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Pathophysiology of ankylosing spondylitis: What’s new?
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Abstract
Ankylosing spondylitis is a chronic inflammatory joint disease that predominantly affects the sacroiliac joints and spine. Its pathophysiology
remains one of the most vexing enigmas of rheumatology. However, new insights have been provided by the recent identification of suscep-
tibility genes other than HLA-B27; evidence of a pivotal role for several proinflammatory cytokines including interleukins 23 and 17; and the
recognition that inflammation and structural progression proceed separately from each other.
� 2008 Published by Elsevier Masson SAS.
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1. Introduction

Ankylosing spondylitis (AS) is a chronic inflammatory
joint disease that chiefly affects the sacroiliac joints and the
spine. The pathophysiology of AS remains largely unknown.
Its association with HLA-B27 was first established in the early
1970s, and AS is one of the best examples of diseases linked to
genetic markers. The role of HLA-B27 remains incompletely
understood [1]. However, advances made in many fields over
the last few years have shed some light on the pathophysiology
of AS. The objective of this article is to describe recent data,
such as the identification of susceptibility genes other than
HLA-B27, the demonstration that proinflammatory cytokines
other than TNF are involved in AS, and the dissociation
between inflammation and structural progression.
2. Ankylosing spondylitis is a polygenic disease
2.1. HLA-B27 is a major marker but not the sole marker,
for ankylosing spondylitis
A huge body of evidence establishes that AS is associated
with HLA-B27. This association has been found in many
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populations and ethnic groups, on multiple haplotypes [2]. Some
of the HLA-B27 subtypes are not associated with AS, suggest-
ing that subtype polymorphism may modulate the disease [3].
The results of animal studies support these epidemiological
findings. Rats transgenic for HLA-B27 and human beta2-
microglobulin develop a disease that shares many similarities
with human AS. In this model, the disease phenotype can be
modulated by manipulating HLA-B27, its peptide repertoire, or
its folding [4]. However, although over 90% of patients with AS
express HLA-B27, AS develops in less than 5% of HLA-B27-
positive individuals, suggesting a role for susceptibility genes
outside the major histocompatibility complex (MHC) [5e8].
Twin studies support this possibility: concordance rates are
higher in monozygotic twins than in dizygotic twins, indicating
a role for genetic factors. Concordance rates for AS are 23% in
dizygotic and 63% in monozygotic twins positive for HLA-B27.
Similarly, the inherited nature of the disease phenotype (age at
onset, activity, and severity) may be only partly dependent on
HLA-B27 [9]. In sum, these data suggest that AS may depend on
multiple genes [10].
2.2. The four best candidate genes for a role in
ankylosing spondylitis

2.2.1. HLA-B27
The leading candidate is HLA-B27, whose strong link with

AS long hindered the detection of other associations in
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familial databases. The latest meta-analysis of linkage studies
showed that the most robust and strongest link occurred with
the MHC region on the short arm of chromosome 6 [11].
However, links have been found with other regions, most
notably on 16q and 10q.

HLA-B27 may contribute about 20e50% of the total genetic
risk of AS [10]. New techniques, most notably genome
screening, have enabled the identification of susceptibility genes
located outside the MHC region [12]. Although many genes
outside the MHC region have been investigated, only three
likely candidates have been identified: the interleukin-1 (IL-1)
gene cluster, ARTS1, and the IL-23 receptor gene (IL-23R) [13].

2.2.2. The IL-1 cluster
The IL-1 cluster contains nine genes on chromosome 2,

including the genes for IL-1a, IL-1b, and the IL-1 receptor
antagonist (IL-1RN). An association between AS and allelic
polymorphisms of the IL-1RN gene was suggested. However,
five recent studies found no evidence supporting a role for IL-
1RN. In contrast, studies support a role for IL-1a and IL-1b in
North America and the United Kingdom, and perhaps in South
Korea [14e17]. Although the association linking IL-1 to AS is
strong, the magnitude of the genetic risk related to each variant is
small, with an attributable risk estimated at 4e6%. IL-1a is
a proinflammatory cytokine produced chiefly by activated
macrophages. IL-1 overexpression in mice causes severe
chronic proliferative arthritis. The role for IL-1 has not been
evaluated in animal models of AS and remains unclear in
humans [18]. In two therapeutic trials, the IL-1 inhibitor ana-
kinra was effective, suggesting a role for IL-1 in AS. However,
the effect was small compared to that of TNF antagonists [19e
21]. Extracellular inhibitors seem to have little influence on the
effects of IL-1a. Researchers are therefore focusing on the
intracellular activity of IL-1 and on its proinflammatory effects.

