
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/228352100

Critical	and	Creative	Mathematical	Thinking
with	Practical	Problem	Solving	Skills-A	New
Old	Challenge

ARTICLE

CITATIONS

2

READS

65

2	AUTHORS,	INCLUDING:

Eleni	Berki

University	of	Tampere/University	of	Jyväsk…

62	PUBLICATIONS			160	CITATIONS			

SEE	PROFILE

Available	from:	Eleni	Berki

Retrieved	on:	09	April	2016

https://www.researchgate.net/publication/228352100_Critical_and_Creative_Mathematical_Thinking_with_Practical_Problem_Solving_Skills-A_New_Old_Challenge?enrichId=rgreq-84d43fd5-139f-4b7f-8668-590c8fdb7fe9&enrichSource=Y292ZXJQYWdlOzIyODM1MjEwMDtBUzo5ODg4MTA3NzUxNDI0NkAxNDAwNTg2NDk0MzY3&el=1_x_2
https://www.researchgate.net/publication/228352100_Critical_and_Creative_Mathematical_Thinking_with_Practical_Problem_Solving_Skills-A_New_Old_Challenge?enrichId=rgreq-84d43fd5-139f-4b7f-8668-590c8fdb7fe9&enrichSource=Y292ZXJQYWdlOzIyODM1MjEwMDtBUzo5ODg4MTA3NzUxNDI0NkAxNDAwNTg2NDk0MzY3&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-84d43fd5-139f-4b7f-8668-590c8fdb7fe9&enrichSource=Y292ZXJQYWdlOzIyODM1MjEwMDtBUzo5ODg4MTA3NzUxNDI0NkAxNDAwNTg2NDk0MzY3&el=1_x_1
https://www.researchgate.net/profile/Eleni_Berki?enrichId=rgreq-84d43fd5-139f-4b7f-8668-590c8fdb7fe9&enrichSource=Y292ZXJQYWdlOzIyODM1MjEwMDtBUzo5ODg4MTA3NzUxNDI0NkAxNDAwNTg2NDk0MzY3&el=1_x_4
https://www.researchgate.net/profile/Eleni_Berki?enrichId=rgreq-84d43fd5-139f-4b7f-8668-590c8fdb7fe9&enrichSource=Y292ZXJQYWdlOzIyODM1MjEwMDtBUzo5ODg4MTA3NzUxNDI0NkAxNDAwNTg2NDk0MzY3&el=1_x_5
https://www.researchgate.net/profile/Eleni_Berki?enrichId=rgreq-84d43fd5-139f-4b7f-8668-590c8fdb7fe9&enrichSource=Y292ZXJQYWdlOzIyODM1MjEwMDtBUzo5ODg4MTA3NzUxNDI0NkAxNDAwNTg2NDk0MzY3&el=1_x_7

Critical and Creative Mathematical Thinking with
Practical Problem Solving Skills - A New Old Challenge

Eleni Berki1 and Juri Valtanen2

1Department of Computer Sciences, University of Tampere,
Kanslerinrinne 1, Pinni B, Tampere 33014 Finland

eleni.berki@cs.uta.fi

2Department of Education, University of Tampere,
Ratapihankatu 55 (Atalpa), Tampere 33014 Finland

juri.valtanen@uta.fi

2VALIO OY
Vihiojantie 3, 33100 Tampere Finland

Abstract. The suitability and applicability of formal (mathematical) methods
for problem solving that targets to the construction of software-based systems
has long been a controversial discourse in Software Engineering academic
education. Additionally, experiences from using formal methods in real
software development projects refer to very strong advantages and, at the same
time, very strong disadvantages. In this paper, adopting a critical point of view,
the authors examine the suitability and applicability of mathematical thinking in
the traditional higher education context and in the challenges of modern
software development. Discussing and broadly classifying a number of
controversial opinions, the authors draw comparisons between classical
educational perspectives and current higher education curricula and industrial
training programmes. Analysing strengths and weaknesses, the authors provide
insights and suggestions for improving mathematics learning. For further
understanding of the generic skills and holistic knowledge required when
applying formal methods to problem solving, the authors outline a
multidisciplinary curricula framework as a thinking tool for educators. The
latter offers a broad integrating basis of subjects and could serve for cases in
software development where specialisation and generalisation are needed.

Keywords: Software Development Methods (SDM); Formal Methods (FM);
Critical Thinking; Creativity; Higher Education (HE) Academic Curricula;
Problem-Based Learning (PBL) Skills

1 Introduction

The efficacy and suitability of the development methods used to design and produce
software-based systems, e-services and information products do not seem to be
comparable in effectiveness to the scientific methods that were used throughout the

history of knowledge, science, and mathematics in particular [1]. Far from the
pedagogical frameworks and social reality -supported, though, by Higher Education
(HE) curricula and expensive industrial training programmes- the fragmented use of
Software Development (SD) methods that are represented by mathematical notations
brought about correct -to some extent- solutions; but with limited understanding and
justification on doing so. This repeatable phenomenon over the last thirty, at least,
years resulted in (i) further limited application of mathematics in SD, and in (ii) the
view that Formal Methods (FM) are independent of any problem solving activities
[1].

1.1 Background

In the last forty years, SD, mainly being a problem solving process, employed a
plethora of problem solving methods (Fig. 1), which are also called systems
development methods. These, broadly classified, are: (i) soft methods for ill-defined
situations - or soft problems- with no definite answers and (ii) hard methods for well-
defined situations -or hard problems- that require definite answers [2]. Two more
categories exist: hybrid (e.g. Multiview) and specialised (e.g. for expert systems
building) methods for contingency approaches and specialised situations, but with
specialised and limited use. Figure 1, from [2], depicts a chronological evolution
(1965-2000) of SD methods.

