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Abstract

We quantitatively evaluate the capability and accuracy of the lattice Boltzmann equation (LBE) for modeling flow through porous
media. In particular, we conduct a comparative study of the LBE models with the multiple-relaxation-time (MRT) and the Bhatnagar–
Gross–Krook (BGK) single-relaxation-time (SRT) collision operators. We also investigate several fluid–solid boundary conditions
including: (1) the standard bounce-back (SBB) scheme, (2) the linearly interpolated bounce-back (LIBB) scheme, (3) the quadratically
interpolated bounce-back (QIBB) scheme, and (4) the multi-reflection (MR) scheme. Three-dimensional flow through two porous
media—a body-centered cubic (BCC) array of spheres and a random-sized sphere-pack—are examined in this study. For flow past a
BCC array of spheres, we validate the linear LBE model by comparing its results with the nonlinear LBE model. We investigate system-
atically the viscosity-dependence of the computed permeability, the discretization error, and effects due to the choice of relaxation param-
eters with the MRT and BGK schemes. Our results show unequivocally that the MRT–LBE model is superior to the BGK–LBE model,
and interpolation significantly improves the accuracy of the fluid–solid boundary conditions.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Historically, the lattice Boltzmann equation (LBE) for
modeling hydrodynamics [1,2] originated from the lattice-
gas cellular automata (LGCA) [3,4]. Recently, it was
shown that the LBE can be directly derived by discretizing
the Boltzmann equation [5,6]. This not only sets the LBE
method on the solid foundation of kinetic theory, but also
makes the LBE method more amenable to numerical anal-
ysis. The LBE method has been shown to be equivalent to
an explicit, first-order in time, second-order in space finite
difference approximation of the incompressible Navier–
Stokes equations [7–9]. Thus, the LBE method can be
viewed as a discrete approximation of the incompressible
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Navier–Stokes equations, based on kinetic theory rather
than continuum theory [10].

Due to its kinetic origin, the LBE method has some fea-
tures that are significantly different from conventional
computational fluid dynamics methods based on a direct
discretization of the Navier–Stokes equations. Appealing
features of the LBE method include programming simplic-
ity, intrinsic parallelism, and straightforward resolution of
complex solid boundaries and multiple fluid species. Hence,
the LBE method has gained popularity in recent years for
simulating single-fluid and multiple-fluid phase flow
through porous media (cf. [11,12] and references therein).
However, computational limitations remain of concern
for such applications.

The most popular LBE model used in porous medium
simulations is the lattice Bhatnagar–Gross–Krook
(LBGK) model [13,14] with a standard bounce-back
(SBB) scheme for fluid–solid boundaries. However, two
common problems are encountered with this popular
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method. First, the LBGK model, in which the collision
operator is approximated by a single-relaxation-time
(SRT) approximation, has some defects such as numerical
instability and viscosity dependence of boundary locations,
especially in under-relaxed situations [15]. The viscosity
dependent boundary conditions pose a severe problem
for simulating flow through porous media because the per-
meability becomes viscosity dependent, while it should be a
characteristic of the physical properties of porous medium
alone. The problem of the viscosity-dependence of the
boundary conditions is clearly illustrated by Fig. 1, in
which the computed permeability for a typical porous med-
ium GB1b (cf. Section 5) varies significantly as the viscosity
changes in the LBGK model. The deficiencies inherent in
the LBGK model can be significantly reduced by using a
multiple-relaxation-time (MRT) approach [16–22], which
separates the relaxation times for different kinetic modes
and allows tuning to improve numerical stability and
accuracy.

Second, in the LBE simulations of flow through a por-
ous medium, curved fluid–solid interfaces are usually
approximated using a zig-zag approach so that the SBB
boundary conditions can be directly applied, which reverse
the momentum of fluid particles colliding with a solid
boundary by mimicking the particle–solid interaction for
no-slip boundary conditions. The SBB boundary condi-
tions are easy to implement; they do, however, introduce
errors in boundary locations, especially when the resolu-
tion is coarse, and using fine enough uniform discretization
of pore geometries to adequately resolve the flow with zig-
zag approximation is often ineffective and unrealistic com-
putationally. Recently, several schemes have been
advanced to more accurately represent such boundaries
using spatial interpolations [12,22,23]. These methods can
be incorporated separately into LBE model to further
improve accuracy and to speed up convergence. However
to the best of our knowledge, no systematic quantitative
comparison of the numerical accuracy and convergence
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Fig. 1. The viscosity dependence of the computed permeability using the
LBGK model. The result is obtained for flow through a sphere-pack
medium.
rate of these methods has been reported in the literature
for complex porous medium systems.

The overall goal of the present work is to examine the
accuracy of LBE models for the solution of flow through
porous medium systems. The specific objectives of this
work are: (1) to implement a standard LBGK and an
MRT–LBE model with a number of fluid–solid boundary
schemes; (2) to compare the numerical accuracy of avail-
able LBE schemes for model problems quantitatively and
systematically; and (3) to investigate the discretization level
necessary to achieve resolution-independent results for sin-
gle-phase flow in porous media using various boundary
schemes.

The remaining parts of this paper are organized as fol-
lows. Section 2 describes briefly the three-dimensional
MRT–LBE model with 19 velocities (D3Q19 model) used
in this paper. Section 3 discusses the set of fluid–solid
boundary conditions to be compared in the work, includ-
ing the standard bounce-back (SBB) scheme, the linearly
interpolated bounce-back (LIBB) scheme, the quadratically
interpolated bounce-back (QIBB) scheme, and the multi-
reflection (MR) scheme. Sections 4 and 5 present the
numerical results for flow through a periodic body-cen-
tered cubic (BCC) array of spheres of equal radius and
the results for flow through a random-sized sphere-pack
porous medium, respectively. Finally, Section 6 concludes
the paper.