2.2.3. Aminopeptidase regulator of TNFR1 shedding
(ARTS1 or ERAP1)

One of the most exciting discoveries made in recent years is
that the ARTS1 gene may contribute as much as 26% of the risk
of developing AS [22]. ARTS1 is an endoplasmic reticulum
aminopeptidase that has two known effects. One effect is
cleavage of cytokine receptors (IL-1, IL-6, and TNF) from the
cell surface [23e25]. Loss of function of ARTS1 variants may
therefore induce proinflammatory effects. The second effect of
ARTS1 is cleavage of the N-terminus of peptide precursors in
the reticulum, which ensures that the final peptide length is
appropriate for presentation by MHC class I HLA molecules
[26,27]. ARTS1 knock-out mice are characterized by decreased
expression of surface MHC class I molecules, significantly
increased alteration of MHC class I surface markers, and
decreased antigen stability with defective antigen presentation
at the cell surface [28,29]. As mentioned earlier, the role for
HLA-B27 in the pathophysiology of AS remains unclear.
Among the many hypotheses put forward to date, one involves
presentation of an arthritogenic peptide by HLA-B27. AS does
not develop in mice transgenic for HLA-B27 and human b2
microglobulin that are kept in a sterile environment.
Nevertheless, this hypothesis has not been fully proven. The role
for ARTS1, which tailors peptides for presentation by the MHC,
supports the involvement of a group of arthritogenic peptides.
These peptides may share a similar shape, rather than an amino
acid sequence. Further studies of this possibility are needed.

2.2.4. The interleukin-23 receptor (IL-23R)
Whereas ARTS1 may explain the association between

HLA-B27 and AS, the IL-23R gene seems to link the spon-
dyloarthropathies to chronic inflammatory bowel disease and
psoriasis. A study reported in late 2006 established that
Crohn’s disease was associated with the IL-23R gene on
chromosome 1p31, a finding that was confirmed in subsequent
studies [30,31]. Shortly afterward, an association between IL-
23R and psoriasis was demonstrated [32]. Several studies have
shown that IL-23R is a major susceptibility gene for AS
[22,33,34]. The key role for IL-23 in the pathophysiology of
AS will be discussed later on.

In sum, the polygenic nature of AS is firmly established
[35]. The identification of new susceptibility genes e IL-1,
ARTS1, and IL-23R e has shed light on the pathophysiology
of AS, most notably regarding the role for HLA-B27.

3. Is ankylosing spondylitis an autoinflammatory disease?

Hypotheses regarding the role for HLA-B27 fall into two
main groups. One group ascribes a role to environmental factors,
such as arthritogenic peptides and molecular mimicry involving
the adaptive and innate immune systems. The other group
involves the biochemical characteristics of the HLA-B27
molecule, whose abnormalities may affect cell function. Thus,
misfolding of the HLA-B27 molecule or the formation of heavy-
chain homodimers has been suggested [36]. The formation of
homodimers that are unable to present antigens leads to the
build-up of chaperonins such as BIP (immunoglobulin heavy-
chain binding protein) and to a stress response related to the
endoplasmic reticulum (the unfolded protein response), which
in turn induce inflammatory factors such as IL-23.

Thus, HLA-B27 may modulate the inflammatory response
to infectious agents, via misfolding with an unfolded protein
response and/or via antigen recognition. Therefore, diseases
associated with HLA-B27 may be autoinflammatory rather
than autoimmune diseases [37], with the entheses being the
target in AS.