Soft methods, such as Soft System Method (SSM) and Effective Technical and
Human Implementation for Computer-based Systems (ETHICS), focus on human
involvement in most of the steps of the system's development lifecycle. Hard methods
such as structured (e.g. SSADM, STRADIS), object-oriented (O-O), formal (e.g.
VDM, Z), and semi-formal (e.g. JSD) comprise many techniques and, sometimes,
automated techniques in software tools. The latter are applied to consistently and
precisely model a problem situation: state the requirements, define the needs and,
above all formulate, specify and solve the domain-related problems in a specification
language that can be understood and trusted.

The subject of Methodology -the scientific study of all methods- has revealed,
through classical and more recent comparative studies, plenty of advantages and
disadvantages that make each method suitable for different problems and application
domains (see e.g. [3, 4]). Formal methods, for instance, comprise mathematical
expressions that are very concise since a great deal of meaning is concentrated in a
relatively small number of symbols. Moreover, mathematical forms are said to be
unambiguous and clear because of their independence from any cultural context and
because they are self-contained. The latter were and continue being considered as
strengths and strong advantages when describing a very complex system, i.e. safety-
critical, where detailed, trustworthy and testable specifications of the system
components are needed.

ad-hoc
NCC Struc. Methods

JSD

SSM
ETHICS

Multiview

Coad-YourdonZ

65 70 75 80 85 90 95

OMT

00

XP

CBD
DSDM

Fig. 1: Thirty five (35) years of Software Development Methods

On the other hand, independence from cultural context and non-ambiguity could be
considered as disadvantages when a system, organisation or product contains detailed
human activity. Therein, a less structured, O-O or semi-formal method might prove to
be more applicable for the analysis, design and specification needs. Furthermore,
most formal methods could be regarded as inadequate and unsuitable, considering that
co-ordination activities for holistic communication modelling [5] do not exist during
FM use in SD lifecycle stages. FM rather jump to specification and design, before any
feasibility study or analysis of system requirements and human needs [1, 2] are
carried out. Maintenance phase is also limited supported by FM. The degree of
people's participation and especially the involvement of the end-user, who still
remains the great unknown X in software development, is either limited or non-
existent in the FM paradigm.

1.2 Research questions, approaches and paper structure

The need for integration and standardisation in SD methods, techniques, tools and
regional procurements on one hand, and the increased global competition and
internationalisation of SD on the other, demand formally approved and generally
understood high quality specification notations [3]. More than twenty years ago
method and tool vendors, software markets, and software knowledge-based
economies in Europe welcomed and supported Euromethod, a SD method(ology)
standardisation project aiming at achieving integration and standardisation [6]. The -
yet unfinished- project, firstly and foremost selected and adopted structured methods'
notations and techniques (largely diagrammatic) from all European countries' SD
standards. The only formal specification technique adopted had been Petri-Nets from
the French SD standard Merise - also a structured method. One could only question if
the lack of tool support and, consequently, tool vendors were the only reasons to
exclude FM from the so much promising European SD standard.

Nowadays the new trends of Open Source Software Development (OSSD) and
Agile Software Development (ASD) require to utilise formal method(ology) features
and formal quality assurance. However, in ASD the question sometimes is “agile
quality or depth of reasoning?” [4]. Moreover, having to face the dilemma of
applicability versus suitability with respect to all stakeholders needs [4] one might
then question how successful will formal method(ology) be to undertake the analysis
and design challenges of modern SD. For these reasons, the research questions
handled in this paper are: (i) what made formal method(ology) thinking so popular in
the past? (ii) what eliminated it? and (iii) how could the use of formal methods be
enhanced and increased in educational programmes and in future software
development?

For answering the previous questions, this paper examines the historical evolution
and use of mathematics, based on a wide literature review, previous evaluations of
formal methods, and personal experiences of the authors from many years action
research in HE and in industry. The paper attempts a consistent analysis of the
strengths and limitations of formal methodology, utilising research approaches from
the critical research paradigm [7] as follows: a) Historical research for studying past
developments in science-mediated learning and their implications on the scientific
progress focusing on issues of mathematics learning and application, and their
implications on learners empowerment. b) Discourse analysis considering studies of
discourse practices in order to illuminate individual, social and cultural behaviours of
mathematics learners in scientific communities. c) Action research for analysing and
evaluating practices in SD, aimed at the improvement of available knowledge and
skills in HE.

From the critical point of view -in terms of ontology- this work first explores the
reality of Mathematics learning in HE and mathematical knowledge application in
SD, as unfolded through different opinions. Emphasis, therefore, is also on the
powerful forces that shape the needs of SD and HE - though this is left out of the
analysis scope of this paper. Second, the Mathematics learners' reality in HE is
constructed through discourse communication that is comprised of (concrete or
abstract) representations shaped by particular signifying systems, social contexts and
power relations that take place in SD and HE communities. Both first and second
issues are reflected in our data collection, which comprises many specialists' opinions
analysed in the next sections.

Thus, our main research objective is to deconstruct this reality and provide an
improved understanding of signifying systems, socio-technical and cultural contexts,
power relations, and the real-world contexts in which the latter are embedded. The
authors’ role as future researchers will continue being active and motivating towards
addressing the above issues by providing transparency and links to informed,
committed and progressive action with a new HE curriculum, which is just outlined at
section 4 of this paper. In terms of epistemology, it can be stated that the nature of
meta-knowledge explored here emphasises that mathematical expertise offered in SD
is an extension of knowledge and skills offered in the HE curricula. The curriculum
meta-knowledge in HE institutes is bound to the interested groups (learners, educators
and SD stakeholders, e.g. local and national industry) involved, and also to socio-
cultural and socio-technical constructs and constraints.