2. Multiple-relaxation-time LBE model

There are three components in any LBE model. The first
component is a discrete phase space consisting of a regular
lattice space dxZd with a lattice constant dx in d dimensions
together with a finite set of highly symmetric discrete veloc-
ities {eiji = 0,1, . . . ,N} connecting each lattice node
xk 2 dxZd to its neighbors, and the corresponding set of
velocity distribution functions {fiji = 0,1, . . . ,N} defined
on each node of the lattice. The second component is a col-
lision matrix S and (N + 1) equilibrium distribution func-
tions ff ðeqÞ

i j i ¼ 0; 1; . . . ;Ng. The equilibrium distribution
functions are functions of the local conserved quantities
and are a crucial component of the LBE method, which
can be related to kinetic theory. The third component is
an evolution equation in discrete time tn 2 dtN0:

fðxk þ edt; tn þ dtÞ � fðxk; tnÞ
¼ S fðeqÞðxk; tnÞ � fðxk; tnÞ

� �
þ F; ð1Þ

or equivalently

fðxk þ edt; tn þ dtÞ � fðxk; tnÞ

¼ M�1bS½mðeqÞðxk; tnÞ �mðxk; tnÞ� þ F; ð2Þ

where the bold-face symbols, f, m, m(eq), and F are B-
dimensional (column) vectors (B = N + 1 or N for models
with or without zero velocity, respectively), i.e.,
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fðxk þ edt; tn þ dtÞ
:¼ ðf0ðxk; tn þ dtÞ; . . . ; fN ðxk þ eNdt; tn þ dtÞÞT;

fðxk; tnÞ :¼ ðf0ðxk; tnÞ; f1ðxk; tnÞ; . . . ; fN ðxk; tnÞÞT;
mðxk; tnÞ :¼ ðm0ðxk; tnÞ;m1ðxk; tnÞ; . . . ;mN ðxk; tnÞÞT;
F :¼ ðF 0; F 1; . . . ; F N ÞT.

Here superscript T denotes the transpose operator, and F

represents the external forcing, of which the components are:

F i ¼ 3wiq0

ei � a
c2

; ð3Þ

where c :¼ dx/dt, q0 is the (constant) mean density in the
system (usually set to 1), a is the acceleration due to exter-
nal forces, and the weight coefficients for the D3Q19 model
are usually chosen as w0 = 1/3, wi = 1/18 for i = 1–6, and
wi = 1/36 for i = 7–18. In lattice units, the time step dt is
set equal to 1, as is the lattice spacing (dx = dt = 1).

The relaxation matrix bS ¼ M � S �M�1 is a B · B diago-
nal matrix. The transformation matrix M relates the distri-
bution functions represented by f 2 V ¼ RB to their
moments represented by m 2M ¼ RB, as in the following:

m ¼ M � f; f ¼ M�1 �m. ð4Þ
The transformation matrix M is constructed from the
monomials of the discrete velocity components
em

iaen
jb � � � el

kc (a,b and c 2 {x,y,z}) via the Gram–Schmidt
orthogonalization procedure [16,19–21]. The row vectors
of M are mutually orthogonal, i.e., M �MT is a diagonal
matrix, but not normalized so all the matrix elements of
M are integers [16,19–21]. For the 19-velocity model in
three dimensions, i.e., the D3Q19 model (here DdQq

denotes the model with q velocities in d dimensions), the
matrix M is given in [20,24].

For the D3Q19 model, the 19 moments are:

m :¼ ðq; e; e; jx; qx; jy ; qy ; jz; qz; 3pxx; 3pxx; pww;

pww; pxy ; pyz; pxz;mx;my ;mzÞT

¼ ðm0;m1; . . . ;m18ÞT;

among which, only the density q ¼
P

ifi and momentum
j :¼ ðjx; jy ; jzÞ ¼

P
ifiei are conserved quantities for ather-

mal fluids, and the rest are non-conserved quantities [20].
The equilibria m(eq)(q, j) for the non-conserved moments
are [20]:

eðeqÞ ¼ �11qþ 19

q0

j � j ¼ �11qþ 19

q0

ðj2
x þ j2

y þ j2
z Þ; ð5aÞ

eðeqÞ ¼ 3q� 11

2q0

j � j; ð5bÞ

qðeqÞ
x ¼ � 2

3
jx; qðeqÞ

y ¼ � 2

3
jy ; qðeqÞ

z ¼ � 2

3
jz; ð5cÞ

pðeqÞ
xx ¼

1

3q0

2j2
x � ðj2

y þ j2
z Þ

h i
; pðeqÞ

ww ¼
1

q0

j2
y � j2

z

h i
; ð5dÞ

pðeqÞ
xy ¼

1

q0

jxjy ; pðeqÞ
yz ¼

1

q0

jyjz; pðeqÞ
xz ¼

1

q0

jxjz; ð5eÞ

pðeqÞ
xx ¼ �

1

2
pðeqÞ

xx ; pðeqÞ
ww ¼ �

1

2
pðeqÞ

ww ;

mðeqÞ
x ¼ mðeqÞ

y ¼ mðeqÞ
z ¼ 0. ð5fÞ
Corresponding the particular order of moments used here,
the diagonal relaxation matrix bS is given by

bS¼diagð0;s1;s2;0;s4;0;s4;0;s4;s9;s10;s9;s10;s13;s13;s13;s16;s16;s16Þ
¼diagð0;se;se;0;sq;0;sq;0;sq;sm;sp;sm;sp;sm;sm;sm;sm;sm;smÞ.

