Future Generation Computer Systems 26 (2010) 971-978

journal homepage: www.elsevier.com/locate/fgcs e

Contents lists available at ScienceDirect

Future Generation Computer Systems

Optimal workload allocation model for scheduling divisible data grid applications

Monir Abdullah®*, Mohamed Othman?, Hamidah IbrahimP®, Shamala Subramaniam?P

2 Department of Computer Science, Thamar University, Thamar, Yemen

b Department of Communication Technology and Network, University Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia

ARTICLE INFO ABSTRACT

Article history:

Received 18 February 2009
Received in revised form

11 April 2010

Accepted 16 April 2010
Available online 5 May 2010

In many data grid applications, data can be decomposed into multiple independent sub-datasets and
distributed for parallel execution and analysis. This property has been successfully employed using
Divisible Load Theory (DLT), which has been proved a powerful tool for modeling divisible load problems
in data-intensive grids. There are some scheduling models that have been studied but no optimal solution
has been reached due to the heterogeneity of the grids. This paper proposes a new model called the

Iterative DLT (IDLT) for scheduling divisible data grid applications. Recursive numerical closed form

Keywords:
Scheduling

Divisible load theory
Data grid

of makespan.

solutions are derived to find the optimal workload assigned to the processing nodes. Experimental results
show that the proposed IDLT model leads to a better solution than other models (almost optimal) in terms

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing has become a promising technology for pro-
viding seamless access to heterogeneous resources and achieving
a high performance benefit in wide-area environments [1]. In the
last decade, data grids have increasingly become popular for a wide
range of scientific and commercial applications [2,3]. Load balanc-
ing and scheduling play a critical role in achieving high utilization
of resources in such environments [4]. Scheduling an application
is significantly complicated and challenging because of the hetero-
geneous nature of a grid system. Grid scheduling is defined as the
process of making scheduling decisions involving allocating jobs
to resources over multiple administrative domains [5]. Most of the
scheduling strategies aim at reducing the makespan or the maxi-
mum completion time of the task which is defined as the difference
between the time the job was submitted to a computational re-
source and the time it completed. Makespan also includes the time
taken to transfer the data to the point of computation if that is al-
lowed by the scheduling strategy [5].

On the other hand, in many data intensive grid applications,
data can be decomposed into multiple independent sub-datasets
and distributed for parallel execution and analysis. High Energy
Physics (HEP) experiments fall into this category [6]. HEP data
are characterized by independent events, and therefore this

* Corresponding author.
E-mail addresses: monir_alqubati@yahoo.com (M. Abdullah),
mothman@fsktm.upm.edu.my (M. Othman), hamidah@fsktm.upm.edu.my
(H. Ibrahim), shamala@fsktm.upm.edu.my (S. Subramaniam).

0167-739X/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.04.003

characteristic can be exploited when parallelizing the analysis of
data across multiple sites. The DLT paradigm [7] has emerged
as a powerful tool for modeling data-intensive computational
problems incorporating communication and computation issues
[8]. An example of this direction is the work by [6] where the DLT
is used to model the grid scheduling problem involving multiple
sources to multiple sinks. In that model, they did not consider the
communication time. However, the scheduling in grid applications
must consider communication and computation simultaneously in
order to achieve high performance.

Relevant materials to the problem addressed in this paper
are in [8-11], where the CDLT, ADLT and A?DLT models are
proposed. These models are proposed for scheduling divisible
load data-intensive grid applications. In the CDLT model, the
scheduler targets an application model wherein a large dataset
is split into multiple smaller datasets [8]. Then, these datasets
are processed in parallel on multiple virtual sites, where a virtual
site is considered to be a collection of computing resources and
data servers. However, in CDLT, the communication time for
transferring load is not considered. In addition, ADLT and A?DLT
models are proposed in considering communication time as well
as computation time in [10,11], respectively. These two models
provide step-wise scheduling models which will be used in this
paper to generate the initial solution of the IDLT model.

