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Abstract—We present an attack to locate hidden servers in
anonymous common networks. The attack is based on correlating
the flow of messages that arrives to a certain server with the
flow that is created by the attacker client. The fingerprint is
constructed by sending requests, each request determines one
interval. To improve the performance a prediction of the time of
arrival is done for each request. We propose an optimal detector
to decide whether the flow is fingerprinted, based on the Neyman-
Pearson lemma.

The usefulness of our algorithm is shown for the case of
locating a Tor Hidden Service (HS), where we analytically deter-
mine the parameters that yield a fixed false positive probability
and compute the corresponding detection probability. Finally,
we empirically validate our results with a simulator and with a
real implementation on the live Tor network. Results show that
our algorithm outperforms any other flow watermarking scheme.
QOur design also yields a small detectability.

I. INTRODUCTION

Internet anonymous access has become a necessity for
a wide range of users: human rights activists, journalists,
military, dissidents, bloggers, citizens in censored countries,
etc. This need fostered the development of anonymous com-
munication systems, such as Freenet [1], Tor [2], or I2P [3].
Anonymity is not only an issue for users, but it is also
important for servers. The Electronic Frontier Foundation
and Reporters Without Borders advise the use of anonymous
servers to protect the safety of dissidents who have to over-
come censorship.

Unfortunately, anonymous servers are also used for illegal
purposes such as distributing child pornography, drug traffic
and supporting terrorism. Nowadays tracking the location of
theses sites has become a serious concern for law enforcement
agencies, as their IPs are not public. For example, the FBI has
halted several investigations of sites that traffic in illegal drugs
or share child pornography because there is currently no way
to trace the origin of their websites [4].

In this paper we propose a flow fingerprint that can be used
to identify anonymous servers. For this purpose the attacker
client fingerprints the flow of messages and eavesdrops the
communication channel at the anonymous server side trying to
detect the inserted fingerprint. This adversary model has been
shown to be realistic, as some organizations or governments
have access to Internet service provider (ISP) data [5]. For
that matter, the ISP itself or an autonomous system (AS) can
become the adversary.

Fingerprinting is done in the following way: a client sends
application requests to the server, disguised as a common
user’s pattern. The times the request is sent and the response
is received are saved. The detector predicts the value of the
arrival time of the request to improve the detection perfor-
mance and then applies Neyman-Pearson lemma. This yields
an excellent performance, for example we could identify a
HS using the real traffic of Signal Processing Group of the
University of Vigo web server (UVigo) with just 8 requests
with a detection probability 0.9 given a probability of false
positive of 1076, Our fingerprint does not modify the TCP’s
intrinsic features, i.e. we do not add any delay to any packet,
thus making it impossible to detect using these characteristics
as is done by Backlit [6] or MFA [7].

The rest of this paper is organized as follows: Section
IT reviews previous approaches. In Section III we formally
describe our problem and the proposed solution. In Section IV
we propose a real application to validate our fingerprint and
show how we do the prediction. In Section V we analytically
derive the probability of detection and the false positive rate. In
Section VI we empirically validate our scheme in a simulator
and in a real implementation. We also study the detectability
of our algorithm. Section VII summarizes our contribution.

II. BACKGROUND

A. Attacks against anonymous servers

@verlier and Syverson [8] proposed an attack to identify
Tor Hidden Services. The goal of the attack is that the circuit
from the Hidden Service (HS) to the rendezvous point has a
compromised node as an entry point. They detect when they
have succeeded by a cell counting algorithm.

Elices et al. [9] watermark a flow of requests to leave a
fingerprint in an anonymous server log. This attack does not
really locate the anonymous server but serves to prove later
on that the confiscated machine was the anonymous server. It
is easily bypassed if this machine does not keep access logs
or stores them with a very coarse time granularity.

B. Watermarking/Fingerprinting algorithms

Houmansadr et al. [10] proposed RAINBOW, a non-blind
watermark robust to packet drops and repacketization. They
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record the inter-packet delay previous to embedding the wa-
termark and add a different quantity for embedding a 0 or a
1.

Houmansadr et al. [11] proposed SWIRL, a scalable wa-
termark that is invisible and resilient to packet losses. The
watermark is embedded by delaying packets so that they fall
into some selected slots.