ð6Þ

The speed of sound of the model is cs ¼ 1=
ffiffiffi
3
p

and the
viscosity is

m ¼ 1

3

1

sm
� 1

2

� �
. ð7Þ

With the above equilibria of Eqs. (5a), if all of the relaxa-
tion rates, {siji = 0, . . . , 18}, are set to be a single value 1/s,
i.e., S ¼ s�1I, where I is B · B identity matrix, then the
model is equivalent to an LBGK model with the following
equilibria [5]:

f ðeqÞ
i ðq; uÞ ¼ wi qþ q0 3ei � uþ

9

2
ðei � uÞ2 �

3

2
u � u

� �� �
. ð8Þ

where the fluid velocity u :¼ j/q0. When external forcing F

is considered in the LBE simulations, j 0 = j + q0adt/2 (or
u 0 = u + adt/2), instead of j (or u), is used as the measured
velocity field for output, and in the calculation of nonlinear
velocity terms of the equilibria of Eq. (5a) for the moments
(or equilibria of Eq. (8) for the distributions). The reason
of replacing j by j 0 for output and in nonlinear term calcu-
lations is to account for the momentum change due to F

and to satisfy the mass conservation equation up to the
second-order in the Chapman–Enskog analysis [22,21].
For more detailed discussions of the discrete lattice effects
on the external forcing term and MRT–LBE method in
general, we refer readers to the literature [16–22].

When simulating flow through porous media, we are
often interested in Stokes flow, for which Darcy’s law
holds. The Stokes flow can be simulated by the linear

LBE scheme, in which all the nonlinear velocity terms are
omitted in the equilibria given by Eq. (5a) for the moments,
or equivalently in the the equilibria of Eq. (8) for the distri-
bution functions, i.e.,

eðeqÞ ¼ �11q; eðeqÞ ¼ 3q; ð9aÞ

qðeqÞ
x ¼ � 2

3
jx; qðeqÞ

y ¼ � 2

3
jy ; qðeqÞ

z ¼ � 2

3
jz; ð9bÞ

pðeqÞ
xx ¼ pðeqÞ

ww ¼ pðeqÞ
xy ¼ pðeqÞ

yz ¼ pðeqÞ
xz ¼ 0; ð9cÞ

pðeqÞ
xx ¼ pðeqÞ

ww ¼ 0; mðeqÞ
x ¼ mðeqÞ

y ¼ mðeqÞ
z ¼ 0. ð9dÞ

With the above equilibria, the resulting momentum equa-
tion is the Stokes equation without the nonlinear advection
term u � $u. Note that Darcy’s law is only valid for the flow
in the limit of zero Reynolds number [25], i.e., the Stokes
flow. We will validate the linear LBE scheme in simulations
of flow through a simple porous geometry.



Fig. 2. Illustration of the interpolated boundary conditions in one
dimension. Symbols , d, s and h denote interior fluid node, boundary
fluid node, the off-lattice location involved in interpolations, and solid
node, respectively. (a) the perfect bounce-back situation, q = 1/2; (b)
interpolation before the bounce-back collision, q < 1/2; and (c) interpo-
lation after the bounce-back collision, q > 1/2.
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3. Solid boundary conditions

The LBE method deals with the single particle distribu-
tion function f in phase space C :¼ (x,n), as opposed to the
hydrodynamic variables, such as fluid density q, flow
velocity u, and temperature T, in physical space x. Conse-
quently, the boundary conditions in the LBE method are
also expressed in terms of the distribution function f rather
than the flow variables commonly controlled in conven-
tional computational fluid dynamics methods. In the
LBE method, the objective is to construct the unknown
incoming distribution functions based on the known
outgoing distribution functions at the boundary nodes so
that the physical boundary conditions of interest are
satisfied.

The lattice Boltzmann scheme consists of two steps, i.e.,

collision : ~f iðxk; tnÞ � fiðxk; tnÞ ¼ Xi; ð10aÞ

streaming : f iðxk þ eidt; tn þ dtÞ ¼ ~f iðxk; tnÞ; ð10bÞ

where Xi denotes the collision operator, and ~f i and fi de-
note the post- and pre-collision states of the particle distri-
bution functions, respectively. During the streaming step,
the no-slip velocity boundary conditions at the fluid–solid
interface are usually approximated using the standard
bounce-back (SBB) boundary conditions, which mimic
the phenomenon that a particle reflects its momentum
when colliding with a solid surface.

It is important to stress that the SBB boundary
condition does not always place the wall at the one-half
grid spacing beyond the last fluid node. In the LBGK
model, the actual position of the boundary is viscosity
dependent when the SBB is applied. This can be easily seen
from the analytic solutions for the Poiseuille flow [15],
especially in under-relaxed situations, i.e., when s > 1. This
problem can be solved with the MRT–LBE model when
using the linear LBE scheme, by combining the bounce-
back rule with a carefully constructed collision operator.
Because the boundary location depends on a polynomial
of relaxation rates {si} [17,22], one can choose the relaxa-
tion rate sq for the ‘‘energy flux’’ mode q :¼ (qx,qy,qz) as
the following:

sq ¼ 8
ð2� smÞ
ð8� smÞ

; ð11Þ

such that the position where u = 0 is fixed at exactly one
half lattice spacing beyond the last fluid node for Poiseuille
flow when the solid walls are parallel to the underlying
lattice lines [17,18,22,23].

3.1. Interpolated bounce-back schemes

Fig. 2 illustrates the typical scenario in bounce-back
boundary conditions in a one-dimensional setting. If the
boundary location xW is situated half-way between xA
and xB, i.e., q :¼ jxA � xWj/jxA � xBj = 1/2, the incoming
distribution function is simply equal to the corresponding
outgoing one with the opposite momentum, hence the
name ‘‘bounce-back’’ boundary conditions.

Intuitively in the perfect bounce-back situation, in a
complete streaming-collision cycle the particle travels
half-way between two nodes xA and xB, collides with the
wall at xW, and reverses its momentum (the collision pro-
cess is assumed not to consume any time), then travels back
to xA, as illustrated by Fig. 2(a). When q < 1/2, the particle
at xA would end up at xC after the streaming-collision
cycle, as illustrated by the thin arrow in Fig. 2(b). However,
if the particle starts from xC, then it will end up at xA after
the streaming-collision cycle, as illustrated by the thick
arrow in Fig. 2(b). This can be accomplished if we can con-
struct the distribution function at xC by using an interpola-
tion before the streaming-collision process with the wall
takes place. Similarly, when q > 1/2, the incoming distribu-
tion function can be constructed by using the outgoing one
located at xC after the streaming-collision interaction with
the wall takes place, as illustrated by the thick arrow in
Fig. 2(c), and the distribution function values at nearby
nodes xD and xE.

