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Abstract—The k-means algorithm is one of the most widely 
used clustering algorithms and has been applied in many 
fields of science and technology. One of the major problems 
of the k-means algorithm is that it may produce empty 
clusters depending on initial center vectors. For static 
execution of the k-means, this problem is considered 
insignificant and can be solved by executing the algorithm 
for a number of times. In situations, where the k-means is 
used as an integral part of some higher level application, 
this empty cluster problem may produce anomalous 
behavior of the system and may lead to significant 
performance degradation. This paper presents a modified 
version of the k-means algorithm that efficiently eliminates 
this empty cluster problem. We have shown that the 
proposed algorithm is semantically equivalent to the 
original k-means and there is no performance degradation 
due to incorporated modification. Results of simulation 
experiments using several data sets prove our claim.  
 
Index Terms—Empty clusters, initial centers, k-means, 
modified k-means. 

I.  INTRODUCTION 

Clustering [1]-[4] is an unsupervised classification 
mechanism where  a set of patterns (data),   usually multi-
dimensional, is classified into groups (clusters) such that 
members of one group are similar according to a 
predefined criterion. Clustering of a set forms a partition 
of its elements chosen to minimize some measure of 
dissimilarity between members of the same cluster. 
Clustering algorithms are often useful in various fields 
like  data mining, pattern recognition, learning theory etc. 
The k-means [4] is possibly the most commonly-used 
clustering algorithm. It is most effective for relatively 
smaller data sets. The k-means finds a locally optimal 
solution by minimizing a distance measure between each 
data and its nearest cluster center [5]. 

Many parallel versions of the k-means algorithm  [6]-
[10]  use the basic serial k-means at their core. Besides, a 
number of stochastic clustering algorithms make use of 
the basic k-means or some of its variations. Very often 
these algorithms are based on Simulated Annealing [11]-
[12] or Genetic Algorithms [13]-[14]. 

 
The k-means clustering algorithm faces two major 

problems. One is the problem of obtaining non-optimal 
solutions. As the algorithm is greedy in nature, it is 
expected to converge to a locally optimal solution only 
and not to the global optimal solution, in general. This 
problem is partially solved by applying the k-means in a 
stochastic framework like simulated annealing (SA) and 

genetic algorithm (GA) etc. The second problem is that of 
empty cluster generation. This problem is also referred to 
as the singularity problem in literature. Singularity in 
clustering is obtained when one or more clusters become 
empty. Both the problems are caused by bad 
initialization. Algorithms that use the k-means at their 
core suffer from the empty cluster problem too. A very 
common practice to solve these problems is to repeat the 
initialization until we receive a set of good initial center 
vectors. In practice, after center initialization, we assign 
elements to the concerned clusters. If an empty cluster is 
found, at this early stage, a re-initialization takes place. 
This process is repeated until all non-empty initial 
clusters are formed. This is, however, an ad-hoc 
technique. Several other methodical approach are also 
found. In [15], a refinement approach is proposed, where 
starting with a number of initial samples of the data set 
we can obtain a number of sets of center vectors. These 
center vectors then pass through a refinement stage to 
generate a set of so called good starting vectors. In [16], a 
genetically guided k-means has been proposed where 
possibility of generation of empty clusters is treated in 
the mutation stage. Several k-d-tree based methods are 
found in [17] and [18]. Another approach to initialize 
cluster centers based on values for each attribute of the 
data set, has been proposed in [19]. These methods are 
time costly and may not be applicable by keeping the k-
means's inherently simple structure. 
 

In this paper, we have presented a modified k-means 
algorithm which eliminates the problem of generation of 
empty clusters (with some exceptions). Here, the basic 
structure of the original k-means is preserved along with 
all its necessary characteristics. A new center vector 
computation strategy enables us to redefine the clustering 
process and to reach our goal. The modified algorithm is 
found to work very satisfactorily, with some conditional 
exceptions which are very rare in practice. 

