
RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009

220

A Modified k-means Algorithm to Avoid Empty
Clusters
Malay K. Pakhira

Kalyani Government Engineering College, Kalyani, West Bengal, INDIA
Email: malay_pakhira@yahoo.com

Abstract—The k-means algorithm is one of the most widely
used clustering algorithms and has been applied in many
fields of science and technology. One of the major problems
of the k-means algorithm is that it may produce empty
clusters depending on initial center vectors. For static
execution of the k-means, this problem is considered
insignificant and can be solved by executing the algorithm
for a number of times. In situations, where the k-means is
used as an integral part of some higher level application,
this empty cluster problem may produce anomalous
behavior of the system and may lead to significant
performance degradation. This paper presents a modified
version of the k-means algorithm that efficiently eliminates
this empty cluster problem. We have shown that the
proposed algorithm is semantically equivalent to the
original k-means and there is no performance degradation
due to incorporated modification. Results of simulation
experiments using several data sets prove our claim.

Index Terms—Empty clusters, initial centers, k-means,
modified k-means.

I. INTRODUCTION

Clustering [1]-[4] is an unsupervised classification
mechanism where a set of patterns (data), usually multi-
dimensional, is classified into groups (clusters) such that
members of one group are similar according to a
predefined criterion. Clustering of a set forms a partition
of its elements chosen to minimize some measure of
dissimilarity between members of the same cluster.
Clustering algorithms are often useful in various fields
like data mining, pattern recognition, learning theory etc.
The k-means [4] is possibly the most commonly-used
clustering algorithm. It is most effective for relatively
smaller data sets. The k-means finds a locally optimal
solution by minimizing a distance measure between each
data and its nearest cluster center [5].

Many parallel versions of the k-means algorithm [6]-
[10] use the basic serial k-means at their core. Besides, a
number of stochastic clustering algorithms make use of
the basic k-means or some of its variations. Very often
these algorithms are based on Simulated Annealing [11]-
[12] or Genetic Algorithms [13]-[14].

The k-means clustering algorithm faces two major

problems. One is the problem of obtaining non-optimal
solutions. As the algorithm is greedy in nature, it is
expected to converge to a locally optimal solution only
and not to the global optimal solution, in general. This
problem is partially solved by applying the k-means in a
stochastic framework like simulated annealing (SA) and

genetic algorithm (GA) etc. The second problem is that of
empty cluster generation. This problem is also referred to
as the singularity problem in literature. Singularity in
clustering is obtained when one or more clusters become
empty. Both the problems are caused by bad
initialization. Algorithms that use the k-means at their
core suffer from the empty cluster problem too. A very
common practice to solve these problems is to repeat the
initialization until we receive a set of good initial center
vectors. In practice, after center initialization, we assign
elements to the concerned clusters. If an empty cluster is
found, at this early stage, a re-initialization takes place.
This process is repeated until all non-empty initial
clusters are formed. This is, however, an ad-hoc
technique. Several other methodical approach are also
found. In [15], a refinement approach is proposed, where
starting with a number of initial samples of the data set
we can obtain a number of sets of center vectors. These
center vectors then pass through a refinement stage to
generate a set of so called good starting vectors. In [16], a
genetically guided k-means has been proposed where
possibility of generation of empty clusters is treated in
the mutation stage. Several k-d-tree based methods are
found in [17] and [18]. Another approach to initialize
cluster centers based on values for each attribute of the
data set, has been proposed in [19]. These methods are
time costly and may not be applicable by keeping the k-
means's inherently simple structure.

In this paper, we have presented a modified k-means
algorithm which eliminates the problem of generation of
empty clusters (with some exceptions). Here, the basic
structure of the original k-means is preserved along with
all its necessary characteristics. A new center vector
computation strategy enables us to redefine the clustering
process and to reach our goal. The modified algorithm is
found to work very satisfactorily, with some conditional
exceptions which are very rare in practice.

II. THE k-MEANS ALGORITHM FOR CLUSTERING

The k-means algorithm [4] is very commonly used for

clustering data. To handle a large data set, a number of
different parallel implementations of the k-means have
also been developed. Here, we shall provide a brief
description of the serial k-means and some of its
properties relevant for the current work.

In crisp partitional clustering, a set D of N patterns {x1,

x2, …, xN} of dimension d is partitioned into K clusters

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009

221

denoted by {C1, C2, …, CK} such that the sum of within
cluster dispersions, i.e., the clustering metric M, as given
in (1), becomes the minimum.

