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Abstract  
The development of practical, localized algorithms is 
probably the most needed and most challenging task in 
wireless ad-hoc sensor networks (WASNs). Localized algo-
rithms are a special type of distributed algorithms where 
only a subset of nodes in the WASN participate in sensing, 
communication, and computation. We have developed a 
generic localized algorithm for solving optimization prob-
lems in wireless ad-hoc networks that has five components: 
(i) data acquisition mechanism, (ii) optimization mecha-
nism, (iii) search expansion rules, (iv) bounding conditions, 
and (v) termination rules. The main idea is to request and 
process data only locally and only from nodes who are 
likely to contribute to rapid formation of the final solution. 

The approach enables two types of optimization: The first, 
guarantees the fraction of nodes that are contacted while 
optimizing for solution quality. The second, provides guar-
antees on solution quality while minimizing the number of 
nodes that are contacted and/or amount of communication. 
This localized optimization approach is applied to two fun-
damental problems in sensor networks: location discovery 
and exposure-based coverage. We demonstrate its effective-
ness on a number of examples.  

I. INTRODUCTION 

A. Motivation 
Wireless ad-hoc sensor networks (WASNs) have emerged 
as a premier research and development direction in the last 
several years. This strong activity impetus is due to strong 
and convincing reasons provided by both economic and 
scientific potential. From the economic viewpoint WASNs 
provide the potential for both superior business models as 
well as a jump in the quality of personal life. For example, it 

is easy to envision scenarios where work and living spaces 
are instrumented with sensors in such a way that one can 
customize, optimize, and personalize how the environment 
is used. From the scientific point of view, sensors represent 
the last missing link between the Internet and the physical 
world. In addition, sensor networks can greatly enhance 
social science though improved and significantly more accu-
rate monitoring of individuals and groups. 

There is a wide consensus that probably the most needed 
and most challenging component of wireless ad-hoc sensor 
networks is the development of practical localized algo-
rithms. Localized algorithms are necessary for a number of 
reasons: First, the relative communication delay in sensor 
networks is significantly larger than in traditional computa-
tional systems. It is interesting to note that in modern deep 
submicron (DSM) designs, delay on a single system on chip 
will be up to 20 clock cycles. However, even the fastest 
communication protocols in WASNs will have delays in 
millions of cycles. Furthermore, communication generally 
dominates both sensing and computation in terms of energy 
(currently, image/video sensors are exceptions). Again, it is 
interesting to draw parallels with DSM designs. In DSM, 
communication will also dominate power consumption, 
maybe eventually by as high as a 10:1 ratio with respect to 
computations. In WASNs, technology trends are much more 
difficult to predict, but at least in current and pending tech-
nologies, this ratio is much higher, often estimated at 
1000:1. In addition, due to their wide deployment and rela-
tively high cost of servicing, we can expect that fault toler-
ance will be essentially mandatory for large scale WASNs. 
In any case, it is reasonable to expect that at least some 
nodes will exhaust their energy supply. Thus, expecting that 
all nodes will always be able to communicate and compute 
is not realistic. Even if latency (real-time constraints), 
power, and fault tolerance were not an issue, very often se-
curity and privacy issues will mandate that only a subset of 
nodes is participating in a task. Sensor nodes are often de-
ployed outside strictly controlled environments, they com-
municate using wireless media, and hence will be highly 
susceptible to security attacks. Finally, as WASNs evolve 
into the Internet-like scale and organization and span the 
whole Earth and beyond, eventually, the only realistic pos-
sibility for all tasks will be execution in highly localized 
scenarios. 
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Distributed algorithms, and even distributed sensor net-
works algorithms, have been addressed in the past, often in 
great detail. However, the advent of the new generations of 
wireless ad-hoc sensor networks not only attract new atten-
tion, but also require completely new approaches. It is inter-
esting and important to analyze why the already available 
distributed algorithm techniques are not applicable to wire-
less ad-hoc sensor networks. There are at least five major 
reasons: (i) WASNs are intrinsically related to the physical, 
geometric world and therefore have very special properties. 
(ii) Relative communication costs are much higher than they 
were assumed in all previous distributed computing re-
search. (iii) Accuracy of physical measurements is intrinsi-
cally limited and therefore, there is little advantage on 
insisting on completely accurate computation. (iv) Power is 
probably the single most important limiting factor. (v) Fi-
nally, and maybe most importantly, data acquisition is natu-
rally distributed and unpredictable, implying a strong need 
for new sensing, computation, and communication models. 

We have developed a generic localized algorithm for solv-
ing optimization problems in wireless ad-hoc networks. The 
key idea is to request and process data only at the node 
which requested a task and some limited number of nodes 
that are geographically close. More specifically, the goal is 
to communicate only with nodes that are likely to contribute 
to rapid formation of the final solution. The approach natu-
rally enables two types of optimization. In the first, one is 
able to provide that the amount of communication is within 
user specified bounds in terms of the number of nodes that 
are contacted, how many times communication is con-
ducted, or which nodes are contacted (e.g. in the case when 
security and privacy is of the prime importance). The goal 
under these constraints is to obtain a solution that is as close 
to optimal as possible. The second case is the dual problem 
of the first: Quality of solution is within the user specified 
bounds while communication is minimized. 

We apply this approach to two fundamental problems in 
sensor networks, namely location discovery and exposure. 
We selected these two problems as driver examples not just 
because of their importance for proper operation of a 
WASN, but also because of their very different nature. For 
example, it is much easier to determine when to terminate 
the search in location discovery than in exposure. The expo-
sure problem, defined as an integral over a path, is intrinsi-
cally global. On the other hand, it is well known that loca-
tion discovery is very error sensitive and therefore poses 
unique challenges along that line. 

B. Paper Organization 
This paper is organized as follows: In the next section, we 
provide an overview of the related work on localized algo-
rithms, location discovery in wireless networks, and cover-
age in sensor networks. In Section III we present the generic 
localized algorithm framework. Section IV contains the 
technical preliminaries, assumptions, and background in-

formation that pertain to the technical discussions in Section 
V and VI. In Section V we present the Localized Location 
Discovery and in Section VI the Localized Minimal Expo-
sure Path algorithms. In Section VII we present several ex-
perimental results and analysis followed by the conclusion. 