 
II. THE k-MEANS ALGORITHM FOR CLUSTERING 

 
The k-means algorithm [4] is very commonly used for 

clustering data. To handle a large data set, a number of 
different parallel implementations of the k-means have 
also been developed. Here, we shall provide a brief 
description of the serial k-means and some of its 
properties relevant for the current work. 

 
In crisp partitional clustering, a set D of  N patterns {x1, 

x2, …, xN} of dimension d is partitioned into K clusters 
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denoted by {C1, C2, …, CK} such that the sum of within 
cluster dispersions, i.e., the clustering metric M, as given 
in (1), becomes the minimum. 

( ) 2
1 2  

1
 ,  ,  ,    || –  || (1)

j k

K

K j k
k x C

C C C
= ∈

… = ∑ ∑ x zM

Here, Z = {z 1 , z2, …,  zK} is the set of cluster centers. 

A. Basic k-means Algorithm 
The basic k-means algorithm is commonly measured 

by any of intra-cluster or inter-cluster criterion. A typical 
intra-cluster criterion is the squared-error criterion 
(Equation 1). It is the most commonly used and a good 
measure of the within-cluster variation across all the 
partitions. For the current work, we consider intra-cluster 
squared-error function to evaluate the present scheme of 
clustering. In basic k-means algorithm, a set D of d-
dimensional data is partitioned into K clusters, starting 
with a set of K randomly generated initial center vectors. 
The process iterates through the following steps: 
• assignment of data to representative centers upon 

minimum distance, and 
• computation of the new cluster centers. 

The process stops when cluster centers (or the metric M)  
become stable for two consecutive iterations. The basic k-
means algorithm is greedy in nature. 
 

The time complexity of the k-means clustering 
algorithm is O(TKN) where N is the number of input 
patterns, K is the desired number of clusters and T is the 
number of iterations needed to complete the clustering. 
The high time complexity makes k-means unsuitable for 
large applications. Being a greedy algorithm, it often 
converges to a local minima, may produce empty 
clusters,  but performs well enough for smaller data sets. 
 

III. THE MODIFIED k-MEANS ALGORITHM 
 

The clustering schemes employing the basic k-means 
algorithm (Section II) face a significant problem of 
generation of empty clusters at different instances due to 
bad initialization. In this section, we report a scheme to 
address the above issue of generation of empty clusters  
and propose an algorithm to modify the center vector 
updation procedure of the basic k-means that denies the 
possibility of empty clusters. We denote this new 
algorithm as m_k-means algorithm. 

 

A. Basis of the Proposed Scheme 
 

    In the basic k-means algorithm, an iteration starts with 
a set of old center vectors zk

(old), the data elements are 
distributed among clusters depending on minimum 
Euclidean distance, and then a set of new cluster centers 
zk

(new) is generated by averaging the data elements. This 
center updation procedure in the original k-means 
algorithm can be mathematically described as: 

( ) { ( )} ( 2 )n e w
x Ck j kk

1 jn ∈
⇒ ← ∑z x
 where, nk is the number of elements in cluster Ck. If the 

new centers zk
(new) do not match exactly with the old 

centers zk
(old), the k-means algorithm enters into the next 

iteration assuming zk
(new) as zk

(old). 
 
In case of the m_k-means algorithm, the computation 

of new center vectors differs from that in the k-means 
algorithm. Here, the old center vectors zk

(old) are assumed 
to be  members of the concerned clusters along with the 
allocated data items. In this scheme, we deny the 
formation of  empty clusters. Therefore, center updation  
procedure in m_k-means can be written as :  

 
( ) ( ){ ( ) } (3)new old
k kx Ck j k

1 jn 1 ∈+
⇒ ← +∑z x z

    Equation 3 indicates that every cluster  should always 
contain at least one element. One may guess that 
incorporation of zk

(old) in computation of zk
(new), may 

affect the rate of convergence to final cluster centers and 
the quality of clustering solutions. However, since the 
value of zk

(old) soon becomes well inside the concerned 
cluster (within a few iterations), the effect of zk

(old) will be 
very insignificant, and for a large data set it can be 
assumed to be negligible. The following subsection 
reports the design of the present  algorithm, referred to as  
m_k-means clustering algorithm. 