Our objective is to design a load distribution model by taking
into account the communication time and the computation time
in such a way that the entire processing time of the load
is minimized. The main contributions of this paper are the
closed form solutions for the minimum completion time; in
addition the optimal data allocation for each processing node is

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:monir_alqubati@yahoo.com
mailto:mothman@fsktm.upm.edu.my
mailto:hamidah@fsktm.upm.edu.my
mailto:shamala@fsktm.upm.edu.my
http://dx.doi.org/10.1016/j.future.2010.04.003

972 M. Abdullah et al. / Future Generation Computer Systems 26 (2010) 971-978

Table 1
Notations and definitions.

The total number of nodes in the system

The loads in the data file

The fraction of the load that the node i will receive from the data file
The amount of load that the node i will receive from the data file
The inverse of the computing speed of the node i

The link between the node i and the data source

The link between the node i and the aggregator

The processing time in the node i

Intput data transfer

]]
b
%

Data Source

Aggregator

Workers

Fig. 1. Data decomposition and their processing.

obtained. We validate the model through mathematical proof and
comprehensive simulations.

This rest of this paper is organized as follows: Section 2 gives the
outline of the scheduling model. In Section 3, we give a detailed
description of the proposed IDLT model. Section 4 presents an
experimental evaluation to validate the proposed model. Finally,
we summarize the findings and conclude the paper in Section 5.

2. Scheduling model

We consider the problem of scheduling large-volume loads
(divisible loads) within multiple sites. Communication is assumed
to be predominant between such cluster nodes and is assumed to
be negligible within a cluster node [12,8,13]. This section describes
the scheduling model, the notations, the cost model, and the
optimality criterion that are used in our research.

We use the scheduling model that was used by [12,8,13]. It
can be described as follows. The target data intensive application
model can be decomposed into multiple independent subtasks
and executed in parallel across multiple sites without any
interaction among subtasks [8]. Let us consider job decomposition
by decomposing input data objects into multiple smaller data
objects of arbitrary size and processing them on multiple virtual
sites. For example in theory, the High Energy Physic (HEP) jobs
are arbitrarily divisible at event granularity and intermediate data
product processing granularity [1]. Assume that a job requires
a very large logical input data set D of a particular site. Fig. 1
shows how D is decomposed onto networks and their computing
resources.

The scheduling problem is to decompose logical data into
datasets across M virtual sites in a Virtual Organization (VO) given
its initial physical decomposition. We assume that the divisible
data can be analyzed at any site. The notations, cost model, and
optimality criterion are discussed in Sections 2.1-2.3 respectively.

2.1. Notations and definitions

The notations and definitions that are used throughout this
paper are shown in Table 1.

2.2. Cost model

The execution time cost (T;) of a subtask allocated to the site
i and the turn around time (Trum_around Time) Of @ job J can be
respectively expressed as:

Ti = Tinput_cm (1) + Tcp (1) + Toutput_cm (i’ d)
and

N
Trum_Around Time = malX T;.
1=

The input data transfer (Timpur_m(i)), computation (T (i)), and
output data transfer to the client at the destination site d(Touspur_cm
(i, d)) are presented respectively as:

. 1
Tinput,cm (1) =1L- Z
Ty (D) = L; - w; - ccRatio
and

Toutpur,cm (is d) = f(Li) “Zig.

Where, L; = L - «; and the function f (d;) is output data size and
ccRatio is the non-zero ratio of computation and communication.
The turn around time of an application is the maximum among all
the execution times of the subtasks.

The problem of scheduling a divisible job onto M sites can
be stated as deciding the portion of original workload (D) to be
allocated to each site, that is finding a distribution of «; which
minimizes the turn around time of a job. The proposed model uses
this cost model when evaluating solutions at each generation.

2.3. Optimality criterion

In all the literature related to the divisible load scheduling
domain so far, an optimality criterion [14] is used to derive an
optimal solution as follows. It states that in order to obtain an
optimal processing time, it is necessary and sufficient that all
the sites that participate in the computation must stop at the
same time. Otherwise, load could be redistributed to improve the
processing time. The timing diagram for this distributed system
in the optimal case is depicted in Fig. 2. In this timing diagram,
communication time appears above the axis and computation time
appears below the axis.