() 2
1 2

1
 , , , || – || (1)

j k

K

K j k
k x C

C C C
= ∈

… = ∑ ∑ x zM

Here, Z = {z 1 , z2, …, zK} is the set of cluster centers.

A. Basic k-means Algorithm
The basic k-means algorithm is commonly measured

by any of intra-cluster or inter-cluster criterion. A typical
intra-cluster criterion is the squared-error criterion
(Equation 1). It is the most commonly used and a good
measure of the within-cluster variation across all the
partitions. For the current work, we consider intra-cluster
squared-error function to evaluate the present scheme of
clustering. In basic k-means algorithm, a set D of d-
dimensional data is partitioned into K clusters, starting
with a set of K randomly generated initial center vectors.
The process iterates through the following steps:
• assignment of data to representative centers upon

minimum distance, and
• computation of the new cluster centers.

The process stops when cluster centers (or the metric M)
become stable for two consecutive iterations. The basic k-
means algorithm is greedy in nature.

The time complexity of the k-means clustering
algorithm is O(TKN) where N is the number of input
patterns, K is the desired number of clusters and T is the
number of iterations needed to complete the clustering.
The high time complexity makes k-means unsuitable for
large applications. Being a greedy algorithm, it often
converges to a local minima, may produce empty
clusters, but performs well enough for smaller data sets.

III. THE MODIFIED k-MEANS ALGORITHM

The clustering schemes employing the basic k-means
algorithm (Section II) face a significant problem of
generation of empty clusters at different instances due to
bad initialization. In this section, we report a scheme to
address the above issue of generation of empty clusters
and propose an algorithm to modify the center vector
updation procedure of the basic k-means that denies the
possibility of empty clusters. We denote this new
algorithm as m_k-means algorithm.

A. Basis of the Proposed Scheme

 In the basic k-means algorithm, an iteration starts with
a set of old center vectors zk

(old), the data elements are
distributed among clusters depending on minimum
Euclidean distance, and then a set of new cluster centers
zk

(new) is generated by averaging the data elements. This
center updation procedure in the original k-means
algorithm can be mathematically described as:

() { ()} (2)n e w
x Ck j kk

1 jn ∈
⇒ ← ∑z x
 where, nk is the number of elements in cluster Ck. If the

new centers zk
(new) do not match exactly with the old

centers zk
(old), the k-means algorithm enters into the next

iteration assuming zk
(new) as zk

(old).

In case of the m_k-means algorithm, the computation

of new center vectors differs from that in the k-means
algorithm. Here, the old center vectors zk

(old) are assumed
to be members of the concerned clusters along with the
allocated data items. In this scheme, we deny the
formation of empty clusters. Therefore, center updation
procedure in m_k-means can be written as :

() (){ () } (3)new old
k kx Ck j k

1 jn 1 ∈+
⇒ ← +∑z x z

 Equation 3 indicates that every cluster should always
contain at least one element. One may guess that
incorporation of zk

(old) in computation of zk
(new), may

affect the rate of convergence to final cluster centers and
the quality of clustering solutions. However, since the
value of zk

(old) soon becomes well inside the concerned
cluster (within a few iterations), the effect of zk

(old) will be
very insignificant, and for a large data set it can be
assumed to be negligible. The following subsection
reports the design of the present algorithm, referred to as
m_k-means clustering algorithm.

B. The m_k-means Algorithm
The execution steps of the m_k-means algorithm to

form clusters are essentially similar to those of the
original k-means algorithm. The processor maintains the
cluster structures in its own local memory and iterates
through the steps of the m_k-means algorithm to evaluate
a final set of cluster centers Z. The execution steps to be
followed are summarized below.

The m_k -means Algorithm

Input: a set D of d-dimensional data and an integer K.
Output: K clusters
begin

randomly pick K points ∈D to be initial means;
 while measure M is not stable do
 begin
 compute distance dkj = ||xj – zk||2 for each
 k, j where 1 ≤ k ≤ K and 1 ≤ j ≤ N, and
 determine members of new K subsets based
 upon minimum distance to zk for 1 ≤ k ≤ K;
 compute new center zk for 1 ≤ k ≤ K using (3);
 compute M;
 end
 end

The above algorithm reveals that the new clustering
scheme is exactly similar to the original k-means
algorithm except the only difference at the center
computation step. In the following subsection, we shall
try to prove that the m_k-means algorithm converges to k-
means centers and the rate of convergence is almost equal
to that of the original k-means algorithm.

