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Abstract

Studies have reported high correlations in accuracy across estimation contexts, robust transfer of
estimation training to novel numerical contexts, and adults drawing mistaken analogies between
numerical and fractional values. We hypothesized that these disparate findings may reflect the ben-
efits and costs of learning linear representations of numerical magnitude. Specifically, children learn
that their default logarithmic representations are inappropriate for many numerical tasks, leading
them to adopt more appropriate linear representations despite linear representations being inappro-
priate for estimating fractional magnitude. In Experiment 1, this hypothesis accurately predicted a
developmental shift from logarithmic to linear estimates of numerical magnitude and a negative cor-
relation between accuracy of numerical and fractional magnitude estimates (r = —.80). In Experi-
ment 2, training that improved numerical estimates also led to poorer fractional magnitude
estimates. Finally, both before and after training that eliminated age differences in estimation accu-
racy, complementary sex differences were observed across the two estimation contexts.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

Whether transferring knowledge from one classroom to another classroom, from early
in the school year to later in the school year, or from one example to other similar exam-
ples, conceptual representations allow learners to generalize over situations that differ
merely in place, time, and superficial details (Murphy, 2002). These examples of narrow
transfer of learning are unremarkable and easy for learners to achieve because narrow
transfer of learning apparently occurs automatically—that is, without learners consciously
monitoring the breadth of their generalizations—as learners convert stimulus-specific ver-
bal and visual information into abstract conceptual representations (Kourtzi & Kanwish-
er, 2001; Naccache & Dehaene, 2001; Potter & Faulconer, 1975; Potter & Kroll, 1987;
Potter, Kroll, Yachzel, Carpenter, & Sherman, 1986). In this study, we examined one
interesting implication of this analysis: Because narrow transfer is an automatic effect of
abstract representation, representational changes can impose costs as well as benefits, lead-
ing to unavoidable setbacks in the course of learning that can persist for many years and
across many contexts.

Evidence for the benefits of representational change is widespread in the literature.
For example, when children are given corrective feedback on where to place a few
numbers on a line flanked by 0 and 1000 and no numbers in between (number line
estimation), accuracy improves greatly for numbers in the initial training set, learning
transfers to numbers outside of the training set, and there is robust transfer of learning
to related numerical tasks (e.g., categorizing numbers as ‘“‘small” or “large”), with mag-
nitude estimates on the transfer task being nearly identical to estimates on the training
task (Opfer & Siegler, 2007; Opfer & Thompson, 2008). Moreover, real-world tasks
that involve similar kinds of experiences (e.g., playing board games) also result in
transfer to educationally important outcomes such as preschoolers’ ability to compare
numerical value and perform arithmetic (Griffin, Case, & Siegler, 1994; Ramani &
Siegler, in press; Siegler & Ramani, in press).

Evidence for the costs of narrow transfer, however, is rare and indirect. One type of evi-
dence for the costs of narrow transfer comes from research on cognitive illusions in adults
(Kahneman & Tversky, 1996), who make grossly mistaken comparisons of risk when
framed in a manner that invites inappropriate transfer of numerical representations. As
a real-life example, genetic counselors often attempt to simplify the risks reported in epi-
demiological studies by reporting rates of disease in terms of simple frequencies (e.g., 1 in
333) rather than in scientific format, which reports rates of disease per unit of population
exposed to the risk (e.g., 3 per 1000 persons) (Burkell, 2004; Grimes & Snively, 1999;
Walker, 1997). Although this simplification is well meaning, research on patients’ under-
standing of medical risks has shown that the simplification has the unfortunate conse-
quence of leading patients to make inaccurate comparisons, for example, judging a
disease with a rate of 1 in 384 persons as being higher than a disease with a rate of 1 in
112 persons (Grimes & Snively, 1999). Unlike the beneficial effects of transferring from
the spacing of numbers in board games to the spacing of numbers on number lines, trans-
ferring from the number line to assessments of risk is costly in this case because, unlike the
linear increase in spacing of numbers on number lines, the average risk of disease per unit
of population (e.g., 1, .01, or .001 cases per person) increases as a power function of the
population base in the simplified frequencies (e.g., 1 in 1, 1 in 100, or 1 in 1000).
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To test our idea about the costs of representational change in an experimental setting,
we examined short- and long-term changes in children’s estimates of numerical and frac-
tional magnitudes and the relation between accuracy across the two tasks. Like the rela-
tion between the magnitude of a risk and the population base, estimates of fractional
magnitudes are interesting because the value of a fraction also increases as a power func-
tion of its denominator. Moreover, previous research has shown that this property of frac-
tions poses tremendous difficulties for adults when estimating the value of salaries (Opfer
& DeVries, in press). This led us to hypothesize that inaccurate estimates of fractional
value might stem from learners automatically transferring their representations of numer-
ical value to the fractional context regardless of the superficial differences across the two
contexts and regardless of the gross inaccuracy of such transfer. To examine this issue
directly, we gave children feedback as they placed numbers on a number line and then
examined whether their subsequent estimates of fractional value were unchanged, better,
Or worse.

In the next two sections, we briefly review the evidence leading us to predict that
accuracy of children’s estimates of fractional magnitude will decline with age and expe-
rience on the number line task. In the first section, we review evidence suggesting that
numerical representations normally transfer robustly across tasks, thereby playing a
central role in mathematical thinking in school. Furthermore, we present evidence that
the nature of children’s initial numerical representations are better suited for comparing
fractional values than for comparing values of whole numbers. In the subsequent sec-
tion, we briefly review evidence on how children’s representations of whole numbers
vary as a function of experience, age, and sex, and we present a theoretical analysis
that links how these same variables should influence accuracy of fractional magnitude
estimates. In the same section, we also describe how we tested these predictions in
Experiments 1 and 2.

Development of numerical representations and mathematical thinking

Across a wide range of tasks, children normally improve their expectations about the
magnitudes of symbolic numerals. For example, on a number line estimation task, chil-
dren are presented with a series of lines flanked by two numbers (e.g., 0 and 1000), a third
number above the line (e.g., 230), and no other markings. When asked to estimate the
position of this third number, children’s estimates of the position of the number ideally
would increase linearly with the actual value of the third number, thereby reflecting rep-
resentation of the ratio characteristics of the formal decimal system. In fact, however, chil-
dren’s estimates do not increase linearly—at least not initially. On 0-1000 number lines,
sixth graders’ estimates increase linearly, whereas second graders’ estimates increase loga-
rithmically (Siegler & Opfer, 2003). On 0-100 number lines, second graders’ estimates
increase linearly (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; Geary, Hoard,
Nugent, & Byrd-Craven, in press; Siegler & Booth, 2004; Siegler & Opfer, 2003), whereas
kindergartners’ estimates increase logarithmically (Siegler & Booth, 2004). On 0-10 num-
ber lines, kindergartners’ estimates increase linearly, whereas preschoolers’ estimates
increase logarithmically (Opfer, Thompson, & Furlong, 2007). Moreover, on the inverse
position to number task, where children are asked to assign a number to a position on
the number line, children’s estimates increase as an inverse of the logarithmic function
(Siegler & Opfer, 2003).
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Theoretically, these initial expectations that numerical magnitudes increase logarithmi-
cally are interesting because they are consistent with Fechner’s law, that is, the log Gauss-
ian model of magnitude representations implied by the quantitative performance of time-
pressured adults, young preschoolers, human infants, and nonhuman animals (Banks &
Hill, 1974; Feigenson, Dehaene, & Spelke, 2004; Gallistel & Gelman, 1992; Moyer & Lan-
dauer, 1967; Xu & Spelke, 2000). Also in these groups, the difference between 1 and 10
seems larger (or is detected more quickly) than the difference between 101 and 110, much
as these numbers would be spaced on a logarithmic ruler. Moreover, single-cell recordings
in the parietal cortex of monkeys show a similar pattern of neural activation, with the
numerical tuning functions of neurons that fire to large sets (e.g., 8 or 9 dots) showing
greater signal overlap than those of neurons that fire to small sets (e.g., 1 or 2 dots) (Nie-
der, Freedman, & Miller, 2002). Thus, it appears that the natural mental number line is
logarithmically scaled, unlike the decimal system that children must eventually learn in
school (Dehaene, Dehaene-Lambertz, & Cohen, 1998).

In school-age children, the change from logarithmic to linear representations of numer-
ical quantity is not unique to either microgenetic studies (e.g., Opfer & Siegler, 2007; Opfer
& Thompson, 2008) or the number line estimation task. The timing of development in
number line estimation coincides with parallel logarithmic to linear changes in numerosity
estimation (i.e., generating a set of approximately N objects), in measurement estimation
(i.e., drawing a line that is approximately N units long), and in number categorization (i.e.,
categorizing N as “very small” [e.g., 0] to “very large” [e.g., 1000]), with consistent indi-
vidual differences emerging across all four estimation tasks (Booth & Siegler, 2006; Opfer
& Thompson, 2008). Linearity of number line estimates (measured by the R* value of the
best fitting linear regression function) also correlates strongly with other tests of school
children’s understanding of numerical magnitudes, including speed of magnitude compar-
ison (e.g., deciding whether 4 is greater than 6) (Laski & Siegler, 2007), learning of solu-
tions to unfamiliar addition problems (Booth & Siegler, in press), and overall math
achievement on standardized tests (rs typically between .50 and .60) (Booth & Siegler,
2006; Siegler & Booth, 2004).