For stability considerations, we limit ourselves to inter-
polations, including linear and quadratic interpolations
proposed in [23,26]. The linear interpolation bounce-back
(LIBB) formulae for fLðxA; tnþ1Þ ¼ ~f RðxC; tnÞ are:
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fLðxA; tnþ1Þ

¼
ð1�2qÞ~f RðxD; tnÞþ2q~f RðxA; tnÞ; q< 1=2;

1� 1
2q

	 

fLðxD; tnþ1Þþ 1

2qfLðxC; tnþ1Þ; q P 1=2;

8<
: ð12aÞ

¼
ð1�2qÞfRðxA; tnþ1Þþ2q~f RðxA; tnÞ; q< 1=2;

1� 1
2q

	 

~f LðxA; tnÞþ 1

2q
~f RðxA; tnÞ; q P 1=2.

8<
: ð12bÞ

In the above formulae, subscripts L and R indicate left-
bound or right-bound directions, respectively, as depicted
in Fig. 2. The interpolation formulae involve either the
post-collision information at time tn or or pre-collision
information at time tn+1 :¼ tn + dt. Hence, Eq. (12b) indi-
cates that the LIBB requires only local information to per-
form interpolation. Similarly, the quadratic interpolation
bounce-back (QIBB) formulae are:

fLðxA; tnþ1Þ

¼

qð1þ2qÞ~f RðxA; tnÞþð1�4q2Þ~f RðxD; tnÞ

�qð1�2qÞ~f RðxE; tnÞ; q< 1=2;

2q�1
q fLðxD; tnþ1Þþ 1

qð2qþ1ÞfLðxC; tnþ1Þ

þð1�2qÞ
ð1þ2qÞfLðxE; tnþ1Þ; q P 1=2;

8>>>>>><
>>>>>>:

ð13aÞ

¼

qð1þ2qÞ~f RðxA; tnÞþð1�4q2ÞfRðxA; tnþ1Þ

�qð1�2qÞfRðxD; tnþ1Þ; q< 1=2;

2q�1
q

~f LðxA; tnÞþ 1
qð2qþ1Þ

~f RðxA; tnÞ

þð1�2qÞ
ð1þ2qÞ

~f LðxD; tnÞ; q P 1=2.

8>>>>>><
>>>>>>:

ð13bÞ

Note that both linear and quadratic interpolations are up-
wind with respect to the particle velocity (e1 in this case)
when q < 1/2 and downwind when q > 1/2, and they reduce
to the SBB boundary conditions when q = 1/2.

3.2. Multi-reflection boundary conditions

The multi-reflection (MR) boundary conditions [22] for
solving the moving solid boundary problems, on the other
hand, utilize a more general closure relation that deter-
mines the unknown distributions from five neighboring
values. The closure relation is theoretically obtained from
the Chapman–Enskog expansion at the boundary nodes.
The MR closure relation is accurate up to third-order in
the Chapman–Enskog expansion by considering a correc-
tion term E � f ð2Þi :

fLðxA; tnþ1Þ¼ k1fLðxC; tnþ1Þþ k2fRðxA; tnþ1Þþ k3fRðxD; tnþ1Þ
þ k4fLðxD; tnþ1Þþ k5fLðxE; tnþ1ÞþELðxA; tnÞ

ð14aÞ
¼ k1

~f RðxA; tnÞþ k2fRðxA; tnþ1Þþ k3fRðxD; tnþ1Þ

þ k4
~f LðxA; tnÞþ k5

~f LðxD; tnÞþ
k6

m
f ð2ÞL ðxA; tnÞ

ð14bÞ
where m is the viscosity given by Eq. (7). The coefficients ki,
i 2 {1,2, . . . , 6} are functions of q and are chosen as follows
when the relation between the relaxation parameters of
Eq. (11) is used (see detailed formulation in [22]):

k1 ¼ 1; k2 ¼ �k4 ¼
ð1� 2q� 2q2Þ
ð1þ qÞ2

;

k3 ¼ k5 ¼
q2

ð1þ qÞ2
; k6 ¼

1

4ð1þ qÞ2
. ð15Þ

The third-order nonequilibrium terms f ð2Þi only relate to the
third-order moments (qx,qy,qz) and (mx,my,mz), and can
be explicitly computed as the following:

fð2Þ ¼ �M�1 � bS � t� tðeqÞ� �
; ð16aÞ

where t :¼ ð0; 0; 0; 0; qx; 0; qy ; 0; qz; 0; . . . ; 0;mx;my ;mzÞ.
ð16bÞ

The multi-reflection boundary conditions involve five dis-
tribution functions at two neighboring nodes of a bound-
ary node, whereas the linear and quadratic interpolations
involve two and three distribution functions at one or
two neighboring nodes, respectively. The linear and qua-
dratic interpolated boundary conditions are special cases
of the multi-reflection boundary conditions with appropri-
ate choices of coefficients {ki} [22].

In cases where there are insufficient fluid nodes to apply
the interpolations, we reduce the LIBB to SBB boundary
conditions (i.e., q = 1/2) if there exists only one fluid node
between two solid nodes. When only two fluid nodes exist,
we reduce the QIBB and MR to LIBB. One can also mod-
ify the MR relation of Eq. (14a) by, for example, replacing
fR(xD, tn+1) with fR(xD, tn), as indicated in [22,27].

Furthermore, regarding parallel implementations, while
the LIBB requires only local information, both the QIBB
and MR schemes require neighboring information from
the boundary nodes. However, the communications are
restricted to only the nearest neighbors of the boundary
nodes by using the post-collision distributions at time tn,
as demonstrated in Eqs. (13b) and (14b).