3. Proposed IDLT model
The load scheduling problem is to decompose D into datasets
(Dj foralli = 1,2,...,M) across M virtual sites in a Virtual

Organization (VO) given its initial physical decomposition. This
model includes two steps:

3.1. Initial solution

The proposed model starts from a good initial solution. ADLT
and A’DLT models are used for this purpose. The good solution

M. Abdullah et al. / Future Generation Computer Systems 26 (2010) 971-978 973

communication
asZ_outy)
— time

computation

P asz_ing

as Wq

communication

P2 a,z_in, a»z_out,

time

ax; W

computation

. communication
P3| asz ins

. azWws

asz _outs}
= time

computation

communication

Pl amz_ing, amZ_outy,

» time

am W, .
mm computation

Fig. 2. Communication and computation of the sources within the system in the
optimal case.

(minimum makespan) is considered as an initial solution of the
iterative model. As is explained in [9,11], the ADLT model produced
good results for computation-intensive applications while A>2DLT
produced good results for communication-intensive applications.

3.2. The iterative model

The optimality criterion discussed in Section 2.3 was used in the
design of our load distribution strategy. Our IDLT model involves
the following steps:

1. First, the load is divided using one of the adaptive DLT models.
ADLT or A2DLT models will be used.

2. Then, the makespan is calculated using the cost model.

3. If all nodes finish at the same time, go to step 8; else go to
step 4.

4, The summation (Sum) of the processing time of the nodes is
calculated.

5. Next, the average time is calculated by avg = Sum/M.

6. After that, the load fraction is calculated and redistributed
depending on the average (avg) based on the iterative
numerical equations discussed later in this section.

7. Go to step 2.

. The current time is the final makespan.

9. End.

co

The framework of the IDLT model for single source scheduling
is shown in Fig. 3.

Here, we will discuss step by step the derivation of a closed form
equation by which one can calculate the optimal fraction of the
load that has to be assigned to each processing node in order to
achieve the minimum makespan and the optimal data allocation for
each processor. The processing nodes (w;), communication links
(Z;) and applications types (ccRatio) are assumed to have different
values.

After the makespan is calculated as an initial solution to the
IDLT model, the Zf\il T; is computed where M is the number of
processing nodes. Based on the cost model we get:

T; = L; - z_in; + w; - L; - ccRatio + L; - z_out; (1)

where z_in; and z_out; is the input communication time and
the output communication time of link i, respectively. Then, the

Initial Solution

Adaptive Models
¥
| Calculate the Cost

| Load is Divided using |

\ Optimisation

Summation of all
Completion Time

!

H Output
| Average of all |

H
:
:
H
H
: : :
H
H Makespan ' H
:
beeTTrriiommiiioiooad ; : Completion Time
: v
:
CEnd D : Optimal Load is
H
:
:
H
H
:
H
H
:
H
:
:

Calculated Based on the
new Average

1

Optimal Load is
Distributed Based on the |~
new Average

Fig. 3. IDLT framework for single source scheduling.

average of the completion time is calculated as:

M
2T
i=1

i=
avg = . 2
vg = (2)

Now, in any iteration, the makespan of any nodes must be equal
to avg in order to get the optimal solution. It means that the load
is distributed among the processing node M equally.

While the average time is the processing time of load «, which
is calculated by Eq. (1), we can recalculate the value of « if we have
the avg. In general, having avg is:

avg =o-zZ+o-w. (3)
The load fraction « can be calculated by the Eq. (4):
a
P -y 4)
Z+w

In our case, for any iteration, after we calculate the time average
of processing any load, we can calculate the amount of this load.

Furthermore, the processing time of the first node to process o is:
avg = oy - z_iny + a1 - wy - ccRatio 4+ o1 - z_out;. (5)

The « is calculated by:

S pac (6)
' Z_iny + (w; - ccRatio) + z_out;
Consequently, the «; of the second node is calculated by:
avg

o) = " . . (7)
z_iny + (w- - ccRatio) + z_out,
Finally, the o), of the Mth node is

avg
(8)

M= Z_iny + (wy - ccRatio) + z_outy

Eq. (8) is corrected only in the last iteration (when we get the
optimal solution). But in the first iteration, the last node will take
the rest of the load only as:

oy =1 — (g +ay+---+au-1)) L (9)

There are M — 1 equations. An additional equation called
a normalization equation states that the summation of all the
allocation fractions should be 1.

