
Neural Networks 20 (2007) 109–128
www.elsevier.com/locate/neunet
Pipelining of Fuzzy ARTMAP without matchtracking: Correctness,
performance bound, and Beowulf evaluation

José Castroa, Jimmy Secretanb, Michael Georgiopoulosb,∗, Ronald DeMarab,
Georgios Anagnostopoulosc, Avelino Gonzalezd

a Department of Computer Engineering, Technological Institute of Costa Rica, Cartago, Costa Rica
b Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, United States

c Department of Electrical and Computer Engineering, Florida Institute of Technology, Melbourne, FL 32901, United States
d Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816–2786, United States

Received 3 January 2005; received in revised form 4 October 2006; accepted 4 October 2006

Abstract

Fuzzy ARTMAP neural networks have been proven to be good classifiers on a variety of classification problems. However, the time that Fuzzy
ARTMAP takes to converge to a solution increases rapidly as the number of patterns used for training is increased. In this paper we examine the
time Fuzzy ARTMAP takes to converge to a solution and we propose a coarse grain parallelization technique, based on a pipeline approach, to
speed-up the training process. In particular, we have parallelized Fuzzy ARTMAP without the match-tracking mechanism. We provide a series
of theorems and associated proofs that show the characteristics of Fuzzy ARTMAP’s, without matchtracking, parallel implementation. Results
run on a BEOWULF cluster with three large databases show linear speedup as a function of the number of processors used in the pipeline. The
databases used for our experiments are the Forrest CoverType database from the UCI Machine Learning repository and two artificial databases,
where the data generated were 16-dimensional Gaussian distributed data belonging to two distinct classes, with different amounts of overlap
(5% and 15%).
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Fuzzy ARTMAP; Data mining; BEOWULF cluster; Pipelining; Network partitioning
1. Introduction

Neural Networks have been used extensively and success-
fully to tackle a wide variety of problems. As computing capac-
ity and electronic databases grow, there is an increasing need
to process considerably larger databases. In this context, the al-
gorithms of choice tend to be ad hoc algorithms (Agrawal &
Srikant, 1994) or tree based algorithms such as CART (King,
Feng, & Shutherland, 1995) and C4.5 (Quinlan, 1993). Vari-
ations of these tree learning algorithms, such as SPRINT
(Shafer, Agrawal, & Mehta, 1996) and SLIQ (Mehta, Agrawal,
∗ Corresponding address: University of Central Florida, School of EECS,
4000 Central Florida Boulevard Engineering 3 Building, Suite 345, 32816
Orlando, FL, United States. Tel.: +1 407 823 5338; fax: +1 407 823 5835.

E-mail addresses: jcastro@itcr.ac.cr (J. Castro),
jsecreta@pegasus.cc.ucf.edu (J. Secretan), michaelg@mail.ucf.edu
(M. Georgiopoulos), demara@mail.cc.ucf.edu (R. DeMara), georgio@fit.edu
(G. Anagnostopoulos), gonzalez@pegasus.cc.ucf.edu (A. Gonzalez).

0893-6080/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2006.10.003
& Rissanen, 1996) have been successfully adapted to handle
very large data sets.

Neural network algorithms, on the other hand, can have a
prohibitively slow convergence to a solution, especially when
they are trained on large databases. Even one of the fastest
(in terms of training speed) neural network algorithms, the
Fuzzy ARTMAP algorithm ((Carpenter, Grossberg, Markuzon,
Reynolds, & Rosen, 1992; Carpenter, Grossberg, & Reynolds,
1991), and its faster variations (Kasuba, 1993; Taghi,
Baghmisheh, & Pavesic, 2003)) tend to converge slowly to a
solution as the size of the network increases.

One obvious way to address the problem of slow conver-
gence to a solution is by the use of parallelization. Extensive
research has been done on the properties of parallelization of
feed-forward multi-layer perceptrons (Mangasarian & Solodov,
1994; Torresen, Nakashima, Tomita, & Landsverk, 1995; Tor-
resen & Tomita, 1998). This is probably due to the popularity of
this neural network architecture, and also because the backprop-

http://www.elsevier.com/locate/neunet
mailto:jcastro@itcr.ac.cr
mailto:jsecreta@pegasus.cc.ucf.edu
mailto:michaelg@mail.ucf.edu
mailto:demara@mail.cc.ucf.edu
mailto:georgio@fit.edu
mailto:gonzalez@pegasus.cc.ucf.edu
http://dx.doi.org/10.1016/j.neunet.2006.10.003

110 J. Castro et al. / Neural Networks 20 (2007) 109–128
agation algorithm (Rumelhart, Hinton, & Williams, 1986), used
to train these types of networks, can be characterized mathe-
matically by matrix and vector multiplications, mathematical
structures that have been parallelized with extensive success.

Regarding the parallelization of ART neural networks, the
work by Manolakos (Manolakos, 1998) implements the ART1
neural network (Carpenter et al., 1991) on a ring of processors.
To accomplish this Manolakos divides the communication in
two bidirectional rings, one for the F1 layer of ART1 and
another for the F2 layer of ART1. Learning examples are
pipelined through the ring to optimize network utilization.
Experimental results of Manolakos’ work indicate close to
linear speed-up as a function of the number of processors.
This approach is efficient for ring networks and it is an open
question of whether it can be extended for Fuzzy ARTMAP.
Another parallelization approach that has been used with ART
and other types of neural networks is the systems integration
approach where the neural network is not implemented on a
network of computers but on parallel hardware. Zhang (Zhang,
1998) shows how a fuzzy competitive neural network similar
to ARTMAP can be implemented using a systolic array.
Asanović (Asanović et al., 1998) uses a special purpose parallel
vector processor SPERT-II to implement back-propagation and
Kohonen neural networks. In Malkani and Vassiliadis (1995),
a parallel implementation of the Fuzzy-ARTMAP algorithm,
similar to the one investigated here, is presented. However,
in his paper, a hypercube topology is utilized for transferring
data to all of the nodes involved in the computations. While it
is trivial to map the hypercube to the more flexible switched
network typically found in a Beowulf, this would likely come
with a performance hit. In this approach each one of the
processors maintains a subset of the architecture’s templates,
and finds the template with the maximum match in its local
collection. Finally, in the d-dimensional hypercube, all the
processors cooperate to find the global maximum through d
different synchronization operations. This can eventually limit
the scalability of this approach, since the value d grows with
the size of the hypercube, while the network bandwidth remains
constant.

Mining of large databases is an issue that has been addressed
by many researchers. Mehta (Mehta et al., 1996), developed
SLIQ, a decision-tree based algorithm that combines techniques
of tree-pruning and sorting to efficiently manage large datasets.
Furthermore, Shafer (Shafer et al., 1996), proposed SPRINT,
another decision-tree based algorithm, that removed memory
restrictions imposed by SLIQ and is designed to be amenable
to parallelization. The Fuzzy ARTMAP neural network has
many desirable characteristics, such as the ability to solve any
classification problem, the capability to learn from data in an
on-line mode, the advantage of providing interpretations for
the answers that it produces, the capacity to expand its size
as the problem requires, and the ability to recognize novel
inputs, among others. Due to all these virtues we investigate
Fuzzy ARTMAP’s parallelization in an effort to improve its
convergence speed to a solution when it is trained with large
datasets.
There are many variants within the Fuzzy ARTMAP
family of neural networks. Kasuba (Kasuba, 1993), with only
classification problems in mind, develops a simplified Fuzzy
ARTMAP structure (simplified Fuzzy ARTMAP), while Taghi
et al., in Taghi et al. (2003), describe variants of simplified
Fuzzy ARTMAP, called Fast Simplified Fuzzy ARTMAP,
variants. These Fuzzy ARTMAP variants are faster than the
original Fuzzy ARTMAP algorithm, because they eliminated
all the computations performed in the ARTb module of Fuzzy
ARTMAP, and because they have simplified the computations
performed in the ARTab module of Fuzzy ARTMAP; the results
produced by these simplified Fuzzy ARTMAP variants are the
same as the results produced by the original Fuzzy ARTMAP,
when the problem at hand is a classification problem.

One of the Fuzzy ARTMAP fast algorithmic variants
presented in Taghi et al. (2003) is called SFAM2.0 and it is
this algorithmic Fuzzy ARTMAP variant (that is equivalent to
Fuzzy ARTMAP for classification problems) that is the focus
of our paper. Furthermore, in this paper, we only concentrate
on the no-match tracking version of SFAM2.0. No-match
tracking was a concept introduced by Anagnostopoulos in
the framework of the ART networks (Anagnostopoulos &
Georgiopoulos, 2003). No match-tracking is a specific ART
network behavior, where whenever an input pattern is presented
to the ART network and a category is chosen that maximizes
the bottom-up input, passes the vigilance, but is mapped to
the incorrect output, this category is deactivated and a new
category (uncommitted category) is activated next that will
encode the input pattern. As a reminder, in that case, the
typical ART network behavior is to engage the match-tracking
mechanism that deactivates the chosen category, increases
the vigilance threshold and searches for another appropriate
category that might be or might not be an uncommitted
category. Anagnostopoulos has shown through experimentation
in Anagnostopoulos and Georgiopoulos (2003) that no-match-
tracking Fuzzy ARTMAP increases the number of categories
created in the category representation layer compared to
Fuzzy ARTMAP but it does so while providing improved
generalization performance. No Match-tracking in Fuzzy
ARTMAP should not be confused with the on-line operation in
Fuzzy ARTMAP. On-line Fuzzy ARTMAP operation implies
that an input–output pair is presented only once in Fuzzy
ARTMAP’s training phase, and it can be used in a match-
tracking or a no-match tracking Fuzzy ARTMAP. The reason
that we focus on the no match-tracking Fuzzy ARTMAP is
because it gives us the opportunity to first parallelize the
competitive aspect of Fuzzy ARTMAP, while ignoring the
complications of the feedback mechanism that matchtracking
introduces. Finally, we focus on the on-line version of this
network, since a parallelization of the on-line version extends in
a straightforward fashion to the off-line version of the network.