These strong correlations between number line estimation and mathematical profi-
ciency should not be surprising given that they both rely on children’s representations
of magnitude, which are strongly associated with symbolic numbers and, thus, easily acti-
vated by them. Therefore, when numerals appear on either a number line task, an arith-
metic problem, or a computer screen, it is difficult for children to inhibit the
magnitudes associated with the numerical symbol regardless of whether these magnitudes
intrude on accuracy of task performance (Berch, Foley, Hill, & Ryan, 1999; Opfer &
DeVries, in press; Opfer et al., 2007). These automatic magnitude activations, of course,
are also beneficial in that they aid children in generating approximately correct answers
to arithmetic problems and in more swiftly rejecting errors that differ largely in magnitude
from the correct answers (Ashcraft, 1992; Siegler, 1988). This positive relation between
accurate representations of numerical magnitude and math achievement is also an impor-
tant reason why the standards published by the National Council of Teachers of Mathe-
matics (NCTM) have consistently recommended that improving estimation skills be made
a high educational priority (e.g., National Council of Teachers of Mathematics., 2000).

Although automatic activations of linear magnitude representations are beneficial for
estimating the value of whole numbers, such representations may be inappropriate for esti-
mating the value of fractions. Specifically, by automatizing that 150 is closer to 1 than to
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1000, adults appear to be subject to a powerful cognitive illusion in which 1/150 seems clo-
ser to 1/1 than to 1/1000; in contrast, children’s belief that 150 is closer to 1000 than to 1
appears to protect them from this illusion (Opfer & DeVries, in press). The costs of auto-
matic magnitude representations can also be seen in how adults approach the problem of
estimating the sum of fractions, where the magnitude of the denominator and numera-
tor—but not the magnitude of the fraction itself—is represented automatically. Thus,
for example, when estimating the answer to 12/13 + 7/8 on a National Assessment of Edu-
cational Progress, fewer than a third of 13- and 17-year-olds correctly chose 2 from the
options 1, 2, 19, and 21 (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981). If students
had represented the magnitude of 12/13 and 7/8 as each being approximately equal to 1,
the answer would have been easy to solve (1 + 1 = 2). Instead, roughly half of students
answered 19 or 21, indicating that they focused exclusively on numerators (12 + 7 = 19)
or denominators (13 + 8 =21).

This interpretation of adults’ approach to fractions led us to make two predictions
about how older children would estimate the value of quantities expressed in fractional
notation, for example, when estimating the placement of a salary (e.g., $1/60 min) on a line
that begins with one salary (e.g., $1/min) and ends with another salary (e.g., $1/1440 min).
The first prediction was that if older children also compare only the value of the denom-
inators in the salary, their linear representation of numbers would lead to radically inac-
curate estimates. This inaccuracy is predicted by the fact that the relation between the
numeral expressed in the denominator and the magnitude denoted by the whole fraction
is provided by a power function rather than by a linear function. For example, although 60
is closer to 1 than to 1440, k/60 is closer to k/1440 than to k/1.

The second prediction was that if younger children also compare denominators, their
logarithmic representation of numbers would have a correcting effect and, thereby, lead
to more accurate estimates than those of older children. This prediction stems from the
fact that the power relation between the value of the denominator and the magnitude
of the fraction is somewhat similar to that of a logarithmic function. Thus, for example,
the natural logarithm of 60 (4.09) is closer to the natural logarithm of 1440 (7.27) than
to the natural logarithm of 1 (0), much as k/60 is closer to k/1440 than to k/1.

Issues examined in current experiments

To test the predicted costs and benefits of representational change, we examined the
accuracy of symbolic magnitude estimation across two contexts, whole numbers and frac-
tions, and how these two contexts affected the relations among age, sex, and accuracy. In
the next three subsections, we highlight the specific predictions of our hypotheses regard-
ing the process of change in numerical estimation, the relation between numerical and
fractional magnitude estimation, and how these two issues can yield insights into sex dif-
ferences in numerical representations and mathematical proficiency.

Process of change in numerical estimation

How does the logarithmic to linear shift in numerical representations take place with
increasing age or experience? An important mechanism implicated in previous work on
number line estimation (Opfer & Siegler, 2007; Opfer & Thompson, 2008) is children’s
use of analogy to structure their generalization of ‘“log discrepant” information.
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According to this view, children normally encounter information that does not match their
logarithmic representation of numerical magnitudes (e.g., hearing 150 referring to a rela-
tively small part of 1000 items). If children already apply linear representations in some
numerical contexts (e.g., for small numerical ranges), such experiences of log discrepancy
may lead them to draw analogies between the two contexts and to extend the linear rep-
resentation to numerical ranges where they previously used logarithmic representations.
For example, if a second grader is shown that her estimate of the position of 150 on a
0-1000 number line is too high, and also is shown the correct position of 150 within that
range, she may draw the analogy that 150 is to the 0-1000 range as 15 is to the 0-100
range. This analogy may lead her to choose a linear representation for the 0-1000 range
on subsequent estimation problems. Moreover, if the analogy is drawn at the level of
the entire representation (as opposed to being restricted to numbers near 150), such feed-
back would lead to more accurate estimates for numbers throughout the 0-1000 range,
especially numbers where the log and linear representations differ most dramatically. Such
a substitution of representations could occur quite quickly because the linear representa-
tion has already been constructed and used in smaller numerical contexts.

What types of experiences would be most likely to stimulate such an analogy? The log
discrepancy hypothesis predicts that if children are using a logarithmic representation, the
magnitude of change in their estimates in response to feedback should be positively related
to the discrepancy between the logarithmic and linear functions for the problems on which
the children receive feedback. The discrepancy between logarithmic and linear representa-
tions of the values on a 0—1000 number line is illustrated in Fig. 1, with both functions
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Fig. 1. The discrepancy between logarithmic and linear representations of numerical values on a 0—1000 number
line is greatest at 150. The discrepancies for 5 and 725 are equal to each other and*approximately half as great as
the discrepancy at 150. Linear function: y = x; logarithmic function: y = 144.76 ~ In x.
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constrained to pass through 0 and 1000 (linear function: y = x; logarithmic function:
y=144.76 *In x). As the figure shows, the difference in estimates varies as a function
of the number presented. The maximum difference occurs at 150, where the logarithmic
representation predicts an estimate of 725 and the linear representation predicts an esti-
mate of 150, resulting in a discrepancy of 575 (57.5% of the line). For purposes of com-
parison, the absolute numerical discrepancy between the estimates predicted by the
linear and logarithmic representations of both 5 and 725 is 228 (22.8% of the line).

Consistent with the log discrepancy hypothesis, Opfer and Siegler (2007) demonstrated
that larger discrepancies between children’s estimates and the linear function (e.g., feed-
back on the magnitude of 150) were more likely to provoke representational changes than
were smaller discrepancies (e.g., feedback on the magnitudes of 5 and 725). Indeed, after a
single feedback trial, the best fitting function switched from logarithmic to linear for 85%
of children in the 150-feedback condition and for more than half of all children who
received feedback. Moreover, once children’s estimates first conformed to the linear func-
tion, the linear model continued to provide the best fit on more than 80% of subsequent
trial blocks regardless of the problems that led to the apparent switch of representations.
This high rate (81%) of children rapidly switching to the linear representation was also
found in a subsequent replication by Opfer and Thompson (2008). In addition, learned lin-
ear representations were also transferred to a number categorization task in which children
were told that 0 is “very small” and 1000 is “very large” and children needed to judge ver-
bally whether numbers were “very small,” “small,” “medium,” “large,” or “very large.”

The current study offered an opportunity to revisit the log discrepancy hypothesis by
looking at both long-term (Experiment 1) and short-term (Experiment 2) changes in
numerical estimation. In Experiment 1, we examined age differences in numerical estima-
tion. We were particularly interested in whether age differences in accuracy would be great-
est for the placement of numbers around 150, the maximally discrepant point between the
logarithmic and linear representations. This was of particular interest to us because the
main goal of Experiment 2 was to provide younger children with an experience during
the experimental session (e.g., corrective feedback on numbers around 150) that would
facilitate learning of a linear representation of numbers during that particular experimen-
tal session.

Relation between numerical and fractional magnitude estimation

We next examined whether linear representations of numerical magnitude interfere with
estimates of fractional magnitude. To test this hypothesis, we obtained both correlational
and causal data.