II. RELATED WORK 
Recently, wireless sensor networks have been attracting a 
great deal of commercial and research interest. Ad-hoc net-
works in general, and ad-hoc sensor networks in particular, 
have no fixed infrastructure and therefore can be deployed 
and adapted very rapidly. Furthermore, the integration of 
inexpensive, power efficient and reliable sensors in nodes of 
traditional wireless ad-hoc networks, with significant com-
putational and communication resources, has opened the 
door to new research and engineering opportunities. A num-
ber of high profile applications for wireless sensor networks 
have been proposed [Ten00, Est00]. At the same time, wire-
less sensor networks pose a number of demanding new 
technical problems, including the need for new DSP algo-
rithms [Pot00], operating systems [Adj99], low power de-
sign [Abi00], and integration with biological systems 
[Abe00]. 

A. Distributed and Localized Algorithms 
Distributed algorithms and architectures has been a com-
monly used term for a long time in computer science. There 
are at least six large computer science communities which 
address specific types of distributed algorithms and architec-
tures: traditional theoretical computer science community 
[Gal83, Lam78] and in particular computational models and 
languages communities [Hoa85, Mil89], parallel computa-
tion community, distributed algorithms community [Lyn96, 
Ray88, Tel94, Lam90], distributed artificial intelligence 
[Dur89, Rum86], operating systems [Ben93, Kis92]  and 
client-server research and development community 
[Dow98]. Unfortunately none of the already proposed ap-
proaches are applicable to wireless ad-hoc networks. For 
example, parallel computation research is mainly concerned 
with exploiting concurrency. In addition distributed sensing 
has been a popular topic for at least two decades [MIT82]. 
There are also a number of wireless networks related efforts 
in development of efficient distributed algorithms [Bad93].  

In order to address the needs of distributed computing in 
wireless ad-hoc sensor networks, one has to address how 
key goals, such as power minimization, low latency, secu-
rity and privacy, are affected by the algorithms used. De-
pending on what the primary optimization goals are, differ-
ent distributed communication and computation models are 
appropriate. However, some common denominators are al-
most always present. They include high relative cost of 
communication to computation, need to take communication 
and routing protocols into account, and importance of secu-
rity and privacy.  
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B. Location Discovery 
Knowledge of physical locations of sensor nodes is essential 
for many applications for which wireless sensor networks 
can be used. Examples of such applications are target track-
ing [Int00] and coverage management [Meg01a, Meg01b]. 
Importance of the location information for effective opera-
tion of sensor networks was recognized as an important 
problem and several solutions have been proposed. 

In [Sav01a] and [Beu99] sensor nodes are equipped with 
Pico Radios with a transmission range of up to 10m. Nodes, 
whose locations are known in advance, serve as reference 
points for other nodes. A node approximates its position 
based on estimated distances to three or more reference 
points. It is not necessary that the reference points reach 
every node in the network. Each reference point initializes a 
process of cooperative ranging where a partial topology of 
the network, with that reference point as the origin, is 
propagated through the network. Consequently, each node 
can determine its distance to a reference point from the ac-
quired topology. Typically, with three or more distances to 
reference points, a node can determine its location by multi-
lateration. One method used to approximate distances be-
tween neighboring nodes is using Received Signal Strength 
Indicator (RSSI) measurements. RSSI measurements are 
inaccurate and can result in errors up to 50% of the meas-
ured distance. To reduce the effects of this error, nodes es-
timate their positions by measuring distances to as many 
reference points as possible. This has been shown to reduce 
the node location errors to less than 5% in certain cases. 

In [Bul00] RSSI measurements are not used due to their 
imprecision. There, when a reference node sends a message, 
a receiving node only concludes that the distance between 
the two nodes is shorter than the transmission range of the 
reference node. The reference nodes are positioned in prede-
fined locations. Under this framework, the position of a 
node is estimated as the centroid of all reference nodes that 
the node can hear from. 

An alternative approach to distance estimation presented in 
[Sav01b] is measuring the time difference of arrival (TDoA) 
between radio and ultrasound signals. Currently, this tech-
nique is limited by the short range of ultrasound (up to 3m 
as reported in [Sav01b]) and by a lower capability of ultra-
sound in penetrating obstacles in the signal path. As in pre-
vious cases, reference nodes have their locations predefined 
or estimated using GPS receivers. After the nodes estimate 
the distances, a distributed process of iterative multilatera-
tion starts, where each node that estimates its location be-
comes a reference point for other nodes. This process allows 
for a maximal number of nodes to approximate their loca-
tion having only a minimal number of initial reference 
nodes. 

C. Coverage 
Several different coverage formulations arise naturally in 
many domains. The Art Gallery Problem for example, deals 
with determining the number of observers necessary to 
cover an art gallery room such that every point is seen by at 
least one observer. This problem has several applications 
such as for optimal antenna placement problems in wireless 
communication. The Art Gallery problem was solved opti-
mally in 2D [ORo92] and was shown to be NP-hard in the 
3D case. Reference [Kan00] describes a general systematic 
method for developing a sensor network for monitoring 
complex systems such as a nuclear power plant. Coverage 
studies to maintain connectivity in a wireless network have 
also been the focus of study for many years. For example, 
[Lie98] calculates the optimum number of base stations re-
quired to achieve certain service objectives. The connec-
tivity coverage is even more important in the case of ad-hoc 
wireless networks since the connections are peer-to-peer. 
Reference [Has97] shows the improvement in the network 
coverage due to multi-hop routing features and optimizes 
the coverage constraint with a limited path length. 

References [Meg01a] and [Meg01b] present several formu-
lations of sensor coverage in sensor networks. The formula-
tions include calculations based on best- and worst-case 
coverages for agents moving in a sensor field and exposure-
based methods. In the best- and worst-case formulations, the 
distance to the closest sensors are of importance while in 
exposure-based methods the detection probability (ob-
servability) in the sensor field is represented by a path- and 
speed-dependent integral of multiple sensor intensities. 

