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Abstract—We consider “opportunistic” downlink scheduling experience indefinite delay. This unfairness presents a signifi-
of data traffic in a wireless network. In particular, we focus cant problem especially in a low-tier mobility environment. To
on the delay performance of such schedulers. First a channel \6rcome this, we introduce utility function that is expressed

dependent scheduling algorithm is considered which maxiraes . .
throughput by always transmitting to the user with the best I terms of delay. The longer the delay, the lower the derived

channel conditions. The delay distribution of this scheduhg utility. Using this utility, we propose a simple utility-bed

rule is analyzed and asymptotic results are given when the scheduler (the U'R Rule), which attempts to maximize the
number of competing users becomes large. Simulations showtime-average utility. The scheduler takes into account both the
these asympotic results are a good approximation for even apanne| conditions and the utility received by each user. The
small number of users. This scheduling rule may result in undir tility fi tion indicates th £ " of ¢

treatment of users that have relative bad channels for a long uti ' Yy Tunction indicates ’ € sense o urge_n_cy Of a request,

period of time; to remedy this we propose a simple utility-baed While the channel state influences the efficiency of resource
scheduling algorithm. The motivation is to maximize the time- utilization given that the request is served.

averaged utility, where utility is a decreasing function ofthe delay A sampling of other work that has addressed downlink
incurred when serving a request. The scheduling algorithm dkes scheduling for wireless networks includes [3], [4], [5], [11]. In

into account both the utility function and the channel state We Il of thi K heduli lgorith it tt loit th
give simulation results which characterize the performane of the &/ 0T IS WOrK, scheauling aigorithms attempt to exploit the

scheduling algorithm. The effect of the temporal correlaton of “Multiuser diversity” that is present in a fading environment.
the channel on the performance is also studied. The authors in [3], [4], [5] consider scheduling schemes that

give preferences to users with favorable channel conditions

where the channel is modeled as a simple two-state process
I. INTRODUCTION with a “good” and “bad” channel state. This simplification,
I_?%tgough it provides insight, often becomes inadequate in
8

In this paper we consider downlink wireless data schedulirig. .~ . ) .
listic systems. More refined scheduling rules, which make

For delay tolerant applications, scheduling algorithms c ¢ bined k led fth | h L
exploit channel variations across the user population afef of combined knowledge of the queue length, waiting time

attempt to transmit to users when they have “good” chan d chan.nel cgnditions are presented in .[7]’.[8]’ [9], [10].
Féaurness is an important issue for scheduling in general. For

conditions. Such “opportunistic” scheduling algorithms hav o ) .
received much attention recently (e.g., [14],[15]) and are pgﬁample, it is often desirable to provide worst-case guarantees

of most third generation wireless standards. on throughput and delay and to achieve some degree of

Much of the prior work on scheduling has focused OZleparation between flows. The authors of [11] propose a

; B - . -framework for achieving this end by emulating the generalized
throughput or fairness for users with “elastic” traffic. In thi ocessor sharing (GPS) model ([12], [13]) proposed for wire-

paper, we consider the delay performance of opportuni i : ) )

schedulers. First, we consider a simple scheduling rule ( 1 aIIocatlor_l_s. In_ our work, we also c_o_n5|der scheduling

Max R Rule) that transmits to the user with the best chan sed on waiting time and channel conditions. However, our
ork differs from the previous work in that we adopt a utility-

at any time. It is easily shown that the Max R Rule maximiz d h. Maximizing the utilit i ¢ ticall
throughput given a constraint on the total downlink transmi ased approach. Maximizing the utility rate automatically

sion power. We derive the resulting delay distribution for th}gages%fo.ff falrrtl)ezz fgrl tf;;lough]gu.tt,_ whefr(t-:‘h thet_lqat;;re tc?f the
scheduling rule; in particular, we consider a system where ﬁo |ster’r; tﬁ edn the defini '03 0 fe”u ”yl ur;: |otn.”
number of competing users becomes large and characteriz € rest of the paper is organized as Toflows. In Sect. 1,

the asymptotic delay distribution. Although the Max R Rul§® d_zscrtlrt:ela do;vngn:( smgle-celll m(:r(]zlela Ir Sect.f I, we
is very efficient in utilizing the limited radio resources, it i onsider the Max ulé and analyze the delay periormance.

biased against users that remain in an unfavorable cha e‘cl’eCt' IV, we propose the UR f‘%'e Wh'C.h makes use of both
condition; such users may be blocked for a long time a channel condition and the utility function. We also present

simulation results that show how the temporal correlation of
This work was supported by the Motorola-Northwestern Cerfir (€ channel affects the performance of different scheduling
Telecommunications, and by NSF under grant CCR-9903055. rules. Conclusions are given in the last section.



