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Abstract. The suitability and applicability of formal (mathematical) methods 
for problem solving that targets to the construction of software-based systems 
has long been a controversial discourse in Software Engineering academic 
education. Additionally, experiences from using formal methods in real 
software development projects refer to very strong advantages and, at the same 
time, very strong disadvantages. In this paper, adopting a critical point of view, 
the authors examine the suitability and applicability of mathematical thinking in 
the traditional higher education context and in the challenges of modern 
software development. Discussing and broadly classifying a number of 
controversial opinions, the authors draw comparisons between classical 
educational perspectives and current higher education curricula and industrial 
training programmes. Analysing strengths and weaknesses, the authors provide 
insights and suggestions for improving mathematics learning. For further 
understanding of the generic skills and holistic knowledge required when 
applying formal methods to problem solving, the authors outline a 
multidisciplinary curricula framework as a thinking tool for educators. The 
latter offers a broad integrating basis of subjects and could serve for cases in 
software development where specialisation and generalisation are needed.  

Keywords: Software Development Methods (SDM); Formal Methods (FM); 
Critical Thinking; Creativity; Higher Education (HE) Academic Curricula; 
Problem-Based Learning (PBL) Skills 

1   Introduction 

The efficacy and suitability of the development methods used to design and produce 
software-based systems, e-services and information products do not seem to be 
comparable in effectiveness to the scientific methods that were used throughout the 



history of knowledge, science, and mathematics in particular [1]. Far from the 
pedagogical frameworks and social reality -supported, though, by Higher Education 
(HE) curricula and expensive industrial training programmes- the fragmented use of 
Software Development (SD) methods that are represented by mathematical notations 
brought about correct -to some extent- solutions; but with limited understanding and 
justification on doing so. This repeatable phenomenon over the last thirty, at least, 
years resulted in (i) further limited application of mathematics in SD, and in (ii) the 
view that Formal Methods (FM) are independent of any problem solving activities 
[1]. 

1.1   Background 

In the last forty years, SD, mainly being a problem solving process, employed a 
plethora of problem solving methods (Fig. 1), which are also called systems 
development methods. These, broadly classified, are: (i) soft methods for ill-defined 
situations - or soft problems- with no definite answers and (ii) hard methods for well-
defined situations -or hard problems- that require definite answers [2]. Two more 
categories exist: hybrid (e.g. Multiview) and specialised (e.g. for expert systems 
building) methods for contingency approaches and specialised situations, but with 
specialised and limited use. Figure 1, from [2], depicts a chronological evolution 
(1965-2000) of SD methods. 

Soft methods, such as Soft System Method (SSM) and Effective Technical and 
Human Implementation for Computer-based Systems (ETHICS), focus on human 
involvement in most of the steps of the system's development lifecycle. Hard methods 
such as structured (e.g. SSADM, STRADIS), object-oriented (O-O), formal (e.g. 
VDM, Z), and semi-formal (e.g. JSD) comprise many techniques and, sometimes, 
automated techniques in software tools. The latter are applied to consistently and 
precisely model a problem situation: state the requirements, define the needs and, 
above all formulate, specify and solve the domain-related problems in a specification 
language that can be understood and trusted.  

The subject of Methodology -the scientific study of all methods- has revealed, 
through classical and more recent comparative studies, plenty of advantages and 
disadvantages that make each method suitable for different problems and application 
domains (see e.g. [3, 4]). Formal methods, for instance, comprise mathematical 
expressions that are very concise since a great deal of meaning is concentrated in a 
relatively small number of symbols. Moreover, mathematical forms are said to be 
unambiguous and clear because of their independence from any cultural context and 
because they are self-contained. The latter were and continue being considered as 
strengths and strong advantages when describing a very complex system, i.e. safety-
critical, where detailed, trustworthy and testable specifications of the system 
components are needed. 
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Fig. 1: Thirty five (35) years of Software Development Methods  

On the other hand, independence from cultural context and non-ambiguity could be 
considered as disadvantages when a system, organisation or product contains detailed 
human activity. Therein, a less structured, O-O or semi-formal method might prove to 
be more applicable for the analysis, design and specification needs. Furthermore, 
most formal methods could be regarded as inadequate and unsuitable, considering that 
co-ordination activities for holistic communication modelling [5] do not exist during 
FM use in SD lifecycle stages. FM rather jump to specification and design, before any 
feasibility study or analysis of system requirements and human needs [1, 2] are 
carried out. Maintenance phase is also limited supported by FM. The degree of 
people's participation and especially the involvement of the end-user, who still 
remains the great unknown X in software development, is either limited or non-
existent in the FM paradigm. 