III. GENERIC LOCALIZED ALGORITHMS 
In this section, we very briefly and in general terms intro-
duce the generic localized algorithm. The objective of the 
section is just to introduce the main ideas. These ideas are 
explained in much more tangible ways in the next sections 
where we apply them to two important WASN problems: 
location discovery and exposure-based coverage. 

We have developed a generic localized algorithm for solv-
ing optimization problems in wireless ad-hoc networks. As 
stated earlier, the technique has five components: (i) data 
acquisition mechanism, (ii) optimization mechanism, (iii) 
search expansion rules, (iv) bounding conditions, and (v) 
termination rules. The data acquisition mechanism facili-
tates which sensed data is obtained from which node. The 
optimization mechanism provides a partial or complete solu-
tion to the targeted task. Search expansion rules indicate 
which nodes are best to contact next. Bounding conditions 
indicate which nodes should not be considered further, since 
information that they have is irrelevant for the final solution. 
Finally, termination criteria indicate when search expansion 
and optimization mechanism can be halted. 
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The idea is to request and process data only locally and only 
from nodes who are likely to contribute to both final solu-
tion as well as to provide good bounds to determine non-
promising search directions. It is important to note that ini-
tialization may start from a single point (as in the case of 
minimal exposure path coverage) or multiple points (as in 
the case of location discovery). In the second case, the 
search is continued simultaneously on more than one cluster 
of communicating nodes. Note that the clusters can overlap. 

The approach enables two types of optimization. In the first, 
one guarantees the percentage of nodes that are contacted, 
while trying to optimize the quality of solution. In the sec-
ond, one provides guarantees on the quality of solution, 
while minimizing the number of nodes that are contacted 
and/or amount of communication. The approach can be 
summarized using the following pseudo-code: 

Generic Localized Optimization Procedure 
Initiate Search; 
Request Information from Neighbors; 
While (termination criteria = NO) { 
 Form Partial Solution; 
 Decide which Nodes to Contact; 
 Decide which Nodes to Terminate; 
 Contact Selected Nodes; 
} 

There are two initiation steps which start the search at single 
or multiple locations. After that we enter a loop. The termi-
nation criteria are user specified and count either the number 
of contacted nodes or measures amount of communication 
in one case or how far we are from the final solution in the 
other case. The first step in the loop is to form or elaborate 
on partial solutions with the available information. The 
solution is next analyzed in terms of its distance from opti-
mal and which direction (sensor nodes) should be contacted 
next. After that we terminate the search along all lines that 
will not yield the final optimal solution, governed by the 
bounding conditions. 

IV. TECHNICAL PRELIMINARIES 

A. Location Discovery 
In the localized location discovery algorithm we use multi-
lateration as an atomic procedure. Consider the simple ex-
ample depicted in Figure 1. Node 0 can estimate its location 
based on information received from nodes 1, 2, 3, and 4. 
These nodes send estimates of their locations to node 0. We 
refer to the nodes that send an estimate of their locations as 
beacons. Beacons can acquire their location information 
either from previous multilateration procedures or from 
other sources such as GPS. Distances can be estimated using 
either RSSI measurements [Sav01a], ultrasound measure-
ments [Gir01], or a combination of both [Sav01b]. 

To estimate the location of a node we compute the local 
minimum of the function L2, express as: 
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where Di is the approximate distance between the estimated 
location of node i and the location (x,y) and Ri0 represents 
the RSSI- (or other) based estimate of the distance between 
node i and node 0. We compute the local minimum for L2 
using exhaustive search in a region that depends on the posi-
tions of the beacons and the distance measurements. 
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Figure 1. Multilateration Example 

B. Coverage and Exposure 
The exposure framework we use for the localized coverage 
computation is adopted from [Meg01b]. In order to make 
our discussion self contained, here we briefly state a sum-
mary of the important definitions and details of exposure-
based coverage calculations. For a sensor s, the sensing 
model S at an arbitrary point p is: 

[ ]Kpsd
psS

),(
),( λ=  

where d(s,p) is the Euclidean distance between the sensor s 
and the point p, and positive constants λ and K are sensor 
technology dependent parameters. We must note here that 
this sensing model is mainly for experimentation purposes 
only. The only real requirement for the sensing model for 
exposure calculations is that it be non-negative and defined 
at every point in the field. The sensor field intensity model 
used for the localized algorithm is essentially the All-Sensor 
Field Intensity model IA(p) as defined in [Meg01b], with the 
exception that each node performing the computation may 
not have knowledge of the entire sensor set. Thus, each 
node sj computes the sensor field intensity I(p) as: 
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where nj is the total number of sensors (and si corresponds 
to each sensor) that sj is aware of. As defined in [Meg01b], 
the exposure for an object O in the sensor field during the 
interval [t1,t2] along the path p(t) is: 
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C. Voronoi Diagram, Delaunay Triangulation 
In 2D, the Voronoi diagram of a set of discrete sites (points) 
partitions the plane into a set of convex polygons such that 
all points inside a polygon are closest to only one site. Ref-
erence [Aur91] presents a detailed survey of Voronoi dia-
grams and their applications in many domains. Delaunay 
triangulations are directly related to Voronoi diagrams and 
can be constructed by connecting the sites whose Voronoi 
polygons share a common edge. Neighborhood information 
can be extracted from the Delaunay triangulation since sites 
that are close together are connected. In fact the Delaunay 
triangulation can be used to find the closest neighbor for 
each site. For localized exposure calculations, we refer to 
nodes that are connected in the Delaunay triangulation as 
neighbors. Note that Delaunay neighbors are not necessarily 
network neighbors and may not be in communication range 
of each other. 

V. LOCATION DISCOVERY 
From the basic mechanism of multilateration described in 
Section IV we see that a node requires only information 
about the locations of its neighbors, but not the other nodes 
in the network to make an initial estimate of its own loca-
tion. This property of multilateration makes the location 
discovery problem a prime candidate for localized imple-
mentation. We make two assumptions: (i) all nodes know 
their neighbors, and (ii) all messages are received correctly. 