For simplicity, we refer to this Fuzzy ARTMAP variant
(on-line, no-matchhtracking SFAM2.0) simply as Fuzzy
ARTMAP, or FAM. If we demonstrate the effectiveness of
our parallelization strategies for FAM, extension to other
ART structures can be accomplished without a lot of effort.
This is due to the fact that the other ART structures

J. Castro et al. / Neural Networks 20 (2007) 109–128 111
share a lot of similarities with FAM, and as a result, the
advantages of the proposed parallelization approach can be
readily extended to other ART variants (for instance Gaussian
ARTMAP (Williamson, 1996) and Ellipsoidal ARTMAP
(Anagnostopoulos & Georgiopoulos, 2001), among others).

The remainder of this paper is organized as follows:
Section 2 presents the Fuzzy ARTMAP neural network
architecture and a few Fuzzy ARTMAP variants. Section 3
continues with the pseudo-code of the off-line, match-tracking
Fuzzy ARTMAP, on-line match tracking Fuzzy ARTMAP, and
on-line no-match tracking Fuzzy ARTMAP (referred to simply
as FAM). Section 4 focuses on the computational complexity
of the on-line, match-tracking Fuzzy ARTMAP, and serves
as a necessary motivation for the parallelization approach
introduced in this paper. Section 5 presents a discussion of
the Beowulf cluster as our platform of choice. Section 6
continues with the pseudocode of the parallel Fuzzy ARTMAP,
referred to as PFAM, and associated discussion to understand
the important aspects of this implementation. Section 7 focuses
on theoretical results related to the proposed parallelization
approach. In particular, we prove there that PFAM is equivalent
to FAM, and that the processors in the parallel implementation
will be reasonably balanced by considering a worst case
scenario. Furthermore, Section 8 proceeds with experiments
and results comparing the performance of PFAM and FAM on
three databases, one of them real and two artificial. The article
concludes with Section 9, where a summary of our experiences,
from the conducted work, and future research are delineated.

2. The Fuzzy ARTMAP neural network architecture/Fuzzy
ARTMAP variations

The Fuzzy ARTMAP neural network and its associated
architecture was introduced by Carpenter and Grossberg in their
seminal paper (Carpenter et al., 1992). Since its introduction,
a number of Fuzzy ARTMAP variations and associated
successful applications of this ART family of neural networks
have appeared in the literature (for instance, ARTEMAP
(Carpenter & Ross, 1995), ARTMAP-IC (Carpenter &
Markuzon, 1998), Ellipsoid-ART/ARTMAP (Anagnostopoulos
& Georgiopoulos, 2001), Fuzzy Min–Max (Simpson, 1992),
LAPART2 (Caudell & Healy, 1999), and σ -FLNMAP (Petridis,
Kaburlasos, Fragkou, & Kehagais, 2001), to mention only a
few. For the purposes of the discussion that follows we rely
on the work by Kasuba (Kasuba, 1993) and Taghi et al. (2003)
(see Section 1). In this paper, we have implemented the Fuzzy
ARTMAP version, called SFAM2.0 in Taghi’s paper. As we
have emphasized in the Introduction, SFAM2.0 is equivalent
to the original Fuzzy ARTMAP algorithm (see Carpenter et al.
(1992)) for classification problems.

The block diagram of SFAM2.0 (also depicted in Kasuba
Kasuba (1993)) is shown in Fig. 1. Notice that this block
diagram is different from the block diagram of Fuzzy ARTMAP
mentioned in Carpenter et al. (1991), because it has eliminated
the ARTb module, and inter-ART module of Fuzzy ARTMAP,
and has replaced them with the a single layer of nodes,
designated as Fb

2 in Fig. 1. The Fuzzy ARTMAP architecture
Fig. 1. Simplified block diagram of the Fuzzy ARTMAP architecture. It
consists of an input layer (Fa

1), where the input patterns are applied, a category
representation layer (Fa

2) where compressed representations of these input
patterns are formed, and an output layer (Fb

2) where labels of the input patterns
are produced. Layer Fa

0 is a pre-processing layer that complementarily encodes
the input patterns a to form input patterns I.

of the block diagram of Fig. 1 has three major layers. The
input layer (Fa

1) where the input patterns (designated by I)
are presented, the category representation layer (Fa

2), where
compressed representations of these input patterns are formed
(designated as wa

j , and called templates), and the output
layer (Fb

2) that holds the labels of the categories formed in
the category representation layer. Another layer, shown in
Fig. 1 and designated by Fa

0 is a pre-processing layer and
its functionality is to pre-process the input patterns, prior to
their presentation to the Fuzzy ARTMAP architecture. This
pre-processing operation (called complementary coding) is
described in more detail later.

In this paper we focus on the on-line implementation of
SFAM2.0. In the on-line implementation of SFAM2.0 the
training data (input/output patterns) are presented to SFAM2.0
only once. This version of Fuzzy ARTMAP training is
sometimes referred to as one-epoch training Fuzzy ARTMAP.
Also, in this paper, we concentrate on a version of Fuzzy
ARTMAP introduced by Anagnostopoulos (Anagnostopoulos,
2000), and referred to as no-match tracking Fuzzy ARTMAP.
In the no-match tracking Fuzzy ARTMAP match-tracking is
disengaged in the following sense. In the training phase of
Fuzzy ARTMAP, when a node in the category representation
layer is chosen to represent an input pattern, but this node
is mapped to the incorrect label, the node is deactivated
and a search for another node in the category representation
layer ensues (match-tracking mechanism). However, in no-
match tracking Fuzzy ARTMAP when a node in the category
representation layer is chosen to represent an input pattern,

112 J. Castro et al. / Neural Networks 20 (2007) 109–128
but this node is mapped to the incorrect label, a new
(uncommitted node) is chosen to represent this pattern.
In Anagnostopoulos (2000), Anagnostopoulos has shown that
no-match tracking Fuzzy ARTMAP creates more nodes in the
category representation layer of Fuzzy ARTMAP, but quite
often improves the network’s generalization performance. In
our case, we chose to focus on the no-match tracking Fuzzy
ARTMAP because it allows us to concentrate on implementing,
in parallel, the competitive process in Fuzzy ARTMAP,
without having to worry about the implementation of the
match-tracking mechanism which has its own complications.
Furthermore, the parallel implementation of the competitive
process in Fuzzy ARTMAP has applicability to other neural
networks in the literature that involve similar competitive
phases in their design. From now on we will refer, for
simplicity, to the on-line, no-match tracking, SFAM2.0 network
as Fuzzy ARTMAP.

In this paper, we will occasionally discuss the off-line
SFAM2.0 with match tracking, and the on-line SFAM2.0 with
match tracking, and we will refer to these networks as off-
line Fuzzy ARTMAP with match-tracking, and on-line Fuzzy
ARTMAP with match-tracking. Once more, we reserve the
simpler notation, Fuzzy ARTMAP, for the on-line, no-match
tracking SFAM2.0 that is the focus in this paper.

Any of the aforementioned Fuzzy ARTMAP variants can
operate in two distinct phases: the training phase and the
performance phase. During the training phase of a Fuzzy
ARTMAP variant a set of PT inputs and associated labels pairs,
{(I1, label(I1)), . . . , (Ir , label(Ir)), . . . , (IPT , label(IPT))}, is
provided. Then, the training algorithm of this Fuzzy ARTMAP
variant is engaged to learn the correct mapping from an input
pattern to an associated label. The performance phase of any of
the aforementioned Fuzzy ARTMAP variants works as follows:
Given a set of PS input patterns, such as Ĩ1

, Ĩ2
, . . . , ĨP S

, we
want to find the Fuzzy ARTMAP output (label) produced when
each one of the test patterns is presented at its Fa

1 layer. In order
to achieve this goal we present the test set to the trained Fuzzy
ARTMAP architecture and we observe the network’s output.

The training phase of the off-line, match-tracking Fuzzy
ARTMAP is succinctly described in Taghi’s et al., paper (Taghi
et al., 2003). We repeat it here to give the reader a good, well-
explained overview of the operations involved in its training
phase.

(1) Find the nearest category in the category representation
layer of the Fuzzy ARTMAP architecture that “resonates”
with the input pattern.

(2) If the labels of the chosen category and the input pattern
match, update the chosen category to be closer to the input
pattern.

(3) Otherwise, we reset the winner, temporarily increase the
resonance threshold (called the vigilance parameter), and
try the next winner. This process is called matchtracking.

(4) If the winner is uncommitted, create a new category (assign
the representative of the category to be equal to the input
pattern, and designate the label of the new category to be
equal to the label of the input pattern).
The nearest category to an input pattern Ir presented to
the Fuzzy ARTMAP architecture is determined by finding the
category that maximizes the function:

T a
j (Ir , wa

j , α) =
|Ir

∧ wa
j |

α + |wa
j |

. (1)

This equation introduces two operands, one of them is the
fuzzy min operand, and designated by the symbol ∧. The fuzzy
min operation of two vectors x, and y, designated as x ∧ y,
is a vector whose components are equal to the minimum of
the components of x and y. The other operand introduced is
designated by the symbol | · |. In particular, |x| is the size of a
vector x and is defined to be the sum of its components.

The above function is called the bottom-up input (or
choice function) pertaining to the Fa

2 node j with category
representation (template) equal to the vector wa

j , due to
the presentation of input pattern Ir . This function obviously
depends on a Fuzzy ARTMAP network parameter α, called the
choice parameter, that assumes values in the interval (0, ∞).
In most simulations the useful range of α is the interval (0, 10].
Larger values of α create more category nodes in the category
representation layer of the Fuzzy ARTMAP architecture.