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009

222

C. Proof of Convergence for the m_k-means Algorithm

As mentioned in Section III-A, incorporation of zk
(old)

in computing zk
(new) may affect the rate of convergence of

the present algorithm. However, this effect is
insignificant and for a large data set it can be assumed to
be negligible. An analytical measure is described in this
subsection to estimate the effect of the old centers while
computing new ones.

Let us consider that at iteration t, data items are

distributed among correct clusters, but center vectors are
yet to be stable. Let, at this stage, a certain cluster be
represented by C = {x1, x2, …, xm} and the corresponding
center is z(t) = x (say), where

 1 2 m

m
+ + +

≠
x x xx L

due to the initial center effect. Therefore, the following is
a sequence of center vectors obtained in the subsequent
iterations:

()

()
(1) 1 1

(1)
(2) 1 1 1

2 2

(2)
(3) 1 1 1 1

2 3 3

1 1 1

1 1 (1) (1)

1 1 (1) (1) (1)

t

m mt
i it i i

m m mt
i i it i i i

m m m mt
i i i it i i i i

m m m

m m m m

m m m m m

+ = =

+
+ = = =

+
+ = = = =

=

+
= = +

+ + +

+
= = + +

+ + + +

+
= = + + +

+ + + + +

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

z x

x z x xz

x z x x xz

x z x x x xz

Proceeding in a similar fashion, we get

()

1 1 1
2

1
1

1

1
1

1
1

1 (1) (1) (1)

1 11
1 (1) (1) (1)

1

1 (1)1

()
[]

t u

m m m
i i ii i i

u u

m
ii

u u

m
ii

u

u
m

m

m m m m

m m m m

m m

+

= = =

=
−

= +

+

= + + + +
+ + + +

= + + + +
+ + + +

−
= × +

+ +−

∑ ∑ ∑

∑

∑

z

x x x x

x x

x x

L

L

For large values of m or u, 1/(m+1)u → 0. Hence,

() 1 11
1

m m
i it u i im

m m m
+ = =+

= × =
+

∑ ∑x x
z (4)

which is the desired cluster center (using k-means). And
the additional u iterations needed for final convergence
can be expressed by the condition 1/(m+1)u → 0. For
large data sets (large m), even for a small u this condition
holds. That is, the effect of the initial centers toward
convergence is negligible.

D. Proof of Generation of Non-empty Clusters

In the above subsection, we have shown that the m_k-
means algorithm converges to the k-means centers. In the
following we show that the m_k-means algorithm
generates non-empty clusters only as opposed to the
conventional k-means. The problem of empty clusters
occurs when the initial center vectors

(0) (0) (0)
1 2 Kz , z , , zL are such that any two or more of

them are either equal or very close to each other. In such
a situation, after assignment of data to clusters, data
elements will be assigned to only one of the clusters with
nearly equal centers, and the others remain empty.

Let D = {x1, x2, …, xm, y1, y2, …, yn } be a data set
with (m+n) data elements forming two well separated
clusters X and Y as shown in Figure 1. If we apply serial
k-means algorithm to partition this data set into two
clusters, we get the following center vectors

1 2
1

m

m
+ + +

=
x x xz L

and 1 2
2

n

n
+ + +

=
y y yz L

.

Fig.1. Sample data set with two clusters.

Now let us consider execution of k-means and m_k-
means on the above data set with identical initial centers.

Execution using k-means:

Let the two cluster centers be initialized as (0)
1z and

(0)
2z respectively (where, (0)

1z = (0)
2z), then all the data

elements go to either cluster 1 or cluster 2 only. If we
assume all data go to cluster 1, then the data set will be
partitioned as D1 = D and D2 = Ø, producing new
centers as

1 2 1 2(1)
1

m n

m n
+ + + + + + +

=
+

x x x y y yz L L
, and (1)

2 = ∞z .

Here, the superscripts of zs indicate iteration number.

Execution using m_k-means:

In this case, the center vectors will become

(0)
1 2 1 2 1(1)

1 1
m n

m n
+ + + + + + + +

=
+ +

x x x y y y zz L L and (1) (0)
2 2=z z .