2 Past, Present and Future: Praising and Questioning the Use of
Formal Methods

Naturally, by using mathematics in software design for requirements formal
representation, there is little scope for misunderstanding between different groups of
people (SD stakeholders) because a correct formulation of requirements specification
can easily be examined for its correctness and errors can quickly, or at least timely, be
identified. In [8] Dijkstra in 1981 stated that by its very nature responsible systems
design and development in general - in short programming reliably - must be an

activity of undeniably mathematical nature. However, he goes on to comment that by
and large, "current mathematical style has been determined by fashion, and current
mathematical notation by accident". The following sections present a collection of
opinions that either reject or support these claims.

2.1 Supportive and Non-supportive Statements on Formal Methods

In Software Engineering (SE) community, it has often been supported that
mathematical expressions have the advantage of being precise because they do not
need contextual information. All information needed is encapsulated in relevant
formulae and what is not needed is omitted [9, 10]. One, though, might question: are
context, culture and language insignificant factors in software development? Should
they not be taken into consideration at all, while solving problems and providing
solutions, and software-based solutions in particular? Classical and recent research
results show that organisational and national culture as well as language and
background knowledge among systems stakeholders are critical success factors for
software quality management, and for reliable and trustworthy software products (see
e.g. [11, 12]).

Apart from being -naturally among mathematicians- a shared belief that
mathematical forms are independent of spoken (natural) language, it is arguably a fact
that mathematical notations can, successfully, be used to express problem
specification and achieve unambiguous solutions in software systems development.
Software engineers [13, 14], however, hold a somewhat different opinion believing
that there is more than specification and implementation to consider in software
systems development and construction stages. Shortly the analysis, design,
specification, implementation and maintenance of systems that require a high degree
of reliability and are user-orientated form a problem solving and requirements
communication process [15, 16, 17]. Pharmaceutical, defence, medical or safety
critical systems, for instance, are exceptionally demanding systems in their analysis,
and in the design of a software-based solution. The challenge is in considering both
the number of end-users with their needs and activities and their safety-critical
requirements that must be realised and supported by suitable and reliable software.
Herein, no formal method alone, and furthermore no single SD method, neither hard
nor soft (see section 1.1), is suitable to cover the system development and
stakeholders’ needs. Notwithstanding, there is a need to employ a problem solving
approach with subsequent holistic communication modelling (see [5]).

The need -and must- for correct and reliable system specifications that are mapped
to correct, and at the same time understandable, implementations and user interfaces
has been a problem that software engineers constantly face. Within the context of
software development methods, it is believed that the application of formal
specification methods is a rigorous way to develop quality information systems [1,
18] that bring about generally -but not holistically- acceptable solutions to human
problems [5]. For instance, one of the aims of formal specification methods is to
provide the ability to prove the correctness of representations. Correctness (see e.g.
[8]) as a software quality property is -claimed to be- achievable only by the use of
formal methods [1, 2, 8]. Correctness though, as a semantic definition, has many

facets and is also related to the semantics, pragmatics and semiotics of the software
developer's social and professional environment [1, 2, 5]. For instance, the concept of
correctness -and not only- in SD can be related to ethical and professional correctness,
a soft issue in SD. Formal methods, though, do not support particular values and
norms of groups of individuals or people; FM do not support human and especially
end-users’ involvement in SD [19]. Therefore, only other than formal methods could
be utilised to achieve correctness in the previous context. These could be soft
methods, especially ETHICS method [19], which emphasises the holistic nature of a
system's design by supporting representative and consensus user participation as an
ethical and professional meta-requirement of the SD process.

On the other hand, these particular systemic and human needs -correctness,
reliability, understandability- and the ways that everyone understands them, led many
software developers and engineers to adopt an idiosyncratic approach to problem
solving in SD and to the implementation of system specifications (see also [5, 19]).
Adequacy of needs, and most importantly reliability, have had many facets and they
are certainly related to the correct specification of stakeholders' requirements, in order
to have an effective and functional software system. In the recent past of SD, problem
specification often obeyed, without detailed analysis or design rationale, to rigid
mathematical formulae, led probably by intuition, but not by critical thinking or
creativity [1, 2]. Yet, there is no revolutionary or evolutionary change! That being a
recent and ongoing thinking and SD tradition with formal methods, supported by and
taught in academic curricula and realised in industrial training programmes, it is hard
to be optimistic for progressive change and adoption of more participative SD
approaches.

2.2 Practical Problems with Known Formal Methods in Software
Development

Formal methods such as those mentioned in table 1, next, express systems properties,
algorithms, data, events and functions in a rigorous mathematical way, which is not
ambiguous. This family of methodological notations may be model-oriented that also
include diagrams, or property-oriented that are mostly based on text reasoning
descriptions.

Certain forms of deductive reasoning are often used for quality assurance, although
a formal testing procedure is utilised in a limited fashion. Moreover, there are formal
methods developed for very specialised situations. For instance, with the exception of
X-Machines and possibly FSMs from table 1, all ‘formal’ approaches to development
concentrate on the coverage of the modelling needs of particular application domains.
As can be seen from table 1 the limited availability of modelling tools, which by no
means are widely used in industry or academy, also makes FM use even more
difficult, especially when it comes to issues of formal testing procedures, test cases
generation from specifications, computability, reverse engineering and re-engineering
[1].