Il. SYSTEM MODEL the time a packet arrives at the head of the queue. We derive the

; : ; ) ; .delay distribution across packets at the output of the scheduler.
We consider the downlink of a single-cell using Tim& Let &, = masxicq1... xy Ry. The duration of the® slot

Division Multiplexing (TDM). We assume that there até _ ; - i
users with packets to transmit. A scheduler, which residesfi€N Using the Max R rule is thely = mingeqs, ...k} Tiv_J' -
4k, whereT; ; = L/R;;. We assume tha{R; ;} is a

the base station (or base station controller), decides at the r ) ! ) U A
of each scheduling interval which of the Head of Line (HOL%et of independent and identically distributéd.d.) random

packets to serve. We assume that the base station transm¥&fgbles withp.d.f. fr(r). 1L'heLrefore,{Ti,j} are alsoi.i.d.
one user at a time with the full available power. and havep.d.f. fr(t) = fr(¥)g- Here we assume that the

The packets are assumed to have fixed lergthvhere independence holds not only across users, but over time slots as

is small enough so that the channel stays relatively const4fftl- Conditioned on a packet getting scheduled inAé slot

during a packet transmission. Each packet transmission tim@1f€r it becomes the HOL packet, the total delay experienced
thereforeT' = L/R, whereR is the rate at which data can pdY this packetD, is given by

transmitted to the scheduled user with very small probability N o

of error. The rateR depends on the channel gainand the D=>"T, (2)
specific coding and modulation scheme chosen for a user. We J=1

assume that? increases withh, and their relation is givenwhere N is a random variable denoting the number of time
by R = C(hP), where P is the total available downlink slots required until a packet gets scheduled. SinceRhgs
transmission power, and(-) is an increasing function. Wearei.i.d., thep.m.f.of N is given by:

assume thak (or equivalentlyh) is available to the scheduler. 1 /K —1\""!
=PrI[IN=nl=—( —— , =1,... .
Dn r] n] % < % ) , forn e, 00
Ill. THEMAX R RULE (3)
A. Throughput Optimization This is a geometric distribution with parametetk .

In this section, to simplify our analysis we assume that once! "€ packet delay seen at the output of the schedlileis
the base station starts transmitting to uiset must complete therefore the sum of a random numbe¥)(of i.i.d. random
the transmission of one packet at rate. Upon completion, Variables ;). We point out thatV is independent fron¥;.
a new decision is made as to which is the next schedul¥§ Want to derivefp (), thep.d.f. of the total delayD.
packet. A scheduling interval (“time slot’) is therefore the L&t £ () and fs(x) Senpte thec.d.f. and p.d.f. of 7},
packet service time, which varies in duration according to tFgsPectively. LetD,, =3 7 , T; be the sum of, independent
available rates. The amount of data served in each time slgts. The p.d.f. of D, fp,(z), is given by thei-fold self
L, stays fixed. This differs from systems such as HDR ([genvolution of f7(z):

[2]), where the time_ slots are of fixed _dura_tion_ (1.67ms) and Fou, (@) = fi(x) % fo(m) 5 - * fr(z) . (4)
the packets served in each slot may differ in Size. ~

Let R;; be the transmission rate at which usecould . " ) )
receive data if scheduled in time slpt We definethe Max ~ USing (2) and (3), thep.d.f.of D can be written in terms
R Rule to be the scheduling policy which serves usegiven of fp, (2):

by: 0
fo@) =" fo.(x)pn (5)
i*=arg max R;; forall j. (1) n=1
iedt,... Ky Hence, the moments dP are given by:
where any ties can be broken arbitrarily. It is easily seen that oo
the Max R Rule maximizes the total system throughput. RE(D*) = X:IE(D’C | N =n)p,
Next, we study the delay distribution resulting from this rule n=1
and show that the mean delay grows at r@tgs/In(K)) | s .
asK — oc. = > EDE)pn. (6)
n=1
o ) In particular,
B. Delay Distribution Analysis o
To simplify our analysis we consider a system with E(D) = Z"E( " = KE(T}), (7)
backlogged queues. In such a system, delay is calculated from n=1
and
*This analysis can be generalized to the case of fixed durétieerslots 00
at the expense of more complicated notation. E(DQ) — Z (nE(Tz) +n(n— 1)1@2 (T])) Pn
tWe use the notationf(n) = ©(g(n)) if lim % < oo and ot !
lim 48 < oo, for f(n) andg(n) > 0, Vn. = KE(T?) + (2K* - 2K)E (). (8)



Higher moments ofD can be expressed similarly in terms of Given F;'(u) = =Ty/In(u), it can easily be shown that
moments ofT;. (12) holds. Therefore, we have the following Corollary:

Now we only need to specify;, («) to complete the anal-  corollary: For Fr(z) given by (11), the random variable

ysis of the delay distribution. Recall thd is the minimum T; ; lies in the domain of attraction for minima of a Gumbel
of K i.i.d. random variables; hence itsd.f.is given by ([18], distribution withc.d.f.