The resonance of a category is determined by examining if
the function, called the vigilance ratio, and defined below

ρ(Ir , wa
j) =

|Ir
∧ wa

j |

|Ir
|

(2)

satisfies the following condition:

ρ(Ir , wa
j) ≥ ρa . (3)

If the above equation is satisfied we say that resonance is
achieved. The parameter ρa is called the vigilance parameter
and assumes values in the interval [0, 1]. As the vigilance
parameter increases, more category nodes are created in the
category representation layer (Fa

2) of the Fuzzy ARTMAP
architecture. If the label of the input pattern (Ir) is the same
as the label of the resonating category, then the category’s
template (wa

j) is updated to incorporate the features of this new
input pattern (Ir). The update of a category’s template (wa

j) is
performed as depicted below:

wa
j = wa

j ∧ Ir . (4)

If the category j is chosen as the winner and it resonates,
but the label of this category wa

j is different from the label of
the input pattern Ir , then this category is reset and the vigilance
parameter ρa is increased to the level (this is enforced in the
match-tracking Fuzzy ARTMAP):

ρ(Ir , wa
j) + ε. (5)

In the above equation ε takes very small values. Increasing
the value of the vigilance barely above the level of vigilance
ratio of the category that is reset guarantees that after this
input/label-of-input pair is learned, immediate presentation of
this input to the Fuzzy ARTMAP architecture will result in
correct recognition of its label. It is difficult to correctly set

J. Castro et al. / Neural Networks 20 (2007) 109–128 113
the value of ε so that you can guarantee that after category
resets no legitimate categories are missed by Fuzzy ARTMAP.
Nevertheless, in practice, typical values of the parameter ε are
taken from the interval [0.00001, 0.001]. After the reset of
category j (if that’s the case), other categories are searched that
maximize the bottom-up input and they satisfy the vigilance
(resonate). This process continues until a category is found
that maximizes the bottom-up input, satisfies the vigilance
and has the same label as the input pattern presented to the
Fuzzy ARTMAP architecture. Once this happens, update of the
category’s template, as indicated by Eq. (4), ensues. If through
this search process an uncommitted category (an uncommitted
category is a category that has not encoded any input pattern
before) is chosen, it will pass the vigilance, its label will be set
to be equal to the label of the presented input pattern, and the
update of the category’s template will create a template that is
equal to the presented input pattern.

All input patterns I presented at the input layer (Fa
1) of the

Fuzzy ARTMAP architecture have the following form:

I = (a, ac) = (a1, a2, . . . , aMa , ac
1, ac

2, . . . , ac
Ma

) (6)

where,

ac
i = 1 − ai ; ∀i ∈ {1, 2, . . . , Ma}. (7)

The assumption here is that the input vector a is such
that each one of its components lies in the interval [0, 1].
Any input pattern can be, through appropriate normalization,
represented by the input vector a, where Ma stands for the
dimensionality of this input pattern. The above operation that
creates I from a is called complementary coding and it is
required for the successful operation of Fuzzy ARTMAP. The
number of nodes (templates) created in the Fa

2 layer of the
Fuzzy ARTMAP architecture (category representation layer)
is designated by Na , and it is not a parameter that needs
to be defined by the user before training commences; Na’s
value is dictated by the needs of the problem at hand and
the setting of the choice parameter (α) and baseline vigilance
parameter ρ̄a . The baseline vigilance parameter is a parameter
set by the user as a value in the interval [0, 1]. The vigilance
parameter ρa , mentioned earlier (see Eq. (3)), is related to the
baseline vigilance ρ̄a since at the beginning of training with
a new (input pattern)/label pair, the vigilance parameter is set
equal to the baseline vigilance parameter; during training with
this (input pattern)/label pair the vigilance parameter could be
raised above the baseline vigilance parameter (see Eq. (5)),
only to be reset back to the baseline vigilance parameter value
once a new (input pattern)/label pair appears. This raising of
the vigilance parameter is accomplished according to Eq. (5).
Prior to initiating the training phase of any Fuzzy ARTMAP
variant the user has to set the values for the choice parameter
α (chosen as a value in the interval [0, 10]), and the baseline
vigilance parameter value ρ̄a (chosen as a value in the interval
[0, 1]).

Despite the fact that we focused above on describing the
training phase of the off-line, match tracking Fuzzy ARTMAP,
the equations presented are also pertinent for the on-line,
match tracking Fuzzy ARTMAP, or the on-line no-match
tracking Fuzzy ARTMAP (referred to for simplicity as Fuzzy
ARTMAP); the only difference, emphasized many times by
now, is that in the no-match tracking case we would never have
to employ Eq. (5) that increases the value of the vigilance when
the match-tracking mechanism is engaged.

In the performance phase of any Fuzzy ARTMAP variant, a
test input is presented to the Fuzzy ARTMAP architecture and
the category node in the Fa

2 layer that has the maximum bottom-
up input is chosen. The label of the chosen Fa

2 category is the
label that the Fuzzy ARTMAP architecture predicts for this test
input. By knowing the correct labels of test inputs belonging to
a test set allows us, in this manner, to calculate the classification
error of the Fuzzy ARTMAP variant for this test set.

3. The Fuzzy ARTMAP variants’ pseudo-code

The off-line, match-tracking, Fuzzy ARTMAP algorithm is
shown in Fig. 2. The on-line, match-tracking Fuzzy ARTMAP
algorithm is shown in Fig. 3. Notice that in the off-line,
match tracking Fuzzy ARTMAP training, the learning process
(lines 4 through 30) of the algorithm are performed until no
more network weight changes are made or until the number
of iterations reached a maximum number (designated as
epochs). In on-line, match-tracking Fuzzy ARTMAP training,
the learning process (lines 3–24) passes through the data once.

In this paper we are primarily concerned with the on-
line training phase of Fuzzy ARTMAP. Notice though that
by parallelizing the “on-line training” Fuzzy ARTMAP, in
essence we are also parallelizing the “off-line training” Fuzzy
ARTMAP. This is because the “off-line training” Fuzzy
ARTMAP, is an “on-line training” Fuzzy ARTMAP, where
after an on-line training cycle is completed, another cycle starts
with the same set of (input patterns)/label pairs; these on-line
training Fuzzy ARTMAP cycles are repeated for as long as it is
necessary for the Fuzzy ARTMAP network to learn the required
mapping. In Figs. 2 and 3 the match-tracking mechanism is
employed, where if the label of the input pattern Ir is different
from the label of the template of the node jmax (i.e., template
wa

jmax
), the the vigilance level is increased and a search for a

new template ensues.
In this paper we are only concerned with Fuzzy ARTMAP

where training is on-line and the match-tracking mechanism
is disengaged, and we refer to this Fuzzy ARTMAP version,
for simplicity, as Fuzzy ARTMAP. The training phase of Fuzzy
ARTMAP is shown in Fig. 5.

The performance phase of the algorithm is much simpler,
and is common to all the above Fuzzy ARTMAP variants.
In the performance phase we return the label associated with
the template that wins the competition for the input pattern.
It is common in this phase to set the parameter ρ̄a equal
to 0 to assure that the network will produce a predicted
label (classification) for every input pattern (albeit sometimes
erroneous). The Fuzzy ARTMAP performance phase is shown
in Fig. 4.

114 J. Castro et al. / Neural Networks 20 (2007) 109–128
Fig. 2. Off-line, match-tracking Fuzzy ARTMAP’s training phase. It involves finding the category that best matches the input pattern, and passes the vigilance, and
is mapped to the correct label. Input patterns are presented repeatedly to the Fuzzy ARTMAP architecture until a certain number of iterations, referred to as epochs,
is reached. The match-tracking mechanism is enforced.
4. Complexity analysis of the on-line, match tracking Fuzzy
ARTMAP

We concentrate on analyzing the time complexity of the
on-line Fuzzy ARTMAP variants because this is the focus of
the paper. Our approach requires making a few assumptions
about the size of the networks created and the match-tracking
cycles. This complexity analysis will motivate the pipelined
implementation of Fuzzy ARTMAP.

We can see from the pseudocode (2,3) that the on-line,
match-tracking Fuzzy ARTMAP algorithm tests every input
pattern I in the training set against each template wa

j at least
once. Let us call Γ the average number of times that the inner
repeat loop (lines 5–19 of the online training phase algorithm
of Fig. 3) is executed for each input pattern, and christen it the
matchtracking factor. Then the number of times that a given
input pattern I passes through the code will be:

Time(I) = O(Γ × templates). (8)

It is then easy to see that the time complexity of the
algorithm is:

Time(on-line, match-tracking, Fuzzy ARTMAP)

= O(Γ × PT × templates). (9)

In both of the above equations, templates corresponds to the
average number of templates created during the on-line, match-
tracking Fuzzy ARTMAP training phase.

We have seen that with some databases, the on-line,
match-tracking Fuzzy ARTMAP algorithm achieves a certain
compression ratio that is proportional to the number of input
patterns PT (Case 1). We have also seen that with other

J. Castro et al. / Neural Networks 20 (2007) 109–128 115
Fig. 3. On-line, match-tracking Fuzzy ARTMAP’s training phase. This involves finding the category that best matches the input pattern, and passes the vigilance,
and is mapped to the correct label. Input patterns are presented to the Fuzzy ARTMAP architecture only once, in contrast to the off-line version of match-tracking
Fuzzy ARTMAP. The match-tracking mechanism is enforced.
databases the algorithm creates templates in which the number
saturates to a constant (Case 2). In either case, we denote the
compression ratio (Case 1), or the constant (Case 2), by κ . Then
the complexity of the algorithm ends up being equal to:

Time(on-line, match-tracking, Fuzzy ARTMAP)

= O(Γ × κ × PT 2) (10)

for Case 1, and

Time(Fuzzy ARTMAP) = O(Γ × κ × PT) (11)

for Case 2.
Obviously for Case 1 implementing a parallel pipeline

implementation of the algorithm makes sense. For Case 2
there are occasions where, although the time complexity of the
algorithm is linear in the number of patterns, the constant κ is
large enough so that a parallel, pipeline implementation of the
algorithm is still justified.