Correlational evidence for the hypothesis was obtained in Experiment 1 by examining
whether accuracy of numerical magnitude estimates was inversely related to accuracy of
fractional magnitude estimates. In this experiment, we were interested in (a) whether a
positive relation between age and accuracy in numerical magnitude estimation would coex-
ist with a negative relation between age and accuracy in fractional magnitude estimation
and (b) whether individual differences in accuracy of numerical magnitude estimates were
negatively correlated with accuracy of fractional magnitude estimates within each age
group.

Causal evidence for the hypothesis was obtained in Experiment 2 by examining transfer
of learning from the numerical magnitude estimation context to the fractional magnitude
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estimation context. Transfer of learning from one context to another context is notori-
ously difficult to elicit (for a review, see Barnett & Ceci, 2002), but previous evidence of
broad and robust transfer of numerical representations (Laski & Siegler, 2007; Opfer &
Thompson, 2008) lends support to the idea that transfer of numerical representations is
automatic. To examine this issue directly, we examined children’s transfer of numerical
representations to the fractional magnitude context, where linear representations would
generate inaccurate task performance. In Experiment 2, we specifically wanted to deter-
mine whether children who learned to adopt the linear representation after receiving train-
ing on the number line task would transfer the more mature representation to their
estimation performance on a fractional units task.

Sex differences in numerical and fractional magnitude estimation

Given the centrality of numerical representations to mathematical thinking, and given
widespread public speculation about sex differences in quantitative abilities, we also exam-
ined whether boys and girls differed in their estimates of numerical and fractional
magnitudes.

Typically, differences between boys’ and girls’ quantitative performance vary greatly
depending on the variable measured and children’s ages (Halpern et al., 2007; Hyde, Fen-
nema, & Lamon, 1990). For instance, girls tend to outperform boys during early elemen-
tary school years on quantitative tasks related to verbal abilities and curriculum content,
whereas boys tend to outperform girls from Grades 4 through 12 when quantitative tasks
involve visuospatial concepts, reasoning about real-world problems, and estimating
answers to arithmetic problems such as 76 x 89 (Doolittle & Cleary, 1987; Dowker,
Flood, Griffiths, Harriss, & Hook, 1996; Geary, 1996; Hyde et al., 1990; Levine, Huttenl-
ocher, Taylor, & Langrock, 1999; Willingham & Cole, 1997). Given the correlation
between these latter measures and numerical estimation performance (Booth & Siegler,
2006; Siegler & Booth, 2004), we wondered whether sex differences might also exist in
numerical estimation, possibly due to boys possessing more linear representations of
numerical magnitude than girls.

Theoretically, sex differences in numerical representation would be interesting for at
least three reasons. First, a sex difference has been predicted on the basis of neurophysi-
ology (Halpern et al., 2007). There is now considerable evidence that the brain represents
numerical quantity in at least two regions over the course of development, the prefrontal
cortex and the inferior parietal cortex (Ansari, Nicolas, Lucas, Hamon, & Dhital, 2005;
Dehaene, Piazza, Pinel, & Cohen, 2005; Dehaene, Spelke, Pinel, Stanescu, & Tsivkin,
1999; Nieder et al., 2002; Pinel, Piazza, LeBihan, & Dehaene, 2004; Rivera, Reiss, Eckert,
& Menon, 2005), and sex differences in the function and architecture of these regions have
been reported in studies of human and nonhuman animals (Goldstein et al., 2001; Kava-
liers, Ossenkopp, Galea, & Kolb, 1998; Knops, Nuerk, Sparing, Foltys, & Wilmes, 2006).
For example, in human adults, Goldstein and colleagues (2001) found that, adjusting for
overall brain volume, the inferior parietal lobe was 20% larger in males than in females.
What has remained unclear is whether these sex differences in the architecture and function
of parietal cortex make a difference in early numerical representations such as those
tapped by the number line task. Interestingly, Halpern and colleagues (2007) noted that,
to the extent that these regions are larger in males than in females, a male advantage is
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predicted for the mental number line. To examine this prediction, we compared the accu-
racy and linearity of boys’ and girls’ estimates on a number line.

Second, if sex differences exist at the level of automatic numerical representations, such
sex differences should have costs as well as benefits. Specifically, sex differences in the accu-
racy of symbolic magnitude estimates should be complementary, with the sex that per-
forms more accurately in the numerical magnitude context performing less accurately in
the fractional magnitude context. The costs of representational change are well under-
stood in the field of perceptual learning (e.g., Petrov & Anderson, 2005), but to our knowl-
edge this consideration has not figured at all in the discussion of how basic sex differences
might contribute to mathematical proficiency. In the extreme, an implication of our
theoretical analysis is that robust sex differences in numerical representations might not
confer any overall advantage in accuracy but could nevertheless confer some large
task-specific advantages to both sexes.

Finally, as Newcombe, Mathason, and Terlecki (2002) observed, although it is scientif-
ically interesting to document sex differences, the more interesting question is how experi-
ence affects these sex differences. For example, Opfer and Siegler (2007) and Opfer and
Thompson (2008) showed that even a small amount of focused training can virtually elim-
inate age differences in numerical estimation. We wondered whether the same might be
true of sex differences as well. To examine this issue, we looked at sex differences in the
accuracy and linearity of estimates prior to, during, and after the course of training.

Experiment 1: Long-term changes in numerical and fractional magnitude
estimation

Experiment 1 had three major purposes. One was to replicate the finding that children
initially generate estimates that increase logarithmically with numerical value. This goal
was important because these children subsequently participated in a microgenetic study
of the transition from use of a logarithmic representation to use of a linear representation
in numerical estimation (Experiment 2). The second goal was to test whether the greatest
improvement between first and third grade occurred for numbers around 150. This goal
was important both because of the theoretical prediction that the greatest improvement
with age should come in this area, where the logarithmic and linear functions are most dis-
crepant, and because we later provided feedback for estimates in this region. The third
purpose of Experiment 1 was to examine whether increasing accuracy in numerical estima-
tion was accompanied by decreasing accuracy in fractional estimation. This test was the
most important because it would disconfirm our hypotheses about the relation between
numerical and fractional magnitude estimation.

Method
Participants
Participants were 64 first through third graders (mean age = 8.41 years, SD = 0.75, 37
girls and 27 boys) who attended neighborhood schools in largely European American,

middle-class suburbs surrounding a large metropolitan city in the midwestern United
States. One of two female research assistants served as the experimenter.
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Tasks

Number line estimation task

All number line problems (Fig. 2A) consisted of a 20-cm line with the left endpoint
labeled 0, the right endpoint labeled 1000, and the number to be estimated appearing
2cm above the midpoint of the number line. The experimenter gave the follow
instructions:

Today we’re going to play a game with number lines. We use number lines to help us
with math. It looks just like a line with numbers at each end. It shows us where all
the numbers in between go. Different numbers go in different places on a number
line. In this game, there will be a number in a circle up here. Your job is to show
me where that number goes on a number line like this one. Each number line will
have a 0 at one end and 1000 at the other end. When you decide where the number
goes, I want you to make a mark through the line like this.

Before the first item, the experimenter said, “This number line goes from 0 at this end to
1000 at this end. If this is 0 and this is 1000, where would you put N?” Participants were
then asked to place numbers (2, 5, 18, 27, 34, 42, 56, 78, 100, 111, 122, 133, 147, 150, 156,
162, 163, 172, 179, 187, 246, 306, 366, 426, 486, 546, 606, 666, 722, 725, 738, 754, 818, 878,
and 938) on a number line by making a hatch mark. Each number line problem appeared
on its own page. These numbers maximized the discriminability of logarithmic and linear
functions by oversampling the low end of the range, minimized the influence of specific
knowledge (e.g., that 500 is halfway between 0 and 1000), and tested predictions about
the range of numbers where estimates would differ most with age.

Fraction line estimation task
Participants were asked to estimate the total amount of money a person would make at
a given salary (e.g., $1/60 min) by placing a mark on a 20-cm “money line” (Fig. 2B). Both

A

0 1000
B $1
60 min
| |
| I
$1 $1
1 min 1440 min

Fig. 2. Experimental stimuli: sample number line estimation problem (A) and sample fraction line estimation
problem (B).
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the value of the salaries to be estimated (e.g., $ 1/60 min) and the endpoints of the money
line ($1/1 min and $1/1440 min) were expressed in fractional units. For this task, the
experimenter gave the following instructions:

Today we’re going to play a game with money lines. We use money lines to tell us
how much money a person makes. It looks just like a line with amounts of money
at each end. It shows us where all the amounts of money in between go. Different
amounts of money go in different places on a money line. In this game, there will
be an amount of money that a person might make up here [pointing to the top of
the blank money line data sheet where the amount of money should be]. Your job
is to show me where that amount of money goes on a money line like this one. Each
money line will have $1 every minute at one end and $1 every 1440 minutes at the
other end. When you decide where the amount of money goes, I want you to make
a mark through the money line like this.