1.2 Research questions, approaches and paper structure 

The need for integration and standardisation in SD methods, techniques, tools and 
regional procurements on one hand, and the increased global competition and 
internationalisation of SD on the other, demand formally approved and generally 
understood high quality specification notations [3]. More than twenty years ago 
method and tool vendors, software markets, and software knowledge-based 
economies in Europe welcomed and supported Euromethod, a SD method(ology) 
standardisation project aiming at achieving integration and standardisation [6]. The -
yet unfinished- project, firstly and foremost selected and adopted structured methods' 
notations and techniques (largely diagrammatic) from all European countries' SD 
standards. The only formal specification technique adopted had been Petri-Nets from 
the French SD standard Merise - also a structured method. One could only question if 
the lack of tool support and, consequently, tool vendors were the only reasons to 
exclude FM from the so much promising European SD standard. 

Nowadays the new trends of Open Source Software Development (OSSD) and 
Agile Software Development (ASD) require to utilise formal method(ology) features 
and formal quality assurance. However, in ASD the question sometimes is “agile 
quality or depth of reasoning?” [4]. Moreover, having to face the dilemma of 
applicability versus suitability with respect to all stakeholders needs [4] one might 
then question how successful will formal method(ology) be to undertake the analysis 
and design challenges of modern SD. For these reasons, the research questions 
handled in this paper are: (i) what made formal method(ology) thinking so popular in 
the past? (ii) what eliminated it? and (iii) how could the use of formal methods be 
enhanced and increased in educational programmes and in future software 
development? 



For answering the previous questions, this paper examines the historical evolution 
and use of mathematics, based on a wide literature review, previous evaluations of 
formal methods, and personal experiences of the authors from many years action 
research in HE and in industry. The paper attempts a consistent analysis of the 
strengths and limitations of formal methodology, utilising research approaches from 
the critical research paradigm [7] as follows: a) Historical research for studying past 
developments in science-mediated learning and their implications on the scientific 
progress focusing on issues of mathematics learning and application, and their 
implications on learners empowerment. b) Discourse analysis considering studies of 
discourse practices in order to illuminate individual, social and cultural behaviours of 
mathematics learners in scientific communities. c) Action research for analysing and 
evaluating practices in SD, aimed at the improvement of available knowledge and 
skills in HE.  

From the critical point of view -in terms of ontology- this work first explores the 
reality of Mathematics learning in HE and mathematical knowledge application in 
SD, as unfolded through different opinions. Emphasis, therefore, is also on the 
powerful forces that shape the needs of SD and HE - though this is left out of the 
analysis scope of this paper. Second, the Mathematics learners' reality in HE is 
constructed through discourse communication that is comprised of (concrete or 
abstract) representations shaped by particular signifying systems, social contexts and 
power relations that take place in SD and HE communities. Both first and second 
issues are reflected in our data collection, which comprises many specialists' opinions 
analysed in the next sections.  

Thus, our main research objective is to deconstruct this reality and provide an 
improved understanding of signifying systems, socio-technical and cultural contexts, 
power relations, and the real-world contexts in which the latter are embedded. The 
authors’ role as future researchers will continue being active and motivating towards 
addressing the above issues by providing transparency and links to informed, 
committed and progressive action with a new HE curriculum, which is just outlined at 
section 4 of this paper. In terms of epistemology, it can be stated that the nature of 
meta-knowledge explored here emphasises that mathematical expertise offered in SD 
is an extension of knowledge and skills offered in the HE curricula. The curriculum 
meta-knowledge in HE institutes is bound to the interested groups (learners, educators 
and SD stakeholders, e.g. local and national industry) involved, and also to socio-
cultural and socio-technical constructs and constraints.  

2   Past, Present and Future: Praising and Questioning the Use of 
Formal Methods  

Naturally, by using mathematics in software design for requirements formal 
representation, there is little scope for misunderstanding between different groups of 
people (SD stakeholders) because a correct formulation of requirements specification 
can easily be examined for its correctness and errors can quickly, or at least timely, be 
identified. In [8] Dijkstra in 1981 stated that by its very nature responsible systems 
design and development in general - in short programming reliably - must be an 



activity of undeniably mathematical nature. However, he goes on to comment that by 
and large, "current mathematical style has been determined by fashion, and current 
mathematical notation by accident". The following sections present a collection of 
opinions that either reject or support these claims. 

