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step for discovering semantic correspondences of attributes acrosorrelation measure

heterogeneous sources. While complex matchings are common,

because of their far more complex search space, most existing tech-] |

niques focus on simple 1:1 matchings. To tackle this challenge,
this paper takes a conceptually novel approach by viewing schema
matching agorrelation mining for our task of matching Web query
interfaces to integrate the myriad databases on the Internet. On
this “deep Web,” query interfaces generally foommplex match-
ingsbetween attribute groups (e.gauthor} corresponds téfirst
name, last name} in the Books domain). We observe that the co-

occurrences patterns across query interfaces often reveal such com-

plex semantic relationshipgrouping attributege.g.,{first name,

last name}) tend to be co-present in query interfaces and thus pos-
itively correlated. In contrassynonym attributesre negatively
correlated because they rarely co-occur. This insight enables us
to discover complex matchings by a correlation mining approach.
In particular, we develop thBCM framework, which consists of
data preparationdual miningof positive and negative correlations,
and finallymatching selectionUnlike previous correlation mining
algorithms, which mainly focus on finding strong positive correla-
tions, our algorithm cares both positive and negative correlations,
especially the subtlety of negative correlations, due to its special
importance in schema matching. This leads to the introduction of a
new correlation measuré]-measure, distinct from those proposed
in previous work. We evaluate our approach extensively and the
results show good accuracy for discovering complex matchings.

Categories and Subject Descriptors

H.2.5 [Database Managemerjt Heterogeneous Databases; H.2.8
[Database Managemerijt Database Applications-Bata Mining

General Terms
Algorithms, Measurement

*This material is based upon work partially supported by NSF
Grants 11S-0133199 and 11S-0313260. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the
funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies arel
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’04, August 22-25, 2004, Seattle, Washington, USA.

Copyright 2004 ACM 1-58113-888-1/04/000855.00.

INTRODUCTION

In recent years, we have witnessed the rapid growth of databases
on the Web, or the so-called “deep Web.” A July 2000 survey [3]
estimated that 96,000 “search cites” and 550 billion content pages
in this deep Web. Our recent study [6] in December 2002 estimated
between 127,000 to 330,000 deep Web sources. With the virtually
unlimited amount of information sources, the deep Web is clearly
an important frontier for data integration.

Schema matching is fundamental for supporting query media-
tion across deep Web sources. On the deep Web, numerous online
databases provide dynantgcierybased data access through their
query interfacesinstead of static URL links. Each query interface
accepts queries over itgliery schemage.g.,author, title, subject,

... foramazon.com Schema matching (i.e., discovering semantic
correspondences of attributes) across Web interfaces is essential for
mediating queries across deep Web sources.

In particular, matching Web interfaces in the same domain (e.g.,
Books, Airfares), the focus of this paper, is an important prob-
lem with broad applications. In particular, we often need to search
over alternative sources in the same domain such as purchasing a
book (or flight ticket) across many online book (or airline) sources.
Given a set of Web interfaces in the same domain, this paper solves
the problem of discovering matchings among those interfaces. We
notice that our input, a set of Web pages with interfaces in the same
domain, can be either manually [7] or automatically [13, 12] col-
lected and classified.

On the “deep Web,” query schemas generally feomplex match-
ings between attribute groups. In contrast to simple 1:1 matching,
complex matching matches a setafattributes to another set of
n attributes, which is thus also called:n matching We observe
that, in query interfaces, complex matchings do exist and are actu-
ally quite frequent. For instance, in Books domainthor is a syn-
onym of the grouping ofast name andfirst name, i.e., {author}
= {first name, last name}; in Airfares domain{passengers} =
{adults, seniors, children, infants}. Hence, discovering complex
matchings is critical to integrate the deep Web.