Children were asked to estimate the location of the following salaries on the money
line: $1/2min, $1/8 min, $1/9 min, $1/60 min, $1/120 min, $1/240 min, $1/360 min,
$1/480 min, $1/540 min, and $1/720 min. Again, every problem appeared on its own page.
All fractions were read aloud to children (e.g., “where would you put 1 dollar every
2 minutes?”).

Design and procedure

To ensure that participation in the fractional units task did not affect subsequent per-
formance on number line problems or the fractional units posttest in Experiment 2 (cf.
Solomon & Lessac, 1968), children were randomly assigned to two groups. One group
(n = 35) received the fractional units task first, and the other group (n = 29) did not receive
the task. All participants then received 22 number line estimation problems. (Because we
found no effect of giving the fractional units task on subsequent performance, we com-
bined these two groups for all subsequent analyses.) Participants were tested during a sin-
gle session. The items within each scale were randomly ordered, separately for each child,
and presented in small workbooks, one problem per page.

Results
Age group differences in numerical estimation

We first examined age differences in the accuracy of numerical estimates. To measure
accuracy, we converted the magnitude estimate for each number (the child’s hatch mark)
to a numerical value (the linear distance from the 0 mark to the child’s hatch mark),
divided the result by the total length of the line, and then multiplied the result by 1000.
The magnitude of each child’s error was calculated by taking the mean absolute difference
between each of the child’s estimated values and the actual values. As expected, the mean
absolute error declined with age, (63) = —.56, p <.001, decreasing from 25% for the youn-
ger half of the sample (7- to 8.49-year-olds, n = 30, 21 girls and 9 boys) to 11% for the
older half of the sample (8.5- to 9.5-year-olds, n =34, 16 girls and 18 boys), F(1,
63) =41.75, p <.0001, d = 1.64.
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To determine whether this improvement in accuracy was associated with the hypothe-
sized logarithmic to linear shift, we next compared the fit of the best fitting linear and log-
arithmic functions with the median numerical estimates of the younger children and older
children. As in previous studies of this age range (Opfer & Siegler, 2007; Siegler & Opfer,
2003), the fit of the linear function to children’s estimates increased, whereas the fit of the
logarithmic function decreased. The median estimates of the younger group were better fit
by the logarithmic function (R* = .95) than by the linear function (R* = .63), whereas the
median estimates of the older children were better fit by the linear function (R> = .98) than
by the logarithmic function (R*> = .74) (Fig. 3).

We next tested whether the logarithmic/linear characterization of median estimates
reflected individual children’s performance by comparing individuals’ estimates on each
task against the predictions of the best fitting linear and logarithmic functions. We
assigned a 1 to participants when the linear model provided the best fitting function to
their estimates and a 0 to participants when the logarithmic model provided the best fitting
function. (Because the degrees of freedom were identical for these two models, the simple
comparison of R* values was appropriate.) The linear function provided the better fit for
17% of the younger group and 79% of the older group (Fig. 4), whereas the logarithmic
function provided the better fit for 83% of the younger children and 21% of the older chil-
dren. To test the association of age with generation of linear estimates more precisely, we
used a logistic regression model to test for the effect of age on the odds of generating linear
estimates, where age was entered as a continuous variable (range: 7.15-9.64 years). The
test indicated that there was a significant positive effect of age, with children in this sample
being 5.46 times more likely to generate linear estimates with each year of age,f = 1.87,
z=13.99, Wald(1, N = 64) =22.40, p <.0001. The strength of the age effect differed some-
what for boys and girls. Boys were 3.47 times more likely to generate linear estimates with
each year of age, B = 1.50, z =2.25, Wald(1, N =27) = 6.07, p < .05, whereas girls, due to
their lower starting point, were 7.53 times more likely to generate linear estimates with
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Fig. 3. Experiment 1: Long-term changes in numerical magnitude estimation. The estimates of 7- to 8.49-year-
olds were better fit by a logarithmic function than by a linear function, whereas the estimates of 8.5- to 9.5-year-
olds were better fit by a linear function than by a logarithmic function.
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Fig. 4. Experiment 1: The proportions of children whose estimates were best fit by a linear function increased
substantially between 7.5 and 8.5 years of age.

each year of age, fi =2.14, z=2.97, Wald(1, N =37) = 13.70, p <.005. Thus, data from
multiple levels of analysis—individual children, boys and girls, younger and older—indi-
cated a logarithmic to linear shift in the 0—1000 numerical context.

Breadth of age group differences in numerical estimation

We next examined whether the greatest improvements in estimates occurred on num-
bers around 150, where the discrepancy between the logarithmic and linear functions
was greatest (Fig. 1) and where children would later receive feedback in Experiment 2.
This analysis was important because it is possible, for example, for children to have a lin-
ear representation with a very high or low slope, thereby affecting where the maximum dis-
crepancy would actually occur. To examine improvement with age over the numbers
tested, we used the absolute age differences between each age group’s median estimate
for each number and the correct value for the number.

From these, we correlated the absolute numerical distance of each to-be-estimated
number from 150 with the absolute difference in estimates between younger and older chil-
dren on that number. Improvement in estimation accuracy proved to be highly correlated
with distance from 150: r(21) = —.71, p <.001; the closer the number to 150, the greater the
improvement with age. We then examined estimates for a fixed numerical range (32)
around three anchors of interest: 150 (where the discrepancy in estimates is greatest
between the logarithmic and linear functions), 725 (where the discrepancy is 40% of the
discrepancy at 150), and 5 (where the discrepancy is also 40% of the discrepancy at
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150). The stimulus set included four numbers in each of these three numerical ranges. As
anticipated by the log discrepancy hypothesis, a one-way analysis of variance (ANOVA)
indicated differences among these three ranges, F(2, 11) = 25.55, p <.001. Post hoc anal-
yses indicated that age-related improvements in estimation accuracy were greater for the
four numbers around 150 than for either the four numbers around 725, #3) = 10.72,
p <.01, d="17.06, or the four numbers around 5, #3) = 3.35, p <.05, d = 2.48. In contrast,
younger and older students’ estimates around 5 and 725 did not differ significantly from
each other, #(3) = 2.39, ns.

Relation between numerical and fractional magnitude estimation

We next examined whether younger children provided more accurate estimates of frac-
tional magnitude than did older children and, if so, whether this change was associated
with performance on the numerical estimation task.

To measure accuracy on the fraction line task, we converted each estimate to a numer-
ical value by measuring the distance between the child’s estimate and the origin of the scale
(0-20 cm) divided by the length of the scale (20 cm). The magnitude of error for each esti-
mate (0—1) was obtained by taking its absolute difference from the correct placement of the
fraction on the scale (0-1), and accuracy was obtained by subtracting the error from 1. As
predicted by the representational change hypothesis, age was negatively related to accu-
racy, r(63) =-.43, p <.001, with younger children’s accuracy (48%) being significantly
higher than older children’s accuracy (38%), F(1, 63) =9.81, p <.01, d=0.73.

We next performed a linear regression to examine whether each child’s accuracy on the
number line task (0-100%) predicted accuracy on the fraction line task (0-100%). The rela-
tion between the two tasks was very strong and negative (r =-.80), F(1, 34) = 57.93,
p <.0001, indicating that 63.7% of variation in accuracy of fractional magnitude estima-
tion was accounted for by inaccuracy in numerical magnitude estimation (Fig. 5). Because
age alone accounted for a marginally significant amount of variation in accuracy of frac-
tional magnitude estimates (R> = .10), F(1, 33) = 3.80, p = .06, we next entered the age
variable in the regression model, and we found that the combination of age and accuracy
on the number line task accounted for only an additional 1.3% of variance (R*> = .65),
which was not a significant addition to the model, F change = 1.19, ns. The full regression
model with age, accuracy of numerical magnitude estimation, and interaction between the
other two variables accounted for 69.5% of variance in accuracy of fractional magnitude
estimation.

Why might inaccurate numerical magnitude estimation reliably predict accurate frac-
tional magnitude estimation? According to the representational change hypothesis, this
relation stems from the particular pattern of errors that children are likely to make when
estimating numerical value; that is, children’s errors in numerical estimation are not ran-
dom but rather generated by their reliance on a logarithmic representation, which gener-
ates estimates that are somewhat similar to the power function relating the value of a
fraction to its denominator. The similarity of the two functions is apparent in Fig. 6, which
depicts children’s fractional magnitude estimates against the denominator. Ideally, esti-
mates of the value of the fraction (y) should initially decrease dramatically as the denom-
inator increases in magnitude (i.e., y = 1/x). Younger children’s representation of the
denominator also leads them to generate estimates in a way that is somewhat similar to
this pattern, with their estimates of fractional value decreasing logarithmically with the
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Fig. 6. Experiment 1: Long-term changes in fractional magnitude estimation. The estimates of 7- to 8.49-year-
olds (dark circles) were better fit by a logarithmic function than by a linear function, whereas the estimates of 8.5-
to 9.5-year-olds (light circles) were better fit by a linear function than by a logarithmic function. The ideal pattern
of performance (y = 1/x) is depicted in gray.

value of the denominator (log R* = .87). In contrast, older children’s representation leads
them to generate a less accurate pattern, with their estimates of fractional value decreasing
linearly with the value of the denominator (lin R* = .96).