Oll+O[2+"'+O{M=1. (10)

974 M. Abdullah et al. / Future Generation Computer Systems 26 (2010) 971-978

Data File |I

R p—

R L

B average

1

Fig. 4. Simple idea of the IDLT model for M processing nodes.

The load of the last node is not equal to the load that produces
the avg time. That means that the last node still does not take
the optimal load. Here, we will compute the new makespan (the
makespan is calculated by the cost model that is discussed in
Section 2.2 for every iteration).

Consequently, these steps are carried out in the second
iteration. In this iteration, the makespan is reduced but still
not optimal. Therefore, these steps are carried out until certain
termination condition is present. The termination condition here is
the optimality criterion. All nodes must finish the load processing
at the same time.

The IDLT model for single source produces almost the optimal
solution after some iterations. There is a very small different among
the nodes processing time (small fractions). The IDLT model is as
shown in Fig. 4.

In this model, all nodes will take the new load based on the new
average. It means that all nodes will finish at the same time. For the
last node we will take the rest of the load without considering the
average. For the next iteration, the new average will be reduced.
The last node will take more load than previous iteration. After
some iterations the last node will finish as the same time as the
others.

4. Experimental results

All the simulation studies are based on the test bed used
during a large scale production effort for the (HEP experiment)
CMS [2]. Large scale and unstable systems characterise the grid
systems. Large scale means: (i) high numbers of data sources
(e.g. database, xml files), users, and computing resources (CPU,
memory, network and I/O bandwidth) which are heterogeneous
and autonomous; (ii) the network bandwidth presents, on average,
a low bandwidth and strong latency; and (iii) a huge volume of
data[15]. In CERN, every site has a computing element and initially
empty storage capacity. The processing nodes immediately start
computing the load fractions once they start receiving them. It is
assumed that each processing node has adequate memory/buffer
space to accommodate and process all the loads received from
all sources. It is also assumed that the decomposed data can
be analyzed at any site by applying the same data parallel
operation.

To measure the performance of the proposed model, randomly
generated experimental configurations were used as in previous
research [6,8,13]. The estimated expected execution times for
processing a unit dataset on each site, computation speed to
communication speed (r), the network bandwidth between sites,
input data size, and the ratio of output data size to input data size

Table 2
Experimental parameters and their range of values.

Parameter Range of values
Number of nodes (M) 1-100

Data file size 1GB-1TB

Ratio r¢y 10-500
Computation time for 1 MB (w) 1/rp-10/1cp s
Communication speed (Z) 1-10 Mbps
Application type (ccRatio) 0.001 and 1000
oiRatio Oand 1

(oiRatio) are randomly generated with uniform probability over
predefined ranges as follows.

e The overall performance of each model is examined by running
them under 100 randomly generated grid configurations.

e The network bandwidth between sites is uniformly distributed
between 1 Mbps and 10 Mbps.

e The physical data source size is randomly selected with a
uniform distribution in the range of one gigabyte (GB) to one
terabyte (TB). That means the data file size varies from one GB
to one TB.

e It is assumed that the computing time spent in a site i to
process a unit dataset of size 1 MB is uniformly distributed
in the range 1/ry, to 10/ry seconds where 1, is the ratio of
computation speed to communication speed. The value of rg,
is varies between 10 and 500.

e The application type (ccRatio) varies between 0.001 and 1000.
High ccRatio means the application needs more communication
and low computation time. The application needs less commu-
nication time and high computation time.

e The number of processing nodes M is from 1 to 100, while the
number of data sources N is from 1 to 100.

e The ratio of output data size to input data size (oiRatio) varies
from O to 1.

The experimental parameters and their range of values are
shown in Table 2.

We examined the overall performance of each model by
running them under 100 randomly generated Grid configurations.
Thus, from these series of test results, it can be concluded that the
IDLT gives better performance. In fact, our proposed IDLT model
gives the optimal solution. All nodes stop at the same time.