Although 1:1 matching has got great attention [18, 9, 15, 10],
m:n matching has not been extensively studied, mainly due to the
much more complex search space of exploring all possible com-
binations of attributes (as Section 7 will discuss). To tackle this
challenge, we investigate them-occurrencepatterns of attributes
across sources, to match scherhabstically. Unlike most schema
matching work which matches/o schemas at a time, we matath
the schemas at the same time. This holistic matching provides the
co-occurrence information of attributes across schemas and thus
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There are several applications of our work: First, while pursu-
enables efficient mining-based solutions. For instance, we may ob-ing holistic matching, our result can naturally address the pairwise
serve thatast name andfirst name often co-occur in schemas,  matching problem. For instance, given the matchijagthor} =

Figure 1: Examples of “Fragment” Web Interfaces.

while they together rarely co-occur wittuthor, as Figure 1 illus- {last name, first name} found by our approach, we can match
trates. More generally, we observe tgatuping attributei.e., at- {author} in some schem& 4 to {last name, first name} in an-
tributes in one group of a matching e.glast name, first name}) other schem&'z. Second, our work is a critical step to construct

tend to be co-present and thus positively correlated across sourcesa global Web interface for each domain. Specifically, among the
In contrastsynonym attribute§.e., attribute groups in a matching)  synonyms in a matching, we can pick the most popular one as the
are negatively correlated because they rarely co-occur in schemas.representative in the global interface and use that matching to build

These dual observations motivate us to develop a correlation the mappings from the global interface to local ones.
mining abstraction of the schema matching problem. Specifically, In our development, we also observed several interesting issues.
given Web pages containing query interfaces, this paper develops aCan we mine interesting patterns over cross-domain Web inter-
streamlineddCM framework for mining complex matchings, con-  faces? How to systematically decide the threshold values for min-
sisting of automatiaata preparationand correlation mining as ing? How can our approach benefit from exploring other informa-
Figure 2 shows. Since the query schemas in Web interfaces aretion on the Web? We discuss these open issues in Section 8.
not readily minable in HTML format, as preprocessing, the data  In summary, the contributions of this paper are:
preparation step prepares “schema transactions” for mining (Sec- e We build a conceptually novel connection between the schema
tion 5). Then the correlation mining step, the main focus of this matching problem and the correlation mining approach. On one
paper, discovers complex matchings with dual mining of positive hand, we consider schema matching as a application of
and negative correlations (Section 3). We name the whole match-  correlation mining; on the other hand, we propose correlation
ing process a®CM, since the core of the algorithm is theia mining as a nevapproachfor schema matching.
correlation_nining part.

Unlike previous correlation mining algorithms, which mainly
focus on finding strong positive correlations, our algorithm cares
both positive and negative correlations. Hence, we need to develop
measures for both positive correlations and negative ones. Our
schema matching task is particularly interested in negative corre-
lations, since on one hand, they reflect the synonym relationships
among attributes, on the other hand, they have not been extenswely
explored and applied before.

e \We develop correlation measures that are robust for not only
positive correlations, but also negative correlations. In particu-
lar, we identify the problems of existing measures on evaluating
negative correlations, due to its special importance in schema
matching, and further introduce a new correlation meadtre,
measure, distinct from those proposed in previous work.

The rest of the paper is organized as follows: Section 2 presents
our motivating observations of integrating the deep Web. Section 3