Pyun et al. [12] proposed a watermark that works better in
the cases of flow splitting, chaff packets and repacketization,
but with the drawback of being more detectable. The infor-
mation is embedded in the difference between the number of
packets in two contiguous intervals.

All these watermarks can be detected analyzing the intrinsic
timing features of TCP flows [6].

III. DESCRIPTION OF THE PROBLEM

In this section we formally describe the problem and intro-
duce the notation we use in the rest of the paper.

A. Problem

Figure 1 shows the system model. We have a client-server
architecture, we call the client Alice and the server Bob. Alice
wants to fingerprint her traffic, so she can decide whether the
traffic she eavesdrops contains her flow or it does not. We also
assume that the network can encrypt the traffic and repacketize
it. This means that Alice cannot identify her packets by their
size or contents.

Alice sends a fixed number of application messages fol-
lowing a pattern that could belong to a normal client, saving
the time when she sends the request and the instant she
receives the response. This is the interval considered for each
request. We define the ¢th interval as the period of time
I; = (0i,e;) = (04,0, +T;), @ =0,...,L —1, where L
is the number of requests that conform our fingerprint, o; is
the instant that the ¢th request is sent, e; is the instant that the
response is received, and T; is the interval length. To make
intervals independent, Alice only sends a request when there
are no other pending requests, i.e. I; N I; = 0, Vi # j.

Alice predicts the value when she expects to see the message
that carries her request. We call r; to the real message time and
7; to the prediction. The goal of Alice is to be able to correctly
decide if the eavesdropped link contains the fingerprinted flow
based on the messages seen on this link.

B. Performance Metrics

To measure the performance of our attack, we define two
metrics: the probability of detection (Pp), which represents the
probability of deciding that the flow through the eavesdropped
link contains the fingerprinted flow when it is actually true;

and the probability of false positive (Pr), which represents
the probability of incorrectly deciding that the eavesdropped
link contains the fingerprinted flow. Formally, we can express
this problem via classical hypothesis testing with the following
hypotheses:

Hy: The eavesdropped link does not carry the fingerprinted flow.

H,: The eavesdropped link carries the fingerprinted flow.

Then Pp is the probability of deciding H; when H; holds,
whereas Py is the probability of deciding H; when Hj holds.

In a practical setting, one fixes a certain value of Pp (that
has to be very small if we want to achieve a high reliability)
and then measures Pp (which we would like to be as large as
possible).

In addition, we want to avoid that Bob or any other
party different than Alice notices that the incoming traffic is
fingerprinted, i.e., the sequence should have low detectability.
As we have mentioned, our algorithm does not delay any
packet. Hence the fingerprint can only be detected due to the
increment of traffic or if the sequence of requests does not
follow a typical pattern. We will measure the detectability with
the Kullback-Leibler divergence (KLD) between the requests
that the anonymous server receives with and without the
fingerprinted flow. We do not consider the second way of
detecting the fingerprint, as we have assumed that Alice sends
her requests in a normal user pattern.

C. Proposed detector

The proposed detector is based on Neyman-Pearson lemma,
as it is the uniformly most powerful test [13]. This means that
it has the maximum probability of detection among all possible
tests that yield a given Pr. Therefore, our detector is optimal
for the proposed model.

This decoder constructs the ratio A(Z)

Pr(X = Z|H,, P)

A(Z, P) = _ 1
(.F) Pr(X = #|Hy) &

where & is the vector of all eavesdropped message times,
i.e. Z includes the time of our message, r;, and other users’
messages. P is the vector of predicted message times, i.e.
P = {r1,...,75}, and Alice decides the eavesdropped link
contains the fingerprint if this ratio is larger than 7, a threshold
that we fix to achieve a certain probability of false positive.

We assume that messages coming from other users are
uniformly distributed inside the interval (see [14]) and inde-
pendent from the fingerprint message. In this case, the ratio
can be simplified to

1
T;

L o
A(f, 13‘) — H ferror(ri - Ti) (2)
i=1

where fe.or is the probability density function (pdf) of the
prediction error. However, we find the problem that if Bob
receives multiple messages in the interval we cannot identify
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Fig. 2. Cells in a Tor Request

a unique candidate to be the target message, that is, correctly
measure the value of ;.