A drawback of the interpolation and multi-reflection
boundary conditions is that local mass is no longer con-
served. However, for incompressible flow with a small den-
sity gradient of fluids, a slight violation of the local mass
conservation has an insignificant effect on the flow simula-
tions, which will be numerically demonstrated later. It is
important to emphasize that an accurate and efficient
implementation of the fluid–solid boundary conditions is
crucial in porous medium flow simulations with a limited
spatial resolution, because applying fine enough discretiza-
tion of pore geometries to adequately resolve the solid
boundaries is often computationally prohibitive. In the fol-
lowing section, we will quantitatively investigate the benefit
of the alternative boundary approximations that were dis-
cussed above compared to the SBB scheme for porous
media simulations.
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4. Flow through a body-centered cubic array of spheres

We first considered the case of flow through an idealized
porous medium, i.e., a periodic body-centered cubic (BCC)
array of spheres of equal radius a, as depicted in Fig. 3. The
permeability for this porous medium can be derived analyt-
ically [28,29]:

j� ¼ 1

6pad�
; d� ¼ 6paqmud

F D

; ð17Þ

where ud is the Darcy velocity along the flow direction, and
FD is the drag force for each sphere. The inverse of the
dimensionless drag, d*, is purely determined by the geomet-
ric characteristics of the sphere array, and can be given by
a function of the solid volume fraction c as a series
expansion:

d� ¼
X30

n¼0

anv
n; v ¼ c

cmax

� �1=3

;

c ¼ 8pa3

3L3
; cmax ¼

ffiffiffi
3
p

p
8

; ð18Þ

where L is the length of the cube, as shown in Fig. 3(b), and
the coefficients an are given in [29]. Various resolutions N3

are used in our simulations. Obviously, in lattice units, the
sphere radius is f ¼

ffiffiffi
3
p

Nv=4, and the pore throat (i.e., the
minimum space between solid spheres) is g ¼

ffiffiffi
3
p

Nð1� vÞ=2.
We measure the fluid permeability j according to

Darcy’s law:

ud ¼ �
j
qm
ðrzp þ qgÞ; ð19Þ

where the Darcy velocity ud is obtained as the volume aver-
aged fluid velocity ðu0zÞ over the system [30], qg is the
strength of the forcing, and z is the vertical coordinate
parallel to the forcing direction.

For the D3Q19 model, in addition to the relaxation rate
sm, which determines the viscosity m, there are five other
relaxation rates that are adjustable parameters: se, se, sq,
sp, and sm. To evaluate the effect of the adjustable relaxa-
tion parameters si of the MRT scheme to the flow simula-
tions, two sets of relaxation parameters are studied here:
Fig. 3. A BCC array of spheres with equal radii. (a) 3D view (black and
gray area depict fluid and solid regions, respectively); and (b) a 2D
projection.
Set A : sm¼
1

s
¼ 2

ð6mþ1Þ ; se¼ se¼ sp¼ sm¼ sq¼ 8
ð2� smÞ
ð8� smÞ

;

ð20Þ

Set B : se¼ se¼ sp¼ sm¼
1

s
; sm¼ sq¼ 8

ð2� smÞ
ð8� smÞ

. ð21Þ
Set A of Eq. (20) follows our previous work based on
empirical observations [31], and Set B of Eq. (21) follows
the two-relaxation-time (TRT) model proposed in
[22,32,33] based on the Chapman–Enskog analysis, in
which the even-order modes are relaxed with the relaxation
rate sm determined by the viscosity, while the odd-order
ones with the relaxation rate sq given by Eq. (11) so that
the actual locations of walls are viscosity independent when
the standard bounce-back boundary conditions are used.

In this section, we tested the validity of the linear lattice
Boltzmann equation as we compared the LBE simulations
to the analytical solution of Stokes flow through the BCC
array of spheres. Hereafter, the linear LBE was used unless
otherwise stated, and acronyms MRT–MR, MRT–QIBB,
MRT–LIBB, MRT–SBB are used to denote the MRT
scheme with multi-reflection, quadratic interpolations, lin-
ear interpolations, and the standard bounce-back bound-
ary conditions, respectively, and BGK–SBB denotes the
LBGK scheme with the standard bounce-back boundary
conditions.

4.1. Viscosity effect on permeability

We first evaluated the viscosity dependence of the com-
puted permeability by using different LBE schemes.
Fig. 4(a) and (b) show the normalized permeability j/j*

for the BCC array of spheres with v = 0.85, where j* is
given by Eq. (17), at s = 1/sm = 0.6, 0.8, 1.0, 1.5, and 2.0
and with, respectively, the relaxation parameters of Set A
and Set B. The resolution used was 323, corresponding to
the sphere radius f � 11.8 and the pore throat g � 2.8 in
lattice units, which are sufficient to apply LIBB, QIBB,
and MR schemes. The results clearly show that the values
of j/j* obtained by the MRT–SBB scheme are much less
dependent on viscosity than those obtained by the BGK–
SBB scheme, and when using the relaxation rates of Set
B, j is independent of m. In all cases, the results obtained
with the MRT–SBB scheme are consistently better than
those obtained with the BGK–SBB.

For the MRT–LBE with different boundary conditions,
we observed the following. First, it is clear that, as shown
in Fig. 4, the MR boundary conditions significantly
improve the results of j when compared to QIBB, LIBB,
and SBB boundary conditions, and yield virtually viscos-
ity-independent results with either set of relaxation values.
Second, with a fixed viscosity, the permeability monotoni-
cally increases when using the SBB, LIBB, and QIBB
boundary conditions. The SBB consistently under-predicts
the permeability because its inaccuracy in geometry rep-
resentation, whereas the LIBB and QIBB boundary
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Fig. 4. The normalized permeability j/j* for the BCC array of spheres vs. the viscosity m. The porosity is v = 0.85 and the resolution is 323. The relaxation
rates used are: (a) Set A given by Eq. (20) and (b) Set B given by Eq. (21).
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conditions also over-predict in most cases, and more so the
QIBB than the LIBB. Third, the LIBB and QIBB boundary
conditions seem to work better than the SBB only in the
over-relaxed cases (s = 1/sm < 1), which require more itera-
tions to reach the steady state than for the under-relaxed
cases (s > 1). Later this point will be further studied quan-
titatively. And fourth, unlike the nonlinear LBE simula-
tions for the Navier–Stokes flows, in which the QIBB
leads to more accurate velocity fields than the LIBB [23],
we found that, with the linear LBE, the QIBB does not
seem to significantly improve the accuracy compared to
the LIBB counterpart, although the QIBB boundary condi-
tions appear to be more accurate for over-relaxed cases
(e.g., s = 0.6). One reason for this is because the resolution
used in this test is sufficiently refined so that the computed
permeabilities are relatively insensitive to the boundary
conditions. This issue will be further addressed in the
following section.