2.1 Supportive and Non-supportive Statements on Formal Methods 

In Software Engineering (SE) community, it has often been supported that 
mathematical expressions have the advantage of being precise because they do not 
need contextual information. All information needed is encapsulated in relevant 
formulae and what is not needed is omitted [9, 10]. One, though, might question: are 
context, culture and language insignificant factors in software development? Should 
they not be taken into consideration at all, while solving problems and providing 
solutions, and software-based solutions in particular? Classical and recent research 
results show that organisational and national culture as well as language and 
background knowledge among systems stakeholders are critical success factors for 
software quality management, and for reliable and trustworthy software products (see 
e.g. [11, 12]).  

Apart from being -naturally among mathematicians- a shared belief that 
mathematical forms are independent of spoken (natural) language, it is arguably a fact 
that mathematical notations can, successfully, be used to express problem 
specification and achieve unambiguous solutions in software systems development. 
Software engineers [13, 14], however, hold a somewhat different opinion believing 
that there is more than specification and implementation to consider in software 
systems development and construction stages. Shortly the analysis, design, 
specification, implementation and maintenance of systems that require a high degree 
of reliability and are user-orientated form a problem solving and requirements 
communication process [15, 16, 17]. Pharmaceutical, defence, medical or safety 
critical systems, for instance, are exceptionally demanding systems in their analysis, 
and in the design of a software-based solution. The challenge is in considering both 
the number of end-users with their needs and activities and their safety-critical 
requirements that must be realised and supported by suitable and reliable software. 
Herein, no formal method alone, and furthermore no single SD method, neither hard 
nor soft (see section 1.1), is suitable to cover the system development and 
stakeholders’ needs. Notwithstanding, there is a need to employ a problem solving 
approach with subsequent holistic communication modelling (see [5]). 

The need -and must- for correct and reliable system specifications that are mapped 
to correct, and at the same time understandable, implementations and user interfaces 
has been a problem that software engineers constantly face. Within the context of 
software development methods, it is believed that the application of formal 
specification methods is a rigorous way to develop quality information systems [1, 
18] that bring about generally -but not holistically- acceptable solutions to human 
problems [5]. For instance, one of the aims of formal specification methods is to 
provide the ability to prove the correctness of representations. Correctness (see e.g. 
[8]) as a software quality property is -claimed to be- achievable only by the use of 
formal methods [1, 2, 8]. Correctness though, as a semantic definition, has many 



facets and is also related to the semantics, pragmatics and semiotics of the software 
developer's social and professional environment [1, 2, 5]. For instance, the concept of 
correctness -and not only- in SD can be related to ethical and professional correctness, 
a soft issue in SD. Formal methods, though, do not support particular values and 
norms of groups of individuals or people; FM do not support human and especially 
end-users’ involvement in SD [19]. Therefore, only other than formal methods could 
be utilised to achieve correctness in the previous context. These could be soft 
methods, especially ETHICS method [19], which emphasises the holistic nature of a 
system's design by supporting representative and consensus user participation as an 
ethical and professional meta-requirement of the SD process. 

On the other hand, these particular systemic and human needs -correctness, 
reliability, understandability- and the ways that everyone understands them, led many 
software developers and engineers to adopt an idiosyncratic approach to problem 
solving in SD and to the implementation of system specifications (see also [5, 19]). 
Adequacy of needs, and most importantly reliability, have had many facets and they 
are certainly related to the correct specification of stakeholders' requirements, in order 
to have an effective and functional software system. In the recent past of SD, problem 
specification often obeyed, without detailed analysis or design rationale, to rigid 
mathematical formulae, led probably by intuition, but not by critical thinking or 
creativity [1, 2]. Yet, there is no revolutionary or evolutionary change! That being a 
recent and ongoing thinking and SD tradition with formal methods, supported by and 
taught in academic curricula and realised in industrial training programmes, it is hard 
to be optimistic for progressive change and adoption of more participative SD 
approaches.  

2.2 Practical Problems with Known Formal Methods in Software 
Development 

Formal methods such as those mentioned in table 1, next, express systems properties, 
algorithms, data, events and functions in a rigorous mathematical way, which is not 
ambiguous. This family of methodological notations may be model-oriented that also 
include diagrams, or property-oriented that are mostly based on text reasoning 
descriptions.  