5. The Beowulf parallel platform

The Beowulf cluster of workstations is a network of
computers where processes exchange information through the
network’s communications hardware. In our case, it consisted
of 96 AMD nodes, each with dual AthlonMP 1500+ processors
and 512 MB of RAM. The nodes are connected through a Fast
Ethernet network.

In general, the Beowulf cluster configuration is a parallel
platform that has a high latency. This implies that to achieve
optimum performance communication packets must be of large
size and of small number. Parallelization techniques in this
platform are radically different from shared memory or vector
machines. Also communication between nodes in the cluster
is done by consent from all the parties involved; that is all
communicating entities must agree to send/receive information
in compatible formats. This has an impact on the design of
the algorithm because receiving entities must know before-
hand that they are going to receive information in order to be
prepared to accept it. There is no central coordinating entity and
protocols must be based on listening/polling schemes and must
dispense with any interrupt driven communication.

We have two choices for parallelization design. We can
request for each node in the network to process a different
input pattern. Or we can request that each node processes
the same input patterns at the same time. If we want the

116 J. Castro et al. / Neural Networks 20 (2007) 109–128
Fig. 4. Fuzzy ARTMAP’s performance phase. In this phase a test input pattern is presented to Fuzzy ARTMAP and the category that best matches this input pattern
and passes the vigilance is chosen. The predicted label of this test input pattern is the label that this chosen category is mapped to. Quite often, in the performance
phase of Fuzzy ARTMAP, the baseline vigilance parameter value is chosen equal to zero.

Fig. 5. On-line, no-match-tracking Fuzzy ARTMAP’s training phase. This is the version of Fuzzy ARTMAP that we implemented in this paper, and for simplicity
it is referred to as Fuzzy ARTMAP. It involves finding the category that best matches the input pattern, and passes the vigilance, and is mapped to the correct label.
If the first chosen node is not mapped to the correct label, an uncommitted node is chosen next to represent this input pattern (i.e., the match-tracking mechanism is
disengaged).
parallel implementation to work equivalently to the sequential
one the first design will lead to a pipelined approach where
each node computes a stage in the pipeline. The second
approach will lead to a master/slave topology where all nodes
communicate to a gathering master node. We chose to follow
the pipelined approach because in this scenario we are only
doing point to point communication, which is a constant time
operation in a Fast Ethernet switched network. The master/slave
approach tends to degrade communication performance as the
size of the gather operation increases. Our design is based
on fixed packet size communication through the network. No
network bandwidth would be gained by using variable sized
packets since packets are more efficient when they are large.
Furthermore, to find out the size of a packet a receiving process
would have to incur an extra (and expensive) communication.

To find an appropriate packet size for our experiments, we
ran our system on 512,000 patterns of both the CoverType
database and the Gaussian 5% database. Packet performance
for the Gaussian 15% database was not evaluated, because
classification overlap does not affect packet transmission time,

J. Castro et al. / Neural Networks 20 (2007) 109–128 117
Fig. 6. Running time of training the CoverType database using different packet
sizes between the processors. Packet sizes are in bytes. Since the transmission
time is much slower than the processing time it is beneficial to reduce the
number of transmissions relative to processing, and this behavior is reflected
in the graph. Also, given that for every transmission there is a constant
transmission set up time, regardless of the packet size, we would expect the
running time to reach a saturation level, as it does.

Fig. 7. Running time of training the Gaussian 5% overlap database using
different packet sizes between the processors. Packet sizes are in bytes. Since
the transmission time is much slower than the processing time it is beneficial to
reduce the number of transmissions relative to processing, and this behavior is
reflected in the graph. Also, given that for every transmission there is a constant
transmission set up time, regardless of the packet size, we would expect the
running time to reach a saturation level, as it does.

Fig. 8. Pipeline structure.
and the 15% Gaussian database is in all other respects identical
to the Gaussian 5% database. Figs. 6 and 7 illustrate the results.
For the CoverType database, any packet size 64 and above
performed acceptably. For the Gaussian database, any packet
size of 128 and above was sufficient. We translate this into bytes
to give a guideline for the packet size of future database runs. To
find the bytes transfered, we multiply the number of templates
in a packet, times the size of the template’s vector (plus one for
the label), times the number of bytes in each value of the vector
(4 B for both 32 bit integers and floating point numbers).

For the CoverType database:

64 × 55 × 4 = 14080 B. (12)

For the Gaussian 5% database:

128 × 17 × 4 = 8704 B. (13)

These numbers will likely be dependent on characteristics
of the Beowulf cluster, such as CPU power, network bandwidth
and network latency. However, a good rule of thumb for similar
clusters will be a packet size greater than or equal to 10 KB.

6. Beowulf Fuzzy ARTMAP implementation

The parallel implementation of Fuzzy ARTMAP (on-line,
no-match tracking Fuzzy ARTMAP algorithm) is discussed
here. We call this implementation Parallel Fuzzy ARTMAP
(PFAM). A depiction of the pipeline is shown in Fig. 8. The
elimination of matchtracking makes the learning of a pattern a
one-pass over the pipeline procedure and different patterns can
be processed on the different pipeline steps to achieve optimum
parallelization. For the understanding of PFAM we need the
following definitions:

• n: number of processors in the pipeline.
• k: index of the current processor in the pipeline, k ∈

{0, 1, . . . , n − 1}.
• p: packet size, number of patterns sent downstream; 2p =

maximum number of templates sent upstream.
• Ii : input pattern i of current packet in the pipeline. i ∈

{1, 2, . . . , p}.
• wi : current best candidate template for input pattern Ii .
• T i : current maximum activation for input pattern Ii .
• myTemplates: variable local to the current processor, set of

templates that belong to the current processor.
• nodes: variable local to the current processor that holds the

total number of templates the processor is aware of (its own
plus the templates of the other processors).

• myShare: maximum amount of templates that the current
processor is allowed to have.

• wi
k−1: template i coming from the previous processor k − 1

upstream in the pipeline.
• wi

k+1: template i coming from the next processor k + 1
downstream in the pipeline.

• wi : template i going to the next processor k + 1 downstream
in the pipeline.

• wi
to(k−1): template i going to previous processor k − 1

upstream in the pipeline.

118 J. Castro et al. / Neural Networks 20 (2007) 109–128
Fig. 9. Exchange of packets between processors. Note, packets are listed for
processor k only. Optimum packet sizes were estimated using the graphs of
Figs. 6 and 7. Packets sent upstream are depicted on top of the PROCESSOR

boxes and consist of only the templates that have to be reassigned to a specific
Processor template pool. Packets sent downstream are depicted below the
PROCESSOR boxes and consists of triads of template wi , input pattern Ii , and
activation T i .

Fig. 10. Initialization procedure for the PFAM implementation. Since no
processing has begun, all counters are set to 0. These correspond to the nodes,
newNodes and myShare variables. The corresponding sets and packets are
initialized to be empty (since packets are of fixed size, their elements are
initialized none).

• I.class: class label associated with a given input pattern.
• w.class: class label associated with a given template.
• index(w): sequential index assigned to a template.
• newNodesk+1: integer that holds the number of new created

nodes that processor k + 1 communicates upstream in the
pipeline.

• newNodesk : integer that holds the number of new created
nodes that processor k communicates upstream in the
pipeline.

The exchange of packets between processors is pictorially
illustrated in Fig. 9. In this figure, the focus is on
processor k and the exchange of packets between processor
k and its neighboring upstream and downstream processors
(i.e., processors k − 1 and k + 1 respectively).

The PFAM implementation is in the procedure PFAM shown
in Fig. 11 and the initialization procedure INIT is shown in
Fig. 10. The pseudocode of PFAM is the main heart of the
parallel algorithm. In the theorems that follow, there is a one
to one correspondence between PFAM instances and computing
processors, and we will therefore loosely talk about PFAM
instances and processors as names referring to the same entity
(the meaning will be clear from the context).

Each element of the pipeline will execute PFAM for as long
as there are input patterns to be processed. The input parameter
k tells the routine PFAM which stage of the pipeline it is, where
the value k varies from 0 to n − 1. After initializing most
of the values as empty (Fig. 10) we enter the loop of lines
2 through 35 (Fig. 11). This loop continues execution until
there are no more input patterns to process. The first activity
of each processor is to create a packet of excess templates to
send upstream (lines 4–6 of PFAM). Lines 7–10 correspond
to the information exchange between contiguous nodes in the
pipeline. The functions SEND-NEXT and RECV-NEXT on lines
7 and 8, respectively, don’t do anything if the processor is the
last in the pipeline (k = n−1). The same is true for the function
SEND-PREV when the processor is the first in the pipeline (k =

0). On the other hand, the function RECV-PREV reads input
patterns from the input stream if it’s the first in the pipeline.
These fresh patterns will be paired with an uncommitted node
(1, 1, . . . , 1) with index ∞ as their best representative so far.
In all other cases, these functions do the obvious information
exchange between contiguous processors in the pipeline. We
assume that all communication happens at the same time and
is synchronized. We can achieve this in an MPI environment
by doing non-blocking sends and using an MPI-Waitall to
synchronize the reception of information.

The function FIND-WINNER (see Fig. 12) is also important.
This function searches through a set of templates S to find if
there exists a template wi that is a better choice (using FAM
criteria) for representing I than the current best representative
w. If it finds one it swaps it with w, leaving w in S and
extracting wi from it. By sending the input patterns downstream
in the pipeline coupled with their current best representative
template we guarantee that the templates are not duplicated
amongst different processors and that we do not have multiple-
instance consistency issues.