The theoretical background for distributed algorithms for 
localization is established in great detail in [Sav01a] and 
[Sav01b]. The localized location discovery algorithm pro-
posed here is one of the possible approaches to collaborative 
location discovery. What is unique in our algorithm is that 
we specify in which order nodes in a network should esti-
mate their locations such that location errors are reduced. 
Instead of accepting the result of a first trilateration as its 
final location, a node continues to accept location informa-
tion from other nodes and adjust its position estimate. 

If the node has more than three neighbors, it can select dif-
ferent groups of three nodes for each trilateration. If more 
than one trilateration is performed, an estimate of the loca-
tion of a node is computed as the center of mass of the all 
generated locations. When selecting nodes that should be 
first to estimate their locations we specify the priority as 
follows: 

1) Nodes whose locations generated by trilateration proce-
dures are more consistent measured by the variance of the 
locations relative to the center of the mass of the locations; 

2) Nodes whose majority of neighbors have already ac-
cepted their estimated locations and became reference points 
for other nodes. 

Procedure Localized_Location_Discovery { 
1. Initialization 
If (gotGPS)  
 finalLocation = GPS location ; gotFinal = true;  orphan =false; 
Else If (number of neighbors >= 3)  
 gotFinal = false;  orphan = false 
Else  
 gotFinal=false; orphan=true 
 

Broadcast M(transmit power); 
For each received message M  
 calculate distance; 
While (NOT (each node in neighborhood gotFinal||orphan)) 
    2. Location information exchange 
    Broadcast M(gotFinal,orphan,location if any); 
    For each received message 
  record (gotFinal,orphan,location) 
    N=number of neighbors; 
    K=number of neighbors with location 
    O=neighbors orphans 
    If (N –O < 3 AND !gotFinal) orphan = true; 
 If (K<3 OR gotFinal OR orphan)go to 4 
 

    3. Trilateration 
    For (i = 1 to #attempts) 
     randomly select three nodes with locations 
     L(i) = trilateration(locations of selected nodes) 
    L = center of mass(Li); 
    calculate OF 

    4. Objective function comparison  
    If (gotFinal OR orphan) OF = MAX_INT 
    Else If (K<3) OF = MAX_INT-1; 
    Broadcast OF 
    If (gotFinal OR orphan) continue 
 For each received message record OF 
    If (OF lower than all neighbors’ OFs)  
        If (OF == MAX_INT-1) orphan = true; 
        Else gotFinal = true; accept location; 

Figure 2. Localized Location Discovery Algorithm 

We use an objective function to evaluate these two proper-
ties of a node and its estimated location. Once nodes evalu-
ate their objective functions they compare them with the 
values reported by the nodes within a predefined number of 
hops. In the centralized algorithm we can compare the val-
ues of the objective function for all nodes. Figure 2 lists the 
pseudo code of the localized algorithm where only 
neighbors within transmission range compare their values. If 
the value of the objective function for a node is lower than 
the values of all its neighbors, the node accepts its estimated 
position and becomes a reference point. Other nodes then 
start new rounds of multilaterations. 

The algorithm presented in Figure 2 applies the generic 
localized procedure from Section III by limiting the area 
where the values of the objective function are compared to 
the one-hop neighborhood of a node. The algorithm contains 
four parts: 

(1) Initialization: In the initialization part, the nodes ex-
change messages that may include the transmit power for 
that message, so receivers can use RSSI measurements to 
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estimate the distance to the sender. Nodes also initialize 
Boolean variables they use to inform their neighbors about 
their connectivity to the network. If a node has less than 
three neighbors and does not have a GPS-receiver, it cannot 
determine its location. Such a node sets its orphan flag to be 
true, and sends it to its neighbors in the following steps of 
the algorithm. Thus the neighbors will know that they 
should not expect any location information from that node. 
A node that determines the final estimate of its location, 
either by having a GPS-receiver or through the trilateration 
mechanism, sets gotFinal to true. The algorithm for a node 
halts when all the nodes within one hop, including the node 
itself, set either gotFinal or orphan to true.  

(2) Information exchange: Each node receives messages 
from its neighbors about their state, and a location estimate, 
if any. If a node that still does not have its final location 
determines that only two or fewer of its neighbors are not 
orphans, it becomes an orphan, since it will not be able to 
estimate its location through trilateration. 

(3) Trilateration: Once a node receives estimated locations 
from the neighbors that have that information available and 
it estimates the distances to its neighbors, the node performs 
a number of trilaterations. The number of trilaterations de-
pends on the number of neighbors with locations (reference 
points). For each trilateration, the neighboring reference 
nodes are chosen randomly. Each trilateration produces one 
estimate for the location of the node. At the end of this step, 
a node determines an estimate of its location as a center of 
mass of the locations generated by all trilaterations. Each 
node then calculates the value of its objective function. The 
purpose of the objective function is to determine the order in 
which the nodes should accept the estimates of their loca-
tions. The objective function evaluates the properties of a 
node: consistency of the estimates by measuring the vari-
ance of the trilateration-generated estimates relative to their 
center of the mass, and a percentage of the neighbors that 
already estimated their locations. The second property en-
sures that the nodes that cannot get many new information 
updates, estimate their locations before the nodes that may 
get a significant number of new neighbors to be included in 
trilaterations. 

(4) Objective function comparison: After the objective func-
tions are calculated, the neighbors exchange their values. 
Only nodes whose objective function value is lower than all 
values announced by their neighbors will accept the esti-
mates from the previous step as their locations. All other 
nodes discard their estimates. A node terminates the algo-
rithm when its location is determined or the node becomes 
an orphan and each of the neighbors are in one of those two 
states. Since in every pass of the algorithm at least one node 
either gets its location or becomes an orphan, the algorithm 
always terminates. 

VI. EXPOSURE  
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Figure 3. Overview of the Localized Minimal 

Exposure Path algorithm. 