As an example, we consider the system and loads with: M = 5
(processing nodes), ccRatio = 0.001, respectively. Using the IDLT
model, we have the result that is clearly demonstrated in Table 3
and Fig. 6.

In the initial solution, node 1 produces the makespan (the
maximum completion time) which is equal to 5643.84 s. This time

M. Abdullah et al. / Future Generation Computer Systems 26 (2010) 971-978

6000

5000

4000

3000
2000

1000

Makespan (Seconds)

Node1 Node2 Node3 Node4 Node5
Node Number

2000
1800 -
1600
1400 -
1200
1000 -

600 -
400 -
200 -

Makespan (Seconds)

Node 1 Node2 Node3 Node4 Node5
Node Number

975

b

2500

2000

1500

1000

500

Makespan (Seconds)

0
Node 1 Node2 Node3 Node4 Node 5

Node Number

2000
1800 -
1600
1400 -
1200 -
1000 -
800 -
600 -
400 -
200

Makespan (Seconds)

Node 1 Node 2 Node 3 Node 4 Node 5
Node Number

Fig. 5. Comparison of various iterations for the IDLT model (a) initial step, (b) and (c¢) intermediate steps, and (d) final step.

Table 3
Results of the IDLT model, step by step.
Step Node 1 Node 2 Node 3 Node 4 Node 5
0 5643.84 1440.41 2993.02 843.48 1108.35
1 2405.82 2405.82 2405.82 2405.82 715.72
2 2067.80 2067.80 2067.80 2067.80 1319.64
3 1918.17 1918.17 1918.17 1918.17 1586.98
4 1851.93 1851.93 1851.93 1851.93 1705.32
5 1822.61 1822.61 1822.61 1822.61 1757.71
6 1809.63 1809.63 1809.63 1809.63 1780.90
7 1803.88 1803.88 1803.88 1803.88 1791.16
8 1801.34 1801.34 1801.34 1801.34 1795.71
9 1800.21 1800.21 1800.21 1800.21 1797.72
10 1799.71 1799.71 1799.71 1799.71 1798.61
11 1799.49 1799.49 1799.49 1799.49 1799.00

is reduced after one iteration to 2405.82 s and the solution is
improved by 57%. Then, after several iterations, the makespan is
reduced further to be 1799.71 s. In this example, the solution is
improved by 68%. As we see in the last step, all nodes finish the
processing at the same time (at 1799.00 s). Furthermore, when
we increase the number of iterations, all nodes are completed at
almost the same time.

Fig. 5 showed that the five processing nodes finish at almost the
same time. It means that, in the last iteration, the load is distributed
to the processing node almost equally.

4.1. Effect of application type

To show how these models perform on different types of
applications (different ccRatio), Fig. 6 is created as.

In Fig. 6, the makespan for the CDLT, ADLT, A’DLT and IDLT
models is plotted against application type (ccRatio). The value of
ccRatio is fixed at 1000 and the value of the number of nodes M is
fixed to be 100. It can be shown from the figure that the IDLT model
is the best for any type of application, as expected, because the IDLT
model produces almost the optimal solution for scheduling load
that is produced from a single source.

4.2. Effect of data file size

In this section, results of the makespan against data file size is
presented. Different sizes of data files are used assuming large scale

3200 n
~+-CDLT —=-ADLT Vs

ADLT —<IDLT

1600 -

800 -

400 -

Makespan (Seconds)

200 -

100 A

50

0.001 0.01 0.1 1 1000

ccRatio

10 100

Fig. 6. Makespan vs. ccRatio for CDLT, ADLT, A’DLT, and IDLT (M = 100).

data grids. It is varied from 1 GB to 1 TB. Fig. 7 clearly showed that
the IDLT model produces better results for all sizes. Although the
CDLT, ADLT and A%DLT models produce the same results when the
ccRatio is equal to 1000, the IDLT model produces a lower result
due to the effectiveness of the iterative models. That is because the
IDLT model produces optimal results for single source scheduling.

4.3. Effect of the number of nodes

The proposed model as well as the previous models are
implemented with a variable number of processing nodes. The
results are taken while the value of ccRatio is varied from 0.001
to 1000. Fig. 8 clearly demonstrated the performance of the four
models. We can see that when the the number of nodes increases,
the makespan decreases. Besides, when the ccRatio = 1000, the
IDLT model produced the best solution while the other models
have same solution as before.