To test this explanation more directly, we next examined accuracy in fractional magni-
tude estimation as a function of the logarithmicity and linearity of children’s numerical
magnitude estimation. The first relevant evidence came from the fit of the linear and
logarithmic R* values associated with each child’s numerical magnitude estimates. As
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hypothesized by the representational change hypothesis, each of these variables accounted
for a significant amount of variation in children’s fractional magnitude estimates. As chil-
dren’s numerical estimates grew more logarithmic, their fractional estimates increased in
accuracy (r = .45), F(1, 33) = 8.43, p <.0001. As children’s numerical estimates grew more
linear, their fractional estimates decreased in accuracy (r=.76), F(1, 33)=44.25,
p <.0001.

Sex differences in numerical versus fractional magnitude estimation

We then examined whether boys and girls differed in the accuracy of their numerical
and fractional magnitude estimates (Fig. 7). Using the same measures reported above,
boys’ numerical magnitude estimates were more accurate on average (M = 88%,
SD = 10%) than girls’ estimates (M = 78%, SD =10%), F(1, 63)=14.78, p <.0005,
d=1. In contrast, girls’ fractional magnitude estimates tended to be more accurate on
average (M = 50%, SD =16%) than boys’ estimates (M =40%, SD =13%), F(1,
34) = 3.66, p = .06, d = 0.69. Again, differences in accuracy reflected a logarithmic to lin-
ear shift in the 0—1000 context. Boys’ numerical estimates (average lin R> = .81, SD = .24)
were more linear than girls’ estimates (average lin R* = .60, SD = .22), F(1, 63) = 13.80,
p <.0005, d=10.91, and boys were less likely than girls to provide estimates best fit by
the logarithmic function (30% vs. 65%), x> = 7.75, p < .01.

Sex differences were chiefly evident for younger children; among younger children, a
greater proportion of boys generated linear estimates than did girls, 44.4% versus 4.8%,
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Fig. 7. Experiment 1: Sex differences in accuracy on number line task and fraction line task.
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Fisher’s p = .02, whereas among older children, boys and girls generated linear estimates
at similar rates, 83.3% versus 75.0%, ns. Whether differences between boys and girls in this
sample indicated a developmental delay for girls’ numerical and fractional magnitude esti-
mation or a stable sex difference is an issue that we explored further in Experiment 2.

Experiment 2: Short-term changes in numerical and fractional magnitude
estimation

Experiment 2 was designed to provide a more direct test of the representational change
hypothesis regarding accuracy of numerical and fractional magnitude estimation. In the
first section, we examined changes in children’s numerical magnitude estimates in response
to feedback on numbers around 150 or in response to answering the same problems with-
out feedback. We predicted that feedback on numbers around 150 would elicit a large
change in the proportion of children best fit by the logarithmic function (because this is
the area of maximum discrepancy between logarithmic and linear representations) and
that the change would involve a broad range of numbers and would occur abruptly rather
than gradually (because the change involved a choice of a different representation rather
than a local repair to the original representation). In the second section, we tested the
hypothesis that feedback on accuracy of numerical magnitude estimates would lead to
increasing accuracy of numerical magnitude estimates but decreasing accuracy of frac-
tional magnitude estimates (again because change was hypothesized to involve substitut-
ing linear representations of numbers for logarithmic ones). In the subsequent section, we
revisited sex differences in numerical and fractional magnitude estimation after children
had received feedback. We were particularly interested in whether conditions that substan-
tially reduced age differences in estimation would also reduce sex differences.

Method
Participants
Participants were the same children who participated in Experiment 1. For conve-
nience, we divided them into younger children (7- to 8.49-year-olds, n = 30, 21 girls and
9 boys) and older children (8.5- to 9.5-year-olds, n =34, 16 girls and 18 boys), as we

had done in Experiment 1. One of two female research assistants served as the
experimenter.

Tasks

The number line and fraction line estimation tasks described in Experiment 1 were also
used in Experiment 2.

Design and procedure
Immediately after Experiment 1, children were randomly assigned to one of two groups;

one group received feedback during the training phase (treatment group, n = 32, 16 youn-
ger and 16 older children), whereas the other group did not receive feedback (control
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group, n = 32, 14 younger and 18 older children). Boys and girls were equally divided
between the two conditions (treatment: 18 girls and 14 boys; control: 19 girls and 13 boys).
As shown in the outline of the procedure in Table 1, children in both groups completed
the number line estimation task for a pretest, three training trial blocks, and a posttest.
The purpose of these three phases (pretest, training trial blocks, and posttest) was to exam-
ine the course of learning prior to posttest (i.e., to examine changes from the number line
pretest through posttest) and to ensure that learning had occurred prior to the transfer
task (i.e., the fractional estimation task). On the number line pretest and posttest, children
in the treatment and control groups were presented with the same 22 problems without
feedback (i.e., without treatment). For children in the treatment group, each training trial
block included a feedback phase and a test phase. As shown in Table 1, the feedback phase
of each training trial block consisted of either 1 item on which children received feedback
(Trial Block 1) or 3 items on which they received feedback (Trial Blocks 2 and 3). The test
phase in all three training trial blocks consisted of 10 items on which children did not
receive feedback; this test phase occurred immediately after the feedback phase in each
training trial block. Children in the control group received the same number of estimation
problems, but they never received treatment. On the posttest, children in all four groups
were presented with the same 22 problems without feedback as in Experiment 1. The chil-
dren’s estimates in Experiment 1 provided pretest data that was used as a point of com-
parison for their subsequent performance and was elicited during the same session.
Feedback was administered to the treatment group following the same procedure used
in Opfer and Siegler (2007) and Opfer and Thompson (2008). The treatment procedure
was as follows. On the first feedback problem, children were told, “After you mark where
you think the number goes, I'll show you where it really goes so you can see how close you
were.” After each child answered, the experimenter took the page from the child and
superimposed on the number line a 20-cm ruler (hidden from the child) that indicated
the location of every 10th number from 0 to 1000. Then the experimenter wrote the num-
ber corresponding to the child’s mark (Negimate) above the mark and indicated the correct
location of the number that had been presented (N) with a hatch mark. For example, if the
child was asked to mark the location for 150 (i.e., V) and his estimate corresponded to the
actual location of 600 (i.e., Negiimate)> the experimenter would write the number 600 above
the child’s mark and mark where 150 would go on the number line. After this, the exper-
imenter showed the corrected number line to the child. Pointing to the child’s mark, the
experimenter said, “You told me that N would go here. Actually, this is where N goes

Table 1
Outline of procedure in Experiment 2
Experimental Training phase Posttest
group
Number line task Number  Fraction
line task  line task
Feedback Test Feedback Test Feedback Test
Treatment 150 10 items 3 items 10 items 3 items 10 items 22 items 10 items
group (0-1000)  (147-187) (0-1000)  (147-187) (0-1000)  (0-1000)  (0-1000)
Control None 10 items None 10 items  None 10 items 22 items 10 items

group (0-1000) (0-1000) (0-1000)  (0-1000)  (0-1000)
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[pointing]. The line that you marked is where Negimae actually goes.” When children’s
answers deviated from the correct answer by no more than 10%, the experimenter said,
“You can see these two lines are really quite close.” When children’s answers deviated
from the correct answer by more than 10%, the experimenter asked children to explain
the feedback given, “That’s quite a bit too high (or too low). You can see these two lines
[the child’s and experimenter’s hatch marks] are really quite far from each other.” Regard-
less of whether answers were close or far from accurate, explanations for correct answers
were elicited (see also Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Siegler, 2002).

Results

We organized our results into three sections. In the first section, we report on the con-
ditions that led to changes in numerical estimation (i.e., source of change), how quickly
those changes occurred (i.e., rate of change), and approaches that children used up to
and following the use of mature approaches (i.e., path of change). In the second section,
we report on results testing our hypotheses about transfer of learning to fractional estima-
tion. In the third section, we report on results concerning sex differences in estimation after
training.

Process of change in numerical magnitude estimation

Source of change

We first examined the source of change in estimation performance on the number line
task. Specifically, we wanted to test whether the experiences that children received during
the training phase of the experiment improved their estimation accuracy on posttest and
influenced the degree to which those estimates came to follow a linear function. To find
out, we first examined posttest accuracy (0-1) as a function of age and condition (treat-
ment or control). As expected, a linear regression indicated a main effect of age, F(1,
60) =29.40, p <.0001, a main effect of treatment, F(1, 60) = 5.14, p <.05, and an interac-
tion between age and treatment, F(3, 60) = 3.85, p = .05. To examine this interaction more
closely, we looked at changes in younger and older children separately.

