of attraction for
minima of a Gumbel distribution is thatlim"!0 F�1(")� F�1(2")F�1(2")� F�1(4") = 1: (12)

Given F�1T (u) = �T0= ln(u), it can easily be shown that
(12) holds. Therefore, we have the following Corollary:

Corollary: For FT (x) given by (11), the random variableTi;j lies in the domain of attraction for minima of a Gumbel
distribution withc.d.f.L(x) = limK!1Pr� mini2f1;::: ;KgTi;j � cK + dKx� (13)= 1� exp(� exp(x));
for �1 < x <1.

It can be also shown using results from [18] that the
appropriate constantscK anddK are given by:cK = T0ln(K) and dK = T0ln(K)(1 + ln(K)) : (14)

As K ! 1, ~Tj ! 0 in mean square. From this analysis
it follows that asK ! 1, the mean slot durationE( ~Tj )
decreases at rate�� 1ln(K)�. Therefore, using (7), we have

shown that the average total delayE(D) = �� Kln(K)� asK ! 1. Note that if round robin scheduling was used, the
mean delayE(D) would increase at rate�(K). Similarly,
using (8), the variance ofD grows at rate�� K2ln2(K)�.

D. Numerical Results for Finite Users

In the previous subsection, we showed that asymptotically
the expected delay grows at rate�( Kln(K) ) for a Max R
scheduler. We now present numerical results that show this
asymptotic growth rate holds even for a small number of users.

We simulate a backlogged system with packet lengthL =1024 (bits). The Max R Rule is used. In each time slot, rates are
chosen independently across users according to an exponential
distribution with meanR0 = 50; 000 (bps).

Fig. 1 showsE( ~Tj ) vs. the number of users,K. The solid
line represents the simulation results. The dash-dot line is the
analytical results that we get using thec.d.f.given by (9)z. The
dotted curve isL=R0 ln(K) vs. K, whereL=R0 = 0:02048
is a normalizing constant. This corresponds to the asymptotic
growth rate.

Notice the simulation and analytical results agree perfectly.
The approximation given by the asymptotic analysis also
performs very well even for small values ofK.

IV. T HE U’R RULE

The Max R Rule makes the most efficient use of the channel
since in each time slot the user with the highest data rate gets
transmitted. However, it does not account for fairness and may
perform poorly in terms of delay and stability (see [6]). To
balance fairness with efficiency, we introduce a utility-based
scheduling algorithm that takes into account both the channel
condition and the user’s utility function.zThe analytical results are calculated using Maple. We do notshow the
results forK � 20, since the computational complexity becomes too high.
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Fig. 2. Two example utility functions.

A. Utility Function

Assume that associated with each packetk is a utility
function denoted byUk(D), whereD is the total time between
the packet arrival and service completion. This includes both
the queueing time and the transmission time. The utility is
decreasing inD, i.e. the longer the delay, the lower the utility.
Two examples ofUk(D) are depicted in Fig. 2. Unlike con-
ventional definitions of utility functions in microeconomics, we
assume thatUk(D) can take on negative values. In that case,
the utility is interpreted as the level of dissatisfaction that a
user experiences due to packet transmission delay. By varying
the shape of the utility function, different delay requirements
can be reflected. For example if a packet has a deadline, then
the utility function could be relatively flat before the deadline
and drop sharply beyond that point, as shown by the dotted
line in Fig. 2.

B. The U’R Rule – Motivation

Our objective is to schedule transmissions at each time to
maximize the total utility rate:limT!1 1T N(T )Xk=1 Uk(Dk); (15)

whereN(T ) denotes the total number of packets served up
to timeT , andDk represents the delay experienced by packetk. With this objective in mind, we first look at a simple case
where only two users are present, and they both have packets
waiting. Suppose that at the current scheduling instant their
HOL packets have waited forW1 andW2 time units in the
queue, respectively. LetU1(D) andU2(D) be the associated
utility functions. Looking two time slots ahead, and assuming
the channel for each user stays fixed across the two time slots,
the utility derived by transmitting in the order1! 2 isU1(W1 + LR1;1 ) + U2(W2 + LR1;1 + LR2;1 ): (16)

Similarly, transmitting in the reverse order gives the total utilityU2(W2 + LR2;1 ) + U1(W1 + LR2;1 + LR1;1 ): (17)

The total time for transmitting the two packets is the same in
both cases.