Table 1: Some formal methods with tool support used in software development

Formal Methods Tool
Support

Z-Method Yes
Vienna Development Method

(VDM)
No

B-Method Yes
Statecharts Yes

Finite State Machines Limited
Calculus of Communicating Systems

(CCS)
Yes

Timed Calculus of Communicating
Systems (TCCS)

Yes

Communicating Sequential Processes
(CSP)

Limited

X-Machines Limited
Object Z / Z++ Limited
Temporal Logic Limited

Petri Nets Limited

Some formal methods such as process algebras e.g. CSP and CCS that are also

used to model concurrency, and their versions (e.g. TCCS) involve diagrams more
than others such as Z and VDM, for instance. The latter, used to model sequential
systems, have been less expressive than their extensions. Z++ and Object Z, for
instance, do have better expressability and applicability for domain specifics.
Notations that describe a system’s behaviour expressively, are Petri-Nets (used in
many cases to also model concurrent processes), Statecharts and Finite State
Machines; these are model-based formalisms, also with adequate textual
visualisations of abstraction [1].

Diagrammatic notations are used in SD because they provide a means of
abstraction and, in certain cases, allow the behaviour of the system to be clarified
through visualisation. This is the main reason why many of the formal methods have
been extended in order to conform to the requirements of cognition considerations
and further on tool development for their support and coding facilitation. Statecharts,
Petri-Nets and Object Z are visual formalisms, which incorporate extensions to the
previous concepts. Their mechanisms, though, are sometimes supported by classical
Finite State Machines and State Transition Diagrams. These, as extensions were
formally defined to augment the method’s expressability regarding the capture of
dynamic and static aspects.

In considering, though, behavioural properties of ‘data and process’ of a system,
there is no mechanism to straightforwardly derive testable implementations from very
often complex and too detailed specifications. The latter is a major weakness of FM,
since in reality there should be direct implementations from computable business
objectives! In this situation, B-Method, which is based on Abstract Machine Notation
(AMN) and concepts from Temporal Logic, is a formalism with a wider application
domain on specifying processes and systems inputs/outputs. However, X-Machines

(Finite State Machines generalisations coupled with Z-Method) go even further to
express diagrammatically data and process, to support the direct computability of
specifications and facilitate their testing. Since this method (X-Machines)
demonstrates the strengths of a model-based and property-oriented abstraction to
specify systems requirements, makes it possible for the method to have a general
applicability in many specialised application domains via the powerful and generic
abstraction it possesses as a computational model [see 1, 2, 3, 4, 20].

Thus, apart from problems associated to the mathematical, abstract nature of FM,
there are plenty of more practical problems with well-known FM that are significant
obstacles to grasp and use mathematical concepts as an embedded software tool and,
therefore, as a thinking and learning tool. Notably, the absence of suitable modelling
tools that enhance intuition, creativity and critical thinking skills from higher
education and software development leads, unfortunately, to further fragmentation of
mathematical thinking.

2.3 The future of formal methods in the era of new SD trends

Above all, the constant needs for modelling flexibly and understanding change in a
computational [20] and integrated way [21] are, normally, requirements for the design
of anything large and complex; here, the authors would like to add: as well as of small
and simple functional products. The major challenge for the software developer today
is, then, the following: with the maximum of peoples involvement, to utilise
computational abstractions with precision and expressability in order to enable the
modelling and realisation of the various systems aspects, and provide clear proof for
having done so. Such meta-requirements of software development and specific
considerations imply a different approach to the use of scientific and mathematical
methods, and point to the careful choice of more appropriate and generally acceptable
formal notations in software modelling.

Nowadays the two, rather competitive, SD trends are Agile Methodology and Open
Source (OS) movement. Both trends require software quality assurance techniques
and procedures [3, 4] where it seems rather impossible to avoid the use of formal
methods. One of the issues relating to the use of formal methods in industry that is
not frequently discussed -while it should be in reference to agile development- is that
in practical software development it is rare for a set of requirements (and thus a
model) to remain stable for anything other than small applications. Agile Manifesto
itself praises most of the certain strengths of formal methodology, encouraging, at the
same time, frequent feedback from all stakeholders –end-users in particular- involved
in the software tool-facilitated development. Furthermore, agile processes are
becoming very popular in the business world, while formal methods tend to ignore the
business aspects [22] and they offer minimal user involvement and limited tool
support. This is probably due to the complexity of mathematical notations, which
require specialist knowledge and, therefore, might not be suitable for flexible and
agile development processes.

Open Source Software Development (OSSD) on the other hand, requires proven
implementability of software architectures and model-based testing as well as re-
engineering and reverse engineering techniques for system and software quality

assessment. In OSS, apart from the implementation artefacts, and regardless of the
methods used, all analysis and design products and system components must be
analysed and evaluated. In order to enable the latter, accurate methods and semantic
definitions should be developed each serving generic and different scope and purpose.

Formal methods' major drawback has been that they never supported the active role
of the user [see e.g. 2, 3, 4, 5, 19, 22, 23]. Such pitfall is probably responsible for the
unpopularity of formal method(ology) and the limited use. Considering human role in
current software development, especially in ASD and OSSD, one might say that it is
vital. Development and ASD in particular, cannot happen without end-users. In
general, someone could observe that as software applications become more powerful,
people and end-users in particular, become more knowledgeable and more
demanding. Information system engineers are required to use acceptable development
methods in order to design more detailed and understandable architectures that
encapsulate highly desirable properties and a significant amount of information for
further reuse.