Thus after the first iteration, (1)
1z ≠ (1)

2z .

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009

223

Now, in a general situation, when the number of
clusters K is greater than 2, we can arrive at the same
conclusion according to the following logic.

Let, z1, z2, …, zK be the K centers, which are initialized
to (0) (0) (0)

1 2 Kz , z , , zL respectively. In the worst case, we
can assume that all the clusters are initialized to the same
value, i.e., (0) (0) (0) (0)

1 2 K =z = z = = z zL (say). Then,
after the first iteration, we have

(1) (0)
1 ≠z z

and
(1) (1) (1) (0)
2 3 K= = = =z z z zL

because all the elements will be occupied by a single
cluster. After the second iteration,

(1) (1) (0)
1 2≠ ≠z z z

and
(1) (1) (1) (0)
3 4 K= = = =z z z zL

Therefore, after the Kth iteration, we will get K different
center vectors and, hence, all non-empty clusters can be
ensured. The above derivation, unfortunately, will not be
applicable in either of the following two conditions:

• if all the center vectors are initialized to the
centroid of the data set, and

• if any ()j
iz becomes equal to (0)z even after

getting data elements assigned to it during iteration
number j (where, j<K).

In the former instance, for a two cluster situation we

have, 1 2 1 2(0) (0)
1 2

m n

m n
+ + + + + + +

= =
+

x x x y y yz z L L

Let, in this case, all the elements are assigned to the
first cluster keeping the other empty. Then, we have

1 2 1 2(0)

1

(0)
1 2 1 2 1(1)

1

1 2 1 2 (0)
1

1

m n

m n

m n

m n

m n

m n

+ + + + + + +
=

+
+ + + + + + + +

=
+ +

+ + + + + + +
= =

+

x x x y y yz

x x x y y y zz

x x x y y y z

L L

L L

L L

This means that there is no change of the cluster

centers even after the ireration is over. The same logic is
equally applicable for K > 2 also.

Example:

A run of the proposed clustering algorithm is next

described for illustration. Let us consider a 1-dimensional
data set {x1 = 12, x2 = 2, x3 = 7, x4 = 5, x5 = 19, x6 = 14,
x7 = 8, x8 = 18, x9 = 17, x10 = 13, x11 = 15, x12 = 9}.

The initial cluster centers are intentionally set to the
same value 6, i.e., z1 = 6, z2 = 6 and z3 = 6. We shall
show how the m_k-means algorithm classifies the data set
into three clusters C(1), C(2) and C(3). It may be noted
here that one could have initialized the center vectors to
random values also.

The formation of clusters in different iterations of the

present m_k-means scheme is shown in Table I. It may
be noted that the modified clustering scheme takes 11
iterations to converge to a solution with M (metric) =
20.428574. The partitions become {7, 8, 9}, {2, 5}, and
{12, 13, 14, 15, 17, 18, 19}. In this case, the m_k-means
is found to produce a good clustering. Under a similar
initial condition, the k-means algorithm fails to cluster
data and two empty clusters would be produced.

IV. EXPERIMANTAL RESULTS

This section provides the performance comparison of

the conventional k-means and m_k-means in terms of
rate of convergence and the quality of the solution M.
The efficiency of the present m_k-means algorithm is
then compared with respect to conventional k-means
algorithm regarding generation of empty clusters.

TABLE I.
ELEMENTS AND CENTERS OF CLUSTERS DURING ITERATIONS

Iter
No.

Clus-
ters zold Elements in Clusters Znew Metric

0

C(1)
C(2)
C(3)

6.000
6.000
6.000

2,5,7,8,9,12,13,14,15,17,18,19
--
--

11.154
6.000
6.000

54.6923

1

C(1)
C(2)
C(3)

11.1546.0
00
6.000

12,13,14,15,17,18,19,9
2, 5, 7, 8

-

14.239
5.600
6.000

29.0000

2

C(1)
C(2)
C(3)

14.239
5.600
6.000

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.280
4.200
7.500

20.7799

3

C(1)
C(2)
C(3)

15.280
4.200
7.500

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.410
3.733
7.857

20.5350

4

C(1)
C(2)
C(3)

15.410
3.733
7.857

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.426
3.578
7.969

20.4575

5

C(1)
C(2)
C(3)

15.426
3.578
7.969

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.428
3.526
7.992

20.4361

6

C(1)
C(2)
C(3)