[19]):
Fy. K(CU) =Pr [Tj < g;] =1-[1-Fr()]*, (9 L(z) = Klgnoo Pr ie{gr,l.l.?K}Ti’j <cg +dgx| (13)
where Fy(z) = [ fr(t) dt is thec.d.f.for T; ;. = 1 —exp(—exp(z)),

So far, We have completely characterized the delay distrifgr —oo < 2 < oc.
tion given a distribution on the channel ratds, ;. However, |t can be also shown using results from [18] that the
this computation becomes complex Asbecomes Iarge Theappropriate constanige anddy are given by:
distribution for the duration of one time slotF§, T T

0 0

containsK as an exponent, therefore it becomes mcreasmgly CK = ey and dg = ] 11
difficult to evaluate moments oT analytically. However, n(K) n(K)(1 + In(K))
using extreme value theory from [18], [19], we can analyzeAs K — oc, Tj — 0 in mean square. From this analysis
the distribution of7}; for large K. Then using (7) and (8), theit follows that asK — oc, the mean slot duratiofi(7;)

(14)

asymptotic behavior o) can also be obtained. decreases at raté ( )) Therefore, using (7), we have
C. Extreme Value Analysis shown that the average total del@(D) = © (ﬁ) as
As K — oo, the distribution specified by (9) degenerates — oco. Note that if round robin scheduling was used, the
to: mean delayE(D) would increase at rat®(K). Similarly,
0 if Pr(z)=0 using (8), the variance ab grows at rate® (%
lim Fj k(@)= : n*(K)
K—oc 1 if Fp(z) <1.

Extreme value theory focuses on the linear transformatibn Numerical Results for Finite Users

y = ck +dgx wherecg anddg are constants that depend on | the previous subsection, we showed that asymptotically
K. Appropriate choice of these constants may result in a ngRa expected delay grows at ra@( ) for a Max R
degenerate limiting distributiof(z) = limk o Fi, x(ck + scheduler. We now present numencai results that show this
dxcz). A given c.d.f, Fr(z), is said to belong to, or lie asymptotic growth rate holds even for a small number of users.
in, the domain of attraction for minimaof a given c.d.f. We simulate a backlogged system with packet length:
L(x) if L(z) = limk o F, i (cx + dxa) = limg o0 1 — 1024 (bits). The Max R Rule is used. In each time slot, rates are
[1 - Pr(ckx + dK:n)]K for given sequence&ek } and{dx > chosen independently across users according to an exponential
0} ([18], [29]). distribution with meanfz, = 50,000 (bps).

Assume flat Raleigh fading for each user, and tRaj is Fig. 1 showsE(T}) vs. the number of userdy. The solid
proportional to the received SINR; this resultsfin(r) having line represents the simulation results. The dash-dot line is the

an exponential distribution, i.e., analytical results that we get using tbel.f.given by (9. The
1 r dotted curve isL/RyIn(K) vs. K, whereL/Ry, = 0.02048
fr(r) = Ry P <R_0> (10) is a normalizing constant. This corresponds to the asymptotic

growth rate.
where Ry = E(R). _ _ Notice the simulation and analytical results agree perfectly.
Thec.d.f.for 1" is then given by the Frechet distribution: 1o approximation given by the asymptotic analysis also

T
Fr(t) = exp <70> 7 (11) performs very well even for small values &f.
which hasp.d.f. fr(t) = % exp (—12), whereT, = L/Ry. IV. THEU'R RULE
Note thatE(T) = co. The Max R Rule makes the most efficient use of the channel

We use the following Theorem from [18], to show that(¢) since in each time slot the user with the highest data rate gets
given by (11) lies in the domain of attraction for minima ofransmitted. However, it does not account for fairness and may
the Gumbel distribution. perform poorly in terms of delay and stability (see [6]). To

Theorem 1:[18] A necessary and sufficient condition for dalance fairness with efficiency, we introduce a utility-based
continuousc.d.f, F(z), to lie in the domain of attraction for scheduling algorithm that takes into account both the channel
minima of a Gumbel distribution is that condition and the user’s utility function.