Certain forms of deductive reasoning are often used for quality assurance, although 
a formal testing procedure is utilised in a limited fashion. Moreover, there are formal 
methods developed for very specialised situations. For instance, with the exception of 
X-Machines and possibly FSMs from table 1, all ‘formal’ approaches to development 
concentrate on the coverage of the modelling needs of particular application domains. 
As can be seen from table 1 the limited availability of modelling tools, which by no 
means are widely used in industry or academy, also makes FM use even more 
difficult, especially when it comes to issues of formal testing procedures, test cases 
generation from specifications, computability, reverse engineering and re-engineering 
[1]. 



Table 1: Some formal methods with tool support used in software development 

Formal Methods Tool 
Support 

Z-Method Yes 
Vienna Development Method  

(VDM) 
No 

B-Method Yes 
Statecharts Yes 

Finite State Machines Limited 
Calculus of Communicating Systems 

(CCS) 
Yes 

Timed Calculus of Communicating 
Systems (TCCS) 

Yes 

Communicating Sequential Processes 
(CSP) 

Limited 

X-Machines Limited 
Object Z / Z++ Limited 
Temporal Logic Limited 

Petri Nets Limited 
 
Some formal methods such as process algebras e.g. CSP and CCS that are also 

used to model concurrency, and their versions (e.g. TCCS) involve diagrams more 
than others such as Z and VDM, for instance. The latter, used to model sequential 
systems, have been less expressive than their extensions. Z++ and Object Z, for 
instance, do have better expressability and applicability for domain specifics. 
Notations that describe a system’s behaviour expressively, are Petri-Nets (used in 
many cases to also model concurrent processes), Statecharts and Finite State 
Machines; these are model-based formalisms, also with adequate textual 
visualisations of abstraction [1]. 

Diagrammatic notations are used in SD because they provide a means of 
abstraction and, in certain cases, allow the behaviour of the system to be clarified 
through visualisation. This is the main reason why many of the formal methods have 
been extended in order to conform to the requirements of cognition considerations 
and further on tool development for their support and coding facilitation. Statecharts, 
Petri-Nets and Object Z are visual formalisms, which incorporate extensions to the 
previous concepts. Their mechanisms, though, are sometimes supported by classical 
Finite State Machines and State Transition Diagrams. These, as extensions were 
formally defined to augment the method’s expressability regarding the capture of 
dynamic and static aspects.  

In considering, though, behavioural properties of ‘data and process’ of a system, 
there is no mechanism to straightforwardly derive testable implementations from very 
often complex and too detailed specifications. The latter is a major weakness of FM, 
since in reality there should be direct implementations from computable business 
objectives! In this situation, B-Method, which is based on Abstract Machine Notation 
(AMN) and concepts from Temporal Logic, is a formalism with a wider application 
domain on specifying processes and systems inputs/outputs. However, X-Machines 



(Finite State Machines generalisations coupled with Z-Method) go even further to 
express diagrammatically data and process, to support the direct computability of 
specifications and facilitate their testing. Since this method (X-Machines) 
demonstrates the strengths of a model-based and property-oriented abstraction to 
specify systems requirements, makes it possible for the method to have a general 
applicability in many specialised application domains via the powerful and generic 
abstraction it possesses as a computational model [ see 1, 2, 3, 4, 20]. 

Thus, apart from problems associated to the mathematical, abstract nature of FM, 
there are plenty of more practical problems with well-known FM that are significant 
obstacles to grasp and use mathematical concepts as an embedded software tool and, 
therefore, as a thinking and learning tool. Notably, the absence of suitable modelling 
tools that enhance intuition, creativity and critical thinking skills from higher 
education and software development leads, unfortunately, to further fragmentation of 
mathematical thinking.  

2.3 The future of formal methods in the era of new SD trends 

Above all, the constant needs for modelling flexibly and understanding change in a 
computational [20] and integrated way [21] are, normally, requirements for the design 
of anything large and complex; here, the authors would like to add: as well as of small 
and simple functional products. The major challenge for the software developer today 
is, then, the following: with the maximum of peoples involvement, to utilise 
computational abstractions with precision and expressability in order to enable the 
modelling and realisation of the various systems aspects, and provide clear proof for 
having done so. Such meta-requirements of software development and specific 
considerations imply a different approach to the use of scientific and mathematical 
methods, and point to the careful choice of more appropriate and generally acceptable 
formal notations in software modelling.  