 

B. The m_k-means Algorithm 
The execution steps of the  m_k-means algorithm to 

form clusters are essentially similar to those of the 
original k-means algorithm. The processor maintains the 
cluster structures in its own local memory and iterates 
through the steps of the m_k-means algorithm to evaluate 
a final set of cluster centers Z. The execution steps to be 
followed are summarized below. 

 
The   m_k -means Algorithm  
 
Input: a set D of   d-dimensional data and an integer K. 
Output: K  clusters 
begin 

randomly pick K  points ∈D  to be initial means; 
        while measure M  is not stable do  
           begin 
 compute distance  dkj = ||xj – zk||2  for each  
                   k, j   where 1 ≤ k ≤ K   and  1 ≤ j ≤ N, and                               
     determine members of new K subsets based    
                   upon minimum distance to zk  for 1 ≤ k ≤ K; 
               compute new center  zk  for 1 ≤ k ≤ K using (3); 
               compute M;  
          end 
 end 
 

The above algorithm reveals that the new  clustering 
scheme is exactly similar to the original k-means 
algorithm except the only difference at the center 
computation step. In the following subsection, we shall 
try to prove that the m_k-means algorithm converges to k-
means centers and the rate of convergence is almost equal 
to that of the original k-means algorithm. 
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C. Proof of Convergence for the m_k-means Algorithm 
 

As mentioned in Section III-A, incorporation of zk
(old) 

in computing zk
(new) may affect the rate of convergence of 

the present algorithm. However, this effect is 
insignificant and for a large data set it can be assumed to 
be negligible. An analytical measure is described in this 
subsection to estimate the effect of the old centers while 
computing new ones. 

 
Let us consider that at iteration t, data items are 

distributed among correct clusters, but center vectors are 
yet to be stable. Let, at this stage, a certain cluster be 
represented by C = {x1, x2, …, xm} and the corresponding 
center is z(t) = x (say), where              

                      1 2 m

m
+ + +

≠
x x xx L    

due to the initial center effect. Therefore, the following is 
a sequence of center vectors obtained in the subsequent 
iterations: 
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Proceeding in a similar fashion, we get 
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For large values of m or u,  1/(m+1)u → 0. Hence,  

( ) 1 11
1

m m
i it u i im

m m m
+ = =+

= × =
+

∑ ∑x x
z                     (4) 

 
which is the desired cluster center (using k-means). And 
the additional u iterations needed for final convergence 
can be expressed by the  condition 1/(m+1)u → 0. For 
large data sets (large m), even for a small u this condition 
holds. That is,  the effect of the initial centers toward 
convergence is negligible. 

 

D. Proof of Generation of Non-empty Clusters 
 

In the above subsection, we have shown that the m_k-
means algorithm converges to the k-means centers. In the 
following we show that the m_k-means algorithm 
generates non-empty clusters only as opposed to the 
conventional k-means. The problem of empty clusters  
occurs when the initial center vectors 

( 0 ) ( 0 ) ( 0 )
1 2 Kz ,  z , , zL  are such that any two or more of 

them are either equal or very close to each other. In such 
a situation, after assignment of data to clusters, data 
elements will be assigned to only one of the clusters with 
nearly equal centers, and the others remain empty. 
 

Let D = {x1, x2, …, xm, y1, y2, …, yn } be a data set 
with (m+n) data elements forming two well separated 
clusters X and Y as shown in Figure 1. If we apply serial 
k-means algorithm to partition this data set into two 
clusters, we get the following center vectors 

1 2
1

m

m
+ + +

=
x x xz L

and  1 2
2

n

n
+ + +

=
y y yz L

. 