4.2. Sphere size effect

To quantify the discretization error related to the
boundary conditions, we performed MRT–LBE simula-
tions for the periodic BCC arrays of spheres by varying
the sphere radius (porosity / between 0.42 and 0.92) at
the fixed resolution 323. With decreasing porosity / at a
fixed resolutions N3, the pore throat g shrinks, effectively
reducing the resolution of the pore structure. Table 1 shows
the relative error dj = (j/j* � 1) for the normalized per-
meability j/j*, and the number of iteration T required to
reach a steady state, using MRT–MR, MRT–QIBB,
MRT–LIBB, and MRT–SBB schemes. For the MR
scheme, we compared two cases, s = 2.0 and s = 0.6, while
only s = 0.6 was applied to the QIBB, LIBB, and SBB
boundary conditions. We also compared the permeabilities
obtained by the linear LBE to those obtained by the non-
linear LBE for a medium with the least resolved pore space,
i.e., the medium with v = 0.95. The force magnitude was
set to be g = 10�4 and 10�5 for the nonlinear LBE simula-
tions, corresponding to Reynolds number Re = 1.9 and
0.19, respectively.
Based on the results in Table 1, we made the following
observations:

• When over-relaxed, all of the interpolated schemes lead
to significant improvement in the estimation of j when
compared to the SBB boundary conditions for a wide
range of v.

• When comparing the QIBB and LIBB schemes, the
errors in j obtained by the QIBB are considerably smal-
ler than those by the LIBB, particularly when v
approaches 1, the cases in which the pore spaces
are insufficiently resolved, as indicated by small pore
throat g.

• The MR boundary condition in general leads to signifi-
cantly more accurate permeability predictions than any
other schemes.

• When pore space is sufficiently resolved, the MR scheme
with s > 1 is recommended because it yields accurate
results with relatively few iterations. However, the MR
scheme is prone to numerical instability when s =
1/sm < 0.8 because the term E � f (2)/m in Eq. (14a)
may become too large with a small m.

• For a single-phase simulation of a BCC array of spheres
at resolution level f = 13.2 and g = 1.4, the difference
between the linear and nonlinear LBE permeabilities is
within 0.3% at Re � 2, and within 0.001% at Re �
0.2.

4.3. Discretization effect

We next investigated the discretization effect for Stokes
flow through a BCC array of spheres. We fixed the porosity
at v = 0.85 and varied the resolution N3, for N = 8, 16, 24,
32, 48, 64, and 96, which correspond to a sphere radius
f = 2.9, 5.8, 8.8, 11.8, 17.6, 23.6, and 35.3 lattice spacings.
We show the normalized permeability obtained with a dis-
cretization N, jN/j*, using the relaxation parameters in Set
A and Set B in Fig. 5(a) and (b), respectively. The results
confirm that interpolation improves the accuracy of the
SBB boundary conditions.



Table 1
The relative errors of the permeability dj (%) and number of iteration time steps T for a set of periodic BCC arrays of spheres with varying v using various
schemes

v / g si MRT–MR
s = 2.0

MRT–MR
s = 0.6

MRT–QIBB
s = 0.6

MRT–LIBB
s = 0.6

MRT–SBB
s = 0.6

dj(%) T
100 dj(%) T

100 dj(%) T
100 dj(%) T

100 dj(%) T
100

0.5 0.92 13.8 A 0.01 12 �0.35 159 0.58 148 0.09 125 �2.18 123
B �0.13 12 �0.13 148 1.24 148 0.76 149 �0.68 148

0.6 0.85 11.1 A 0.08 9 �0.02 36 0.84 84 �0.24 83 �5.21 80
B 0.02 9 0.02 98 1.45 98 0.58 95 �3.65 95

0.7 0.76 8.3 A 0.02 6 �0.45 54 0.43 54 �0.83 54 �6.05 52
B �0.11 6 �0.11 63 1.29 63 0.26 63 �3.98 62

0.8 0.64 5.5 A 0.20 4 �0.02 40 0.60 40 �1.62 39 �9.38 36
B 0.09 4 0.09 40 1.79 40 0.11 39 �8.31 37

0.85 0.59 4.2 A 0.03 3 �0.16 36 0.27 30 �1.17 30 �4.84 30
B �0.08 11 �0.08 30 1.82 30 0.69 30 �1.58 30

0.9 0.50 2.8 A 0.34 2 *0.02 *8 0.72 25 �1.66 23 �8.21 22
B 0.24 2 0.04 23 2.61 23 0.51 23 �4.34 22

0.95 0.42 1.4 A 1.63 2 �2.06 18 �0.55 17 �3.07 17 �10.1 16
B 0.83 2 0.02 17 2.35 17 0.23 17 �5.27 16

�0.95 Re = 1.9 A 1.63 2 �2.32 15 0.81 17 �3.32 17 �10.3 16
�0.95 Re = 0.19 A 1.63 2 �2.06 17 0.55 17 �3.07 17 �10.1 16