Under all criteria, we observe that the IDLT model yields
the highest efficiency for any number of processing nodes and
any types of applications. In contrast, the worst performance is
obtained from the CDLT model. But when the number of nodes is
more than around 30, the CDLT model is better than ADLT. This is

976 M. Abdullah et al. / Future Generation Computer Systems 26 (2010) 971-978

a % 60000 b g 60000
©
& 500004 —*CDLT ~ —=—ADLT S 50000 | —*—CDLT —=—ADLT
o > 3]
& 40000 ADLT ——IDLT # 40000 - ADLT —s—IDLT
S 30000 & 30000 -
o o
& 20000 @ 20000 -
$ &
< 10000 | < 10000 |
0 = 5 - - 0 5= g———
1 . 10|:-| . 1ooB 1024] 10 100 1024
ata File Size (GB) Data File Size (GB)
C _ 2o0E+05 =
§ 1.8E+05 | | —e—CDLT
8 1.5E+05 - | —=— ADLT
(0] 4
@ 1.3E+05 e ADLT
— 1.0E+05- LT
8 7.5E+04 -
é 5.0E+04 -
S 25E+04 1
0.0E+00 =
1 10 100 1024

Data File Size (GB)

Fig. 7. Makespan vs. data file size for CDLT, ADLT, A*DLT and IDLT(M = 100) (a) ccRatio = 0.001 (b) ccRatio = 1 and (c) ccRatio = 1000.

a 2 10000 b g 14000
S 8000 - *-CDLT —=—ADLT S 12000 ——CDLT —®—ADLT
—— o
& ADLT IDLT & 10000, A’DLT ——IDLT
= 6000 - 2 go00.
& c
24000 - 8 60001
) & 4000
< 2000 K4
> ‘2“ 2000 H\-\e*_
0 0
1 10 20 30 50 100 1 10 20 30 50 100
No. of Nodes No. of Nodes
C @ 30000
§ 25000 - +02|:)LT —@— ADLT
$ 20000 - ATDLT —<— IDLT
c 15000 -
]
S 10000 -
[0}
< 5000 -
= 0

10

20 30 50 100

No. of Nodes

Fig. 8. Makespan vs. number of nodes for CDLT, ADLT, A>DLT, and IDLT (M = 100) (a) ccRatio = 0.001, (b) ccRatio = 1, and (c) ccRatio = 1000.

Table 4

Percentage makespan improvements of IDLT against CDLT, ADLT, and A>’DLT models
for single source.

ccRatio oiRatio > 0 oiRatio = 0
CDLT ADLT A’DLT CDLT ADLT A’DLT
(%) (%) (%) (%) (%) (%)
0.001 92.16 86.69 77.82 90.48 77.81 1.07
1 92.01 86.27 91.46 89.05 76.42 88.24
1000 19.23 19.12 19.23 12.38 12.24 12.38
Average 67.80 64.06 62.84 63.97 55.49 33.90

when ccRatio = 0.001. Lastly, when ccRatio = 1000, all models
produce the same results while the IDLT model produces the best.

4.4. Effect of ratio of output data to input data

The impact of the ratio of output data size to input data
size (oiRatio) is shown in Fig. 9. The IDLT model performs well

for any type of application, especially for applications in which
oiRatio >0.5.

The percentage makespan improvements of the IDLT model
against the three models is clearly shown in Table 4.

From Table 4, it is observed that the IDLT model is the best for
all type of applications. That is because the IDLT model produces
almost the optimal solution.

From the experimental results, it is evident that IDLT out-
performs all previous models. The performance of IDLT and the
other models was compared in different data grid applications
(different ccRatio). Furthermore, when the IDLT model applies ef-
fectiveness closed form solutions, it produces an almost optimal
makespan.