4. The key role for the IL-23/IL-17 axis in ankylosing
spondylitis
4.1. Cytokines IL-23 and IL-17
IL-23 is a recently identified heterodimeric cytokine that
belongs to the IL-12 family. Of the two subunits, p19 and p40,
the latter is shared with IL-12. Under the influence of IL-6 and
TGFb, which induce the expression of IL-23R on Th17 cells,
IL-23 maintains the orientation of na€ıve CD4þ T cells to
Th17 cells that produce IL-17. IL-17 is a proinflammatory
cytokine that induces the production of IL-1, IL-6, TNF, and
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proinflammatory chemokines [38,39]. The Th17 line is inde-
pendent from the Th1 and Th2 lines. IL-23 is produced by
antigen-presenting cells including dendritic cells, macro-
phages, and keratinocytes [40]. IL-23 is an immunoregulating
cytokine that links adaptive immunity to innate immunity [41].
IL-23 stimulates the Th17 response to infections (e.g., by
extracellular bacteria, protozoans, and fungi) and to the acti-
vation of receptors involved in innate immunity such as the
toll-like receptor 4 (TLR 4) [42e44].

Several studies have shown a role for the IL-23/IL-17 axis
in the pathophysiology of AS. Plasma IL-17 levels are high in
patients with AS but not in healthy controls or in patients with
rheumatoid arthritis or vitiligo [45,46]. IL-17 levels in joint
fluid are higher in reactive arthritis and undifferentiated
spondyloarthropathy than in rheumatoid arthritis or osteoar-
thritis [47]. IL-12ep40 is elevated in patient with spondy-
loarthropathy or rheumatoid arthritis and decreased in those
with osteoarthritis. Given that IL-12ep40 can reflect both IL-
12 and IL-23, this result is difficult to interpret. It would be of
interest to study IL-12/p70 (IL-12/p35/IL-12/p40) and IL-23
in serum and joint fluid specimens from patients with AS. IL-
17 has also been found in joint fluid from children with
enthesitis-related arthritis [48].
4.2. Is there a link between interferon gamma and IL-17?
Circulating macrophages and T cells from patients with AS
show decreased expression of interferon gamma (IFNg), inde-
pendently from their HLA-B27 status [49,50]. Although an IFNg
response exists in patients with spondyloarthropathies, it seems
weaker than in other inflammatory autoimmune diseases. When an
infection occurs, a weak IFNg response may lead to increased
survival of the microorganism in the body and therefore to a higher
risk of reactive arthritis [51]. One of the current hypotheses is that
limited IFNg production during an immune response in a suscep-
tible individual may release the Th17 response, thus acting as a key
factor in the pathophysiology of AS [41].
4.3. IL-23 as a treatment target
Recent knowledge on the pathophysiology of AS has led to
the development of a new treatment strategy consisting in IL-23
blockade by a human recombinant monoclonal antibody against
p40 I-12/23, called ustekinumab or CNTO 1275. In a random-
ized placebo-controlled trial in patients with Crohn’s disease,
the response rate was 75% in the ustekinumab arm compared to
25% in the placebo arm, and with the higher dosage half the
ustekinumab-treated patients achieved a remission by the end of
the study [52]. Furthermore, ustekinumab induced a PASI75
response in 75% of patients with psoriasis [53e55]. In
a randomized controlled Phase II trial in patients with psoriatic
arthritis, the ACR20, ACR50, and ACR70 response rates after
only four weekly injections of ustekinumab were higher (42%,
25%, and 10%, respectively) than in the placebo group
(14%,7%, and 0%) [56]. The results suggest that ustekinumab
may improve the joint manifestations and skin lesions, with
a carry-on effect at week 12, 8 weeks after the last injection.
Thus, IL-23 may orchestrate the pathophysiology of three
related chronic inflammatory diseases, AS, Crohn’s disease, and
psoriasis [39].