Nowadays the two, rather competitive, SD trends are Agile Methodology and Open 
Source (OS) movement. Both trends require software quality assurance techniques 
and procedures [3, 4] where it seems rather impossible to avoid the use of formal 
methods.  One of the issues relating to the use of formal methods in industry that is 
not frequently discussed -while it should be in reference to agile development- is that 
in practical software development it is rare for a set of requirements (and thus a 
model) to remain stable for anything other than small applications. Agile Manifesto 
itself praises most of the certain strengths of formal methodology, encouraging, at the 
same time, frequent feedback from all stakeholders –end-users in particular- involved 
in the software tool-facilitated development. Furthermore, agile processes are 
becoming very popular in the business world, while formal methods tend to ignore the 
business aspects [22] and they offer minimal user involvement and limited tool 
support. This is probably due to the complexity of mathematical notations, which 
require specialist knowledge and, therefore, might not be suitable for flexible and 
agile development processes. 

Open Source Software Development (OSSD) on the other hand, requires proven 
implementability of software architectures and model-based testing as well as re-
engineering and reverse engineering techniques for system and software quality 



assessment. In OSS, apart from the implementation artefacts, and regardless of the 
methods used, all analysis and design products and system components must be 
analysed and evaluated. In order to enable the latter, accurate methods and semantic 
definitions should be developed each serving generic and different scope and purpose. 

Formal methods' major drawback has been that they never supported the active role 
of the user [see e.g. 2, 3, 4, 5, 19, 22, 23]. Such pitfall is probably responsible for the 
unpopularity of formal method(ology) and the limited use. Considering human role in 
current software development, especially in ASD and OSSD, one might say that it is 
vital. Development and ASD in particular, cannot happen without end-users. In 
general, someone could observe that as software applications become more powerful, 
people and end-users in particular, become more knowledgeable and more 
demanding. Information system engineers are required to use acceptable development 
methods in order to design more detailed and understandable architectures that 
encapsulate highly desirable properties and a significant amount of information for 
further reuse.  

Another major drawback in the FM paradigm is that formal notations lack structure 
and, thus, make it difficult to manage the development of large systems. [22]. 
Regarding formal methods and structure (see also [22]), many of the formal methods 
mentioned in table 1 did not offer diagrams in their earlier versions; consequently 
their use was not supported by tools with graphical representation techniques. As can 
also be seen (Table 1) associated tools were utilised in a limited fashion since they 
mostly offered text-based descriptions, and therefore did not consider users’ and 
modellers’ cognitive skills, which are mainly taken into consideration with 
visualisation diagrams. Observing this creative and critical thinking process in 
modelling system and user requirements in SD, Loucopoulos and Champion in [23] 
state that capturing and verifying requirements are labour-intensive activities that 
demand skilful interchange between those that understand the problem domain and 
those that need to model the problem domain. [23]. 

3  From Classical Scientific Paradigms to a Re-structured 
Curriculum 

The belief of Dijkstra [8] about the fashionable choices of programming styles and 
accidental mathematical notations (section 2) had more strongly been expressed by 
Plato1 as follows: “I have hardly ever known a mathematician who was capable of 
reasoning”. Indeed, this seems to be a strong view expressed in Ancient Greece, 
where the study of mathematics had been an absolute 'must' in the then less complex 
and breathing curriculum, and where mathematical thinking pervaded many areas of 
public and private life2.  

                                                           
1 As quoted in N. Rose: “Mathematical Maxims and Minims” (Raleigh, N. C., 1988). 
2 The term Education in Ancient Greece meant teaching and learning, considering three broad 

subjects: Mathematics and Music for a healthy mind, and Gymnastics, that is physical 
exercise for a healthy body. All other sciences, subjects and arts were viewed and integrated 
through these.  



Throughout the centuries the integration of mathematics with other spheres of life 
and science such as Physics, Astronomy, Religion, Philosophy and Art had as main 
objective to achieve the highest abstraction and therefore purify the mind to view 
reality clearly and reasonably. Scientists, artists and philosophers should possess the 
so much nowadays required skills of hybrid managers in enterprises and hybrid 
software developers in OSSD and ASD. These multi-scientists or multidisciplinary 
hybrids had  (and have) to filter their scientific, artistic, political and philosophical 
thoughts through reasonable arguments and proofs in such a procedural and axiomatic 
way that anybody should be able to attend the sequence of the thinking pattern from 
its initial stimulus to the resulted outcome.  