We consider that the prior probability that any given mes-
sage is the desired one to be equal for all messages. Hence
Alice decides a fingeprint is present if

NP -1

i=lx;cl;

—7)-Ti>n. ()

ferror €
n;

where n; is the number of messages that fall inside I;. Note
that since % is the rate of requests, the larger this is, the less
weight it is given in the decoding.

IV. APPLICATION: DETECTING A TOR HIDDEN SERVICE
(HS)

In order to show the feasibility and usefulness of our
algorithm we apply it to locate a HS. We assume a client,
Alice, who fingerprints the flow of messages to a HS, Bob, and
eavesdrops the communication channel at Bob’s side trying
to detect the inserted fingerprint. Figure 2 shows the packet
exchange for just one request and the considered interval.

A. Predictor

Our algorithm benefits from a prediction of the time when
a cell reaches the HS. The estimation is done based on the
information available to Alice, that is, the round-trip delay.
Therefore, 7#; = f(T;) where f is the prediction function.

1) Measured delays: In order to measure the delays, we
create a toy client-server application to measure packet delays
in Tor. Traffic is captured and matched to the packets shown
in Figure 2. We used 50000 samples that were taken every 10
seconds. As it is customary, we separate these data into two
subsets: a training set that includes 80% of the samples, and
the remaining 20% as test set.

2) Predictors and performance: We propose two different
predictors. The first one is based on polynomial regression and
the second one a multilayer perceptron (MLP) [15]. The first
model is simpler, but limits the range of available functions
to predict, compared to the second one that can approximate
any function [15].

We compare in Figure 3 the root-mean-square error
(RMSE), as it is a measure of the accuracy of a predictor,
for both cases. Results show that a MLP does not give any
advantage and increasing the order of the polynomial produces
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Fig. 3. Performance of the MLP predictor and polynomial predictor
TABLE I
MLE PARAMETERS
Distribution | Parameters
Normal ©=0.0023, 0 = 0.1474
Cauchy = 0.00048, o = 0.0809
Laplace pn =0.00014, 0 = 0.1107
Logistic © = 0.00013, o = 0.0797
Gumbel pn = —0.0791, 0 = 0.1983

negligible improvements. Hence our predictor is an affine
function of T}, that is, Ri = 0.46-T;+0.02 with T; measured in
seconds. That is close enough to the expected Ri=0.5-T;, as
the paths of the request and response are essentially identical.

3) Characterizing the prediction error: We saw previously
that the decoder needs to model the error function. To this
end, we use the errors produced by the affine predictor given
above. Errors are normalized dividing by their corresponding

We select some candidate distributions and estimate their
parameters using maximum likelihood estimators (MLE), as
this method chooses the value of the parameters that produce
a distribution that gives the observed data the greatest probabil-
ity. Afterwards, we evaluate the goodness-of-fit using different
metrics: the KLD, the X2 , the Kolmogorov-Smirnov (KS) and
the Anderson-Darling (AD). The smaller the value the better
is the fit in all of them.

The candidate distributions were selected among the most
common continuous distributions that have support at least on
the range of our data, i.e (—1,1). The chosen distributions are
Normal, Cauchy, Laplace, Logistic and Gumbel. Their pdfs
can be seen in [16].

Table I shows the parameters obtained by MLE. Table II
shows the goodness-of-fit test results, where it is shown that
Laplace distribution best models our data.

Also we denormalize the intervals, hence we get the distri-

TABLE II
GOODNESS OF FIT

Test Filtered Data

Distribution | KLD X2 KS AD
Normal 0.1608 801057 0.1005 1090
Cauchy 0.0846 586019 0.0763 197
Laplace 0.0315 592904 0.0310 176
Logistic 0.0888 600276 0.06545 514
Gumbel 0.3043 1540593 0.1561 17761



bution of the error given the measured round-trip, 7;, and we
make the simplification i ~ 0 (cf. Table I). Therefore, we can

write ferror, (€i|T;) = #Tiexp —Jf%‘

o is shown in Table 1.

), where the value of

V. ANALYSIS AND RESULTS

A. Mathematical analysis

In this section we want to calculate the threshold n for
a given probability of false positive, and the probability of
detection that is achieved with such threshold. First, we
statistically model the number of cells per unit of time n;/7T;
and the round-trip time for a cell, T;. Afterwards, we derive
the expressions for 77 and Pp.