 

Fig.1.  Sample  data set with two clusters. 
 

Now let us consider execution of k-means and m_k-
means on the above  data set with identical initial centers. 
 
Execution using k-means: 
 

Let the two cluster centers be initialized as (0 )
1z  and  

(0 )
2z  respectively  (where, (0 )

1z  = (0 )
2z ), then all the data 

elements go to either cluster 1 or cluster 2 only. If we 
assume all data go to cluster 1, then the data set will be  
partitioned as  D1 = D  and  D2 = Ø, producing new 
centers as  

1 2 1 2(1)
1

m n

m n
+ + + + + + +

=
+

x x x y y yz L L
, and (1)

2 = ∞z . 

Here, the superscripts of zs indicate iteration number. 
   
Execution using m_k-means: 
  
In this case, the center vectors will become 

(0)
1 2 1 2 1(1)

1 1
m n

m n
+ + + + + + + +

=
+ +

x x x y y y zz L L and (1) (0)
2 2=z z . 

Thus after the first iteration, (1)
1z  ≠ (1)

2z .  
 

 

© 2009 ACADEMY PUBLISHER



RESEARCH PAPER 
International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009    

 

223 
  

Now, in a general situation, when the number of 
clusters K is greater than 2, we can arrive at the same 
conclusion according to the following logic. 
 

Let, z1, z2, …, zK be the K centers, which are initialized 
to ( 0 ) (0 ) ( 0 )

1 2 Kz ,  z , , zL  respectively. In the worst case, we 
can assume that all the clusters are initialized to the same 
value, i.e., (0 ) (0 ) ( 0 ) ( 0 )

1 2 K =z =  z = = z zL  (say). Then, 
after the first iteration, we have 

(1) (0)
1 ≠z z   

and 
(1) (1) (1) (0 )
2 3 K= = = =z z z zL  

because all the elements will be occupied by a single 
cluster. After the second iteration,  

(1) (1) ( 0 )
1 2≠ ≠z z z  

and 
(1) (1) (1) ( 0 )
3 4 K= = = =z z z zL  

 
Therefore, after the Kth iteration, we will get K different 
center vectors and, hence, all non-empty clusters can be 
ensured. The above derivation, unfortunately, will not be 
applicable in either of the following two conditions: 

• if all the center vectors are initialized to the 
centroid of the data set, and 

• if any ( )j
iz  becomes equal to ( 0 )z  even after 

getting data elements assigned to it during iteration 
number j (where, j<K). 

 
In the former instance, for a two cluster situation we 

have, 1 2 1 2(0) (0)
1 2

m n

m n
+ + + + + + +

= =
+

x x x y y yz z L L  

Let, in this case, all the elements are assigned to the 
first cluster keeping the other empty. Then, we have 

 
1 2 1 2(0)

1

(0)
1 2 1 2 1(1)

1

1 2 1 2 (0)
1

1

m n

m n

m n

m n

m n

m n

+ + + + + + +
=

+
+ + + + + + + +

=
+ +

+ + + + + + +
= =

+

x x x y y yz

x x x y y y zz

x x x y y y z

L L

L L

L L

 
This means that there is no change of the cluster 

centers even after the ireration is over. The same logic is 
equally applicable for  K > 2  also. 
 
 
 
Example: 

                                                                                        
A run of the proposed  clustering algorithm is next 

described for illustration. Let us consider a 1-dimensional 
data set {x1 = 12, x2 = 2,  x3 = 7, x4 = 5, x5 = 19, x6 = 14, 
x7 = 8, x8 = 18, x9 = 17, x10 = 13, x11 = 15, x12 = 9}. 
 