To introduce the localized exposure-based coverage algo-
rithm, we start by presenting an overview of the computa-
tion. Consider the sensor network instance presented in Fig-
ure 3. Each dark circle represents a sensor node in the field. 
The problem we are trying to solve is finding the Minimal 
Exposure Path from a given initial point I to a destination 
point D. The Minimal Exposure Path PminE is a path in the 
sensor field that connects the arbitrary points I and D, along 
which the total exposure E(PminE) is minimized. Reference 
[Meg01b] presents a detailed discussion on exposure formu-
lations and their application in characterizing coverage in 
sensor networks, as well as a centralized algorithm for find-
ing PminE. Here, our goal is to provide a framework for a 
localized implementation of the Minimal Exposure Path 
algorithm. The essential underlying factor that necessitates 
the design and use of a localized algorithm as opposed to the 
centralized one is that often, in ad-hoc environments, each 
node may not have complete information about all other 
nodes in the network. The only assumption that we make is 
that nodes know the position of their immediate (Delaunay) 
neighbors. Hence, the formal problem statement becomes: 

Given: A field A instrumented with sensors S; Areas I and D 
corresponding to initial (I) and destination (D) locations of 
the agent. 

Problem: Identify PminE(I,D), the minimal exposure path  
starting in I and ending in D. 

Localization Assumption: Each node si∈ S is assumed to 
have the location information about itself and its immediate 
neighbors, i.e. all nodes that are in neighboring Voronoi 
polygons (Delaunay neighbors). 
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Note that each node si∈ S may have knowledge of many 
other, potentially all other, nodes in S. In certain cases, 
nodes that are far apart (relative to the communication 
range) may be Delaunay neighbors. In such cases the algo-
rithm will still work and the specific implementation may 
choose to ignore such neighbors that are far apart since their 
discovery may be too costly. Although this design decision 
may result in globally sub optimal solutions, it generally 
will not effect the optimality of the localized algorithm (lo-
cal results).  

Dividing the space for the purpose of localization is the first 
task in designing the Minimal Exposure Path algorithm. 
Several potential strategies include the use of a global grid, 
circular regions around each node, and the Voronoi Diagram 
corresponding to the sensor nodes. As shown in Figure 3, 
we opt to use the Voronoi Diagram to partition the sensor 
field such that each sensor node si is responsible for expo-
sure calculations in its Voronoi polygon VPi. Such a parti-
tioning has several advantages: 

1) Only one sensor can exist in each polygon VPi therefore 
eliminating multiple, possibly different, exposure esti-
mations in a specific region in the field.  

2) Each node can compute its Voronoi polygon efficiently, 
knowing only the locations of its immediate neighbors 
(Localization Assumption). 

3) Areas of higher node density are naturally divided with 
more polygons (smaller) hence increasing the computa-
tion granularity where it is needed most. 

One of the drawbacks of using the Voronoi based field 
partitioning is that potentially, a single node may be 
responsible for servicing the computation for a physically 
larger area compared to another node in a denser region. 
The larger Voronoi polygon results in a potentially higher 
number of requests processed by the node since on average, 
more minimal exposure paths are likely to traverse larger 
polygons than smaller ones. Such issues are important when 
considering performance metrics like balanced computation 
workloads among sensor nodes and optimal energy con-
sumption and their study will be the focus of future research 
efforts. 

Now that we have established the partitioning method of the 
field and the sensor nodes responsible for each region, we 
can focus on the details of finding PminE. First, let us briefly 
review the framework for calculating path exposures within 
the Voronoi Polygon VPi of a sensor node si. Since the 
space is continuous and the exposure integral does not have 
simple analytic solutions, we use numerical methods and a 
generalized grid, similar to what is presented in [Meg01b]. 
The generalized grid consists of regular squares that span 
the VPi, with the addition that each square has a finite num-
ber of divisions along each edge. The algorithm constructs 
the graph Gi corresponding to the grid covering VPi while in 
each grid square, the division points along each edge are 

connected to all other division points in the square. This is 
to ensure that path movements are not restricted to only 
horizontal, vertical, and diagonal directions. The exposure 
integral along each line-segment is approximated using nu-
merical techniques and is assigned as the weight to the cor-
responding edge in the graph. The minimal exposure paths 
can be calculated from each point to every other point on the 
boundary of the polygon VPi using the Floyd-Warshall All-
Pairs-Shortest-Paths algorithm or generalized forms of 
Dijkstra’s Shortest-Path algorithm [Cor90] (dynamic pro-
gramming). The grid resolution parameters play an impor-
tant role in the optimality of the solutions. Increasing the 
grid detail will yield higher quality solutions at the cost of 
higher processing, storage, and energy consumption. 

To compute the point-to-point exposure (PPE) along a path 
segment, we need the sensor field intensities I(p) along the 
path. As stated in the localization assumption, each node si 
has the location information of its neighbors and thus can 
approximate I(p). Clearly, if node si has location informa-
tion of other active nodes in the sensor field, it will include 
them in the intensity function thus increasing the accuracy 
of results. In practical instances, sensor nodes that are far 
away do not contribute significantly to the sensing intensity 
I(p).  

To describe the node interactions during the minimal expo-
sure path computation, we now focus on the different cases 
that each node must handle. We categorize the algorithm 
tasks into four cases: 

1) Path_request: Node si receives a request from an 
agent to find PminE  from I to D .  

2) Edge_update: Node si receives an update notifica-
tion from a neighbor to continue “search” for 
PminE(I,D). 

3) Abort_update: Aborting conditions notification. 

4) Dest_update: Destination reached notification.  

Path_request: The path_request query generated by an 
agent contains the initial location I and the destination loca-
tion D. This query is initially received and handled by the 
node closest to I which we call si. Node si then computes the 
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Figure 4. An Edge Exposure Profile (EP) Example 
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minimal PPEs from I to points along the VPi boundary 
edges and thus builds the initial Exposure Profile (EP) for 
each boundary edge. There are several ways of encoding 
and sending the EPs: curve fitting, various data-
compression techniques, and using discrete values at spe-
cific intervals. As shown in Figure 4, we use the latter 
method in our implementation due to its simplicity. 