Also when exchanging templates between processors in
the pipeline we have to be careful that patterns that are sent
downstream do not miss the comparison with templates that
are being sent upstream. This is the purpose of lines 12–15
(communication with the processor downstream in the pipeline)
and lines 18–21 of PFAM (see Fig. 11). On line 12 we set S to
represent the set of templates that have been sent upstream to
node k by node k + 1. We loop through each pattern, template
pair (I, w) (lines 13–15) to see if one of the templates, sent
upstream, has a higher activation (bottom-up input) than the
ones that were sent downstream; if this is true then the template
will be extracted from S. The net result of this is that S ends up
containing the templates that lost the competition, and therefore
the ones that processor k should keep (line 15). The converse
computation is performed on lines 18–21. On line 18 we set
S to represent the set of templates that were sent upstream
to the previous node k − 1 in the pipeline. On lines 19 to
20 we compare the pattern, template pairs (Ii

k−1, wi
k−1) that

k − 1 sent downstream in the pipeline with the templates in
S that processor k sent upstream. On line 21 of PFAM we
set our current pattern, template pairs to be the winners of
this competition. The set S is discarded since it contains the
losing templates and therefore the templates that process k − 1
keeps. Another way of looking at this is that what happens in
lines 12–15 in PFAM(k) is duplicated exactly in lines 18–21
in PFAM(k + 1), this ensures that both processors compare and

J. Castro et al. / Neural Networks 20 (2007) 109–128 119
Fig. 11. Parallel Fuzzy ARTMAP (PFAM) implementation. Exchange of templates between processors is done in lines 4–10. Templates received from the processor
downstream are compared with the input pattern/template pairs sent downstream in lines 12–15. Templates sent to the processor upstream are compared with the
incoming templates from this processor in lines 18–21. The input pattern/template pairs going downstream are compared with the local pool of templates in lines
22–23. The rest of the loop on lines 24–35 do necessary bookkeeping updates if the current processor is the last in the pipeline.
select exactly the same templates to go upstream or downstream
in the pipeline from the packets that had just been exchanged.

Finally, on line 30 of Fig. 11 we add both the input pattern
Ii and the template wi to the set of templates. This does
the obvious myTemplates update except when the template wi

happens to be the uncommitted node in which the addition is
ignored.
The main loop of PFAM starts with line 2 and ends with line
35. The main loop is executed for as long as there are input
patterns to process. The first processor that becomes aware
that there are no more input patterns to process is processor
0 (first processor in the pipeline). It communicates this
information to the other processors by sending a (wi , Ii , T i) =

(none, none, 0) to the next processor (see line 36 of Fig. 11).

120 J. Castro et al. / Neural Networks 20 (2007) 109–128
Fig. 12. Utility function to find the best candidate template in a template list. Needed by the PFAM implementation. Given a current input pattern I with its current
template w and activation T , this procedure compares the input with all the members of a given template pool S. If the set S holds a template that is better
representative of I than w, then these templates are swapped (lines 14–15) and the winner is left in w.
Table 1
PFAM correctness theorems

Theorem Name

7.1 Non-duplication
7.5 Bundle size sufficiency
7.11 Overflow impossibility
7.13 Partial evaluation correctness

Lines 37 and 38 of PFAM make sure that the templates that
are sent upstream in the pipeline are not lost after the pool of
training input patterns that are processed is exhausted.

7. Properties of the PFAM algorithm

We present and prove a series of fourteen (14) theorems.
These theorems are distinguished in two groups. The group
of theorems associated with the correctness of the PFAM, and
the group of theorems associated with the performance of the
PFAM. For ease of reference, Table 1 lists the theorems and
their names dealing with the correctness of the algorithm, while
Table 2 lists the theorems dealing with the performance of the
algorithm.

The major purpose of these theorems is to prove that PFAM
(a) is equivalent to the sequential version of FAM, (b) it
does not suffer from any inconsistencies, and (c) it exhibits
good performance. Examples of inconsistencies would be: a
template residing in more than one place in the pipeline (not
possible as Theorem 7.1 (non-duplication) proves), or that the
first processor in the pipeline sends templates upstream (not
possible as Theorem 7.11 (overflow impossibility) proves). It
is worth mentioning that Theorems 7.2 through 7.9 facilitate
Table 2
PFAM performance theorems

Theorem Name

7.2 Template awareness delay
7.3 Weak upstream migration precondition
7.4 Upstream packet size sufficiency
7.6 Strong upstream migration precondition
7.7 Strong upstream migration postcondition
7.8 Template ownership delay
7.9 Network size lower bound
7.10 Template ownership bound
7.12 Pipeline depth invariance
7.14 Workload balance variance bound

the demonstration of the overflow impossibility theorem.
The equivalence of the parallel and sequential version of
the algorithm is demonstrated through the partial evaluation
correctness theorem (Theorem 7.13). Good performance is
dependent on the distribution of templates amongst the
processors in the pipeline (workload balance). An upper bound
on the difference between the number of templates that two
processors in the pipeline could own has been established
through the pipeline length invariance theorem (Theorem 7.12)
and is equal to p + 1, where p is the packet size. This upper
bound is independent of the pipeline depth n. For instance, if
100,000 templates are present in the pipeline and p = 64, the
templates that any two processors possess cannot differ by more
than 65 (where p + 1 = 65).

Definition 7.1. A template wa
j is in transit if the template has

been received by the current processor i from the processor
upstream i − 1 in the pipeline, and the current processor has

J. Castro et al. / Neural Networks 20 (2007) 109–128 121
not made the decision yet of whether to send this template
upstream, downstream, or keep it. Templates in transit are
stored in the wi array of processor i .

Definition 7.2. A template wa
j is owned by a processor i in the

pipeline if it is stored in the myTemplates array of processor i .

Theorem 7.1 (Non-duplication). A template w will either be
owned by a single processor, or it will be in transit on a
single processor (i.e. only one copy of the template exists in
the system).

Proof. First let us note that templates start their existence in
processor n − 1 on line 30 of PFAM. Here they are immediately
added to the templates of process n − 1, so they start belonging
to a single processor.

Templates only change location when

(1) They are compared with a given input pattern I r and
selected to represent it, in which case they are deleted from
the template list owned by the processor and added to the
templates in transit.

(2) They are in transit and lose competition to another template,
in which case they are removed from the templates in transit
and added to the templates owned by the processor.

(3) They are sent upstream or sent downstream as in-transit
templates.

The only possible situation where the templates may be in two
places at once is in situation (3) when they are exchanged
between processors in the pipeline. This is the only scenario
where two processors hold a copy of the same template.

So the only possible problem will arise when two
consecutive processors exchange templates. Now a template
that is sent downstream on line 7 of PFAM by a process k − 1
is received by process k on line 10 of PFAM. Every template w
that is sent downstream is tagged along with an input pattern
I. Processor k will keep the template in transit if it is the best
candidate for input pattern I. To verify this, processor k will
compare template w against the templates that he himself sent
upstream. If a template w′ that was sent upstream is a better
candidate than w for the input pattern I (lines 19–21) then
process k will discard template w and keep template w′.

Concurrently, processor k −1 will check the pair of template
w and input pattern I it sent to processor k and compare them
against the templates that it receives from processor k. If a
template w′ that was received from processor k is a better
candidate than w for input pattern I (lines 12–15) then processor
k − 1 will keep template w and discard template w′.

As we can see, these concurrent operations guarantee that a
template that was sent downstream or upstream will not reside
in two places at the same time. Furthermore, it is guaranteed
that this template will be compared against all the input patterns
that flow through the pipeline. �

Theorem 7.2 (Template Awareness Delay). The total number
of templates that a processor k = 0, 1, . . . , n−1 in the pipeline
is aware of is equal to the number of templates that existed in
the system n − k − 1 iterations ago.
Proof. Consider processor n − 1, the last in the pipeline. This
processor knows immediately when a template is created, and
as a result it knows how many templates exist n − 1 − k =

n − 1 − (n − 1) = 0 iterations ago.
The number of templates created per iteration is sent

upstream to the previous processor in the variable newNodes.
This variable is received by processor n − 2 one iteration
after the templates have been created, by processor n − 3 two
iterations after the templates have been created, and in general,
by processor i, n −1− i iterations after the templates have been
created. This means that a processor k always receives on the
current iteration the value of the variable newNodes that was
created n − k − 1 iterations ago, and this implies that processor
k is aware of the amount of templates that existed n − k − 1
iterations ago. �

Theorem 7.3 (Weak Upstream Migration Precondition). A
processor k in the pipeline sends templates upstream if and only
if on the current iteration:

|myTemplates| > myShare. (14)

Proof. It will suffice to say that PFAM creates the packet of
templates to be sent upstream in lines 4 through 6. Looking
at line 4 of the PFAM pseudocode we can see that templates
are packed to be sent upstream only when condition (14) is
met. �

Theorem 7.4 (Upstream Packet Size Sufficiency). No processor
in the pipeline, except the first one, can have, at any point in
time, an excess of templates greater than 2p.

Proof. By an excess of templates we mean the number of
templates over its self imposed fair share indicated in the
variable myShare. What we need to prove that Eq. (15) never
holds, or that it is impossible for a processor in the pipeline to
reach a situation where the number of templates it has is greater
that its fare share plus the amount it can send upstream.

|myTemplates| > myShare + 2p. (15)

Let us notice that at the beginning of execution there are
no templates in transit and that all the processes have their
fair share of templates. In other words they comply with the
condition (16)

|myTemplates| ≤ myShare. (16)

Now let us consider the processor n − 1, the last in the
pipeline. If this processor complies with Eq. (16) and receives p
templates from processor n − 2, it would have a total of at most
p + myShare templates. In the worst case scenario all of the p
templates that have been sent are not of the correct category
and will force the creation of another p templates giving a
maximum total of 2p + myShare of templates, where 2p are
in transit. At the beginning of the next iteration, processor n −1
will pack 2p templates to be sent upstream to the previous
process in the pipeline (assuming its variable myShare does not
increase, which would ease the pressure on the processor) and
will receive p templates from the previous processor upstream.
Notice that the p templates extra that it ended up with are

122 J. Castro et al. / Neural Networks 20 (2007) 109–128
not part of its fair share because they are templates in transit.
Consequently, the processors’ n − 1 number of templates
|myTemplates| did not exceed myShare.