Another major drawback in the FM paradigm is that formal notations lack structure
and, thus, make it difficult to manage the development of large systems. [22].
Regarding formal methods and structure (see also [22]), many of the formal methods
mentioned in table 1 did not offer diagrams in their earlier versions; consequently
their use was not supported by tools with graphical representation techniques. As can
also be seen (Table 1) associated tools were utilised in a limited fashion since they
mostly offered text-based descriptions, and therefore did not consider users’ and
modellers’ cognitive skills, which are mainly taken into consideration with
visualisation diagrams. Observing this creative and critical thinking process in
modelling system and user requirements in SD, Loucopoulos and Champion in [23]
state that capturing and verifying requirements are labour-intensive activities that
demand skilful interchange between those that understand the problem domain and
those that need to model the problem domain. [23].

3 From Classical Scientific Paradigms to a Re-structured
Curriculum

The belief of Dijkstra [8] about the fashionable choices of programming styles and
accidental mathematical notations (section 2) had more strongly been expressed by
Plato1 as follows: “I have hardly ever known a mathematician who was capable of
reasoning”. Indeed, this seems to be a strong view expressed in Ancient Greece,
where the study of mathematics had been an absolute 'must' in the then less complex
and breathing curriculum, and where mathematical thinking pervaded many areas of
public and private life2.

1 As quoted in N. Rose: “Mathematical Maxims and Minims” (Raleigh, N. C., 1988).
2 The term Education in Ancient Greece meant teaching and learning, considering three broad

subjects: Mathematics and Music for a healthy mind, and Gymnastics, that is physical
exercise for a healthy body. All other sciences, subjects and arts were viewed and integrated
through these.

Throughout the centuries the integration of mathematics with other spheres of life
and science such as Physics, Astronomy, Religion, Philosophy and Art had as main
objective to achieve the highest abstraction and therefore purify the mind to view
reality clearly and reasonably. Scientists, artists and philosophers should possess the
so much nowadays required skills of hybrid managers in enterprises and hybrid
software developers in OSSD and ASD. These multi-scientists or multidisciplinary
hybrids had (and have) to filter their scientific, artistic, political and philosophical
thoughts through reasonable arguments and proofs in such a procedural and axiomatic
way that anybody should be able to attend the sequence of the thinking pattern from
its initial stimulus to the resulted outcome.

The history of Science and Knowledge reveals that the most useful theoretical
discoveries and applications were made by scientists whose main occupation was
either in a different field or they were multi-agents of knowledge. It seems that their
occupation and contact with different knowledge disciplines gave them the insight to
have multiple view points for many specialised situations. Thus they were able to
analyse and compare problems requirements, generalise and integrate them and
finally synthesise and generalise solutions and the methods for achieving them. Since
though science and knowledge became more and more specialised, it seems that only
specialisation counted as a useful approach in problem solving and generalisation
disappeared together with the ability to think, abstract and apply from the general to
specific. This is reasonable, to some extent, since not everything is worth or possible
to learn. It remains, however, difficult to think and apply from a very specialised
situation to a general one, at least without problem solving guidance.

Attempting to form guidelines and providing an outline for a SE curriculum in HE,
suitable to learn and apply formal methods (mathematical thinking), we must
recognise the following: Each problem is different and, therefore, requires different
solutions [16]. The classification of problems has also led to a classification of
general ways for solutions [24]. In the same way, the classification of systems and
their environments led to generalised and integrated methods [1, 2, 3, 4, 5] applied to
achieve and provide solutions for different classes of problems [25]; and, therefore, to
offer different software-based products and services, under different people with
different skills, expertise and competencies but with a common development aim.

4 Mathematical Thinking in HE: from Stone to Jelly
Curriculum

An academic curriculum is a beforehand made description of what HE plans to do for
the students, the industry and the society. It also is a tool to control the evaluation of
learning and to guide instructors' actions. It is a negotiated product, whose definition
is not an easy matter. Portelli in [26] in 1987 found over 120 definitions, and
Longstreet and Shane in [27, p. 7] in year 1993 consider curriculum as a historical
accident: “It has not been developed to accomplish a clear set of purposes. Rather, it
has evolved as a response to the increasing complexity of educational decision
making”. The danger is that curriculum is like a stone, hard to change it easily from

stone to water. The real danger is to create and follow a hidden curriculum that brings
down the designed and established one.

Today the challenge in SD is to create an easily changeable and transparent
curriculum. It is like nailing the jelly into the wall or like guiding water flow into new
paths. For this reason it is time to consider some important curriculum questions (see
also [28]):

1. Are we developing a more relevant curriculum for software development students?
2. Are we really addressing complex Computer Science (CS) and Software

Engineering (SE) curricula dilemmas in a clear and unambiguous fashion?
3. Are we becoming more successful at integrating theoretical issues and practical

positions?

Furthermore, we first and foremost have to consider the suitability of particular

elements in the SE curriculum. The following sections outline some of the very basic
elements and their explanation in relevance to mathematics teaching in HE. We find
them important to transfer software development curricula from stone to jelly mode.
Apart from being international and multidisciplinary, the features of such a
curriculum should be that it is general and generic in terms of knowledge and
specialised in acquiring the necessary skills. The main aim should be to educate
computer scientists and software engineers with professional and ethical competence,
offering them the necessary knowledge and skills and recognising individuals'
thinking and learning styles.