Edge_Update: Node si sends an edge_update message to 
each neighbor sj that contains the EP(eij), where eij is the 
Voronoi edge between node i and j. We use the example 
depicted in Figure 5 to discuss the details of this process. 
Here, node s1 has received a path_request, computed the 
EP(e13) and sent an edge_update message to node s3. If s3 
does not have an existing EP for edge e13, the received EP is 
stored as the current EP(e13) at node s3. Otherwise, s3 com-
putes the combined EP(e13) by comparing the received 
EP(e13) in the edge_update message to its current EP(e13) 
and keeping the lower exposure values for each point (see 
Figure 6). 

Using the new EP(e13), node s3 computes and updates the 
EPs for all other edges: EP(e23), EP(e34), EP(e38), EP(e37), 
EP(e35). A new edge_update is sent to the corresponding 
neighbors. For each edge_update message sent by node si, si 
must receive one termination message (acknowledgement) 
in order to know when the search for a particular request has 
been completed. This requires that si store bookkeeping in-
formation about each request and is appending a unique 
request_id identifiers on each edge_update message. 

Abort_update: To limit the extent of the search, we use a 
global parameter λ which is the bound on maximum path 
exposure. Before a node si sends out an edge_update mes-
sage to sj, it checks to see whether the minimum point of 
EP(eij) is above the current value of λ. If that is the case si 
will not send the edge_update message to sj thus terminating 
further search from that edge. Node si will instead send an 
abort_update message to the node that had sent the 
edge_update message. This mechanism ensures that the 
search for the minimal exposure path does not expand arbi-
trarily far. 

Dest_update: Once a node computes the exposure to the 
destination D it broadcasts the result in a dest_update mes-
sage. The parameter λ is updated by taking the minimum of 
its current value and the exposure at D. Since we have al-
ready found a path to D there is no reason to expand the 
search on paths that have larger exposures. The algorithm is 
done once all nodes terminate their search and report back 
to the initiating node. Note that the information about the 
minimum exposures at the boundaries of the search edges 
are propagated using this mechanism and the search contin-
ues until all boundary exposures are above the minimal ex-
posure up to D (latest λ value). 

The path PminE is constructed by tracing from the destination 
D back to I. This is done in a separate phase of the algo-
rithm the details of which we omit here.  

The initial termination parameter λ is determined heuristi-
cally at the node that services the agent query. Several 
alternatives exist for the calculation of the initial λ such as 
by considering the average local or global node density and 
estimating the exposure based on the path length from I to 
D. However, in our current implementation, the initial λ is a 
user-specified parameter. If the search is unsuccessful, i.e. 
the E(PminE) ≥ λ, then the initiating node increases λ by a 
constant value (linearly) and repeats the search. The over-
head of increasing λ can be reduced significantly by caching 
previous computations at each node.  Also, note that  al-
though λ is a global constant, we do not make any specific 
assumptions about its consistency among all nodes. Al-
though we assume that each node will eventually receive the 
messages that contain updated λ information (reliable mes-
sage delivery) we do not require that these messages arrive 
synchronously or in order.  

In order to avoid the excessive messages that can be gener-
ated if the path crosses an edge in several places, we aug-
ment the algorithm and only generate an edge_update mes-
sage if the improvement in EP of an edge is better than a 
specified threshold. For example, as the parameter K in the 
equation for S(s,p) increases, the minimal exposure paths 
tend to lie very close to the edges of the Voronoi Diagram. 
This mechanism ensures that the number of unnecessary 
update messages among nodes is minimized. 
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Figure 5. Localized minimal exposure path  
calculation at each node. 
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Procedure Localized_Minimal_Exposure_Path 
For each edge eij∈ VP update_count(eij) = 0 
 
EVENT LOOP: 
Case path_request(I,D) received from agent a 
 For each edge eij∈ VP 
  Calculate EP(eij) from I. 
  Send edge_update(eij) 
 
Case edge_update(EPr(epq)) received from sp 
 If EPr(epq) ≥ EP(epq) 
  Send abort_update(request_id) to sp 
 Else 
  EP(epq) = min (EPr(epq), EP(epq)) 
  For each edge eij∈ VP 
   Compute EPnew(eij) 
    If EPnew(eij) ≤ min(λ, EP(eij)) 
    EP(eij) = min (EPnew(eij), EP(eij)) 
    Store sp in requestor list, assign new request_id 
    Send edge_update(eij, request_id) 
  If D ∈  VP 
   ED = min exposure to D 
   Broadcast dest_update(ED) 
 
Case result_request received from sp 
  If D ∈  VP 
   PminE = Ø 
   Lookup PminE ending at D to boundary of VP  
   Send result_request(PminE) to next neighbor 
  Else 
   Lookup part of PminE in VP  
   Send result_request(PminE) to next neighbor 

Figure 7. Minimal Exposure Path Algorithm 

VII. EXPERIMENTAL RESULTS 

A. Location Discovery 
To test the localized location discovery algorithm, we ran-
domly generate the locations of 50 nodes within a square 
(40m wide). Transmission range of the nodes is 10m. Ex-
cept in simulations where the effect of the number of nodes 
with GPS-receivers is examined, 10 nodes are equipped 
with GPS-receivers. The inaccuracy of GPS-receivers is 
simulated by adding an error to the coordinate of the exact 
location of each node. The error is generated following the 
Gaussian distribution with the parameters (0;GPS_Error/3). 
The distance error is modeled as a percentage of each par-
ticular correct distance d. The parameter Distance_Error 
represents percentage of the distance d. The error added to 
the distance d is generated from the Gaussian distribution 
(0;(Distance_Error*d)/3).  