To ensure the quality of the mining result (i.e., the complex match- develops the r_nining and selection algorith_ms. Section 4 proposes
ings), the chosen measures should satisfy some quality require-2 "eW correlation measurg,-measure. Section 5 presents the data
ments, based on our observation of query schemas (Section 4). Inpreparatlon step. Section 6 reports our experiments. Section 7 re-
particular, from the extremely non-uniform distribution of schema views related work and and Section 8 discusses several further op-
attributes, we identify that: 1) Both the positive and negative corre- POrtunities and open issues, and then concludes this paper.
lation measures should be robust for #marseness problefe.,
the sparseness of schema data may “exaggerate” the effect of co2  MOTIVATION: FROM MATCHING TO
absence), which has also been noticed as the “null invariance” prop-
erty by recent correlation mining work [20, 16, 14]. 2) The negative MINING
correlation measure should be robust for e attribute problem As Section 1 briefly introduced, our key insight is on connecting
(i.e., the rare attributes may not be convincing to judge their neg- matching to mining, which this section further motivates with a
ative correlations). Since none of the existing measures [20, 4] is concrete example. Consider a typical scenario: suppose user Amy,
robust for both the sparseness problem and the rare attribute prob-who wants to book two flight tickets from cityl to city B, one
lem, we develop a hew measut®-measure, robust against both  for her and the other for her 5-year old child. To get the best deal,
problems in measuring negative correlations. she needs to query on various airfare sources by filling the Web

To evaluate the matching performance difiemeasure, we test  query interfaces. For instance, imited.com she fills the query
the DCM framework on the datasets in the UIUC Web integration interface withfrom as city A, to as city B andpassengers as 2.
repository [7]. First, we tesDCM on the TEL-8 dataset, which  For the same query iflyairnorth.com she fills withdepart as city
contains raw Web pages over 447 deep Web sources in 8 popu-A, destination as city B, adults as 1,seniors as 0,children as 1
lar domains, and the result shows gdadyet accuracy Second, andinfants as 0.
we compare th®CM framework with theMGS framework [10], This scenario reveals some critical characteristics of the Web in-
which also matches Web interfaces with the same insight of explor- terfaces in the same domain. First, some attributes gnayp to-
ing a holistic approach, on its BAMM dataset. The result shows that gether to form a “larger” concept. For instance, the grouping of
DCM is empirically close tdMGS in discovering simple matchings  adults, seniors, children andinfants denotes the number of pas-
and furtherDCM can find complex matchings, which is not sup- sengers. We consider such attributes that can be grouppdas



ing attributesor havinggrouping relationshipdenoted by putting entities, for simplicity of illustration, we use the attribute name of
them within braces (e.g{adults, seniors, children, infants}). each entity, after cleaning, as the attribute identifier. For instance,

Second, different sources may use different attributes for the the schema in Figure 1(c) is thus, as a transaction of two attribute
same concept. For instandeom and depart denote the city to entities, written agtitle, author}.

leave from, ando anddestination the city to go to. We consider Formally, we consider the schema matching problemGisen
such semantically equivalent attributes (or attribute groupsyias the input as a set of schem&s = {51, ..., S.} in the same do-
onym attributesor havingsynonym relationshipdenoted by “=" main, where each schentg is a transaction of attribute identi-
(e.g.,{from} = {depart}, {to} = {destination}). fiers, find all the matchingdt = {M;, ..., M, }. Each}j; is an
Grouping attributes and synonym attributes together foom- n-ary complex matchingr;, = G5, = ... = Gj,,, where each

plex matchings In complex matching, a set of attributes is G}, is an attribute group and7;, C |J;_, S:. Semantically, each

matched to another set af attributes, which is thus also called  M; should represent the synonym relationship of attribute groups

m:n matching (in contrast to the simple 1:1 matching). For in- Gj,,...,G;, and eacl@;, should represent the grouping relation-

stance{adults, seniors, children, infants} = {passengers} is a ship of attributes irG;, .

4:1 matching in the above scenario. Motivated by our observations on the schema data (Section 2),
To tackle the complex matching problem, we exploit the co- we develop a correlation mining algorithm, with respect to the above

occurrence patterns to match scherhalistically and thus pursue  abstraction (Figure 2)First, group discovery We minepositively

a mining approach. Unlike most schema matching work which correlated attributedo form potential attribute groups. A poten-

matches two schemas at a time, we match all the schemas at thdial group may not be eventually useful for matching; only the ones

same time. This holistic view provides the co-occurrence informa- having synonym relationship (i.e., negative correlation) with other