5. Pathophysiology of structural progression in
ankylosing spondylitis

Structural progression in AS is slow and irregular, with
marked interindividual variations. The modified Stoke AS
Spinal Score (mSASSS) is a validated tool for assessing axial
structural damage. This score evaluates the anterior sites of the
cervical and lumbar vertebras for squaring, erosions, sclerosis,
syndesmophytes, and bridging syndesmophytes [57,58]. It can
range from 0 (normal) to 72 (bamboo spine). Mean structural
progression has been evaluated at 1.5 mSASSS units/2 years, the
smallest detectable difference being 2 units/2 years [59]. An
increase greater than the smallest detectable difference occurs in
only one-third of patients. However, progression is not linear but
instead occurs during unpredictable flares [60]. Syndesmo-
phytes are the most common abnormalities and weigh heavily
on the mSASSS value, so that the score chiefly measures ossi-
fication rather than overall radiological progression [61]. Few
factors predicting disease progression have been identified to
date. The only predictive factor found consistently in epidemi-
ological studies was the presence of preexisting syndesmo-
phytes [62]. Other factors such as hip involvement and disease
duration have been suggested.

The relationship between evidence of inflammation by
magnetic resonance imaging (MRI) and the presence of syn-
desmophytes is complex. The shiny corner sign (Romanus
marginal erosions) is associated with an increased risk of having
a syndesmophyte 2 years later (odds ratio, 1.5e5.0 depending
on the study) [63e65]. Nevertheless, most syndesmophytes
develop at sites without MRI evidence of inflammation [65].

Plasma levels of matrix metalloproteinase 3 (MMP3) pre-
dicted radiological progression after 2 years in a cohort of 97
patients with AS [66]. Furthermore, MMP3 elevation and
a baseline mSASSS greater than 10 units predicted 2-year
progression in individual patients [66]. If these results are
confirmed by further studies, they may enable early identifi-
cation of patients at high risk for structural progression.
However, no treatments are available for slowing disease
progression. TNF antagonists seem to have little or no effect
on structural progression within 2e4 years in AS, in contrast
to rheumatoid arthritis [67e69].

These data suggest dissociation between inflammation and
structural damage, or perhaps a partial link. Inflammation, as
assessed clinically, by laboratory tests, or by MRI, is only
weakly correlated to structural progression. Structural
progression involves the formation of new bone which, from
a pathophysiological viewpoint, can be likened to a reparative
or stabilizing response to mechanical and inflammatory stress
[70]. A recent study of the topography of erosions and new
bone formation in Achilles tendon enthesitis suggests that
bony spurs may develop slowly, in keeping with our clinical
experience, and chiefly after the end of the inflammatory phase
[71]. Bone formation is endochondral, intramembranous, and
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chondroidal, without cellular hypertrophy or local hyper-
vascularity [72]. These clinico-pathologic data support a role
for inflammation as a trigger of an ossification process that
becomes partly independent from inflammation.

Rheumatoid arthritis is characterized by an imbalance
between bone resorption and bone formation, with excess
resorption [73]. Resorption by the osteoclastic cell line is stim-
ulated by the receptor activator of the NF-Kappa B ligand
(RANKL), which is activated by TNF, and is associated with
a blunted bone-formation response [21]. As a rough approxima-
tion, osteoclastic activity can be considered regulated by the
RANK/RANKL/osteoprotegerin system and osteoblastic activity
by the Dickkopf-1 (DKK-1)/Wnt system. DKK-1 is the naturally
occurring inhibitor of bone formation [74]. In rheumatoid
arthritis, the inflammatory process mediated by TNF may stim-
ulate bone resorption and inhibit bone formation. Plasma DKK-1
levels are elevated in patients with rheumatoid arthritis and return
to normal with TNF antagonist therapy [75]. In AS, in contrast,
the imbalance favors bone formation, which is not limited by
DKK-1. Plasma DKK-1 levels are extremely low [75]. Bone
formation in AS may involve other regulation systems including
bone morphogenic proteins and TGFb [45,76,77].

Many unanswered questions remain regarding the patho-
physiology of bone remodeling in AS. The exact role for TNF is
unclear. Whether factors other than inflammation and mechan-
ical stress can induce bone formation need to be determined. The
long-term effects of TNF antagonists on entheseal inflammation
are unknown. A key issue is whether early aggressive treatment
can limit the development of inappropriate ossification or repair
processes in patients with AS. Notwithstanding these many
uncertainties, the pathophysiology of AS is becoming increas-
ingly clear. This improved understanding of AS will lead to
clinical and therapeutic improvements.
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