Now consider any other processor that is not the last or the
first in the pipeline and assume (as it does when it starts) that
it complies with Eq. (16). This processor can receive in the
worst case scenario a total of p templates from its upstream
neighbor and 2p templates from its downstream neighboring
processor. Now the p templates that arrived from upstream will
continue their journey downstream (maybe not the same ones
but at least that quantity), so they will not increase the total
number of templates that the processor owns. The excess of
the 2p templates coming from downstream over myShare will,
on a worst case scenario, be packed and sent upstream to the
previous processor (some of them could be kept if myShare
increases). �

Theorem 7.5 (Bundle Size Sufficiency). The excess templates
for a processor k 6= 0, at any given time, always fits in the
packet of size 2p to be sent upstream.

Proof. See Theorem 7.4. �

Theorem 7.6 (Strong Upstream Migration Precondition). If a
processor k ∈ {0, 1, . . . , n − 1} in the pipeline sends templates
upstream, then it is true that:

• 1 iteration ago processor k +1 complied with condition (14)
and sent templates upstream.

• 2 iterations ago processor k+2 complied with condition (14)
and sent templates upstream.

...

• n − 1 − k iterations ago processor n − 1 complied with
condition (14) and sent templates upstream.

Proof. If processor k sends templates upstream then by
Theorem 7.3 it complies with condition (14). But by the
reasoning in Theorem 7.4 all excess templates fit in the packet
size so they are sent upstream on the next iteration from when
they are received. This means that the excess templates were
received from processor k + 1 one iteration ago. Similarly,
if processor k + 1 sent templates upstream one iteration ago
then by Theorem 7.3 processor k + 1 must have complied with
condition (14) two iterations ago, and this can only happen if
2 iterations ago processor k + 2 sent templates upstream. By
induction on i and repeating this argument we can state that, in
general, processor k + i complied with condition (14) and sent
templates upstream i iterations ago. �

Theorem 7.7 (Strong Upstream Migration Postcondition). If a
processor k ∈ {0, 1, . . . , n − 1} in the pipeline sends templates
upstream, then it is true that:

(1) • at this iteration processor k keeps myShare templates.
• 1 iteration ago processor k + 1 kept myShare templates.
• 2 iterations ago processor k + 2 kept myShare templates.

...
• n − 1 − k iterations ago processor n − 1 kept myShare
templates.

(2) All of the values of myShare were the same for all the
processors.

(3) The templates that each processor keeps are distinct.

Proof. First let us notice that by Theorem 7.2

• on the current iteration processor k is aware of the templates
that existed in the system n − k − 1 iterations ago.

• 1 iteration ago processor k + 1 was aware of the templates
that existed in the system n − k − 1 iterations ago.

• 2 iterations ago processor k + 2 was aware of the templates
that existed in the system n − k − 1 iterations ago.
...

• n − k − 1 iterations ago processor n − 1 was aware of the
templates that existed in the system n − k − 1 iterations ago.

This means that all the processors were aware of the same
amount of templates and therefore their values for myShare
were all the same. It is evident by looking at lines 12–14 of
PFAM that the processor keeps myShare templates when it sends
upstream. We also know by Theorem 7.6 that they all sent
templates upstream on the corresponding iterations. Now for
any pair of processors k+i and k+ j where i < j , the templates
that processor k + i kept i iterations ago cannot be the ones that
processor k+ j kept j iterations ago. This is true because it takes
at least (j − i) iterations to transmit templates from j to i and
processor k + j kept them j iterations ago, and consequently,
they cannot reach processor k + i by j − (j − i) = i iterations
ago. �

Theorem 7.8 (Template Ownership Delay). The templates that
a processor k has, at the current iteration, were created at least
n − k − 1 iterations ago.

Proof. Since templates are created in process n − 1 on line 30
of the code of PFAM. These templates may be sent upstream
one step of the pipeline per iteration. The distance from k to
processor n −1 is equal to n − k −1, so the templates that k has
must have been created at least n − k − 1 iterations ago. �

Theorem 7.9 (Network Size Lower Bound). If a processor k
sends templates upstream on a given iteration, then the number
of templates N that existed in the system n − 1 − k iterations
ago complies with the condition:

N > (n − k)myShare. (17)

Proof. Notice that if processor k sends templates upstream
then it complies with condition (14) and by Theorem 7.7
all processors from k onwards kept myShare templates and
these templates are all distinct. Also by Theorem 7.8 all these
templates where created at least n − k − 1 iterations ago. So
the number of templates that existed in the system n − k − 1
iterations ago is at least:

N ≥ |myTemplates| + (n − 1 − k)myShare

> myShare + (n − 1 − k)myShare

= (n − k)myShare. � (18)

J. Castro et al. / Neural Networks 20 (2007) 109–128 123
Theorem 7.10 (Template Ownership Bound). A processor k in
the pipeline cannot have more than myShare templates, and it
cannot own less than max(0, myShare − p(2(n − 1 − k) − 1))

templates.

Proof. The fact that a processor k cannot exceed myShare
of templates has already been shown by Theorem 7.4.
Furthermore, the fact that it cannot own less that 0 templates
is obvious. What needs to be proven then is that if myShare >

p(2(n − k − 1)− 1), the number of templates will never be less
than myShare − p(2(n − k − 1) − 1) templates.

To prove this let us assume a steady state in the pipeline
where node k has myShare templates, and the worst case
possible scenario. In this scenario process k would receive
from process k − 1 packets of p pattern/template (Ii , wi)

pairs where the wi could be the uncommitted node, and would
send downstream packets of p pattern/template pairs where
the wi no longer is the uncommitted node. This means that
on each iteration process k would be losing p patterns to the
neighboring processors in the pipeline.

Patterns lost to the neighboring processors in the pipeline
will travel, in a worst case scenario, all the way downstream
to the last processor in the pipeline and afterwards find their
way back to processor k. If this is the situation then processor
k will have to wait n − 1 − k units of time, for the patterns
sent, to reach processor n − 1 and then wait another n − 1 − k
iterations for the patterns to come back upstream. This is a total
of 2(n − 1 − k) iterations before a packet of p templates sent
downstream by processor k is seen again by processor k. If
during these 2(n − 1 − k)− 1 iterations processor k has the bad
luck of sending p templates of its own templates downstream
at each iteration, then during that time processor k would have
lost p(2(n − 1 − k) − 1) templates and would possess a total of
myShare − p(2(n − 1 − k) − 1) templates. �

Theorem 7.11 (Overflow Impossibility). The first processor in
the pipeline will always be able to absorb the templates that
have been sent to it from the next processor downstream.

Proof. Let us assume the contradiction that it cannot absorb the
templates it has received from the next processor downstream.
This means that processor 0 complies with condition (14) and
that it has to send templates back. By Theorem 7.9 the number
of templates N that existed in the system n − 1 iterations ago
complies with Eq. (17). But by line 35 of PFAM we have:

N > n × myShare

= n
⌈

nodes
n

⌉
≥ n

(
nodes

n

)
= nodes. (19)

This means that the number N of templates that existed
in the system n − 1 iterations ago is greater than nodes, the
number of templates that processor 0 is aware of, and this is a
contradiction of Theorem 7.2. �

Theorem 7.12 (Pipeline Depth Invariance). The difference in
the number of myShare that two arbitrary processors in the
pipeline have cannot exceed p + 1 where p is the packet size.
Note that the difference in number of templates is independent
of the pipeline size n.
Proof. First, by Theorem 7.2 we know that a processor k is
aware of the number of templates that existed n−1−k iterations
ago. Also, the largest difference in the number of templates
that two processors are aware of is found in the difference
between processor 0 and processor n − 1. Now, let us assume
that processor 0 is aware of nodes0 templates. Since this amount
of templates existed n − 1 iterations ago and we can create
a maximum of p templates per iteration then the maximum
number of templates that processor n − 1 can be aware of is
nodes0 + (n − 1)p. This means that the value of myShare for
processor 0 is

myShare0 =

⌈
nodes0

n

⌉
≥

nodes0

n
(20)

and the value of myShare for processor n − 1 is at the most

mySharen−1 =

⌈
nodes0 + (n − 1)p

n

⌉
≤

nodes0 + (n − 1)p
n

+ 1. (21)

We also know that the number of templates that each processor
k owns is less than or equal to mySharek . Hence, the maximum
amount of difference in templates between 2 processors in the
pipeline is less than or equal to

mySharen−1 − myShare0

=

⌈
nodes0 + (n − 1)p

n

⌉
−

⌈
nodes0

n

⌉
≤

nodes0 + (n − 1)p
n

+ 1 −
nodes0

n

=
(n − 1)p

n
+ 1 ≤ p + 1. � (22)

Theorem 7.13 (Partial Evaluation Correctness). If we make
the packet size p of PFAM equal to the size of the training set
and set the number of processors to n = 1, then the parallel
algorithm presented here is equivalent to Fuzzy ARTMAP
(FAM).

Proof. Let us start by noting that if the number of the processor
is n = 1 then the functions RECV-NEXT and SEND-PREV do
not perform any computation, and can be omitted. This implies
that the variables exchanged in these processors also do not
hold any information and can be eliminated too. These variables
are the set of templates {wi

k+1} coming from the next process
in the pipeline and the set of variables {wi

to(k−1)} going to the
processor upstream in the pipeline. By eliminating these lines of
code and doing partial evaluation and eliminating unnecessary
variables we end up with the code of Fig. 13.

Notice that the only differences with Fuzzy ARTMAP are
that

(1) the set of patterns doesn’t come as a parameter.
(2) We are using the function FIND-WINNER to find the winner

node and
(3) Templates are being extracted and reinserted in the template

set.