Among younger children, we first examined the effect of treatment on estimation accu-
racy by calculating the mean absolute error for each child and then performing a 2 (Con-
dition: treatment or control) x 2 (Test Phase: number line pretest or number line posttest)
repeated measures ANOVA on the error scores. As expected, there was a main effect of
test phase, F(1, 28)=19.73, p <.0001, a trend toward a main effect of feedback, F(1,
28) =3.52, p = .07, and a significant interaction between test phase and feedback, F(1,
28) =6.99, p <.0l. For the children in the treatment group, the mean absolute error
declined from 24% (SD = 9%) to 15% (SD = 6%), t(31) = 4.45, p < .001, d = 1.18, whereas
for the children who were in the control group, the mean absolute error did not differ by
test phase (number line pretest: M =27%, SD = 10%; number line posttest, M = 24%,
SD = 11%). Finally, the treatment group’s posttest mean absolute error was significantly
lower than the control group’s posttest mean absolute error (M = 24%, SD = 9%), F(1,
29) =8.35, p <.01, d =1.18. Thus, among younger children, feedback had a large effect
on short-term changes in the accuracy of numerical magnitude estimates.

We next examined whether younger children’s short-term changes in estimation accu-
racy were also accompanied by the hypothesized logarithmic to linear shift. On pretest,
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young children in both the treatment group and the control group initially provided med-
ian estimates for each number that were in fact fit better by the logarithmic regression
function than by the linear one (Fig. 8). The precision of the fit of the logarithmic function
and the degree of superiority of that function to the linear function were similar across the
treatment group (log R*> = .92, lin R* = .58) and control group (log R*> = .93, lin R*> = .65).
In contrast, the treatment and control groups differed considerably in their number line
posttest estimation patterns (Fig. 8). Children in the control group continued to generate
estimates that fit the logarithmic function better than the linear one (log R*>= .91, lin
R?>=.78). In contrast, children in the treatment group generated posttest estimates that
ﬁt2 the linear function substantially better than the logarithmic one (lin R*= .91, log
R™=.75).

To determine whether the fit of the two functions merely arose from aggregating data
over individual estimates, we also performed the same analyses for each individual partic-
ipant’s set of estimates. As expected, before children received any training, the majority of
children (83%) provided estimates that were better fit by the logarithmic function than by
the linear one regardless of whether they later received treatment; here 88% of children
generated logarithmic estimates in the treatment group, whereas 79% of children generated
logarithmic estimates in the control group, Fisher’s exact probability test, p = .62, ns. Fur-
thermore, posttest estimates also indicated that treatment led to more children providing
linear estimates; here 69% of children who were in the treatment groups provided more
linear than logarithmic estimates, whereas only 29% of children who were in the control
groups provided more linear than logarithmic estimates, y*(1) = 4.82, p <.05. Thus, as
in Opfer and Siegler (2007) and Opfer and Thompson (2008), feedback on a very small
(but strategic) set of estimation problems led to large changes in estimation accuracy.

We next examined changes in older children’s estimation performance by performing a
2 (Test Phase: pretest or posttest) x 2 (Condition: treatment or control) repeated measures
ANOVA on the error scores. We found a main effect of test phase, F(1, 32) = 7.86, p < .01,
and a significant interaction between test phase and condition, F(1, 32) = 6.50, p <.05.
For children in the control group, a paired ¢ test indicated that error scores did not differ
from pretest (M = 11%, SD = 8%) to posttest (M = 11%, SD = 9%), #(17) = 0.35, ns. For
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Fig. 8. Experiment 2: Short-term changes in numerical magnitude estimation by condition. Children in the
treatment group provided estimates that were better fit by a logarithmic function than a linear function on pretest,
and they provided estimates that were better fit by a linear function than a logarithmic function on posttest.
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children in the treatment group, however, error scores declined significantly from pretest
(M =12%, SD =8%) to posttest (M = 7%, SD = 5%), #(15)=2.73, p<.05, d=0.75.
Unlike younger children’s estimates, older children’s improvement in accuracy did not
stem from their estimates becoming better fit by the linear function. For the treatment
group, results of a paired ¢ test indicated that linearity of individual children’s pretest esti-
mates (M = .83) did not differ from posttest estimates (M = .90), #(15) = 1.42, ns. For the
control group, linearity of pretest (M = .83) and posttest (M = .83) estimates also did not
differ.

In summary, short-term gains in accuracy of children’s numerical estimates came from
feedback on a small set of estimates, which had a larger effect on younger children’s (log-
arithmic) estimates than on older children’s (linear) estimates. The short-term gains of
younger children in response to treatment were also quite impressive; by posttest, treat-
ment had boosted younger children’s accuracy to levels comparable to the accuracy of
older children who received no treatment, 15% versus 11%, F(1, 33) = 2.80, ns.

Rate of change

To address the rate of change in numerical estimation, we used logistic regression to
examine the relation between generation of more linear than logarithmic patterns of esti-
mates (linear model fitting best or not) and number of trial blocks of treatment (0-4),
where 0 corresponded to the trial block prior to the administration of the treatment
and, thus, 0 trials of treatment (feedback). First, we examined the effect of trial block
for the treatment group of younger children. There was a significant positive effect of trial
block for the treatment group, indicating that with each additional trial block the likeli-
hood of generating linear estimates was 1.44 times greater than the previous one,
p=.37,z=2.18, Wald(1, N = 80) = 5.02, p <.05. A similar analysis found no significant
effect of trial block for the younger children in the control group, indicating that time on
task did not elicit change, nor did we find significant effects for older children in either
group (largely because they were already very likely to generate linear estimates).

To put this rate of change into context, it is useful to compare the average incremental
change in a single trial block of training (x 1.44) with the average incremental change
found with a year of real-life experience in Experiment 1 (x 6.46). Taken literally, the com-
parison suggests that four trial blocks of training accomplished as much as nearly 11
months of real-world experience. Of course, the caveat that must be raised is that it is
not at all clear whether the change occurred at a constant rate. Suggesting that the rate
was not constant (at least over trial blocks), we observed a sixfold increase in the propor-
tion of younger children in the treatment group best fit by the linear function from Trial
Block 0 (13%) to Trial Block 1 (81%), consistent with very rapid and abrupt learning. In
the next subsection, we examined the abruptness of change more directly.

Path of change

Younger children could have moved from a logarithmic representation to a linear one
via several paths. To examine which path(s) they actually took, we examined the fit of the
linear regression function to each individual child’s numerical estimates as a function of
the number of trials that elapsed since the linear function provided a better fit than did
the logarithmic one (i.e., when the logarithmic to linear shift was thought to occur). To
measure this, we identified the first trial block on which the linear function provided the
best fit to a given child’s estimates, and we labeled it Trial Block 0. The trial block imme-
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diately before each child’s Trial Block 0 was that child’s Trial Block -1, the trial block
before that was the child’s Trial Block -2, and so on.

These assessments of the trial block on which children’s estimates first fit the linear
function made possible a backward trials analysis that allowed us to test alternative
hypotheses about the path of change from a logarithmic representation to a linear one.
One hypothesis, suggested by incremental theories of representational change (Brainerd,
1983), was that the path of change entailed gradual continuous improvements in the lin-
earity of estimates (and, thus, the fit of the linear regression function to their estimates).
According to this hypothesis, the fit of the linear model would have increased gradually
from Trial Block -3 to Trial Block 3. In this scenario, Trial Block 0 (the first trial block
in which the linear model provided the better fit) would simply mark an arbitrary point
along a continuum of gradual trial block to trial block improvement rather than the point
at which children first chose a different representation.

A second hypothesis was that the path of change involved a discontinuous switch from
a logarithmic representation to a linear one with no intermediate state. This would have
entailed no change in the fit of the linear model from Trial Block -3 to Trial Block -1,
a large change from Trial Block —1 to Trial Block 0, and no further change after Trial
Block 0. This second hypothesis clearly fit the data. As illustrated in Fig. 9, from Trial
Block -3 to Trial Block —1, a one-way ANOVA on the linear regression function, F(4,
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Fig. 9. Experiment 2: Trial block to trial block changes in numerical magnitude estimation.
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56) = 0.74, p > .05, ns, indicated that there was no change in the fit of the linear function
across these trial blocks. There also was no change from Trial Block 0 to Trial Block 3 in
the fit of the linear function, F(4, 92) = 0.80, p > .05, ns. However, from Trial Block -1 to
Trial Block 0, there was a large increase in the fit of the linear function to individual chil-
dren’s estimates (median R? = .43 to median R*> = .74), F(1, 48) = 8.85, p < .01, d = 0.85.
Thus, rather than Trial Block 0 reflecting an arbitrary point along a continuous path of
improvement, it seemed to mark the point at which children switched from a logarithmic
representation to a linear one.

Transfer of learning to fractional magnitude estimation

In the previous section, we observed that feedback on a small set of numerosities
around 150 induced a large and broad change in both the accuracy and linearity of youn-
ger children’s numerical estimates. We reasoned that if this improved accuracy resulted
from a representational change, learning should transfer to a superficially different con-
text—the fraction line task—regardless of its costs in accuracy.