The history of Science and Knowledge reveals that the most useful theoretical 
discoveries and applications were made by scientists whose main occupation was 
either in a different field or they were multi-agents of knowledge. It seems that their 
occupation and contact with different knowledge disciplines gave them the insight to 
have multiple view points for many specialised situations. Thus they were able to 
analyse and compare problems requirements, generalise and integrate them and 
finally synthesise and generalise solutions and the methods for achieving them. Since 
though science and knowledge became more and more specialised, it seems that only 
specialisation counted as a useful approach in problem solving and generalisation 
disappeared together with the ability to think, abstract and apply from the general to 
specific. This is reasonable, to some extent, since not everything is worth or possible 
to learn. It remains, however, difficult to think and apply from a very specialised 
situation to a general one, at least without problem solving guidance. 

Attempting to form guidelines and providing an outline for a SE curriculum in HE, 
suitable to learn and apply formal methods (mathematical thinking), we must 
recognise the following: Each problem is different and, therefore, requires different 
solutions [16]. The classification of problems has also led to a classification of 
general ways for solutions [24]. In the same way, the classification of systems and 
their environments led to generalised and integrated methods [1, 2, 3, 4, 5] applied to 
achieve and provide solutions for different classes of problems [25]; and, therefore, to 
offer different software-based products and services, under different people with 
different skills, expertise and competencies but with a common development aim. 

4 Mathematical Thinking in HE: from Stone to Jelly 
Curriculum 

An academic curriculum is a beforehand made description of what HE plans to do for 
the students, the industry and the society. It also is a tool to control the evaluation of 
learning and to guide instructors' actions. It is a negotiated product, whose definition 
is not an easy matter. Portelli in [26] in 1987 found over 120 definitions, and 
Longstreet and Shane in [27, p. 7] in year 1993 consider curriculum as a historical 
accident: “It has not been developed to accomplish a clear set of purposes. Rather, it 
has evolved as a response to the increasing complexity of educational decision 
making”. The danger is that curriculum is like a stone, hard to change it easily from 



stone to water. The real danger is to create and follow a hidden curriculum that brings 
down the designed and established one.  

Today the challenge in SD is to create an easily changeable and transparent 
curriculum. It is like nailing the jelly into the wall or like guiding water flow into new 
paths. For this reason it is time to consider some important curriculum questions (see 
also [28]): 

 
1. Are we developing a more relevant curriculum for software development students? 
2. Are we really addressing complex Computer Science (CS) and Software 

Engineering (SE) curricula dilemmas in a clear and unambiguous fashion? 
3. Are we becoming more successful at integrating theoretical issues and practical 

positions? 
 
Furthermore, we first and foremost have to consider the suitability of particular 

elements in the SE curriculum. The following sections outline some of the very basic 
elements and their explanation in relevance to mathematics teaching in HE. We find 
them important to transfer software development curricula from stone to jelly mode. 
Apart from being international and multidisciplinary, the features of such a 
curriculum should be that it is general and generic in terms of knowledge and 
specialised in acquiring the necessary skills. The main aim should be to educate 
computer scientists and software engineers with professional and ethical competence, 
offering them the necessary knowledge and skills and recognising individuals' 
thinking and learning styles. 

4.1 Problem-Based Learning (PBL): A Promising Way to Build SE Curricula  

Problem-based learning (PBL) or more precisely problem-focused education -because 
everything is not worth of learning and some problems are more important than 
others- is, according to Boud and Felletti in 1997 [29] the most promising 
pedagogical innovation within the last few decades. PBL in computer science and 
software engineering courses is based on the assumption that problems will motivate 
students to learn. According to Gallagher in 1997 [30] PBL supports the integration of 
meaningful problem solving into everyday classroom practice. It is apprenticeship for 
real-life problem solving. PBL is unique in its integral emphasis on core content along 
with problem solving. It allows for the integration of problem solving into the 
curriculum and removes problem solving from the realm of ancillary instruction. 
However, PBL does not have to be just a method of teaching mathematics. It can be a 
strategy to build the whole curriculum, and even a philosophy, a way of living, 
thinking and learning.  

According to [30] PBL requires changes in curriculum and in instruction. The 
curriculum is built around real-life problems, not fragmented, artificial subject 
matters. Educationally sound, carefully selected and well-constructed ill-structured 
problems need to become integrated within the curriculum. They must be appropriate 
for a particular curriculum with specific learning goals. A carefully constructed 
problem allows students to take over the job of setting a learning agenda and allows 
the instructor to spend class time focusing on other essential skills. Tutors and 
instructors have cognitive responsibilities including guiding the development of 



students´ sound questioning and reasoning by giving voice to the meta-cognitive 
questions and metamodelling skills. Tutor (or instructor) is also responsible for 
matching the challenge of the problem with the abilities of the students and ensuring 
that the pace of the problem solving allows students to achieve a reasonable resolution 
in a sensible period of time. By using meta-cognitive questioning and modelling good 
inquiry, the tutor reveals to students how professionals really approach similar 
problems. PBL curriculum and classroom engage students in qualitatively different 
kinds of learning. However, the change of curriculum from the traditional subject-
based to the problem-based is not easy for the current SE and CS tradition, students 
and instructors. The successful change of curriculum should not be based on the 
lessons of other institution but on the carefully tailored needs of the specific 
institution. 