15.428
3.526
7.992

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.429
3.509
7.998

20.4305

7

C(1)
C(2)
C(3)

15.429
3.509
7.998

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.429
3.503
8.000

20.4291

8

C(1)
C(2)
C(3)

15.429
3.503
8.000

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.429
3.501
8.000

20.4287

9

C(1)
C(2)
C(3)

15.429
3.501
8.000

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.429
3.500
8.000

20.4286

10

C(1)
C(2)
C(3)

15.429
3.500
8.000

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.429
3.500
8.000

20.4286

11

C(1)
C(2)
C(3)

15.429
3.500
8.000

12,13,14,15,17,18,19
2, 5

7, 8, 9

15.429
3.500
8.000

20.4286

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009

224

A. Comparison of k-means and m_k-means Algorithms
in Terms of Rate of Convergence and Quality of Solutions

In this subsection, we report the performances of

conventional k-means and the m_k-means algorithms in
terms of their rate of convergence and the quality of
solutions obtained while executed on different artificial
and real life data sets.

Four artificial and four real-life data sets are

considered for these experimentation. The artificial data
sets are Circular_5_2, Circular_6_2, Spherical_4_3 and
Elliptical_10_2 [14]. The names imply the structure of
underlying clusters, concatenated with the number of
clusters present in the data and its dimensions (Table II).
For example, in Circular_5_2 data set the clusters are
circular in nature. There are five clusters and 2
dimension. The real-life data sets are Iris [20], Crude_Oil
[21], Breast_Cancer and Color_Moments [22].

The Color_Moments data is derived from 68,040

images of the corel image features collection of the UCI
KDD archive [22]. The number of clusters for the Iris,
Crude_Oil and Breast_Cancer data sets are known to be
3, 3 and 2 respectively. For the Color_Moments data, we
assumed the number of clusters to be 10.

For the purpose of comparison, concerned algorithms

are executed on various data sets. The results of
comparison are given in Table III. The Circular_5_2 and
Iris data sets and the corresponding clustered sets (using
m_k-means) are shown in Figures 2 to 5. The
Circular_6_2, Spherical_4_3 and Elliptical_10_2 data
sets are not shown because they form visually well
separate clusters. From Table III, it can be observed that
the number of iterations needed for the m_k-means
algorithm are almost similar to those required for the k-
means algorithm. However, the m_k-means, required a
few more iterations in some cases. This is because, the
data sets are relatively smaller. Values of the clustering
metric that indicate a measure of goodness of clustering
are found to be almost similar in all the instances. Here,
square root of distances are used to compute metric M..

B. Comparison of k-means and m_k-means Algorithms
in Terms of Empty Cluster Generation

Here, we shall show experimentally that the m_k-

means algorithm is able to overcome the empty cluster
problem of the original k-means. We do not claim that the
m_k-means is able to solve the problem entirely. Under
certain specific situations, as discussed earlier, it
produces empty clusters. However, the possibility of
occurrence of such results is very small and condition
specific. We chose the Iris data set for experimentation
with the empty cluster problem in association with the k-
means and m_k-means algorithms, because this data set is
considered to be a benchmark for experiments in machine
learning, clustering and other related fields. We have
also used the Circular_5_2 data set for comparison.

Simulation experiments are performed on the Iris data
set by varying the number of desired clusters using the k-
means and m_k-means algorithms. We performed
experiments under two different initial conditions as
mentioned below:
• Normal condition: the center vectors are generated

randomly, as usual.
• Extreme condition: all the center vectors are

identical (initialized to the same value).

It has been observed that using m_k-means, in extreme

condition, for smaller number of clusters there is no
chance of generation of empty clusters. However, as the
number of clusters grows, the possibilities of empty
clusters also grow due to the reasons mentioned earlier.
Results of simulation experiments, over the Iris data set,
are shown in Table IV. To show goodness or badness of
clustering, we have executed both the algorithms (with

identical and random initializations) for 3 clusters over
the Iris data. Results are shown in Table V. Here, good
partitions contains (50, 38/39, 62/61) elements, and bad
partitions have (96/97, 22/21, 32) elements in 3 clusters
as shown in Table VI. The m_k-means is found to