In the first set of simulations we wanted to find out whether, 
under any circumstances, nodes with GPS-receivers could 
benefit from measurements received from other nodes in the 
network. We compared the average location error in a net-
work when GPS-equipped nodes adapt their GPS-based 
location information to the locations of other nodes and dis-
tances to them, and the average error in a network where 

GPS-based location information is accepted as the final es-
timate of a node’s location. For two values of Dis-
tance_Error, 0.05 and 0.25, we varied the value of 
GPS_Error as shown in Figure 8. As shown, while both 
cases (especially for higher values of the GPS_Error) 
achieve similar performances, better results can be achieved 
by retaining GPS-based locations, and use GPS-equipped 
nodes as anchors without imposing constraints from dis-
tance measurements on them. 

After we answered the question about the best way to use 
GPS-based estimates, we compared the centralized and a 
localized version of the algorithm in order to estimate what, 
if any, improvement in precision can be made if a central-
ized version is used. The parameters of the simulation are 
the following: Distance_Error=0.25, GPS_Error=10, the 
number of the nodes with GPS receivers varies from 7 to 12. 
Although in all cases the centralized version of the algo-
rithm achieves better results, the biggest difference is for 7 
nodes with GPS in the network, which is 0.5 (around 7%). 
Such a small difference affirms that the location discovery is 
inherently a distributed problem, and there is no need for 
centralized processing. It is interesting to note that the more 

Figure 9. Performance of localized and distributed  
versions of the location discovery algorithm. 
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nodes with GPS-receivers are in the network, the difference 
between two approaches decreases. This can be explained 
with the fact that with more GPS nodes, the majority of 
nodes receive a location estimate through trilateration with 
three GPS nodes whose locations do not change during the 
location discovery process. Thus, the ordering of trilatera-
tions is less important.  

B. Exposure 
We use Glomosim 2.0 [Glo2] to implement and test the lo-
calized Minimal Exposure Path algorithm. We randomly 
generate the topology following the uniform distribution in 
a square. The simulations are executed on a 1GHz Intel Pen-
tium III-based workstation with 512MB memory. We have 
also created a user friendly graphical interface using Visual 
C++ and OpenGL running in Microsoft Windows environ-
ment. Table 1 lists the results of four such topology in-
stances with 30 sensor nodes and the results obtained using 
the centralized and localized versions of the algorithm.  For 
all cases the minimal exposure path was computed starting 
and ending in opposite corners of the field. The results show 
that when using all sensor information in the localized algo-
rithm the outcomes are similar to the centralized version 
with the exception of numerical and rounding errors 
(boundary effects) at the edges of the polygons separating 
neighboring nodes.  The table also lists the results obtained 
using only information from immediate neighbors in expo-
sure computation. As expected, the exposure levels are sig-
nificantly lower in this case due to incomplete information 
while processing.  

Figure 9 shows the minimal exposure paths obtained using 
the centralized and the localized algorithms for two ran-
domly generated sensor network instances (I and D placed 

at opposite corners of the field). Figure 10 shows a more 
global picture of the localized algorithm in action. The 
shaded region in the figures depict the extent of the search 
expansion to find the minimal exposure paths. 

  Centralized Localized 
Name Exposure Length Exposure Length 

30-1-all 0.3865 1903.5 0.3961 1890.2 
30-2-all 0.4478 1563.7 0.4595 1672.4 
30-3-all 0.4590 1584.7 0.5050 1563.3 
30-4-all 0.3972 1630.1 0.4176 1560.3 
30-1-del     0.2572 1921.9 
30-2-del     0.2964 1683.4 
30-3-del     0.3560 1582.6 
30-4-del     0.2665 1572.7 

Table 1. Minimal Exposure Path results using all sensors 
and Delaunay neighbors only (localized). 

VIII. CONCLUSION 
We presented a generic framework for designing localized 
optimization algorithms in wireless ad-hoc sensor networks. 
The two driver examples, namely location discovery and 
minimal exposure path algorithms were presented in detail. 
In each case, the number of nodes that are contacted and 
participate in the computation are generally confined within 
a geographical region while still producing solutions of high 
quality, compared to centralized schemes. In addition to the 
detailed algorithmic discussions, we also presented a sam-
pling of experimental results in order to illustrate the effec-
tiveness of the localized approach for location discovery and 
minimal exposure path. The results indicate that localized 
algorithms in ad-hoc sensor networks can produce results 
comparable to their centralized counterparts, while provid-
ing practical implementation and deployment options. 

Centralized

Localized

 
Centralized (dark):Exposure=0.4478, Path Length=1564 
Localized (light): Exposure=0.3063, Path Length=1690 

C entra lized

Localized

 
Centralized (dark):Exposure=0.4499, Path Length=1751 
Localized (light): Exposure=0.3815, Path Length=1540 

Figure 9. Minimal Exposure Path results using centralized and localized algorithms for two randomly generated 
network topologies. In the localized version only Delaunay neighbors are used in exposure computations. 
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K=2, I(p) based on all known sensors 

 
K=1, I(p) based on all known sensors 

 
K=2, I(p) based on immediate neighbors 

Figure 10. Extent of search expansion in finding Minimal Exposure Path for three sensor network instances. 

REFERENCES 
 [Abe00] H. Abelson, et. al. “Amorphous Computing.” Communications 

of the ACM, Volume 43, No. 5, pp. 74-82, May 2000.  
[Abi00] A.A. Abidi, G.J. Pottie, W.J. Kaiser, “Power-Conscious Design 

Of Wireless Circuits And Systems.” Proceedings of the IEEE, vol.88, 
(no.10), pp. 1528-45, Oct. 2000. 

[Adj99] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, J. Lilley, “The 
Design And Implementation Of An Intentional Naming System.” 
Operating Systems Review, vol.33, (no.5), pp.186-201, Dec. 1999. 

[Bad93] B.R. Badrinath, et. al. “Impact Of Mobility On Distributed 
Computations.” ACM Operating Systems Review, April 1993.  

[Aur91] F. Aurenhammer, “Voronoi Diagrams – A Survey Of A 
Fundamental Geometric Data Structure,” ACM Computing Surveys 
23, pp. 345-405, 1991. 

[Ben93] M. Bender et. al. “Unix For Nomads: Making Unix Support 
Mobile Computing.” In Proceedings of the USENIX Symposium on 
Mobile & Location Independent Computing, August 1993. 