tion of attributes across many schemas, which reveals the semanticgroups can survive. For instance, if all sources last name,

of complex matchings. (Such co-occurrence information cannot be first name, and notauthor, then the potential grouflast name,

observed when schemas are matched only in pairs.) For instancefirst name} is not useful because there is no matchingafthor)

we may observe thatdults, seniors, children andinfants often needed.Secondmatching discoveryGiven the potential groups

co-occur with each other in schemas, while they together do not co- (including singleton ones), we mimegatively correlated attribute

occur withpassengers. This insight enables us to discover com- groupsto form potentialn-ary complex matchings. A potential

plex matchings with a correlation mining approach. In particular, matching may not be considered as correct due to the existence of

in our application, we need to handle not only positive correlations, conflicts among matchinghird, matching selectianTo solve the

a traditional focus, but also negative ones, which have rarely beenconflicts, we develop a selection strategy to select the most confi-

extensively explored or applied. dent and consistent matchings from the mining result. Section 3.1
By matching many schemas together, this holistic matching nat- discusses the group and matching discovery and Section 3.2 the

urally discovers a more general type of complex matching —a match-matching selection.

ing may span across more than two attribute groups. Still consider  After group discovery, we need to add the discovered groups

the Amy scenario, if she tries a third airline sourpeceline.com into the input schemas$z to mine negative correlations among
she needs to fill the interface witteparture city as city A, ar- groups. (A single attribute is viewed as a group with only one
rival city as city B, number of tickets as 2. We thus have the attribute.) Specifically, an attribute group is added into a schema
matching{adults, seniors, children, infants} = {passengers} if that schema contains any attribute in the group. For instance, if
= {number of tickets}, which is a 4:1:1 matching. Similarly, we  we discover thaiast name andfirst name have grouping relation-
have two 1:1:1 matching§rom} = {departure city} = {depart} ship, we consideflast name, first name} as an attribute group,

and {to} = {arrival city} = {destination}. We name this type denoted byG, s for simplicity, and add it to any schema contain-
of matchingn-ary complex matchingwhich can be viewed as an  ing eitherlast name or first name, or both. The intuition is that
aggregation of several binarg:n matchings. although a schema may not contain the entire group, it still par-
In particular, we develop a new approach, @M framework, tially covers the concept that the group denotes and thus should be
to minen-ary complex matchings. Figure 2 illustrates this min- counted in matching discovery for that concept. Note that we do
ing process: 1) As preprocessing, data preparation (Section 5) pre-not remove singleton groug$ast name} and{first name} when
pares “schema transactions” for mining by extracting and cleaning adding G, s, becauseZ; is only a potential group and may not
the attribute entitiesin Web interfaces. 2) As the main focus of  survive in matching discovery.
this paper, the correlation mining step (Section 3) discoxeasy . .
complex matchings by first finding potential attribute groups using 3-1  Complex Matching Discovery
positive correlations and then potential complex matchings using  While group discovery works on individual attributes and match-
negative correlations. Last, matching selection chooses the mosting discovery on attribute groups, they can share the same mining
confident and consistent matchings from the mining result. 3) Also, process. We use the ternitems— to represent both attributes and
since pursuing a mining approach, we need to choose appropriategroups in the following discussion of mining algorithm.

correlation measures. We discuss this topic in Section 4. Correlation mining, at the heart, requires a measure to gauge cor-
relation of a set of: items; our observation indicates pairwise cor-
3. COMPLEX MATCHING AS CORRELA- relations among these items. Specifically, fom groups form-
TION MINING ing synonyms, any two groups should be negatively correlated,

) ) ) o since they both are synonyms by themselves (e.g., in the match-
We view a schema asteansaction a conventional abstractionin  jng {destination} = {to} = {arrival city}, negative correlations
association and correlation mining. In data mining, a transaction is exist between any two groups). We have similar observation on the

a set of items; correspondingly, in schema matching, we consider attributes with grouping relationships. Motivated by such observa-
a schema as a set aftribute entities An attribute entity contains  tjons, we design the measure as:

attribute name, type and domain (i.e., instance values). Before min- . .