To examine transfer to the fractional magnitude context, we first calculated the mean
absolute error for each child on the fractional magnitude estimation task (|actual-estimate|
/ range of scale) and regressed condition (1 = treatment, 0 = control) and age (7.15-9.64)
against the mean absolute error scores. As expected, there was a significant interaction
between age and condition, F(3, 60) = 12.58, p <.001 (Table 2). For younger children
(who had mostly generated logarithmic estimates in the numerical context), treatment
had a large and negative effect on accuracy of fractional magnitude estimates, with the
mean absolute error on the fraction line task being larger for the treatment group
(M =61%, SD=11%) than for the control group (M =41%, SD =16%), F(1,
29) =15.75, p <.001, d = 1.46. In contrast, for older children (who had mostly generated
linear estimates in the numerical context), treatment did not affect accuracy of fractional
magnitude estimates (treatment: M = 62%, SD = 12%; control: M = 61%, SD = 11%),
F(1, 33) =0.06, ns. Thus, correcting younger children’s numerical estimates imposed a
large cost on the accuracy of their fractional magnitude estimates.

To check whether this differing pattern of performance might be related to how younger
children interpreted the meaning of the denominator, we next regressed their median esti-
mate for each fractional value against the denominator of the fraction (Fig. 10). Specifi-

Table 2
Analysis of age differences at posttest
Number line accuracy Fraction line accuracy
Model F(3, 60) = 12.80, p = .000001 F(3, 60) =12.58, p <.0001
Age t=4.98, p<.0001 t=5.36, p <.0001
Older (M = 91%) > Younger (M = 80%) Younger (M = 48%) > Older (M = 38%)
Treatment t=2.16, p =.04 t=3.82, p=.0003
Treatment (M = 89%) > Control (M = 83%)  Control (M = 47%) > Treatment (M = 38%)
Age x =196, p=.05 t=13.61, p=.0006
Treatment Younger: Treatment (M = 85%) > Control Younger: Control (M = 59%) > Treatment
(M =176%), p <.007 (M =39%), p <.0005
Older: Treatment (M = 93%), Control Older: Control (M = 38%), Treatment

(M = 89%), ns (M = 37%), ns
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Fig. 10. Experiment 2: Short-term changes in fractional magnitude estimation. The estimates of children in the
control group (light circles) were better fit by a logarithmic function than by a linear function, whereas the
estimates of children in the treatment group (dark circles) were better fit by a linear function than by a logarithmic
function. The ideal pattern of performance (y = 1/x) is depicted in gray.

cally, we wanted to test our assumption that children’s estimates across the two tasks were
quite similar in spite of the superficial differences between the tasks and the costs this
entailed for accuracy. As predicted, children in the control group, who were typically bet-
ter fit by the logarithmic function at number line posttest, also provided a series of frac-
tional estimates that were better fit by the logarithmic function (R* = .89) than by the
linear function (R? = .67). In contrast, children in the treatment group, whose number line
posttest estimates typically were better fit by the linear function, provided a series of frac-
tional magnitude estimates that were better fit by the linear function (R? = .87) than were
the estimates made by participants in the control group. Thus, children did appear to
transfer their understanding of numerical value to the unfamiliar fractional context
regardless of its cost in accuracy.

Finally, to determine whether linearity of performance on the number line posttest was
correlated with performance on the fraction line posttest, we next regressed individual par-
ticipants’ linear R? values for each task. As expected, there was a high correlation between
the two variables (r = .62), F(1, 29) = 17.78, p <.001. When we analyzed the two groups’
R? values on these tasks separately, we found that linear performance on the number line
estimation task predicted linear performance on the fractional units task for the control
group (r=.67), F(1, 13) =991, p <.01, as well as for the treatment group (r = .60),
F(1, 15) =17.98, p <.01. Consistent with this finding, the degree of inaccuracy in the frac-
tional magnitude context was strongly predicted by the degree of accuracy in the numer-
ical magnitude context (r =—.77), F(1, 29) =42.44, p <.001 (Fig. 11).

Effect of learning on sex differences in estimation accuracy

Having eliminated age group differences through training, we then examined the effect
of training on sex differences. Specifically, we wanted to know whether boys continued to
generate more accurate numerical magnitude estimates than girls and whether girls contin-
ued to generate more accurate fractional magnitude estimates than boys. To find out, we
examined three measures of estimation performance for each task: accuracy (0-100%), fit
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Fig. 11. Experiment 2: Relation between accuracy on number line task and fraction line task on posttest. Dark
circles depict the treatment group, and light circles depict the control group.

of the function (R* = .00-1.00) associated with greater accuracy (i.e., linear for numerical
estimation or logarithmic for fractional magnitude estimation), and percentage of children
best fit by the function providing better accuracy (Table 3).

On each of the six dependent variables, boys and girls continued to differ in their esti-
mation performance, and we observed no interaction between sex (0 = boys, 1 = girls) and
condition (0 = control, 1 = treatment) on posttest scores, Fs <1.25, ns. As at pretest,
boys’ accuracy on the number line task (M = 90%, SD = 8%) continued to be greater than
girls’ accuracy (M = 83%, SD = 10%), F(1, 62) =9.34, p = .003, d =0.77, whereas girls’
accuracy on the fraction line task (M = 46%, SD = 16%) continued to be greater than

Table 3

Analysis of sex differences on posttest

Number line Fraction line

Accuracy Fit of linear % Best fit by lin  Accuracy Fit of log % Best fit by
model model log

Sex

Boys: M =90% Boys: lin Boys: 81% lin ~ Boys: M =38% Boys: log Boys: 33% log
R*=.99 best R*=.78 best

Girls: M =83% Girls: lin Girls: 59% lin  Girls: M = 46% Girls: log Girls: 59% log
R*= 97 best R?=091 best

K1, 62) =9.34, %(1) =3.04, K1, 62) = 5.69, (1) =4.27,

p=.003 p=.08 p =.004 p=.03
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boys’ accuracy (M = 38%, SD = 12%), F(1, 62) = 5.69, p = .003, d = 0.57. On the number
line task (which was favored by a linear representation), the fit of the linear model to boys’
median estimates (R*> = .99) was slightly greater than the fit of the linear model to girls’
median estimates (R*> = .97); on the fraction line task (which was favored by a logarithmic
representation), the fit of the logarithmic model to girls’ median estimates (R*> = .91) was
slightly greater than the fit of the logarithmic model to boys’ median estimates (R* = .78).
Finally, on the number line task, a higher proportion of boys (81%) generated estimates
best fit by the linear model than did girls (59%), whereas on the fraction line task, a higher
proportion of girls (59%) generated estimates best fit the logarithmic function than did
boys (33%). Thus, sex differences in estimation performance appeared to be stable over
short-term training, whereas age differences in estimation performance were not stable
over short-term training.

Discussion

Representational changes were hypothesized to lead to automatic transfer of learning,
leading to gains in accuracy in one context coming at the expense of accuracy in another
context. To test this hypothesis, we examined the accuracy of symbolic magnitude estima-
tion across two contexts, whole numbers and fractions, and how these two contexts
affected the relations among age, sex, and accuracy. In the next two sections, we highlight
the specific findings of our tests, and in the subsequent section, we remark on the broader
implications of findings for future research on age and sex differences in mathematical
thinking as well as implications of findings for prevention of “cognitive illusions.”

Effect of context on age differences in accuracy of magnitude estimation

Across a broad range of contexts, including estimation of distance (Cohen, Weather-
ford, Lomenick, & Koeller, 1979), amount of money (Sowder & Wheeler, 1989), number
of discrete objects (Hecox & Hagen, 1971), answers to arithmetic problems (LeFevre,
Greenham, & Naheed, 1993), and locations of numbers on number lines (Siegler & Opfer,
2003), children’s estimates are highly inaccurate (for a review, see Siegler & Booth, 2005).
According to the representational change hypothesis, children’s inaccurate estimation
across these many contexts stems from initial reliance on logarithmic representations of
numerical value (Siegler & Opfer, 2003), a representation of numerical value that is con-
sistent with Fechner’s law and that is widespread among species, human infants, and time-
pressured adults (for a review, see Dehaene et al., 1998). In contrast, older children and
adults are thought to have learned a linear representation of numerical value from encoun-
tering experiences in school and daily life that provide log discrepant information, which
typically induces rapid switching from logarithmic to linear estimation patterns in exper-
imental studies (Opfer & Siegler, 2007; Opfer & Thompson, 2008). Also in these studies,
learned linear representations appear to generalize robustly to novel contexts (Laski & Sie-
gler, 2007; Opfer & Thompson, 2008; Ramani & Siegler, in press).