[Beu99] J. Beutel, “Geolocation In A PicoRadio Environment.” M.S. 
Thesis, ETH Zürich, Electronics Lab, 1999. 

[Bul00] N. Bulusu, J. Heidemann, D. Estrin, “GPS-less Low Cost 
Outdoor Localization For Very Small Devices.” IEEE Personal 
Communications, Special Issue on “Smart Spaces and 
Environments”, Vol. 7, No. 5, pp. 28-34, October 2000. 

[Cor90] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, 
MIT Pres, June 1990. 

[Dow98] T.B. Downing. Java RMI: Remote Method Invocation. IDG 
Books Worldwide, New York, 1998. 

[Dur89] E.H. Durfee, V.R. Lesser and D.D. Corkill, “Trends in 
Cooperative Distributed Problem Solving.” IEEE Transactions on 
Knowledge and Data Engineering, Vol.1, pp. 63-83, March 1989. 

[Est00] D. Estrin, R. Govindan, J. Heidemann. “Embedding the Internet: 
Introduction.” Com. of the ACM, Vol. 43, pp. 38-42, May. 2000. 

[Has97] Z.J. Haas, “On The Relaying Capability Of The  Reconfigurable 
Wireless Networks.” IEEE 47th Vehicular Technology Conference, 
Vol.2, pp. 1148-52, May 1997. 

[Int00] C. Intanangonwiwat, D. Estrin, R. Govindan, “Directed 
Diffusion: A Scalable and Robust Communication Paradigm for 
Sensor Networks.” Procs. of ACM MobiCOM 2000, August 2000. 

[Gal83] R.G. Gallager, P.A. Humblet, P.M. Spira,  “A Distributed 
Algorithm For Minimum Spanning Tree.” ACM Transactions on 
Programming Languages and Systems, pp. 66-77, 1983. 

[Gir01] L. Girod, D. Estrin, “Robust Range Estimation Using Acoustic 
And Multimodal Sensing.” IEEE/RSI Int. Conf. on Intelligent Robots 
and Systems (IROS 2001), Maui, Hawaii, October 2001 (To Appear). 

[Hoa85] C.A.R. Hoare, Communicating Sequential Processes, Prentice-
Hall International, 1985.   

[Kan00] C.W. Kang, M.W. Golay, “An Integrated Method For 
Comprehensive Sensor Network Developement In Complex Power 
Plant Systems.” Reliability Engineering & System Safety, vol.67, pp. 
17-27, Jan. 2000. 

[Kis92] J. Kistler, M. Satyanarayanan. “Disconnected Operation In The 
Coda File System.” ACM Trans. on Computer Systems, Feb. 1992. 

[Lam78] L. Lamport, “Times, Clocks, And The Ordering Of Events In A 
Distributed System.” CACM, pp. 558-565, July 1978.  

[Lam90] L. Lamport, N. Lynch, “Distributed Computing: Models And 
Methods.” Handbook of Theoretical Computer Science, pp. 1158-
1199, Elsevier Science Publishers, 1990. 

[Lie98] K. Lieska, E. Laitinen, J. Lahteenmaki, “Radio Coverage 
Optimization With Genetic Algorithms.” IEEE Int. Symp. on 
Personal, Indoor and Mobile Radio Communications, pp. 318-22, 
Sept. 1998. 

[Lyn96] N. Lynch. Distributed Algorithms. Morgan Kaufman, San 
Francisco, 1996. 

[Meg01a] S. Meguerdichian, F. Koushanfar, M. Potkonjak, M. 
Srivastava, “Coverage Problems in Wireless Ad-Hoc Sensor 
Networks.” IEEE Infocom 2001, Vol. 3, pp. 1380-1387, April 2001. 

[Meg01b] S. Meguerdichian, F. Koushanfar, G. Qu, M. Potkonjak, 
“Exposure In Wireless Ad Hoc Sensor Networks.” Procs. of Int. Conf. 
on Mobile Computing and Networking (MobiCom '01), July 2001. 

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 
New York, 1989.  

[MIT82] MIT Lincoln Laboratories. Workshop on Distributed Sensor 
Networks. 1982.  

[Glo2] Glomosim 2.0.  http://pcl.cs.ucla.edu/projects/glomosim/  
[ORo92] J. O'Rourke, Computational geometry column 15. (Open 

problem from art gallery solved). Int. Journal of Computational 
Geometry & Applications, vol.2, pp.215-17, June 1992. 

[Pot00] G. J. Pottie, W. Kaiser, “Wireless Integrated Network Sensors.” 
Communications of the ACM, Vol. 43, No. 5, pp. 51-58, May 2000. 

[Ray88] M. Raynal, Distributed Algorithms and Protocols, John Wiley 
and Sons, 1988.  

[Rum86] D. E. Rumelhart, J. L. McClelland, Parallel Distributed 
Processing: Explorations in the Microstructure of Cognition. MIT 
Press, 1986. 

[Sav01a] C. Savarese, J. Rabaey, J. Beutel, “Locationing in Distributed 
Ad-Hoc Wireless Sensor Networks.”  Proceedings of the ICASSP,  
May 2001. 

[Sav01b] A. Savvides, C.C. Han, M.B. Srivastava, “Dynamic 
Fine-Grained Localization in Ad-Hoc Networks of Sensors.” Procs. of 
MobiCom 2001, July 2001. 

[Tel94] G. Tel, Introduction to Distributed Algorithms. Cambridge 
University Press, Cambridge, U.K., 1994.  

[Ten00] D. Tennenhouse, “Proactive computing.” Communications of 
the ACM, vol. 43, No. 5, pp. 43-50, May 2000. 

This material is based upon work partially supported by the National 
Science Foundation under Grant No. NI-0085773 and DARPA and Air 
Force Research Laboratory under Contract No. F30602-99-C-0128. 
Any opinions, findings and conclusions or recommendations expressed 
in this material are those of the author(s) and do not necessarily reflect 
the views of the NSF, DARPA, or Air Force Research Laboratory. 

116