F~'(e) — F*(2) : . .
lim — = (12) +The analytical results are calculated using Maple. We doshatv the
==0 - ( ) F (45) results forK > 20, since the computational complexity becomes too high.




R RS o) where N (T') denotes the total number of packets served up
= Analytcal Resuls | to time T, and D;, represents the delay experienced by packet
k. With this objective in mind, we first look at a simple case
where only two users are present, and they both have packets
waiting. Suppose that at the current scheduling instant their
HOL packets have waited fdi’; and W, time units in the
gueue, respectively. Lét, (D) andU»(D) be the associated
utility functions. Looking two time slots ahead, and assuming
the channel for each user stays fixed across the two time slots,

the utility derived by transmitting in the ordér— 2 is
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Fig. 1. E(1}) vs. K. Similarly, transmitting in the reverse order gives the total tili
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The total time for transmitting the two packets is the same in

both cases.

To maximize utility rate, user 1 should be scheduled first if
(16) > (17). AssumingL/R; ; andL/R, ; are small, we can
approximate (16) and (17) in terms of their first-order Taylor
expansions to get that user 1 should be scheduled if

Ur(Wh) + Uy (Wh) g + Us(Wa) + Uy (W) (55 + 72)

Delay 1 Ri1 Ro 1
> Us(Wo) + Uy (W) g + Un(Wh) + Uy (Wh) (555 + 555)-

Notice thatU’(D) < 0 for all D > 0. Cancelling terms and
reorganizing, we get

| U (Wh) | Ri1 >| Uy (Wa) | R (18)

Fig. 2. Two example utility functions.

A. Utility Function as an approximate condition for when user 1 should be
Assume that associated with each packets a utility scheduled first. The preceding argument easily extends to a

function denoted by, (D), whereD is the total time betweensystem withX users, assuming all packets belonging to user

the packet arrival and service completion. This includes bdtave the utility functior/;(-). In that case, this approximation

the gueueing time and the transmission time. The utility rigsults in the base station scheduling usegiven by

decreasing irD, i.e. the longer the delay, the lower the utility. ' )

Two examples of/ (D) are depicted in Fig. 2. Unlike con- ' = &, 1%, | Us(Wij) | Bij, forall j, — (19)

ventional definitions of utility functions in mmroeconomms,wgvhere Wi, is the delay for the HOL packet of usérat the

assume thali (D) can take on negative values. In that case,, slot. Ties can be broken arbitrarily. We call the scheduling

the utility is interpreted as the level of dissatisfaction thatr.ule in (19) theU'R rule. We can interpret U () | as a

a
USEr experiences dl.@ to pac_ket tra}nsm|33|on delay. By varyn?&j price per information bit submitted by the corresponding
the shape of the utility function, different delay requirements ; . :
. ; ser. This rule can then be interpreted as scheduling the request
can be reflected. For example if a packet has a deadline, then, ~ . . :
which gives the most revenue per second in the next time slot.

the utility function could be relatively flat before the deadlin N . ;
and drop sharply beyond that point, as shown by the dottﬁe(\:fve further assume thalt;(-) is concave, then the bid price

o INcreases with the waiting timé&/; ;. In other words, as a
line in Fig. 2. o : '
packet waits in the queue, it becomes more urgent, and the
potential utility loss by postponing its transmission becomes
B. The U'R Rule — Motivation more substantial. The rate at which the urgency increases is
dt%cided by the second derivative ©f(-).
We review the assumptions leading to the U'R rule to see
when this rule should perform well. First, we have assumed
1 N that every packet eventually gets sent. If packets can be ignored
7}31100 T Z Uk(Dy), (15) forever or dropped from the queue without penalty, then we
k=1 can serve the most users and achieve a higher utility rate by

yeee sy

Our objective is to schedule transmissions at each time
maximize the total utility rate:



Time-averaged utility vs. p
T T T T T

always sending to the user with the best channel. Second, we 10
have used a Taylor expansion with only the first-order terms, a
so thatL/R must be relatively small. Otherwise, second-order
terms should be taken into consideration as well. In that case,
we may not get a scheduling rule with a comparably simple
structure. Last, we have assumed that the channel is constant
over 2 scheduling periods. This is a reasonable assumption for
low-tier mobility. In the next subsection we explore the effects
on the scheduler’s performance of relaxing this assumption.
The virtue of the U'R rule lies in its simplicity and flex-