To maximize utility rate, user 1 should be scheduled first if
(16)� (17). AssumingL=R1;1 andL=R2;1 are small, we can
approximate (16) and (17) in terms of their first-order Taylor
expansions to get that user 1 should be scheduled ifU1(W1) + U 01(W1) LR1;1 + U2(W2) + U 02(W2)( LR1;1 + LR2;1 )� U2(W2) + U 02(W2) LR2;1 + U1(W1) + U 01(W1)( LR2;1 + LR1;1 ):
Notice thatU 0(D) < 0 for all D > 0. Cancelling terms and
reorganizing, we getj U 01(W1) j R1;1 �j U 02(W2) j R2;1 (18)

as an approximate condition for when user 1 should be
scheduled first. The preceding argument easily extends to a
system withK users, assuming all packets belonging to useri
have the utility functionUi(�). In that case, this approximation
results in the base station scheduling useri� given byi� = arg maxi2f1;::: ;Kg j U 0i (Wi;j) j Ri;j ; for all j; (19)

whereWi;j is the delay for the HOL packet of useri at thejth slot. Ties can be broken arbitrarily. We call the scheduling
rule in (19) theU’R rule. We can interpretj U 0(Wi;j) j as a
bid price per information bit submitted by the corresponding
user. This rule can then be interpreted as scheduling the request
which gives the most revenue per second in the next time slot.
If we further assume thatUi(�) is concave, then the bid price
increases with the waiting timeWi;j . In other words, as a
packet waits in the queue, it becomes more urgent, and the
potential utility loss by postponing its transmission becomes
more substantial. The rate at which the urgency increases is
decided by the second derivative ofUi(�).

We review the assumptions leading to the U’R rule to see
when this rule should perform well. First, we have assumed
that every packet eventually gets sent. If packets can be ignored
forever or dropped from the queue without penalty, then we
can serve the most users and achieve a higher utility rate by



always sending to the user with the best channel. Second, we
have used a Taylor expansion with only the first-order terms,
so thatL=R must be relatively small. Otherwise, second-order
terms should be taken into consideration as well. In that case,
we may not get a scheduling rule with a comparably simple
structure. Last, we have assumed that the channel is constant
over 2 scheduling periods. This is a reasonable assumption for
low-tier mobility. In the next subsection we explore the effects
on the scheduler’s performance of relaxing this assumption.

The virtue of the U’R rule lies in its simplicity and flex-
ibility. First, the information needed to make the decision is
readily available at the base station. The channel gain, and
hence the rateRi;j , can be estimated via a pilot signal. The
base station could learn a user’s utility function during call
set-up. Alternatively, users could provide the bidj U 0i (Wi;j) j
when needed. In the latter case, the base station need not have
complete knowledge of the utility function. The U’R rule is
also flexible in that by choosing different utility functions, we
get different scheduling rules. For example, the Max R Rule is
a special case of the U’R Rule whenUi(D) = �aD+b, wherea > 0 and b are constants for alli. If Ui(D) = �aiD + bi,
whereai > 0 andbi are constants which depend on the user,
then the U’R rule becomes scheduling the user with the largestaiRi. Clearly,ai can be used to indicate a user’s priority level.
Specifically, ifai’s are chosen such that1=ai is the mean rate
useri gets over a certain (relatively long) time window, then
we get theProportional Fair Ruleproposed in [16], [17]. IfUi(D) = ��iD2, for all i, where�i > 0, then we get the
Modified Largest Weighted Delay First (M-LWDF) rulewhich
was proposed in [9]. It is shown that the M-LWDF rule is
throughput optimal, i.e., it makes the queues stable if it is
feasible to do so with any other scheduling rule.