4.2 Teaching Thinking Skills: Cognitivist versus situative ways  

In an effort to promote more meaningful learning, researchers and educators have 
developed programs for teaching thinking. A large part of their efforts have been 
dedicated to teaching metacognition, or thinking about thinking. Similarly, SE efforts 
have been concentrated in modelling about modelling, thinking in another level of 
abstraction. Metacognitive and metamodelling strategies help learners to become 
aware of their learning and professional strategies and own skills, and gain more 
control over the acquisition of substantive knowledge and modelling skills. 
Developing metacognitive skills is important because errors in reasoning and problem 
solving often arise from mindless biases [31, pp. 328-330]. 

We might, hereby, question if mathematical thinking should be taught as a separate 
subject or should it be integrated into traditional domain-specific SE classes? What is 
the role of cognitive psychology in teaching thinking? These questions lie at the core 
of the debate between two opposing camps. The cognitivist camp argues that 
cognitive psychology can contribute greatly to the understanding of educational 
practices by examining people´s problem-solving strategies and representations. The 
situative camp claims that cognitive psychology assumes that learning resides in the 
mind of the individual, instead of in the interaction between the individual and his or 
her environment. This camp encourages educators to turn ethnographic and 
sociological methods of investigating that do not separate cognition from the social 
context that the individual is a part of. Situative view argues that learning is tied to 
specific contexts and hence that learners have great difficulty transferring what they 
have learned from one domain to the next. [31, pp. 330-331]. 

The domain general view holds that thinking is a subject domain that should be 
studied on its own right. Students who take a course on thinking are expected to 
acquire general processes or strategies that can be applied to specific content domains. 
Teaching thinking from the general to the specific programs embraces the often-
cognitivist view that students would benefit from learning general reasoning and 
problem-solving skills that they can then apply to specific domains. These programs 
tend to be taught as separate courses and to emphasize both group and individual 
learning. In contrast, the domain specific view holds that thinking skills are best 
taught in a specific context or content area. These content rich strategies can be then 



applied to other areas, if there is an explicit effort to explicate how these areas are 
similar. Teaching thinking from the specific to the general programs embraces the 
often-situative view that students would benefit from learning reasoning and problem-
solving skills in a rich content domain that they then can apply to similar domains. 
These programs tend to be part of the regular curriculum rather than individual 
programs, and emphasize group over individual learning. [31, pp. 332-353]. Probably 
the best solution for teaching thinking skills with formal methods in SE curricula lies 
somewhere in the middle of these two extremes. 

4.3 Thinking styles: source of unexplained key factor for success and failure. 

How people prefer to think might be just as important as how well they think. The 
thinking styles approach tries to answer to the question: how we prefer to use the 
abilities we have? Sternberg in [31] argues that thinking styles are as important as, 
and arguably more important than abilities, no matter how broadly abilities are 
defined. Constructs of social, practical, and emotional intelligence expand our notions 
of what people can do. But the construct of style expands our notion of what people 
prefer to do, how they capitalize on the abilities they have. A style is a way of 
thinking. It is not an ability or skill, but rather, a preferred way of using the abilities 
one has. The distinction between style and ability is a crucial one. An ability or skill 
refers to how well someone can do something; but a style refers to how someone likes 
to do something. It is also crucial for adult education curricula designers to 
understand that we do not have a style, but rather a profile of styles. Understanding 
styles can help people better understand why some learning activities fit them and 
others do not. 

Crucial is also the match or mismatch between people´s styles and the tasks they 
are confronting. Different levels of schooling and different subject areas reward 
different styles, with the result that you can do better or worse as you go through 
school or job, depending on how your profile of styles matches up with what the 
environment expects and how the environment evaluates you. So HE institutions and 
organisations value certain ways of thinking more than others. And people whose 
ways of thinking do not match those valued by the institutions are usually penalized 
[31]. Mismatches become particularly serious when they occur in education or work 
setting. Issues of thinking and learning styles are important when building success for 
all students into the curriculum. If we do not take styles into account, we risk 
sacrificing some of the best mathematical minds and programming talents.  