4.5. IDLT model convergence

This section discusses the convergence of the IDLT model. The
convergence metric records how the initial makespan value is

M. Abdullah et al. / Future Generation Computer Systems 26 (2010) 971-978 977

a 3500

3000 -

2500

2000 -

1500

Makespan (Seconds)

1000

500 -

0.001 1 1000
ccRatio

b 3500
B CDLT
8000 1 ADLT
— 2
(2]
B 00 | " ADLT
8 = IDLT
(%]
~ 2000 -
C
[
o
7]
2 1500 -
©
s
1000
500 -

0.001 1 1000
ccRatio

Fig. 9. The impact of output data size to input data size (oiRatio) (a) oiRatio > 0.5 and (b) oiRatio = 0: No output or small size of output.

3000

2500 -

Esl
]

2000 -

1500 -

Makespan (Seconds)

1000 -

——CDLT -5-ADLT

500 1 ADLT ——IDLT

1 2 3 4 5 6
[terations

Fig. 10. Convergence of the IDLT model for single source (ccRatio = 1000).

minimized during the loop between the initial solution and
optimal one. Fig. 10 depicts the convergence of the models for
the average out of eleven executions when the ccRatio is equal
to 1000.

When the ccRatio is equal to 1000, the result is optimized more
by the IDLT model. As we see, all other models have the same result,
whereas the result of the IDLT model is significantly reduced due
to the iterative technique.

5. Conclusion

In this paper, we have developed an effective iterative model for
optimal workload allocation. The IDLT model is proposed for load
allocation to processors and links for scheduling divisible data grid
applications. Experimental results show that the proposed IDLT
model is capable of producing an almost optimal solution for single
source scheduling. Hence, the proposed model can balance the
processing loads efficiently. We are planning to adapt the proposed
model for implementation in multiple sources.

With such improvements, the proposed model can be inte-
grated in the existing grid middleware in order to improve their
performance. It can be integrated in gLite in the workload man-
agement services to distribute the load equally.

References

[1] L Foster, C. Kesselman, The GRID: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann, 1999.

[2] K. Holtman,]. Amundson, P. Avery, S. Aziz, LA.T. Bauerdick,]. Branson,
J.J. Bunn, P. Capiluppi, R. Clare, A. Dominici, F. Donno, 1. Fisk, I. Gaines,
G. Graham, C. Grandi, CMS requirements for the grid, in: Proceeding of the
International Conference on Computing in High Energy and Nuclear Physics,
Science Press, Beijing China, 2001.

[3] B. Tierney, W. Johnston, J. Lee, M. Thompson, A data intensive distributed
computing architecture for grid applications, Future Generation Computer
Systems 16 (5) (2000) 473-481.

[4] Q. Xiao, Design and analysis of a load balancing strategy in data grids, Future
Generation Computer Systems 16 (23) (2007) 132-137.

[5] S. Venugopal, R. Buyya, K. Ramamohanarao, A taxonomy of data grids
for distributed data sharing, management and processing, ACM Computing
Surveys 38 (1) (2006) 1-53.

[6] H.M. Wong, B. Veeravalli, Y. Dantong, T.G. Robertazzi, Data intensive grid
scheduling: multiple sources with capacity constraints, in: Proceeding of
the IASTED Conference on Parallel and Distributed Computing and Systems,
Marina del Rey USA, 2003, pp. 7-11.

[7] Y.C. Cheng, T.G. Robertazzi, Distributed computation with communication
delays, IEEE Transactions on Aerospace and Electronic Systems 22 (1988)
60-79.

[8] S. Kim,].B. Weissman, A genetic algorithm based approach for scheduling
decomposable data grid appklications. in: IEEE Proceeding of the International
Conference on Parallel Processing, Washington, DC, USA 1, 2004, pp. 406-413.

[9] A. Abraham, R. Buyya, B. Nath, Nature’s heuristics for scheduling jobs on
computational grids, in: Proceedings of 8th IEEE International Conference on
Advanced Computing and Communications, ADCOM, 2000, pp. 45-52.

[10] M. Othman, M. Abdullah, H. Ibrahim, S. Subramaniam, Adaptive divisible
load model for scheduling data-intensive grid applications, in: Computational
Science, in: Lecture Notes in Computer Science, vol. 4487, Springer Verlag,
2007, pp. 446-453.