124 J. Castro et al. / Neural Networks 20 (2007) 109–128
Fig. 13. Partial evaluation of PFAM using number of processors p = 1. Having only one processor implies that the packet size is the size of the training set. Also
the while loop and transmissions can be eliminated since these events happen between processors (we have only one). The only transmission procedure that survives
is the RECV-PREV which reads from the input stream. Comparison with the pool of templates is sequential and is taken care of by the FIND-WINNER procedure.
To guarantee that the first templates created receive priority
over newer templates we number the templates when created
with a sequential index and use this index to determine who
wins the competition in case of a tie between templates. �

Theorem 7.14 (Workload Balance Variance Bound). In a
pipeline with an arbitrary number of processors and a
downstream packet size p, the standard deviation of the number
of templates that each processor owns cannot exceed

p

2
√

3
. (23)

Proof. Given that in the PFAM algorithm there are many tem-
plates in transit we cannot know exactly how many templates
each processor possesses. We can though, approximate a worst
case workload balance scenario if we assume, as will usually be
the case, that the number of comparisons that a given processor
performs on each iteration will be proportional to the number
of templates that it is allowed to possess or O(myShare). In a
worst case scenario, on every iteration the network will be cre-
ating p new templates so process k will have a value of

nodesk = nodes0 + kp.

The expected value of myShare for this worst case scenario will
be

Avg(myShare) =

n−1∑
k=0

nodes0+kp
n

n

=

nodes0 +
p
n

n−1∑
k=0

k

n

=
nodes0 +

p
2 (n − 1)

n

=
nodes0

n
+

p
2n

(n − 1)

and the variance will be

1
n

n−1∑
k=0

(
nodes0 + kp

n
−

nodes0

n
−

p
2n

(n − 1)

)2

.

After some algebraic calculations we can show that the
variance is equal to

p2 n2
− 1

12n2

and finally this gives us a standard deviation of√
p2 n2 − 1

12n2 =
p

2
√

3

√
1 − n−2 <

p

2
√

3
. � (24)

If, for example, we use a packet size of 64 patterns, then
the worst possible standard deviation in the value of myShare
would not exceed

64

2
√

3
=

32
√

3
= 18.4752

regardless of the pipeline size n.

8. Experiments

Experiments were conducted on three databases: one
real-world database and two artificially-generated databases
(Gaussian distributed data). Training set sizes of 1000 × 2i , i ∈

{5, 6, . . . , 9}, that is 32,000 to 512,000 patterns were used for

J. Castro et al. / Neural Networks 20 (2007) 109–128 125
Fig. 14. A random sample of 5000 forest CoverType data-points out of the
available 581,012 data-points is shown. The data-points are projected to the
first 3 dimensions of the database. Different colors for the data-points represent
different class labels.

the training of PFAM and FAM. The test set size was fixed
at 20,000 patterns. The number of processors in the pipeline
varied from p = 1 to p = 32. Pipeline sizes were also increased
in powers of 2. The packet sizes used were 64 and 128 for the
CoverType and the Gaussian databases, respectively.

To avoid additional computational complexities in the
experiments (beyond the one that the size of the training set
brings) the values of the ART network parameters ρ̄a , and
α were fixed (i.e., the values chosen were ones that gave
reasonable results for the database of focus). For each database
and for every combination of (p, PT) = (partition, training
set size) values we conducted 12 independent experiments
(training and performance phases), corresponding to different
orders of pattern presentations within the training set. As a
reminder Fuzzy ARTMAP performance depends on the values
of the network parameters ρ̄a , and α, as well as the order of
pattern presentation within the training set.

All the tests where conducted on the OPCODEBeowulf cluster
of workstations of the Institute for Simulation and Training.
This cluster consists of 96 nodes, with dual Athlon 1500+
processors and 512 MB of RAM. The runs were done in such
as way as to utilize half as many nodes as p. Thus, there were
two MPI processes per node, one per processor.

The metrics used to measure the performance of the
pipelined approach were:

(1) Classification performance of PFAM (Higher classification
performance is better).

(2) Size of the trained, PFAM.
(3) Speedup of PFAM compared to FAM.

To calculate the speedup, we simply measured the CPU time
for each run.

8.1. Forest CoverType database

The first database used for testing was the Forest CoverType
database provided by Blackard (Blackard, 1999), and donated
Table 3
Performance results on the CoverType database

Examples
(Thousands)

Classification
performance

Average templates created

32 70.29 5,148.83
64 74.62 11,096.66

128 75.05 22,831
256 77.28 49,359.33
512 79.28 100,720.75

In this table, the average classification performance and the average number of
templates created by FAM or PFAM are depicted, as the number of points in
the training set increases from 32K to 512K. average performances are reported
for 12 different orders of training pattern presentations in the training phase of
Fuzzy ARTMAP. Classification results are reported for a test set of 20K input
patterns that is different from the patterns used in the training set.

to the UCI Machine Learning Repository (University of
California, Irvine, 2003). The database consists of a total of
581,012 patterns each one associated with 1 of 7 different forest
tree cover types. The number of attributes of each pattern is
54, but this number is misleading since attributes 11–14 are
actually a binary tabulation of the attribute Wilderness-Area,
and attributes 15–54 (40 of them) are a binary tabulation of
the attribute Soil-Type. The original database values are not
normalized to fit in the unit hypercube. Thus, we transformed
the data to achieve this. There are no omitted values in the data.

Patterns 1 through 512,000 were used for training. The
test set for all trials were patterns 561,001 to 581,000. A
visualization of the first 3 dimensions of the Forest CoverType
database can be seen in Fig. 14. Different tones correspond
to different classes. As can be seen from the figure, the class
boundaries are quite complex. Classification performance of
different machine learning algorithms for this database has been
reported in the range of 75%.

Table 3 exhibits the generalization performance and the size
of the architectures created by FAM for the Forest Covertype
database (as the training set size increases from 32,000 points to
512,000 points). The classification performance is reported on
an independent test set of 20,000 patterns that are different than
the ones used for training. The best classification performance
attained is 79%. The compression ratio observed (i.e., the ratio
of the number of patterns used in training versus the number of
templates) ranges between 5 and 8. Note that the compression
ratio is relatively small, but the objective in this paper was not
to produce high compression ratio for the training data, but to
demonstrate the correct, sensible pipelined implementation of
the main loop in FAM (that can be easily extended to other ART
architectures).

8.2. Gaussian databases

The Gaussian data was artificially generated using the polar
form of the Box–Muller transform with the R250 random
number generator by Kirkpatrick and Stoll (Kirkpatrick & Stoll,
1981). We generated 2-class, 16 dimensional data. All the
dimensions are identically distributed with the same mean µ

and variance σ 2 except one. The discriminating dimension has
offset means so that the overlap between the Gaussian curves
is set at 5% for one database and at 15% for the other. 532,000

126 J. Castro et al. / Neural Networks 20 (2007) 109–128
Fig. 15. Parallel speedup versus number of processors for CoverType database.
Speedup is measured as the ratio of the time Tp it takes p processors to process
the input patterns over the time T1 it takes one processor to do the same

amount of work, or as Tp
T1

. Speedup for the smallest database sizes 32,000 and
64,000 input patterns levels out fast after 16 processors. Speedup for the largest
database sizes is close to linear, which is the theoretical optimum.

Fig. 16. Parallel speedup versus number of processors for the Gaussian 5%
overlap database. Speedup is measured as the ratio of the time Tp it takes p
processors to process the input patterns over the time T1 it takes one processor

to do the same amount of work, or as Tp
T1

. Speedup for the smallest database
sizes 32,000 and 64,000 input patterns levels out fast after 16 processors.
Speedup for the largest database sizes is close to linear, which is the theoretical
optimum.

patterns where generated for each Gaussian database. 512,000
patterns were used for training; the remaining 20,000 patterns
were used for testing.

The speed-up performance of the CoverType, and the
Gaussian 5% overlap, and the Gaussian 15% overlap are
reported in Fig. 15, Fig. 16, Fig. 17, respectively. One important
conclusion from these results is that the speed-up achieved
using PFAM grows linearly with the number of processors used
in the pipeline. Also, we notice that the slope of increase varies
depending on the number of patterns used in the training phase
of Fuzzy ARTMAP. Furthermore, for 32,000 training patterns
and 64,000 training patterns the speed-up curve exhibits a knee
Fig. 17. Parallel speedup versus number of processors for the Gaussian 15%
overlap database. Speedup is measured as the ratio of the time Tp it takes p
processors to process the input patterns over the time T1 it takes one processor

to do the same amount of work, or as Tp
T1

. Speedup for the smallest database
sizes 32,000 and 64,000 input patterns levels out fast after 16 processors.
Speedup for the largest database sizes is close to linear, which is the theoretical
optimum.

Table 4
Performance results on a 2-class, 16-dimensional Gaussian dataset with 5%
overlap

Examples
(Thousands)

Classification
performance

Average templates created

32 92.50 7,032.83
64 92.74 13,513.41

128 92.91 25,740.5
256 93.11 48,854.5
512 93.21 92,365.66

The overlap of 5% implies that the best possible classifier for this dataset
(i.e., the Bayes classifier) can achieve an optimum error rate of 5%. In this table,
the average classification performance and the average number of templates
created by FAM or PFAM are depicted, as the number of points in the training
set increases from 32K to 512K. Average performances are reported for 12
different orders of training pattern presentations in the training phase of Fuzzy
ARTMAP. Classification results are reported for a test set of 20K input patterns
that is different from the patterns used in the training set.

(saturation phenomenon). This is likely due to the fact that
for the smaller training sets, the overhead for pattern transfer
becomes more pronounced. This saturation is more obvious
for the 32,000 training patterns than for the 64,000 patterns.
This phenomenon is not observed for training patterns 128,000,
256,000 or 512,000.