4.1 Problem-Based Learning (PBL): A Promising Way to Build SE Curricula

Problem-based learning (PBL) or more precisely problem-focused education -because
everything is not worth of learning and some problems are more important than
others- is, according to Boud and Felletti in 1997 [29] the most promising
pedagogical innovation within the last few decades. PBL in computer science and
software engineering courses is based on the assumption that problems will motivate
students to learn. According to Gallagher in 1997 [30] PBL supports the integration of
meaningful problem solving into everyday classroom practice. It is apprenticeship for
real-life problem solving. PBL is unique in its integral emphasis on core content along
with problem solving. It allows for the integration of problem solving into the
curriculum and removes problem solving from the realm of ancillary instruction.
However, PBL does not have to be just a method of teaching mathematics. It can be a
strategy to build the whole curriculum, and even a philosophy, a way of living,
thinking and learning.

According to [30] PBL requires changes in curriculum and in instruction. The
curriculum is built around real-life problems, not fragmented, artificial subject
matters. Educationally sound, carefully selected and well-constructed ill-structured
problems need to become integrated within the curriculum. They must be appropriate
for a particular curriculum with specific learning goals. A carefully constructed
problem allows students to take over the job of setting a learning agenda and allows
the instructor to spend class time focusing on other essential skills. Tutors and
instructors have cognitive responsibilities including guiding the development of

students´ sound questioning and reasoning by giving voice to the meta-cognitive
questions and metamodelling skills. Tutor (or instructor) is also responsible for
matching the challenge of the problem with the abilities of the students and ensuring
that the pace of the problem solving allows students to achieve a reasonable resolution
in a sensible period of time. By using meta-cognitive questioning and modelling good
inquiry, the tutor reveals to students how professionals really approach similar
problems. PBL curriculum and classroom engage students in qualitatively different
kinds of learning. However, the change of curriculum from the traditional subject-
based to the problem-based is not easy for the current SE and CS tradition, students
and instructors. The successful change of curriculum should not be based on the
lessons of other institution but on the carefully tailored needs of the specific
institution.

4.2 Teaching Thinking Skills: Cognitivist versus situative ways

In an effort to promote more meaningful learning, researchers and educators have
developed programs for teaching thinking. A large part of their efforts have been
dedicated to teaching metacognition, or thinking about thinking. Similarly, SE efforts
have been concentrated in modelling about modelling, thinking in another level of
abstraction. Metacognitive and metamodelling strategies help learners to become
aware of their learning and professional strategies and own skills, and gain more
control over the acquisition of substantive knowledge and modelling skills.
Developing metacognitive skills is important because errors in reasoning and problem
solving often arise from mindless biases [31, pp. 328-330].

We might, hereby, question if mathematical thinking should be taught as a separate
subject or should it be integrated into traditional domain-specific SE classes? What is
the role of cognitive psychology in teaching thinking? These questions lie at the core
of the debate between two opposing camps. The cognitivist camp argues that
cognitive psychology can contribute greatly to the understanding of educational
practices by examining people´s problem-solving strategies and representations. The
situative camp claims that cognitive psychology assumes that learning resides in the
mind of the individual, instead of in the interaction between the individual and his or
her environment. This camp encourages educators to turn ethnographic and
sociological methods of investigating that do not separate cognition from the social
context that the individual is a part of. Situative view argues that learning is tied to
specific contexts and hence that learners have great difficulty transferring what they
have learned from one domain to the next. [31, pp. 330-331].

The domain general view holds that thinking is a subject domain that should be
studied on its own right. Students who take a course on thinking are expected to
acquire general processes or strategies that can be applied to specific content domains.
Teaching thinking from the general to the specific programs embraces the often-
cognitivist view that students would benefit from learning general reasoning and
problem-solving skills that they can then apply to specific domains. These programs
tend to be taught as separate courses and to emphasize both group and individual
learning. In contrast, the domain specific view holds that thinking skills are best
taught in a specific context or content area. These content rich strategies can be then

applied to other areas, if there is an explicit effort to explicate how these areas are
similar. Teaching thinking from the specific to the general programs embraces the
often-situative view that students would benefit from learning reasoning and problem-
solving skills in a rich content domain that they then can apply to similar domains.
These programs tend to be part of the regular curriculum rather than individual
programs, and emphasize group over individual learning. [31, pp. 332-353]. Probably
the best solution for teaching thinking skills with formal methods in SE curricula lies
somewhere in the middle of these two extremes.

4.3 Thinking styles: source of unexplained key factor for success and failure.

How people prefer to think might be just as important as how well they think. The
thinking styles approach tries to answer to the question: how we prefer to use the
abilities we have? Sternberg in [31] argues that thinking styles are as important as,
and arguably more important than abilities, no matter how broadly abilities are
defined. Constructs of social, practical, and emotional intelligence expand our notions
of what people can do. But the construct of style expands our notion of what people
prefer to do, how they capitalize on the abilities they have. A style is a way of
thinking. It is not an ability or skill, but rather, a preferred way of using the abilities
one has. The distinction between style and ability is a crucial one. An ability or skill
refers to how well someone can do something; but a style refers to how someone likes
to do something. It is also crucial for adult education curricula designers to
understand that we do not have a style, but rather a profile of styles. Understanding
styles can help people better understand why some learning activities fit them and
others do not.

Crucial is also the match or mismatch between people´s styles and the tasks they
are confronting. Different levels of schooling and different subject areas reward
different styles, with the result that you can do better or worse as you go through
school or job, depending on how your profile of styles matches up with what the
environment expects and how the environment evaluates you. So HE institutions and
organisations value certain ways of thinking more than others. And people whose
ways of thinking do not match those valued by the institutions are usually penalized
[31]. Mismatches become particularly serious when they occur in education or work
setting. Issues of thinking and learning styles are important when building success for
all students into the curriculum. If we do not take styles into account, we risk
sacrificing some of the best mathematical minds and programming talents.