 

The initial cluster centers  are intentionally set to the 
same value 6, i.e.,  z1 = 6,  z2 = 6 and  z3 = 6. We shall 
show how the m_k-means algorithm classifies the data set 
into three clusters C(1), C(2) and C(3). It may be noted 
here that one could have initialized the center vectors to 
random values also. 

                                                                                                             
The formation of clusters in different iterations of the 

present  m_k-means scheme is shown in Table I. It may 
be noted that the modified  clustering scheme takes 11 
iterations to converge to a solution with  M (metric) = 
20.428574. The  partitions become {7, 8, 9}, {2, 5}, and 
{12, 13, 14, 15, 17, 18, 19}. In this case, the m_k-means 
is found to produce a good clustering. Under a similar 
initial condition, the k-means algorithm fails to cluster 
data and two empty clusters would be produced. 

  

IV.  EXPERIMANTAL RESULTS 

 
This section provides the performance comparison  of 

the conventional k-means and  m_k-means  in terms of 
rate of convergence and the quality of the solution M. 
The efficiency of the present  m_k-means algorithm is 
then compared with respect to conventional k-means  
algorithm regarding generation of empty clusters.  

TABLE I.   
ELEMENTS AND CENTERS  OF CLUSTERS DURING ITERATIONS 

Iter 
No. 

Clus-
ters zold  Elements in Clusters Znew     Metric 

 
0 
 

C(1) 
C(2) 
C(3) 

6.000 
6.000 
6.000 

2,5,7,8,9,12,13,14,15,17,18,19 
-- 
-- 

11.154 
6.000 
6.000 

54.6923 

1 
 

C(1) 
C(2) 
C(3) 

11.1546.0
00 
6.000 

12,13,14,15,17,18,19,9 
2, 5, 7, 8 

- 

14.239 
5.600 
6.000 

29.0000 

2 
 

C(1) 
C(2) 
C(3) 

14.239 
5.600 
6.000 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.280 
4.200 
7.500 

20.7799 

3 
 

C(1) 
C(2) 
C(3) 

15.280 
4.200 
7.500 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.410 
3.733 
7.857 

20.5350 

4 
 

C(1) 
C(2) 
C(3) 

15.410 
3.733 
7.857 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.426 
3.578 
7.969 

20.4575 

5 
 

C(1) 
C(2) 
C(3) 

15.426 
3.578 
7.969 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.428 
3.526 
7.992 

20.4361 

6 
 

C(1) 
C(2) 
C(3) 

15.428 
3.526 
7.992 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.429 
3.509 
7.998 

20.4305 

7 
 

C(1) 
C(2) 
C(3) 

15.429 
3.509 
7.998 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.429 
3.503 
8.000 

20.4291 

8 
 

C(1) 
C(2) 
C(3) 

15.429 
3.503 
8.000 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.429 
3.501 
8.000 

20.4287 

9 
 

C(1) 
C(2) 
C(3) 

15.429 
3.501 
8.000 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.429 
3.500 
8.000 

20.4286 

10 
 

C(1) 
C(2) 
C(3) 

15.429 
3.500 
8.000 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.429 
3.500 
8.000 

20.4286 

11 
 

C(1) 
C(2) 
C(3) 

15.429 
3.500 
8.000 

12,13,14,15,17,18,19 
2, 5 

7, 8, 9 

15.429 
3.500 
8.000

20.4286 
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A.  Comparison of  k-means and m_k-means Algorithms 
in Terms of Rate of Convergence and Quality of Solutions 

 
In this subsection, we report the performances of 

conventional k-means  and the m_k-means algorithms  in 
terms of their rate of convergence and the quality of 
solutions obtained while executed on different artificial 
and real life data sets.  

 
Four artificial and four real-life data sets are 

considered for these experimentation. The artificial data 
sets are Circular_5_2, Circular_6_2, Spherical_4_3  and 
Elliptical_10_2  [14]. The names imply the structure of 
underlying clusters, concatenated with the number of 
clusters present in the data and its dimensions (Table II). 
For example, in Circular_5_2 data set the clusters are 
circular in nature. There are five clusters and  2 
dimension. The real-life data sets are Iris [20], Crude_Oil 
[21], Breast_Cancer and Color_Moments  [22].  