/ is the porosity and g is the lattice size of pore throat. The grid resolution is 323 and the forcing magnitude g = 10�4. The relaxation parameters si in Set A
and Set B are used in the comparison. Values with * were obtained at s = 0.8 as MR boundary conditions could become numerically unstable at s < 0.8.
To test the validity of the linear LBE, the last two lines with Re show the results using the nonlinear LBE terms for a medium with v = 0.95.
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Fig. 5. The normalized permeability j/j* as a function of grid resolution N in each dimension for the BCC array of spheres with v = 0.85. The relaxation
parameters used are: (a) Set A given by Eq. (20) and (b) Set B given by Eq. (21).
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Fig. 7. A subset of the GB1b pore geometry used in the simulations.
Colored and transparent areas are for solid and fluid spaces, respectively.
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To clearly show the discretization effects, Fig. 6(a) and
(b) illustrate, respectively, the absolute relative error
jdjNj = jjN/j* � 1j of jN as a function of grid resolution
N for the relaxation parameters of the Set A and Set B.
We consider jN is discretization independent if jdjMj < 1%
for any M P N. Hence, Fig. 6(a) indicates that for the
BCC array of spheres, with relaxation parameters of Set
A, jN becomes grid independent if N P 16 when using
the QIBB boundary conditions, N P 24 when using MR,
and N P 48 when using LIBB, while with the SBB bound-
ary conditions, j likely converges to a constant value at a
discretization level N� 96. Fig. 6(b), on the other hand,
indicates that with the relaxation parameters given by Set
B, j becomes discretization independent if N P 16 for
MR, N P 24 for LIBB, and N P 48 for QIBB.

These results indicate that the choice of the relaxation
parameters has a significant effect on the permeability com-
puted with different boundary conditions. The effects on
the QIBB and LIBB boundary conditions appear to be
more severe than those on the MR and SBB boundary con-
ditions. For example, with the relaxation parameters of Set
A, the MRT–QIBB scheme converges to the analytic solu-
tion at a mesh size that is 1/33 of what required with that of
Set B. And, with relaxation parameters of Set B, the MRT–
LIBB scheme appears to perform better compared to the
MRT–QIBB scheme.

It is clear that the computed permeability shown in
Fig. 6 has not reached the asymptotic limit in which the
order of convergence can be demonstrated using Richard-
son’s formula. However, the results based on linear regres-
sion of the data shown in Fig. 6 clearly indicate that the
MRT–LBE with all the boundary conditions, i.e., the
MR, QIBB, LIBB, and SBB, has a second-order or better
rate of convergence, depending on the boundary conditions
and the choice of the relaxation parameters.

4.4. Computational issues

In terms of computational time, we find that the MRT
model generally takes about 10 � 20% more CPU time
than the LBGK model due to additional computation in
moment space. It is noteworthy that no more computa-
tional time than the LBGK model is needed when using
the the two-relaxation-time (TRT) model with the form
of the TRT link collision operator [32,33], which uses a
collision operator with two relaxation rates for even and
odd-order moments so that no projection to the moment
space is needed.

Regarding the computational efficiency of the different
boundary schemes, we found that these schemes require
no more run time compared to the SBB method when using
a moderate number of processors (with a fixed resolution
of 643 and up to 32 processors). Even though additional
communication is required for both the MR and QIBB
schemes, we have observed in our previous study [34] that
LBE methods are dominated by the computations required
and the total communication time contributes a small part
of the total execution time. Additionally, using asynchro-
nous communication to overlap the processing of message
transfers and computations further limits the effect of com-
munication on total run time. The only disadvantage asso-
ciated with the interpolation schemes is the overhead due
to the calculation of boundary locations, i.e., the array
for q at boundary nodes. However, the array for q values
only needs to be computed once at the pre-processing for
each LBE simulation with different medium or resolution.

5. Flow through a random-sized sphere pack medium

In this section, we present results for LBE simulations of
flow through a more complex porous medium, which is
intended to mimic an experimental medium GB1b [35].
The experimental medium GB1b was represented using a
random sphere pack generated in [36] using the algorithm
developed in [37]. The simulated porous media can be read-
ily generated using this approach with specified porosity /
and the probability density function of the grain size distri-
bution, measured from real porous media. This approach
has yielded good agreement between simulated sphere
packs and real porous media in terms of flow measure-
ments [30,37,38].

The porosity of the GB1b medium simulate was 0.36;
the mean grain diameter was 0.1149 (mm) and the relative
standard deviation of the grain size was 4.7%. To achieve
reliable packings, the entire sphere pack included about
10,000 spheres in a cube of size 13 (mm3). For the case of
comparison of different boundary conditions, we used a
small subset of the entire GB1b sphere-pack in this work,
which contained about 23 spheres. The geometry of the
medium is shown in Fig. 7. The sphere-pack algorithm gen-
erated the center locations and radii of the spheres, which
were used to determine the exact boundary locations with
respect to the lattice, i.e., the parameter q, the fraction in
fluid region of a grid spacing intersected by a boundary.
For flow simulations through the sphere pack GB1b, the
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nonlinear LBE was used to solve for the Navier–Stokes
equation. We kept the volume averaged Reynolds number
Re < 0.1 for each simulation, but higher local Reynolds
numbers were expected due to the complex pore geometry.

5.1. Viscosity effect

Similar to Fig. 4, we show in Fig. 8(a) and (b) the viscos-
ity dependence of the permeability obtained by all the
schemes, with a resolution of 643, corresponding to an
averaged grain radius f = 11.2. This resolution is compara-
ble to the resolution 323 for the BCC array of spheres with
v = 0.85, as shown in Fig. 4 of Section 4.1, in which
f = 11.8. Hence, we can directly compare the viscosity
dependence of the permeabilities in different porous media.
Because of the exact solution of j for the medium domain
is unknown, a computed permeability with a fine resolution
of 2003 and the MRT–MR scheme using relaxation param-
eter Set B was considered indicative of the true permeabil-
ity of the medium, which was used as jref unless otherwise
stated.