Although evidence of young children’s initially poor estimation skills and logarithmic
representation of numerical value and evidence of older children’s good estimation skills
and linear representations of numerical value have been drawn from a wide range of con-
texts, these contexts share an important property in that accuracy could be attained either
from representational changes (Joram, Subrahmanyam, & Gelman, 1998; Siegler & Opfer,
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2003) or from improving mathematical skills (Dowker et al., 1996; Hiebert & Wearne,
1986). To address this issue, we sought to provide a particularly strong test for the repre-
sentational change hypothesis by examining short- and long-term changes on an estima-
tion task—fractional magnitude estimation—that favors the logarithmic representation
at the expense of the linear one. Our reasoning was that if children learn to make better
estimates by automatizing use of a linear representation, estimation of fractional magni-
tudes should suffer with age and experience.

The results of the current study provided both correlational and experimental evidence
supporting the hypothesis that numerical representations have a powerful effect on esti-
mates of fractional magnitude. Correlational evidence was provided in Experiment 1,
where older children provided more accurate estimates of numerical magnitude than did
younger children, but younger children provided more accurate estimates of fractional
magnitude than did older children. Overall, inaccuracy of numerical estimates accounted
for 64% of the variance in accuracy of fractional magnitude estimates even when control-
ling for age. Experimental evidence from Experiment 2 indicated that this correlation
reflected a causal link between numerical and fractional magnitude estimation. Specifi-
cally, children who were given training in numerical estimation subsequently provided
more accurate estimates of numerical magnitude than did a control group whose members
had received no training, but children in the treatment group also provided less accurate
estimates of fractional magnitude than did children in the control group.

We believe that these findings of context effects provide particularly strong evidence for
the hypothesis that numerical representations are automatic and, thereby, can impose
costs as well as benefits for accuracy of estimation. This idea is an important one because
it simultaneously explains (a) high correlations among individual estimation tasks, (b) the
breadth of transfer that typically is observed in training studies of numerical estimation,
and (c) why adults are subject to certain cognitive illusions involving fractions, including
incorrect comparisons of salaries (Opfer & DeVries, in press) and incorrect evaluation of
medical risks (Burkell, 2004).

Effect of context on sex differences in accuracy of magnitude estimation

Although the number line task has been used extensively in prior research on numerical
representations (e.g., Booth & Siegler, 2006; Opfer & DeVries, 2008; Opfer & Siegler,
2007; Opfer & Thompson, 2008; Siegler & Booth, 2004; Siegler & Opfer, 2003), sex differ-
ences on the task have not been reported previously, leading some researchers (e.g.,
Spelke, 2005) to infer quite reasonably that sex differences on our number line task do
not exist. At least in our own research, our failure to report sex differences previously
(e.g., Opfer & Siegler, 2007; Opfer & Thompson, 2008; Siegler & Opfer, 2003) has been
one of pure neglect; we simply assumed that boys’ and girls’ numerical representations
did not differ, and we never tested that assumption. If we had done so, our findings would
have been fairly similar to our findings of sex differences in Experiments 1 and 2. For
example, Opfer and Thompson (2008) examined numerical estimation in first and second
graders (mean age = 7.85 years) and then used a training procedure identical to that in
Experiment 2, thereby allowing for comparison of sex differences prior to and following
training. In our reanalysis of the data, we found that, prior to training, the 27 boys tended
to generate more linear estimates on average than did the 29 girls (boys: mean lin R* = .69;
girls: mean lin R* = .58), F(1, 55) = 3.13, p = .08; after training, boys also generated more
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linear estimates on average than did girls (boys: mean lin R*=.77; girls: mean lin
R*=.58), F(1, 55) = 6.19, p = .02. An interesting question is whether similar sex differ-
ences are also evident in the number line data collected by Siegler and colleagues (e.g.,
Booth & Siegler, 2006; Laski & Siegler, 2007; Siegler & Booth, 2004; Siegler & Ramani,
in press).

Do sex differences on number line tasks generalize to other tests of children’s numer-
ical representations? One reasonable concern is that our magnitude estimation tasks
might not be representative of more widespread sex differences in numerical represen-
tations because the number line task imposes a spatial performance demand (i.e.,
marking a position on a line), and other tests of spatial visualization (e.g., Levine
et al., 1999) have found sex differences in this ability despite the inherently nonnumer-
ical nature of the spatial visualization tasks. To check this idea, we reexamined sex dif-
ferences on a test of numerical concepts—numerical categorization (Laski & Siegler,
2007; Opfer & Thompson, 2008)—that simply imposed a verbal performance demand.
On this task, children were told that 0 is a “really small number” and that 1000 is a
“really big number,” and then they were asked to say whether a novel number (e.g.,
150) was “really small,” “small,” “medium,” “big,” or “really big.” With each category
assigned an arbitrary ordinal number (i.e., 1 for “really small,” 5 for “really big”), one
can again regress the number given against the categorization judgment to assess the
linearity of boys’ and girls’ verbal category judgments. Although the number of chil-
dren who participated in this task in Opfer and Thompson’s (2008) study was fairly
small (14 boys and 8 girls) and the sex differences were not always statistically signif-
icant, absolute performance and magnitude of sex differences were nevertheless quite
similar on the verbal number categorization task (boys: mean lin R? = .62; girls: mean
lin R?> = .54) and on the spatial number line task (boys: mean lin R* = .69; girls: mean
lin R* = .58). We believe this similarity suggests that early sex differences in numerical
representation do not simply reflect a performance demand imposed by the number
line, although clearly more tests are needed to test the claim.

Even if early sex differences in numerical representation do not reflect a performance
demand, sex differences in accuracy clearly reflect a task demand. As Simon (1996)
noted, accuracy is simply a measure of the fit between the approach that participants
use on a task and what the task demands for accurate performance. In the case of our
number line, a logarithmic representation was less adequate for accuracy than was a
linear representation; thus, we observed boys to outperform girls on the number line
task. In the case of our fraction line, the reverse was true; thus, we observed girls
to outperform boys on the fraction line task. Combining the two tasks led to there
being no overall advantage for boys or girls (boys’ accuracy: M = 64%; girls’ accuracy:
M = 65%; ns). Thus, the sex difference in accuracy was not absolute but depended on
the numerical context.

Broader implications of context effects on age and sex differences in magnitude estimation

Our findings suggest that there are real age and sex differences in the representations
used to solve magnitude estimation problems but that age and sex differences in accuracy
simply reflect the match of a particular numerical context to those representations. This
point is an important one; if a difference between boys and girls (or between younger
and older children) is at the level of the representation, the advantage of either sex (or
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either age) reflects a kind of “dumb accuracy,” that is, representations that are broadly
generalizable across contexts (leading to positive transfer of accuracy) but also inflexible
to changing task demands (leading to negative transfer of accuracy).

This conclusion is also important in that it provides guidance for making broader pre-
dictions about age and sex differences in mathematical cognition. Specifically, the analysis
suggests that there is no necessary positive relation in accuracy among various mathemat-
ical tasks. Rather, positive relations in accuracy among specific mathematical tasks depend
on the relative similarity of the representations used to solve the specific tasks and the abil-
ity of those representations to accurately encode relevant mathematical properties. For
example, for fractions expressed in decimal format or with common denominators, a log-
arithmic representation would be inappropriate because it fails to encode both the linear
nature of the decimal system and the linear relation between the value of a fraction and its
numerator. In contrast, for fractions expressed in simpler familiar units, such as expressing
salaries in terms of “$1 per hour” versus “$1 per day,” the linear representation would be
inappropriate due to the power relations between the implicit denominator in hours and
days (60 and 1440 min, respectively) and the value of the salary. A testable prediction
of the current analysis is that girls and younger children should outperform boys and older
children when estimating the magnitude of salaries expressed in familiar units, whereas
boys and older children should outperform girls and younger children when estimating
the magnitude of salaries expressed in decimals and in fractions with common
denominators.

Finally, we believe that our results have a number of important educational impli-
cations. The most important implication is that efforts at improving estimation should
not stop at improving numerical estimation. Rather, efforts at improving fractional
magnitude estimation are likely to help the development of representations of fractional
value, and these—following the literature on development of numerical representations
(Booth & Siegler, 2006; Laski & Siegler, 2007; Opfer & Thompson, 2008)—are likely to
transfer to comparison of fractional values, to categorization of fractions as small or
large, and to accurate similarity judgments of fractional magnitudes. Discoveries about
educational interventions that lead to improvement of children’s numerical estimation
(e.g., Opfer & Siegler, 2007, Opfer & Thompson, 2008; Ramani & Siegler, in press;
Siegler & Ramani, in press) suggest a number of interventions that could improve chil-
dren’s representations of fractional magnitude. We believe that these interventions are
important given the inappropriateness of relying exclusively on linear representations of
symbolic magnitude, and we believe that the failure to provide children with effective
intuitions about fractional value is lasting and may contribute to adults’ known
difficulties with the fractions encountered in everyday life, including understanding of
statistics (Evans, Handley, Perham, Over, & Thompson, 2000), addition of discounts
(Chen & Rao, 2007), comparison of salaries (Opfer & DeVries, in press), and evalua-
tion of medical risks (Burkell, 2004).
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