TABLE III.
ITERATION NUMBERS AND METRIC VALUES

Data Sets k-means m_k-means
Iter No. Metric Iter No. Metric M

Circular_5_2 6 327.530 8 328.457

Circular_6_2 6 374.541 7 374.542

Spherical_4_3 4 749.978 8 749.978

Elliptical_10_2 14 949.389 12 949.345

Iris 5 97.205 10 97.225

Crude_Oil 16 279.743 12 279.743

Breast_Cancer 3 2986.958 6 2986.960

Color_Moments 152 133181.281 96 132938.563

TABLE II.
DESCRIPTION OF DATA USED

Data Sets Data Size Dimension No. of
Clusters

Circular_5_2 250 2 5

Circular_6_2 300 2 6

Spherical_4_3 400 3 4

Elliptical_10_2 500 2 10

Iris 150 4 3

Crude_Oil 57 5 3

Breast_Cancer 683 9 2

Color_Moments 68040 9 10

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009

225

produce all good partitions, when executed for
Circular_5_2 data with 5 clusters (5×50 = 250 elements),
for both the above mentioned initial conditions, and no
instance of empty or bad clusters were found.

From Table IV it is seen that, if random cluster
initialization is used, we do not face the empty cluster
problem, not even for a single instance, when the Iris
data is clustered using the m_k-means by varying the
number of clusters from 2 to 10. When all the cluster
centers are initialized to the same value, we see that the
singularity problem do not arise for number of clusters 2
to 6. With higher number of clusters, we encounter
increasing number of instances of empty cluster
situations. It is to be noted here that, for identical

initializations (same value for all centers) the k-means
fails to partition a data set and all clusters except one
remain empty.

 Although it is seen from Table IV that with identical

initialization the m_k-means fails when number of
clusters is greater than 6, it can be said that for the Iris
data, which ideally have only 2 or 3 clusters, a

value greater than 6 is too high. It is also shown here that

in case of normal random initialization, the k-means fails
to cluster the data set for a moderate number of
instances, even for smaller number of clusters. For above
experiments, we have executed both the m_k-means and
the k-means for 100 simulation runs for each number of
clusters. Therefore, from the experimental results, we can
say that the m_k-means can handle empty cluster problem
very efficiently.

V. CONCLUSIONS

This paper proposes a modified version of the well
known k-means clustering algorithm. The modified
algorithm maintains all important characteristic features
of the basic k-means and at the same time eliminates the
possibility of generation of empty clusters. It has been
shown that the present algorithm is semantically
equivalent to the serial k-means algorithm. A detailed
comparison of this new algorithm with the basic k-means
has been reported. Experimental results show that the
proposed clustering scheme is able to solve the empty

cluster problem, to a great extent, without any significant
performance degradation.

Fig. 2. Original Circular_5_2 data

Fig. 3. Original Iris data

TABLE V.
% CLUSTERING FOR IRIS DATA WITH 3 CLUSTERS

Algorithm % of Bad
partitions

% of Good
partitions

% of Empty
partitions

m_k-means
(identical initialization) 35 65 00

 m_k-means
(random initialization) 19 81 00

k-means
(random initialization) 19 80 01

TABLE IV.
% OF EMPTY CLUSTERS USING IRIS DATA

Number of Clusters 2 3 4 5 6 7 8 9 10

m_k-means
(identical

initialization)
0 0 0 0 0 5 15 20 35

 m_k-means
(random initialization) 0 0 0 0 0 0 0 0 0

k-means
(random initialization) 0 0 3 9 12 19 17 32 28

TABLE VI.
GOOD AND BAD PARTITIONS FOR DATA SETS

Instances of
Good or bad partitions Bad partitions Good partitions

No. of elements in 3
 Clusters of Iris data

 97, 32, 21 or
 97, 31, 22 or
 96, 32, 22

 61, 50, 39 or
 62, 50, 38

No. of elements in 5
 Clusters of

Circular_5_2 data
No Bad Results obtained

55, 54, 51, 48, 42 or
52, 51, 50, 49, 48 or
53, 52, 50, 48, 47 or
56, 54, 50, 48, 42

© 2009 ACADEMY PUBLISHER

RESEARCH PAPER
International Journal of Recent Trends in Engineering, Vol 1, No. 1, May 2009

226

 Fig. 4. Circular_5_2 data clustered by m_k-means

Fig 5. Iris data clustered by m_k-means

ACKNOWLEDGMENT

This research is partly supported by a sponsored
project, Number: 8023/ BOR/ RID/ RPS-109/2007-08,
funded by All India Council for Technical Education
(AICTE), Government of India.