As shown in Figs. 4 and 8, for all the schemes tested
here, the viscosity-dependence of the permeability is similar
in the BCC array of spheres and the GB1b sphere-pack.
While the MRT–SBB and MRT–MR results of j remain
virtually viscosity-independent with Set B, small depen-
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Fig. 9. The normalized permeability j/jref as a function of grid resolution N in
are: (a) Set A and (b) Set B.
dence j on viscosity is observed using MRT–SBB and
MRT–MR with Set A. For the MRT–QIBB, MRT–LIBB,
and BGK–SBB schemes, the viscosity-dependence of j for
the GB1b porous medium is somewhat larger than that for
the BCC array of spheres, as expected, because of the more
complex solid boundaries in the GB1b porous medium
than those in the BCC array of spheres.

5.2. Discretization effect

We next evaluated the discretization effect for the GB1b
porous medium. The resolutions used to compute the j
were 83, 163, 243, 323, 483, and 643, corresponding to
f = 1.4, 2.8, 4.2, 5.6, 8.4, and 11.2, respectively. Fig. 9(a)
and (b) show the jN/kref vs. N using the MRT–MR,
MRT–QIBB, MRT–LIBB, and MRT–SBB schemes at
s = 0.6 with the relaxation parameters of Set A and Set
B, respectively. Correspondingly, Fig. 10(a) and (b) show
the relative error jdjj = jjN/jref � 1j vs. N.

Again, we considered that the computed j reaches its
resolution-independent value at a resolution N3 if
jdjMj < 1% for any M P N. Since the SBB scheme does
not converge to jref obtained by the MRT–MR scheme,
as shown in Fig. 9, the relative errors of permeability
obtained by the SBB were plotted in Fig. 10 with respect
to j200 using the respective scheme, rather than
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each dimension. The relaxation parameters used in the MRT–LBE models
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MRT–MR. We observed that the SBB boundary condition
with relaxation parameter Set A yields a discretization-
independent j for the GB1b medium at N P 32, i.e.,
f P 5.6. This is in good agreement with our previous study
[30], showing that for homogeneous and heterogeneous
sphere packings, j becomes discretization independent if
f P 6 with the SBB boundary condition. It is noteworthy
that when using the SBB scheme significantly smaller dis-
cretization level is needed to yield discretization-indepen-
dent j for the sphere-pack medium, compared to the
BCC array of spheres, as depicted in the earlier section.

When interpolated boundary conditions are applied,
discretization-independent j can be achieved at a coarser
resolution level, i.e., at f P 2.8 when using the QIBB
boundary condition with Set A. However, for MR and
LIBB with Set A, this condition becomes f P 5.6. Once
again, we observed that the convergence behavior of j
strongly depends on the relaxation parameters. At coarser
resolutions, the permeability values obtained with Set B
parameters are noticeably higher than the corresponding
values obtained with Set A parameters. For the MRT–
SBB and MRT–LIBB schemes, j converges to a constant
value when f P 11.2, whereas for MRT–MR and MRT–
QIBB schemes, j converges to a constant value when
f P 16.8. Although second-order convergence is observed
from the results obtained from all schemes with different
sets of parameters and the two-relaxation-time parameters
of Set B lead to a more consistent convergent behavior, Set
A seems to be more advantageous because it leads to more
accurate flow simulations at coarser discretization level.

6. Discussion and summary

In this work, we observe that the MRT models signifi-
cantly reduce the viscosity dependence of permeability in
LBE porous medium simulations. The reason is that in
the MRT models, the location where the exact flow bound-
ary conditions are satisfied can be essentially viscosity inde-
pendent by specifying an appropriately constructed
collision operator, while it is impossible to achieve this
result for an LBGK model. Our results for flow through
both a BCC array of spheres and a random-sized sphere-
pack clearly demonstrate the advantage of the MRT
models over the LBGK models.

To improve numerical accuracy of the geometric repre-
sentation for arbitrary boundaries, we investigated several
boundary schemes, including linear interpolation bounce-
back (LIBB), quadratic interpolation bounce-back (QIBB),
and multi-reflection (MR) schemes. From flow simulations
for a BCC array of spheres, we showed that all of the inter-
polation schemes can significantly improve the accuracy of
simulations when compared to the SBB approaches, pro-
vided that resolution is sufficient to apply the interpola-
tions. In general, the MR scheme yielded the most
accurate and virtually viscosity-independent permeability
results, while the improvement due to the LIBB and QIBB
was significant in over-relaxation cases (s < 1). In addition,
the MR scheme with s > 1 significantly reduced the itera-
tions required to reach a steady state. However, the MR
scheme with s < 0.8 may be prone to numerical instability
and this issue needs to be further investigated.

We also noticed that the permeability monotonically
increased from the value obtained using the SBB scheme
to that of the MR, LIBB, and QIBB schemes. The SBB
scheme tended to under-predict the permeability, whereas
the LIBB and QIBB over-predicted the permeability. It is
important to note that in the linear LBE simulations, the
quadratic interpolations do not lead to more accurate
results than the linear interpolations, as one would expect
in the Navier–Stokes simulations [23]. We believe that this
is due to a significant nonequilibrium effect, which is explic-
itly dealt with only in the MR boundary conditions.

The results for the flow through the BCC array of
spheres showed that with the relaxation parameter Set A,
the QIBB and MR schemes converged to the analytical
solution of permeability at a mesh size that is at least
1/43 of what is required for SBB scheme to achieve discret-
ization-independent permeability. For flow through a
sphere-pack porous medium, with Set A parameters, the
QIBB scheme converged at 1/23 of the mesh size required
by the corresponding SBB scheme. The observation that
the interpolated boundary schemes yielded more accurate
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flow simulation at coarser discretization and with shorter
iteration time is crucial in porous medium flow simulations,
because computational limitations are commonplace for
standard problems of concern.

We further find that the choice of the relaxation param-
eters has a significant effect on the flow simulations using
different schemes. In particular, the effect of the linear
and quadratic interpolations on the permeability has a
stronger dependence on the relaxation parameters than
the SBB and MR counterparts. The two-relaxation-time
parameters (Set B) can yield exact viscosity-independent
permeability with the SBB and MR boundary conditions.
However, Set A can also be advantageous because it allows
the QIBB and MR schemes to converge to an accurate
solution even at coarser resolutions.
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