 
The Color_Moments data is derived from 68,040 

images of the corel image features collection of the UCI 
KDD archive [22]. The number of clusters for the Iris, 
Crude_Oil and Breast_Cancer data sets are known to be 
3, 3 and 2 respectively. For the Color_Moments data, we 
assumed the number of clusters to be 10. 

 
For the purpose of comparison, concerned algorithms 

are executed on various data sets. The results  of 
comparison are given in Table III. The Circular_5_2 and 
Iris data sets and the corresponding clustered sets (using 
m_k-means) are  shown in Figures 2 to 5. The 
Circular_6_2, Spherical_4_3 and Elliptical_10_2 data 
sets are not shown because they form visually well 
separate clusters. From Table III, it can be observed that 
the number of iterations needed for the m_k-means 
algorithm are almost similar to those required for the  k-
means algorithm.  However, the   m_k-means, required a 
few more iterations in some cases. This is because, the 
data sets are relatively smaller. Values of the clustering 
metric that indicate a measure of goodness of clustering 
are found to be almost similar in all the instances.  Here, 
square root of distances are used to compute metric M.. 

 
B.  Comparison of  k-means and m_k-means Algorithms 
in Terms of Empty Cluster Generation 

 
Here, we shall show experimentally that the m_k-

means algorithm is able to overcome the empty cluster 
problem of the original k-means. We do not claim that the  
m_k-means is able to solve the problem entirely. Under 
certain specific situations, as discussed earlier, it 
produces empty clusters. However, the possibility of 
occurrence of such results is very small and condition 
specific. We chose the   Iris  data set for experimentation 
with the empty cluster problem in association with the k-
means and m_k-means algorithms, because this data set is 
considered to be a benchmark for experiments in machine 
learning,  clustering and other related fields. We have 
also used the Circular_5_2 data set for comparison. 

 

Simulation experiments are performed on the  Iris  data 
set by varying the number of desired clusters using the k-
means and m_k-means algorithms. We performed 
experiments under two different initial conditions as 
mentioned below: 
• Normal condition: the center vectors are generated 

randomly, as usual.  
• Extreme condition: all the center vectors are 

identical (initialized to the same value).  
 
It has been observed that using m_k-means, in extreme 

condition,  for smaller number of clusters there is no 
chance of generation of empty clusters. However, as the 
number of clusters grows, the possibilities of empty 
clusters also grow due to the reasons mentioned earlier. 
Results of simulation experiments, over the Iris data set, 
are shown in Table IV. To show goodness or badness of 
clustering, we have executed both the algorithms (with 

identical and  random initializations) for 3 clusters over 
the Iris data. Results are shown in Table V. Here, good 
partitions contains (50, 38/39, 62/61) elements, and bad 
partitions have (96/97, 22/21, 32) elements in 3 clusters 
as shown in Table VI. The m_k-means is found to 

TABLE III.   
ITERATION NUMBERS AND METRIC VALUES 

Data Sets k-means m_k-means 
Iter No. Metric Iter No. Metric M 

Circular_5_2 6 327.530 8 328.457 

Circular_6_2 6 374.541 7 374.542 

Spherical_4_3 4 749.978 8 749.978 

Elliptical_10_2 14 949.389 12 949.345 

Iris 5 97.205 10 97.225 

Crude_Oil 16 279.743 12 279.743 

Breast_Cancer 3 2986.958 6 2986.960 

Color_Moments 152 133181.281 96 132938.563 

 

TABLE II.   
DESCRIPTION OF  DATA USED 

Data Sets Data Size Dimension No. of 
Clusters 

Circular_5_2 250 2 5 

Circular_6_2 300 2 6 

Spherical_4_3 400 3 4 

Elliptical_10_2 500 2 10 

Iris 150 4 3 

Crude_Oil 57 5 3 

Breast_Cancer 683 9 2 

Color_Moments 68040 9 10 
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produce all good partitions, when executed for 
Circular_5_2 data with 5 clusters (5×50 = 250 elements),  
for both the above mentioned initial conditions, and no 
instance of empty or bad clusters were found. 
 