4.4 Critical thinking

Critical thinking is now widely seen as a basic competency, akin to reading and
writing skills, which need to be taught. Critical thinking is a skilful activity, which
meets standards of clarity, relevance, adequacy and, thus, is contrasted to unreflective
thinking. According to Fisher in [33] critical thinking skills require the ability to
interpret, analyse and evaluate ideas, arguments and observations. It also requires skill
in thinking about assumptions, in asking pertinent questions, in drawing out
implications, necessary skills for software development students and practitioners.

Interestingly, while many claim that teach their students `how to think`, they would
further explain that they achieve this indirectly or implicitly in a course of teaching
content. Educators have come to doubt the effectiveness of teaching `thinking skills´
in this way, because most students simply do not pick up the thinking skills in
questions. Many of course have become interested in teaching these skills directly.
The aim is to teach transferable thinking skills explicitly and directly [33].

4.5 Creativity

Creativity is the ability to produce novel, high-quality, and task-appropriate products.
At least eight (8) different approaches exist dealing with the study of creativity in [31,
pp. 277-289]. Among them, the type of confluence creativity integrates other
approaches to creativity. For PBL curriculum relevant to SE in HE we distinguish as
directly relevant the following four: (i) Pragmatic, focusing on the use of creativity
and how to increase creativity; (ii) cognitive, dealing with the information processing
and mental representations underlying creativity; (iii) social-personal, emphasising
the roles of other people and of personality traits as well as motivation; (iv)
evolutionary, viewing creativity as an adaptation that enhances chances of survival in
SD groups.

5 Conclusive Remarks and Future Investigation

Nowadays the role of mathematics -or formal specification methods- is, once more, a
new old challenge. The discourse has become very controversial and the use of FM
questionable as for their suitability and applicability to the area of software
development. However, in the context of world-wide civilisations, cultures and
religions, the recent history of science and mathematics has had plenty of successful
applications and creative achievements through mathematical thinking. The latter,
while demonstrating integrated abstract thinking and the interconnections of general
problem solving and specialised solutions, do not necessarily come solely from
mathematicians in profession, but rather from a multidisciplinary thinking and
education and people with multidisciplinary and hybrid knowledge.

In general, the use of formal methods for developing software-based systems did
not lead to quality solutions in the past. It soon became clear that analysing and
designing a system with formal methods offers some quality assurance regarding the
development of unambiguous, consistent, correct and verified mathematically-proven
specifications, but there were other issues raised. The most frequently mentioned
problem that is associated with the use of most formal methods in SD is the
unfriendly and fragmented approach, which prevents students’ and SD stakeholders’
wide understanding, and results in high costs for later training and prototype
construction and testing. Consequently, one might ask: what education on formal
methods are we trying to achieve?

Broadly speaking the complementary knowledge offered should be based on
cognitive psychology to develop intuition and creativity and on philosophy in order to
develop thinking and reasoning skills through a problem-based framework. The

importance of PBL in SE education is already well-known. Armarego' s work [34],
for instance, has provided a detailed study on how a student-centred learning and
innovative approach such as PBL can be put into practice successfully, taking into
consideration the special educational needs and required changes of one institution. A
wide range of critical thinking skills can also be acquired by providing a
representative sample of methodological notations in an informative but comparative
way of evaluating the different options. The further skills acquired can, for instance,
be diagrammatic, thinking, analytical, design, modelling, reasoning, applicability and
abstraction skills, to mention just a few.

In practising and teaching formal methods, we need to take into account end-users’
and students’ thinking styles and preferences. There is also a need to consider how SE
education and practice may deprive able people of opportunities, while giving
opportunities to those who might be less able or less suitable for learning and
practising software development. Summarising, the authors outline some of the
generic steps that, based on this paper’s analysis, are suggested to be followed: a)
Educating to instil SE knowledge; b) educating to develop the previously listed skills;
c) educating for comparing and selecting, and d) educating for thinking ethically and
professionally. Our future work will concentrate on further analysing the learning
needs and styles of future software developers and fully develop a proposal for a
breathing, multidisciplinary curriculum that could flexibly be specialised to
accommodate many different institutional needs when in need for innovation and
change. This proposal will contain the items and steps that were just outlined in the
last sections of this paper.

6 Acknowledgements

The authors would like to thank colleagues and students from all cultures and
countries in higher education and in industry from China, Greece, UK and Finland for
sharing their experiences and commenting on the issues discussed in this paper.

References

1. Berki, E. (2001). Establishing a scientific discipline for capturing the entropy of systems

process models: CDM-FILTERS - A Computational and Dynamic Metamodel as a Flexible
and Integrated Language for the Testing, Expression and Re-engineering of Systems. Ph. D.
thesis, Nov 2001. Faculty of Science, Computing & Engineering, University of North
London, London.

2. Berki, E., Georgiadou, E. & Holcombe, M. (2004). Requirements Engineering and Process
Modelling in Software Quality Management – Towards a Generic Process Metamodel. The
Software Quality Journal, 12, pp. 265-283, Apr. 2004. Kluwer Academic Publishers.

3. Berki, E. (2006). Examining the Quality of Evaluation Frameworks and Metamodeling
Paradigms of Information Systems Development Methodologies. Book Chapter. Duggan, E.
& Reichgelt, H. (Eds) Measuring Information Systems Delivery Quality. Pp. 265-289, Idea
Group Publishing: Hershey, PA, USA, Mar 2006.