1) Modelling the number of cells per unit of time: We
consider four possible models: the usual ones [9], Poisson
and Negative Binomial, and their generalizations: Generalized
Poisson and Generalized Negative Binomial. Refer to [17] for
the formal pdfs.

To validate each model we use seven different World
Wide Web server logs from the Internet Traffic Archive and
UVigo. We estimate the parameters by MLE [17]. Results
(cf. Table III) show that both the Generalized Poisson and
the Generalized Negative Binomial can model the number of
requests. We choose to use the General Poisson Approximation
as it has one degree less of freedom than the General Negative
Binomial.

TABLE III
GOODNESS OF FIT FOR THE NUMBER OF REQUESTS

Log Poisson NB Gen. Poisson  Gen. NB
K-L Div. K-L Div. K-L Div. K-L Div.
Calgary 0.0121 0.0076 0.0001 0.0001
UVigo 0.0845 0.0504 0.0012 0.0012
Saskatchewan 0.0246 0.0066 0.0014 0.0017
EPA 0.0979 0.0025 0.0003 0.0001
Nasa 0.0882 0.0002 0.0001 0.00005
Clarknet 0.2534 0.0028 0.0009 0.0009
World Cup 1.9701 0.0074 0.0059 0.0056

2) Modelling a cell round trip delay, T;: A characterization
of the pdf of the round-trip time is needed. Our measurements
confirm the result by Loesing et al. that the delays can be
modeled as a Fréchet distribution [18].

3) Theoretical probablities: Recalling from previous sec-
tions, we decide there is a fingerprint if the random variable
W defined as

”) (4)

W= H ;exp<

Y;

Zi

is larger than 7. Also notice that in (4) we have defined the
auxiliary random variables Y} and Z;.

W.lLo.g., we consider that X; represents the message that
can come from our fingerprint or not and X,, j = 2,...,n;

Fig. 4. Probability of watermarking detection for UVigo and a fixed Pr =
1076

are messages from any other source, then, for this last kind of

message:
=z Yj € (a
fY |T; (3/g|T) {gg

Y5 yj €

'y (5)

_O.54Ti —0.02
O'Ti
0.467T; + 0.02 0.54T; — 0.02
b = max exXp —77_' , exXp —T .
ol [

For the case j = 1, we have fy,1,(nlTi, Hi) ~
Uniform(0,1), and fy, 7, (y1|T;, Ho) is identically distributed
to Y;|T;,j # 1, whose distribution is shown in 9).

We characterize Z; as fz,(z;) jo s —0 f=(zilni, t;)

p(ni|t;) fr,(t;)dt;, where p(n;|t;) and fr,(t;) have been char-
acterized in previous sections as Generalized Poisson and
Fréchet distributions, respectively. The pdf fz,|,., 7, (zi|ni, t:)
can be computed by convolving the distributions of Y;|T;, for
7 =1...,n;. Formally,

fz(Zz'nzaﬂ) = {nz (fYO‘Ti ORI fYni‘Ti) (Z,an) n; >0 .

(6)
Note that the case n; = 0 is not possible when H; holds
because the cell from our fingerprint must arrive inside the
interval. Also note that the convolution is evaluated at z;n;,
this fact comes from (4) where the sum is multiplied by 1/n;.
Lastly, we characterize W, as f(w) = f;,.25...2;, (W), where
the density of the product of two 1ndependent random variables
can be obtained as f, .., (2 fz L (@) fop (2)da
So we calculate the value of the threshold n, as the
(1 — Pp)th quantile of f,,, and the probability of detection
as Pp = 1 — Fy g, (n), where F,, denotes the cumulative
distribution function of f,,. As an example, Figure 4 shows
the theoretical Pp as a function of L for Uvigo traffic and
Pr =106,

where

a = min (exp <—

0.46T; + 0.02) (
——— ] ,exp
ol;

VI. RESULTS

We have created a simulator to show how close real results
are from our predictions, and to compare with other existing
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Fig. 5. Simulator Results for (a) NASA web server with 20 requests and (b)
UVigo with 3 requests

approaches. Then we implement the fingerprint in the live Tor
network against a HS.