From Table IV it is seen that, if random cluster 
initialization is used, we do not face the empty cluster 
problem, not even for a single instance, when the   Iris  
data is clustered using the m_k-means by varying the 
number of clusters from 2 to 10. When all the cluster 
centers are initialized to the same value, we see that the 
singularity problem do not arise for number of clusters 2 
to 6. With higher number of clusters, we encounter 
increasing number of instances of empty cluster 
situations. It is to be noted here that, for identical 

initializations (same value for all centers) the k-means 
fails to partition a data set and all clusters except one 
remain  empty.  

 
 Although it is seen from Table IV that with identical 

initialization the m_k-means fails when number of 
clusters is greater than 6, it can be said that for the Iris 
data,  which  ideally  have  only  2  or  3  clusters,  a 

value greater than 6 is too high. It is also shown here that 

in case of normal random initialization, the k-means  fails 
to cluster the data set  for a  moderate  number of  
instances, even for smaller number of clusters. For above 
experiments, we have executed both the m_k-means and 
the k-means for 100 simulation runs for each number of 
clusters. Therefore, from the experimental results, we can 
say that the m_k-means can handle empty cluster problem 
very efficiently. 

V.  CONCLUSIONS 

This paper proposes a modified version of the well 
known k-means clustering algorithm. The modified 
algorithm maintains all important characteristic features 
of the basic k-means and at the same time eliminates the 
possibility of generation of empty clusters. It has been 
shown that the present algorithm is semantically 
equivalent to the serial k-means algorithm. A detailed 
comparison of this new algorithm with the basic k-means 
has been  reported. Experimental results show that the 
proposed clustering scheme is able to solve the empty 

cluster problem, to a great extent, without any significant 
performance degradation.  

 
 

Fig. 2.  Original Circular_5_2 data 
 

Fig. 3. Original Iris data  
 
      

TABLE V.   
% CLUSTERING FOR  IRIS DATA WITH 3 CLUSTERS  

Algorithm %  of Bad 
partitions 

%  of Good 
partitions 

%  of Empty 
partitions 

m_k-means 
(identical initialization) 35 65 00 

 m_k-means 
(random initialization) 19 81 00 

k-means 
(random initialization) 19 80 01 

 

TABLE IV.   
%  OF EMPTY CLUSTERS USING  IRIS DATA  

Number of  Clusters 2 3 4 5 6 7 8 9 10 

m_k-means 
(identical 

initialization) 
0 0 0 0 0 5 15 20 35 

 m_k-means 
(random initialization) 0 0 0 0 0 0 0 0 0 

k-means 
(random initialization) 0 0 3 9 12 19 17 32 28 

 

TABLE VI.   
GOOD AND BAD PARTITIONS FOR  DATA  SETS  

Instances of  
Good or bad partitions Bad partitions Good partitions 

No. of elements in 3 
 Clusters of Iris data 

         97,  32, 21     or 
         97, 31, 22      or 
         96, 32, 22 

       61, 50,  39    or 
       62, 50, 38 
 

No. of elements in 5 
 Clusters of 

Circular_5_2 data 
No Bad Results obtained 

55, 54, 51, 48, 42  or 
52, 51, 50, 49, 48  or 
53, 52, 50, 48, 47  or 
56, 54, 50, 48, 42 
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   Fig. 4.  Circular_5_2 data clustered by m_k-means 
 

 

 
 
 

 
 

Fig 5. Iris data clustered by m_k-means 
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