[11] M. Othman, M. Abdullah, H. Ibrahim, S. Subramaniam, A2DLT: divisible load
balancing model for scheduling communication-intensive grid applications,
in: Computational Science, in: Lecture Notes in Computer Science, vol. 5101,
Springer Verlag, 2008, pp. 498-507.

[12] M. Tang, B.-S. Lee, X. Tang, C.-K. Yeo, The impact of data replication on job
scheduling performance in the data grid, Future Generation Computer Systems
22 (3)(2006) 254-268.

[13] S. Viswanathan, B. Veeravalli, T.G. Robertazzi, Resource-aware distributed
scheduling strategies for large-scale computational cluster/grid systems, IEEE
Transaction of Parallel and Distributed Systems 18 (10) (2007) 1450-1461.

[14] V. Bharadwaj, D. Ghose, T. Robertazzi, Divisible load theory: a new paradigm
for load scheduling in distributed systems, Cluster Computing 6 (1) (2003)
7-17.

[15] A. Hameurlain, F. Morvan, M. Samad, Large scale data management in grid
systems: a survey, in: 3rd International Conference on Information and
Communication Technologies: From Theory to Applications, 2008, pp. 1-6.

978 M. Abdullah et al. / Future Generation Computer Systems 26 (2010) 971-978

Monir Abdullah obtained his B.Sc. in Computer Science
from Mosul University, 2000. He received his M.Sc. and
Ph.D. in Parallel and distributed computing from Universiti
Putra Malaysia in 2005 and 2009 respectively. Currently
he is a lecturer at the Department of Computer Science,
College of Computer Science and Information Systems,
Thamar University. His research interests are in grid
computing, optimizations, parallel processing, computer
networks and computer algorithms. He has published
articles in several refereed international conferences and
journals.

Mohamed Othman received his Ph.D. from the National
University of Malaysia with distinction (Best Ph.D. Thesis
in 2000). Now, he is a Professor in Computer Science
and Deputy Dean of Faculty of Computer Science and
Information Technology, Universiti Putra Malaysia (UPM)
and prior to that he was a Deputy Director of the
Information Development and Communication Center
(iDEC) where he was in charge of the UMPNet network
campus, the uSport Wireless Communication project, High
Performance Enterprise Servers and the UPM DataCenter.
Between 2002 and 2009, he received many gold and

A

silver medal awards for University Research and Development Exhibitions and
Malaysia Technologies Exhibition which is at the national level. His main research
interests are in the fields of parallel and distributed algorithms, high-speed
networking, network design and management (network security, wireless and
traffic monitoring) and scientific computing. He is a member of the IEEE Computer
Society, the Malaysian National Computer Confederation, and the Malaysian

Mathematical Society. He has published articles in 120 national and international
journals and more than 200 conference proceedings papers. He is also an
associate researcher and coordinator of High Speed Machine at the Laboratory
of Computational Science and Informatics, Institute of Mathematical Science
(INSPEM), Universiti Putra Malaysia.

Hamidah Ibrahim is currently an associate professor at
the Faculty of Computer Science and Information Technol-
ogy, Universiti Putra Malaysia. She obtained her Ph.D. in
computer science from the University of Wales, Cardiff, UK
in 1998. Her current research interests include databases
(distributed, parallel, mobile, bio-medical, XML) focusing
on issues related to integrity constraints checking, cache
strategies, integration, access control, transaction process-
ing, query processing and optimization, and data manage-
ment in grid and knowledge-based systems.

Shamala Subramaniam received a B.S. degree in Com-
puter Science from Universiti Putra Malaysia (UPM) in
1996, an M.S. (UPM) in 1999, and a Ph.D. (UPM) in 2002.
Herresearch interests are Computer Networks, Simulation
and Modeling, Scheduling and Real Time Systems. She has
published several journal papers.

	Optimal workload allocation model for scheduling divisible data grid applications
	Introduction
	Scheduling model
	Notations and definitions
	Cost model
	Optimality criterion

	Proposed IDLT model
	Initial solution
	The iterative model

	Experimental results
	Effect of application type
	Effect of data file size
	Effect of the number of nodes
	Effect of ratio of output data to input data
	IDLT model convergence

	Conclusion
	References