!
a
=}

Time-averaged utility
"
s 8

!
@
S

!
©
=}

—— The Max R Rule
—e- The U'R Rule

ibility. First, the information needed to make the decision is ~100
readily available at the base station. The channel gain, and R TR T TR
hence the ratd{i I’ can be estimated Via a p||0t Signal. The Correlation coefficient between successive channels (p)

base station could learn a user’s utility function/ during cag|g. 3
set-up. Alternatively, users could provide the bitl; (1; ;) |

when needed. In the latter case, the base station need not have
complete knowledge of the utility function. The U'R rule is
also flexible in that by choosing different utility functions, wd he real and imaginary parts @ ; are alsoi.i.d. with dis-

get different scheduling rules. For example, the Max R Ruletf@ution N (0, (1 — ¢*)E(R; ;)/2). This results ink; ; having

a special case of the U'R Rule whéip(D) = —aD+b, where the desired marginal distribution. It can also be shown that
a > 0 andb are constants for all. If U;(D) = —a;D + b;, the covariance coefficient betweet; ; and R; ; , is given
wherea; > 0 andb; are constants which depend on the usdly » = ¢° for all j > 1. We assume that the utility function
then the U'R rule becomes scheduling the user with the largl¥teach user is the same and is givenlbyD) = —D>.

a;R;. Clearly,a; can be used to indicate a user's priority level. Fig. 3 shows the time-averaged utility ysfor the different
Specifically, ifa;'s are chosen such thaya; is the mean rate Scheduling rules. Each data point is averaged over ten different
useri gets over a certain (relatively long) time window, thef@ndom seeds. First observe that the average utility decreases
we get theProportional Fair Ruleproposed in [16], [17]. If @S the channel correlation increases. That is as expected, since
Ui(D) = —3;D?, for all i, where; > 0, then we get the the more independent the channels are over time, the more
Modified Largest Weighted Delay First (M-LWDF) ruléhich advantage an "opportunistic” scheduler gains via multiuser
was proposed in [9]. It is shown that the M-LWDF rule igiversity. The U'R Rule performs better when the channels

throughput optimali.e., it makes the queues stable if it i@re highly correlatedx 0.5). For example, whep = 0.9025,

as large as$4%. Furthermore, when the channels are constant
(p = 1), the Max R Rule causes infinite delay for the user
with the worse channel and therefore the derived utility goes
We simulate a backlogged system with 2 users; both fenegative infinity. The U'R Rule schedules users in a periodic
Max R rule and the U'R rule will be considered. Instead @hshion in this case resulting in a finite utility-rate. The Max R
completely transmitting one packet at once, we use a fixgflle achieves higher utility-rate when the channel correlations
time-slot scheme similar to HDR. In this Setting, the Max Bre |OW, a|though the difference is not as Signiﬁcant_
Rule stays the same at each decision instant. The U'R Rule iFig. 4 shows two typical delay complementaryl.f's with

- limrs e = N (D) vs. p.

C. Simulation Results

now to transmit to the user such that p = 0.81 under the U'R Rule and the Max R Rule, respec-
i* = arg  max | U;(Wij) | Ri;/Li;, forall j, tively. Notlc_e thg Max R curve has a sharper drop at the start
ie{l,...,K} ’ ' ’ and a heavier tail. In other words, the delay for the U'R Rule is

distributed more evenly than with the Max R Rule. Considering
fairness, a more equitable delay distribution is a desirable

i feature; the U'R Rule clearly achieves better performance in
this aspect.

where L; ; denotes the remaining packet length of uset
the jt* decision epoch.

The packet length is set to He= 20 (unit lengths) and slo
duration is normalized to 1 (slot). The supportable rafes
varies with time and has a marginal exponential distribution
with meanE(R; ;) = 5 (unit length/slot) for alli andj. The V. CONCLUSIONS
rates are correlated over time. Specifically; ; = |X; ;% We have considered downlink scheduling for wireless data.
where for eachi, {X;;}72, is a complex Gauss-MarkovWe analyzed the delay distribution for the Max R Rule which
random process. Foj = 1, the real and imaginary partsmaximizes throughput. By applying extreme value theory, we
of X, arei.i.d. Gaussian random variables with distributionbtained the asymptotic rate at which the mean total delay
N(0,E(R;;)/2). Forj > 1, X;; = oX; ;-1 + & ;, where increases with the number of users. To enforce fairness, we
&,;'s are independent complex Gaussian random variablesnsidered a maximum utility-rate formulation which led to the
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Fig. 4. Complimentary c.d.f. of delay under Max R and U'R shliimg
rules.
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U'R scheduling rule. The U'R Rule takes into account both the
channel conditions and the utility functions. Note that the Max
R rule is a special case of the U'R Rule. Simulation results
have shown that the U'R Rule tends to outperform the Max R
Rule in terms of maximizing time-averaged utility when the
channel correlation is high. When the channel correlation is
low, the Max R Rule performs better.
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