C. Simulation Results

We simulate a backlogged system with 2 users; both the
Max R rule and the U’R rule will be considered. Instead of
completely transmitting one packet at once, we use a fixed
time-slot scheme similar to HDR. In this setting, the Max R
Rule stays the same at each decision instant. The U’R Rule is
now to transmit to the useri� such thati� = arg maxi2f1;::: ;Kg j U 0i (Wi;j) j Ri;j=Li;j ; for all j;
whereLi;j denotes the remaining packet length of useri at
the jth decision epoch.

The packet length is set to beL = 20 (unit lengths) and slot
duration is normalized to 1 (slot). The supportable ratesRi;j
varies with time and has a marginal exponential distribution
with meanE(Ri;j ) = 5 (unit length/slot) for alli and j. The
rates are correlated over time. Specifically,Ri;j = jXi;j j2,
where for eachi, fXi;jg1j=1 is a complex Gauss-Markov
random process. Forj = 1, the real and imaginary parts
of Xi;1 are i.i.d. Gaussian random variables with distributionN(0; E(Ri;j )=2). For j > 1, Xi;j = %Xi;j�1 + �i;j , where�i;j ’s are independent complex Gaussian random variables.
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The real and imaginary parts of�i;j are alsoi.i.d. with dis-
tributionN(0; (1� %2)E(Ri;j )=2). This results inRi;j having
the desired marginal distribution. It can also be shown that
the covariance coefficient betweenRi;j andRi;j�1 is given
by � = %2 for all j > 1. We assume that the utility function
for each user is the same and is given byU(D) = �D2.

Fig. 3 shows the time-averaged utility vs.� for the different
scheduling rules. Each data point is averaged over ten different
random seeds. First observe that the average utility decreases
as the channel correlation increases. That is as expected, since
the more independent the channels are over time, the more
advantage an ”opportunistic” scheduler gains via multiuser
diversity. The U’R Rule performs better when the channels
are highly correlated (> 0:5). For example, when� = 0:9025,
the utility gain of the U’R Rule over the Max R Rule can be
as large as34%. Furthermore, when the channels are constant
(� = 1), the Max R Rule causes infinite delay for the user
with the worse channel and therefore the derived utility goes
to negative infinity. The U’R Rule schedules users in a periodic
fashion in this case resulting in a finite utility-rate. The Max R
Rule achieves higher utility-rate when the channel correlations
are low, although the difference is not as significant.

Fig. 4 shows two typical delay complementaryc.d.f.’s with� = 0:81 under the U’R Rule and the Max R Rule, respec-
tively. Notice the Max R curve has a sharper drop at the start
and a heavier tail. In other words, the delay for the U’R Rule is
distributed more evenly than with the Max R Rule. Considering
fairness, a more equitable delay distribution is a desirable
feature; the U’R Rule clearly achieves better performance in
this aspect.

V. CONCLUSIONS

We have considered downlink scheduling for wireless data.
We analyzed the delay distribution for the Max R Rule which
maximizes throughput. By applying extreme value theory, we
obtained the asymptotic rate at which the mean total delay
increases with the number of users. To enforce fairness, we
considered a maximum utility-rate formulation which led to the



0.0001

0.001

0.01

0.1

1

0 10 20 30 40

d (slots)

P
ro

b[
D

>d
]

max R

max U'R

Fig. 4. Complimentary c.d.f. of delay under Max R and U’R scheduling
rules.

U’R scheduling rule. The U’R Rule takes into account both the
channel conditions and the utility functions. Note that the Max
R rule is a special case of the U’R Rule. Simulation results
have shown that the U’R Rule tends to outperform the Max R
Rule in terms of maximizing time-averaged utility when the
channel correlation is high. When the channel correlation is
low, the Max R Rule performs better.
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