REFERENCES
[1] J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles.

Reading: Addison-Wesley, 1974.
[2] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data.

Englewood Cliffs, NJ: Prentice-Hall, 1988.
[3] M. R. Anderberg, Cluster Analysis for Application. Academic

Press, 1973.
[4] J. B. McQueen, “Some methods of classification and analysis in

multivariate observations,” in Proc. Of fifth Barkley symposium
on mathematical statistics and probability, pp. 281 - 297, 1967.

[5] S. Z. Selim and M. A. Ismail, “K-means type algorithms: a
generalized convergence theorem and characterization of local
optimality,” in IEEE Transaction on Pattern Analysis and
Machine Intelligence, vol. 6, No. 1, pp. 81--87, 1984.

[6] H. Tsai, S. Horng, S. Tsai, S. Lee, T. Kao, and C. Chen.
“Parallel clustering algorithms on a reconfigurable array of
processors with wider bus networks,” in Proc. IEEE
International Conference on Parallel and Distributed Systems,
1997.

[7] S. Kantabutra and A. Couch. “Parallel K-means clustering
algorithm on NOWs,” in NECTEC Technical Journal, Vol. 1,
No. 6, pp. 243–247, 2000.

[8] A. K. Jain, R. P. Duin, and J. Mao, “Statistical Pattern
Recognition:A Review,” in IEEE Transaction on Pattern Analysis
and Machine Intelligence , vol. 22, No. 1, pp. 04--37, 2000.

[9] R. Jin, A. Goswami and G. Agarwal, “Fast and Exact Out-
of-Core and Distributed K-Means Clustering,” in Knowledge
Information Systems, vol. 10, pp. 17-40, 2006.

[10] I. S. Dhillon and D. S. Modha, “A Data-Clustering Algorithm on
Distributed Memory Multiprocessors,” in Proceedings of KDD-
WS on High Performance Data Mining, 1999.

[11] S. J. Selim and K. Al-Sultan, “A simulated annealing algorithm
for the clustering problem,” in Pattern Recognition , vol. 24, pp.
1003-1008, 1991.

[12] S. Bandyopadhyay, U. Maulik, and M. K. Pakhira, “Partitional
clustering using simulated annealing with probabilistic
redistribution,” in International Journal Pattern Recognition and
Artificial Intelligence, vol. 15, pp. 269--285, 2001.

[13] U. Maulik and S. Bandyopadhyay, “Genetic algorithms based
clustering technique,” in Pattern Recognition, vol. 33, pp. 1455-
1465, 2000.

[14] M. K. Pakhira, S. Bandyopadhyay, and U. Maulik, “A Study of
Some Fuzzy Cluster Validity Indices, Genetic Clustering and
Application to Pixel Classification,” in Fuzzy Sets and Systems,
vol. 155, pp. 191--214, 2005.

[15] P. S. Bradley and U. M. Fayyad, “Refining Initial Points for K-
means Clustering,” in Technical Report of Microsoft Research
Center, Redmond,California, USA, 1998.

[16] F. X. Wu, “Genetic weighted k-means algorithm for clustering
large-scale gene expression data,” in BMC Bioinformatics, vol. 9,
2008.

[17] A. Likas, Vlassis and J. J. Verbeek, “The global k-means
clustering algorithm,” in Pattern Recognition , vol. 36, no. 2, pp.
451-461, 2003.

[18] S. Deelers and S. Auwatanamongkol, “Enhancing k-means
algorithm with initial cluster center derived from data partitioning
along the data axis with the highest variance,” in International
Journal of Computer Science, vol. 2, no. 4, pp. 247-252, 2007.

[19] S. S. Khan and A. Ahmed, “Cluster center initialization for K-
means algorithm,” in Pattern Recognition Letters, vol. 25, no. 11,
pp. 1293-1302, 2004.

[20] R. A. Fisher, “The use of multiple measurements in taxonomic
problems,” Annals of Eugenics, vol. 3, pp. 179–188, 1936.

[21] R. A. Johnson and D. W. Wichern, Applied Multivariate
Statistical Analysis. Prentice-Hall, 1982.

[22] Machine Learning Database available at http://kdd.ics.uci.edu.

© 2009 ACADEMY PUBLISHER