4.4 Critical thinking 

Critical thinking is now widely seen as a basic competency, akin to reading and 
writing skills, which need to be taught. Critical thinking is a skilful activity, which 
meets standards of clarity, relevance, adequacy and, thus, is contrasted to unreflective 
thinking. According to Fisher in [33] critical thinking skills require the ability to 
interpret, analyse and evaluate ideas, arguments and observations. It also requires skill 
in thinking about assumptions, in asking pertinent questions, in drawing out 
implications, necessary skills for software development students and practitioners.  



Interestingly, while many claim that teach their students `how to think`, they would 
further explain that they achieve this indirectly or implicitly in a course of teaching 
content. Educators have come to doubt the effectiveness of teaching `thinking skills´ 
in this way, because most students simply do not pick up the thinking skills in 
questions. Many of course have become interested in teaching these skills directly. 
The aim is to teach transferable thinking skills explicitly and directly [33].  

4.5 Creativity 

Creativity is the ability to produce novel, high-quality, and task-appropriate products. 
At least eight (8) different approaches exist dealing with the study of creativity in [31, 
pp. 277-289]. Among them, the type of confluence creativity integrates other 
approaches to creativity. For PBL curriculum relevant to SE in HE we distinguish as 
directly relevant the following four: (i) Pragmatic, focusing on the use of creativity 
and how to increase creativity; (ii) cognitive, dealing with the information processing 
and mental representations underlying creativity; (iii) social-personal, emphasising 
the roles of other people and of personality traits as well as motivation; (iv) 
evolutionary, viewing creativity as an adaptation that enhances chances of survival in 
SD groups. 

5    Conclusive Remarks and Future Investigation  

Nowadays the role of mathematics -or formal specification methods- is, once more, a 
new old challenge. The discourse has become very controversial and the use of FM 
questionable as for their suitability and applicability to the area of software 
development. However, in the context of world-wide civilisations, cultures and 
religions, the recent history of science and mathematics has had plenty of successful 
applications and creative achievements through mathematical thinking. The latter, 
while demonstrating integrated abstract thinking and the interconnections of general 
problem solving and specialised solutions, do not necessarily come solely from 
mathematicians in profession, but rather from a multidisciplinary thinking and 
education and people with multidisciplinary and hybrid knowledge. 

In general, the use of formal methods for developing software-based systems did 
not lead to quality solutions in the past. It soon became clear that analysing and 
designing a system with formal methods offers some quality assurance regarding the 
development of unambiguous, consistent, correct and verified mathematically-proven 
specifications, but there were other issues raised. The most frequently mentioned 
problem that is associated with the use of most formal methods in SD is the 
unfriendly and fragmented approach, which prevents students’ and SD stakeholders’ 
wide understanding, and results in high costs for later training and prototype 
construction and testing. Consequently, one might ask: what education on formal 
methods are we trying to achieve?  

Broadly speaking the complementary knowledge offered should be based on 
cognitive psychology to develop intuition and creativity and on philosophy in order to 
develop thinking and reasoning skills through a problem-based framework. The 



importance of PBL in SE education is already well-known. Armarego' s work [34], 
for instance, has provided a detailed study on how a student-centred learning and 
innovative approach such as PBL can be put into practice successfully, taking into 
consideration the special educational needs and required changes of one institution. A 
wide range of critical thinking skills can also be acquired by providing a 
representative sample of methodological notations in an informative but comparative 
way of evaluating the different options. The further skills acquired can, for instance, 
be diagrammatic, thinking, analytical, design, modelling, reasoning, applicability and 
abstraction skills, to mention just a few.  

In practising and teaching formal methods, we need to take into account end-users’ 
and students’ thinking styles and preferences. There is also a need to consider how SE 
education and practice may deprive able people of opportunities, while giving 
opportunities to those who might be less able or less suitable for learning and 
practising software development. Summarising, the authors outline some of the 
generic steps that, based on this paper’s analysis, are suggested to be followed: a) 
Educating to instil SE knowledge; b) educating to develop the previously listed skills; 
c) educating for comparing and selecting, and d) educating for thinking ethically and 
professionally. Our future work will concentrate on further analysing the learning 
needs and styles of future software developers and fully develop a proposal for a 
breathing, multidisciplinary curriculum that could flexibly be specialised to 
accommodate many different institutional needs when in need for innovation and 
change. This proposal will contain the items and steps that were just outlined in the 
last sections of this paper. 
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