4. Berki, E., Siakas, K. and Georgiadou, E. (2007). Agile Quality or Depth of Reasoning?
Applicability versus Suitability with Respect to Stakeholders' Needs. Book Chapter.
Stamelos, I. & Sfetsos, P. (Eds) Agile Software Development Quality Assurance. IRM Press
and Idea Group Publishing: Hershey, PA, USA. March 2007.

5. Berki, E., Isomäki, H. & Jäkälä, M. (2003). Holistic Communication Modelling: Enhancing
Human-Centred Design through Empowerment. Harris, D., Duffy, V., Smith, M.,
Stephanidis, C. (Eds) Cognitive, Social and Ergonomic Aspects, Vol 3 of HCI International,
22-27 Jun 2003, University of Crete at Heraklion, pp. 1208-1212, Lawrence Erlbaum
Associates Inc.

6. Jenkins, T. (1994). Report back on the DMSG sponsored UK Euromethod forum '94, Data
Management Bulletin, Summer Issue, 11, 3.

7. Cohen, L. Manion, L. & Morrison, K. (2003): Research Methods in Education. 5th Edition.
RoutledgeFalmer, London.

8. Dijkstra, E. W. (1981). The Correctness Problem in Computer Science. Academic Press.
9 . Lightfoot, D. (1991). Formal Specification using Z. Macmillan Press.
10. Diller, A. (1990). Z - An introduction to formal methods. John Wiley.
11. Siakas, K., Berki, E. & Georgiadou, E. (2003). CODE for SQM: A Model for Cultural and

Organisational Diversity Evaluation. Messnarz, R. & Jaritz, K. (Eds) EuroSPI 2003:
European Software Process Improvement, EuroSPI 2003 Proceedings, 10-12 Dec 2003,
Graz, Austria. Pp IX.1-11. Verlag der Technischen Universität: Graz.

12. Georgiadou, E., Siakas, K. & Berki, E. (2003). Quality Improvement through the
Identification of Controllable and Uncontrollable Factors in Software Development.
Messnarz, R. & Jaritz, K. (Eds) EuroSPI 2003: European Software Process Improvement,
EuroSPI 2003 Proceedings, 10-12 Dec 2003, Graz. Pp. IX 31-45. Verlag der Technischen
Universität: Graz.

13. Pressman, R. (1994). Software Engineering - A practitioner' s approach. McGraw-Hill,
European Edition.

14. Cooling, J. E. (1991). Software Design for Real-Time Systems. Chapman and Hall.
15. Mumford, E. & Weir, M. (1979). Computer Systems in Work Design - The ETHICS

Method. Associated Business Press.
16. Jackson, M. (1994). Problems, Methods and Specialisation. Software Engineering Journal,

Nov.
17. Manninen, A. & Berki, E. (2004). An Evaluation Framework for the Utilisation of

Requirements Management Tools - Maximising the Quality of Organisational
Communication and Collaboration. Edgar-Nevill, D., Ross, M. & Staples, G. (Eds) New
Approaches to Software Quality. Software Quality Management XII. Proceedings of BCS
Software Quality Management 2004 Conference, University of KENT at Canterbury, 5-7
Apr 2004. Pp. 139-160, British Computer Society: Swindon.

18. Fenton, N., Hill G. (1993). Systems construction and analysis. McGraw Hill.
19 Avison, D.E., Fitzgerald, G. (1995). Information Systems Development: Methodologies,

Techniques and Tools. McGraw-Hill.
20. Holcombe, M. and Ipate, F. (1998). Correct Systems - Building a Business Process Solution.

Springer-Verlag.
21. Stavridou, V. (1999). Integration in software intensive systems. The Journal of Systems and

Software 48, pp. 91-104.
22. Bowen J. et al. (1993). A compendium of formal techniques for software maintenance.

Software Engineering Journal, Sep.
23. Loucopoulos, P. & Champion, R.E.M. (1990). Concept acquisition and analysis for

requirements specification. Software Engineering Journal, Vol. 5, No. 2, pp. 116-124.
24. Rolland, C. (1999). From Conceptual Modelling to Requirements Engineering. Invited

Annual ACM talk. University of North London, May 19th.

25. Sutcliffe, A.G. and Maiden, N.A.M. (1993). Bridging the requirements gap: policies, goals
and domains. In the Proceedings of The 7th International Workshop on System Specification
and Design. IEEE Computer Society Press, pp. 52-55.

26. Portelli, J.P. (1987). On Defining Curriculum. Journal of Curriculum and Supervision. Vol.
2, no. 4, 354-367.

27. Longstreet, W.S. & Shane, H.G. (1993). Curriculum for a New Millennium. Boston: Allyn
& Bacon.

28. Marsh, C. (2004). Key Concepts for Understanding Curriculum. 3rd Edition. London:
RoutledgeFalmer.

29. Boud, D. & Felletti, G. (eds.) (1997). The Challenge of Problem-Based Learning. 2nd
edition. London: Kogan Page.

30. Gallagher, S. (1997). Problem-based learning: Where did it come from, what does it do, and
where is it going? Journal for the Education of the Gifted. Vol. 20, no. 4, 332-362.

31. Sternberg, R. & Ben-Zeev, T. (2001). Complex Cognition. The Psychology of Human
Thought. Oxford: Oxford University Press.

32. Sternberg, R.J. (1997). Thinking Styles. Cambridge: University Press.
33. Fisher, A. (2001). Critical Thinking: An Introduction. Cambridge: University Press.
34. Armarego, J. (2004). Towards achieving software engineering wisdom. Conference paper

available online at: www.herdsa.org.au/conference2004/contributions/RPapers/PO44-jt.pdf
(Date Retrieved: 19.10.2007).