Tables 4 and 5 exhibit the generalization performance and
the size of the architectures created by FAM. For the Gaussian
5% overlap database the best generalization performance
observed is around 93%, while the observed compression ratio
(i.e., ratio of number of patterns used in training versus number
of templates) is equal to 5. For the 15% Gaussian dataset
these numbers are 80% (maximum generalization performance)
and 3 (compression ratio). Note that the best generalization
performance expected with the 5% Gaussian and the 15%
Gaussian databases are 5% and 15%, respectively. Also, note
that the compression achieved with FAM is relatively small,

J. Castro et al. / Neural Networks 20 (2007) 109–128 127
Table 5
Performance results on a 2-class, 16-dimensional Gaussian dataset with 15%
overlap

Examples
(Thousands)

Classification
performance

Average templates created

32 79.25 10,608.83
64 79.82 20,695.83

128 80.10 40,319
256 80.32 78,540.58
512 80.54 152,827.91

The overlap of 15% implies that the best possible classifier for this dataset
(i.e., the Bayes classifier) can achieve an optimum error rate of 15%. In
this table, the average classification performance and the average number of
templates created by FAM or PFAM are depicted, as the number of points in
the training set increases from 32K to 512K. Average performances are reported
for 12 different orders of training pattern presentations in the training phase of
Fuzzy ARTMAP. Classification results are reported for a test set of 20K input
patterns that is different from the patterns used in the training set.

but the objective of this paper was not to produce a high
compression for the training data but to demonstrate the correct,
sensible pipelined implementation of the main loop in FAM
(that can be easily extended to other ART architectures).

9. Summary — conclusions

We have produced a pipelined implementation of Fuzzy
ARTMAP. This implementation can be extended to other ART
neural network architectures that have a similar competitive
structure as Fuzzy ARTMAP. It can also be extended to
other neural networks that are designated as “competitive”
neural networks, such as PNN, RBFs, as well as other
“competitive” classifiers. We have introduced and proven a
number of theorems pertaining to our pipeline implementation.
The major purpose of these theorems was to show that
PFAM (a) is equivalent with the sequential version of Fuzzy
ARTMAP, (b) it does not suffer from inconsistencies, and (c) it
exhibits good performance. In particular, the good performance
of PFAM was exhibited by observing the linear speed-up
achieved as the number of processors increased from 1 to
32. In the process, we produced other performance results
related to the generalization performance and the size of the
architectures that Fuzzy ARTMAP created. We believe that
our objective of appropriately implementing Fuzzy ARTMAP
on a Beowulf cluster has been accomplished and a clear
evidence of this assertion are the speed-up results exhibited
by PFAM and illustrated in Figs. 15–17. Extension of our
implementation approach to other “competitive” classifiers
is possible. Extension of our implementation to the match-
tracking Fuzzy ARTMAP algorithm is more involved and is the
topic of our current research.

Acknowledgments

The authors would like to thank the Computer Research
Center of the Technological Institute of Costa Rica, the
Institute of Simulation and Training (IST) and the Link
Foundation Fellowship program for partially funding this
project. This work was supported in part by a National
Science Foundation (NSF) grant CRCD 0203446, and
the National Science Foundation grant DUE 05254209.
Georgios C. Anagnostopoulos and Michael Georgiopoulos also
acknowledge the partial support from the NSF grant CCLI
0341601. Jimmy Secretan’s work was partially supported by
an NSF Graduate Research Fellowship.

References

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association
rules in large databases. In J. B. Bocca, M. Jarke, & C. Zaniolo (Eds.),
Proceedings of the twentieth international conference on very large
databases (pp. 487–499). Santiago, Chile: Morgan Kaufmann.

Anagnostopoulos, G. (2000). Novel approaches in adaptive resonance theory
for machine learning. Unpublished doctoral dessertation. Computer
Engineering, UCF.

Anagnostopoulos, G. C., & Georgiopoulos, M. (2001). Proceedings of the
IEEE–INNS–ENNS: Vol. 2. Ellipsoid ART and ARTMAP for incremental
unsupervised and supervised learning (pp. 1221–1226). Washington, DC:
IEEE–INNS–ENNS.

Anagnostopoulos, G. C., & Georgiopoulos, M. (2003). Putting the utility
of match tracking in Fuzzy ARTMAP training to the test. In Seventh
international conference on knowledge-based intelligent information and
engineering systems.

Asanović, K., Beck, J., Kingsbury, B., Morgan, N., Johnson, D., & Wawrzynek,
J. (1998). Training neural networks with SPERT-II. In P. S. Editors, & N.
Sundararajan (Eds.), Parallel architectures for artificial neural networks:
Paradigms and implementations. IEEE Computer Society Press and John
Wiley and Sons.

Blackard, J. A. (1999). Comparison of neural networks and discriminant
analysis in predicting forest cover types. Unpublished doctoral dessertation.
Department of Forest Sciences, Colorado State University.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, D.
B. (1992). Fuzzy ARTMAP: A neural network architecture for incremental
learning of analog multidimensional maps. IEEE Transactions on Neural
Networks, 3(5), 698–713.

Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). International joint
conference on neural networks, IJCNN’91: Vol. II. Fuzzy ART: An adaptive
resonance algorithm for rapid, stable classification of analog patterns
(pp. 411–416). Seattle, Washington: IEEE–INNS–ENNS.

Carpenter, G. A., & Markuzon, N. (1998). ARTMAP–IC and medical
diagnosys: Instance counting and inconsistent cases. Neural Networks, 11,
793–813.

Carpenter, G. A., & Ross, W. D. (1995). ART–EMAP: A neural network
architecture for object recognition by evidence accumulation. IEEE
Transactions on Neural Networks, 6(5), 805–818.

Caudell, T. P., & Healy, M. J. (1999). International joint conference on neural
networks: Vol. 3. Studies of generalization for the LAPART-2 architecture
(pp. 1979–1982). Washington, DC: IEEE–INNS–ENNS.

Kasuba, T. (1993). Simplified Fuzzy ARTMAP. AI Expert, 18–25.
King, R., Feng, C., & Shutherland, A. (1995). STATLOG: Comparison of

classification algorithms on large real-world problems. Applied Artificial
Intelligence, 9(3), 259–287.

Kirkpatrick, S., & Stoll, E. (1981). A very fast shift-register sequence random
number generator. Journal of Computational Physics, 40, 517–526.

Malkani, A., & Vassiliadis, C. A. (1995). Parallel implementation of the Fuzzy
ARTMAP neural network paradigm on a hypercube. Expert Systems, 12(1),
39–53.

Mangasarian, O., & Solodov, M. (1994). Serial and parallel backpropagation
convergence via nonmonotone perturbed minimization. Optimization
Methods and Software, 4(2), 103–116.

Manolakos, E. S. (1998). Parallel implementation of ART1 Neural Networks
on processor ring architectures. In N. Sundararajan, & P. Saratchandran
(Eds.), Parallel architectures for neural networks: Paradigms and
implementations. IEEE Computer Society Press and John Wiley and Sons.

128 J. Castro et al. / Neural Networks 20 (2007) 109–128
Mehta, M., Agrawal, R., & Rissanen, J. (1996). SLIQ: A fast scalable classifier
for data mining. In Extending Database Technology (pp. 18–32). Avignon,
France: Springer.

Petridis, V., Kaburlasos, V. G., Fragkou, V. G., & Kehagais, A. (2001).
Proceedings of the international joint conference on neural networks:
Vol. 2. Text classification using the σ–FLNMAP neural network
(pp. 1362–1367). Washington, DC: IEEE–INNS–ENNS.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo,
California: Morgan Kaufmann.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal
representations by error propagation. In Parallel distributed processing:
Explorations in the microstructure of cognition: Vol. 1: Foundations
(pp. 318–362).

Shafer, J. C., Agrawal, R., & Mehta, M. (1996). VLDB, SPRINT: A scalable
parallel classifier for data mining. In T. M. Vijayaraman, A. P. Buchmann,
C. Mohan, & N. L. Sarda (Eds.), Proc. 22nd int. conf. very large databases
(pp. 544–555). Bombay, India: Morgan Kaufmann.
Simpson, P. K. (1992). Fuzzy Min–Max neural networks–Part 1: Classification.
IEEE Transactions on Neural Networks, 3(5), 776–786.

Taghi, M., Baghmisheh, V., & Pavesic, N. (2003). A fast simplified Fuzzy
ARTMAP network. Neural Processing Letters, 17, 273–316.

Torresen, J., Nakashima, H., Tomita, S., & Landsverk, O. (1995). General
mapping of feed-forward neural networks onto an MIMD computer. In
Proceedings of the IEEE international conference on neural networks.

Torresen, J., & Tomita, S. (1998). In N. Sundararajan, & P. Saratchandran
(Eds.), Parallel architectures for artificial neural networks: Paradigms and
implementations (pp. 41–118). IEEE Computer Society Press and John
Wiley Sons.

University of California, Irvine (2003). UCI machine learning repository.
http://www.icf.uci.edu/mlearn/MLRepository.html.

Williamson, J. R. (1996). Gaussian ARTMAP: A neural network for fast
incremental learning of noisy multidimensional maps. Neural Networks,
9(5), 881–897.

Zhang, D. (1998). Parallel VLSI neural systems design. Springer.

http://www.icf.uci.edu/mlearn/MLRepository.html

	Pipelining of Fuzzy ARTMAP without matchtracking: Correctness, performance bound, and Beowulf evaluation
	Introduction
	The Fuzzy ARTMAP neural network architecture/Fuzzy ARTMAP variations
	The Fuzzy ARTMAP variants' pseudo-code
	Complexity analysis of the on-line, match tracking Fuzzy ARTMAP
	The Beowulf parallel platform
	Beowulf Fuzzy ARTMAP implementation
	Properties of the Pfam algorithm
	Experiments
	Forest CoverType database
	Gaussian databases

	Summary --- conclusions
	Acknowledgments
	References