A. Simulator

We create a simulator to validate our theorical analysis and
to compare with other existing approaches: Rainbow [10],
SWIRL [11] and Interval-based [12]. We send a HTTP request
every 10 seconds, each request generates two cells (cf. Figure
2). Those flows are fingerprinted with each scheme. To each
cell we add a delay equal to a measured one to preserve the
time correlation. To model the behavior of other users, we
send HTTP requests in the same way as measured in one of
the logs.

Each experiment is simulated 10 million times. We run this
simulator in two different scenarios. The first case assumes
that the other users’ requests are the same as for UVigo with 3
HTTP requests. And the second scenario simulates the traffic
of the web server at NASA’s Kennedy Space Center. This
second server is considerably busier than the first one, so we
increase the number of requests to 20 HTTP requests.

Results are shown in Figures 5(a) and 5(b). We see that this
small number of requests is enough to achieve a very good
performance. The performance of our algorithm, measured
by the Pp for a given Pp is several orders of magnitude
better than other fingerprinting schemes for the same number
of messages. We also see that simulation results give a better
performance than the analysis. This is due to the fact that in
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Fig. 6. Real Implementation, Simulation and Theoretical Results for Uvigo
web server

our analysis we assumed no autocorrelation in the log and in
the delays, assumption that does not hold in reality.

B. Real Implementation

Obviously, simulations are not fully realistic. For instance,
our simulator assumes that no cells reach the HS other
than the two generated by each request, which may lead to
overestimating performance. This means that we can filter off
all the control cells (i.e. padding, create and destroy [2]) and
keep only the relay cells that carry actual information.

The real implementation was done using three computers
connected to live Tor: a HS and two clients, one that creates
the fingerprint and the other that sends requests according to
the log of the simulated machine. We do not perform any kind
of filtering, keeping all the controll cells.

In our experiments a request is sent 10 seconds after the
response is obtained. The gap between watermarks is fixed to
30 seconds. We create 1000 watermarks for each experiment.
The experiment uses UVigo log with L = 1 and 2 requests.
Results are shown in Figure 6. We see that the lack of filtering
reduces the performance of the real implementation compared
to the simulator and gives very similar results to the theoretical
ones.

C. Detectability

We have mentioned that our scheme is complete unde-
tectable through the TCP’s intrinsic features as they are not
modified, i.e. we do not add any extra delay to any message.
So actual watermark detection algorithms such as Backlit [6]
or MFA [7] cannot detect our fingerprint as they use those
characteristics. This also makes nearly impossible that an
intermediate node detects that the flow is fingerprinted.

We also want to prevent that any other party can detect
that it is receiving a fingerprinted flow, i.e. we want a low
detectability. There are two ways Bob could detect our wa-
termark: the first, due to the modification of the pdf of the
number of received messages, and the second, due to the
uncommonness of the messages pattern. We do not consider
the second, as we have assumed that Alice’s messages follow
a normal user’s pattern.
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We measure the detectability using the KLLD of the distribu-
tions of requests with the watermark flow and in its absence.
Note that the detectability decreases with the time between
requests, 1’4, as seen in Figure 7, but we also want that our
fingerprinting flow is done in a reasonable time.

Notice that the anonymous server may try to detect the
watermark using higher-order statistics. Specifically, an in-
crement of the autocorrelation periodically in T, + E[T}]
indicates the presence of this watermark. This is shown in
Figure 8(a), where the parameters are readily obtained. This
problem can be easily solved by making the time between
requests pseudorandom as seen in Figure 8(b).

VII. CONCLUSION

This paper proposes a non-blind fingerprint for a flow
created by the client. Our proposed scheme outperforms ex-
isting methods. This is due to two reasons: first, information
generated during the creation of the fingerprint is used in the
detection, and second, the use of an optimal decoder.

The fingerprint is constructed by sending requests, each
request determines one interval. A prediction of the time
of arrival is done for each request. The proposed detector
applies Neyman-Pearson lemma to decide whether the flow
is watermarked. The performance is studied theoretically and
empirically, through both a simulator and a real implemen-
tation of the algorithm. Results show that we can create a
fingerprint with very few requests: less than 10 for a server
with little traffic and of a few tens for a busier web server.

An implementation of the attack against a real HS con-
nected to the Tor network has been carried out, and shows a
performance similar to the theoretical results. We also study
the detectability of the algorithm, and see that the larger
the average time between requests, the less detectable our

algorithm is, and that we need the time between intervals to
be pseudorandom to avoid detection through autocorrelation.
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