ing, the data preparation step (Section 5) finds syntactically similar Cmin({A1, ., An},m) = minm(Ai, 4;), Vi # j, @
entities among schemas. After that, each attribute entity is assignedwherem is some correlation measure for two items (e.g., the mea-
a uniqueattribute identifier While the mining is over the attribute  sures surveyed in [20]). That is, we defi6g,;,, as the minimal



Algorithm: N-ARY SCHEMAMATCHING:

Input: InputSchemas$z = {51, ..., Su},
Measuresn,,m,, Thresholds,, T,

Output: Potentialn-ary complex matchings

begin:

1 /*group discovery */

2 G «— APRIORICORRMINING (Sz,mp, T))

3 /*adding groups int&z */

4 for eachS; € Sz

5 for eachGy, € G

6 if Szﬂkaé(ZJthenSZHSZU{Gk}

7 I* matching discovery */

8 M «— APRIORICORRMINING (Sz,mn, Ty)

9 return M

end

Algorithm: APRIORICORRMINING:
Input: InputSchemas$z = {54, ..., Su},
Measuresn, Thresholds’

Output: Correlated items

begin:

1 X0

2 V<—U:::1 S“Sl GSI

3 forallA,, A € V,p#q

4 ifm(Ap, Ag) > Tthen X — X U{{A4,, A.}}
5 [+2

6 /* X;: correlated items with length &/

7 X —X

8 while X; # 0

9  constructX;4, from X; using apriori feature
10 X —XUX;

11 Xl — Xl+1

12 return X

end

Figure 3: Algorithm N-ARY SCHEMA M ATCHING .

value of the pairwise evaluation, thus requiring all pairs to meet
this minimal “strength.”

Algorithm: MATCHINGSELECTION:

Input: Potential complex matching$t = {M;, ..., M, },
Measurem,,

Output: Selected complex matchings

begin:

R «— 0 [* selectedn-ary complex matchings */

2 while M #£ 0

3 /*select the matching ranked the highest */

4  M; +— GETMATCHINGRANKFIRST(M, my,)

6

7

8

I

for eachM; € M
/* remove the conflicting part */
M; — M; — M;

9 /* delete M if it contains no matching */
10 if |[M;] < 2then M — M — {M;}

11 return R

end

Algorithm: GETMATCHINGRANK FIRST:
Input: Potential complex matching$t = {M;, ..., M, },
Measurem,,

Output: The matching with the highest ranking

begin:

1 Mt — M1

2 for eachM; e M,2<j<w

3 if s(Mj;, myn) > s(M¢, mn) then

4 M, — M;

5 if s(Mj,mn) = s(M¢, m,) andM; = M, then
Mt — Mj

7 return M,

end

Figure 4: Algorithm M ATCHING SELECTION .

»

Algorithm N-ARY SCHEMAMATCHING shows the pseudo code
of the complex matching discovery (Figure 3). Line 2 (group dis-
covery) callsAPRIORICORRMINING to mine PC. Lines 3-6 add
the discovered groups intSz. Line 8 (matching discovery) calls
APRIORICORRMINING to mine NC. Similar to [1], the time com-

Comin has several advantages: First, it satisfies the “apriori” fea- PleXity of N-ARY SCHEMAMATCHING is exponential with respect
ture and thus enables the design of an efficient algorithm. In cor- t0 the number of attributes. But in practice, the execution is quite
relation mining, the measure for qualification purpose should have fast since correlations exist among semantically related attributes,
a desirable “apriori” property (i.e., downward closure), to develop which is far less than arbitrary combination of all attributes.
an efficient algorithm. (In contrast, a measure for ranking purpose

should not have this “apriori” feature, as Section 3.2 will discuss.)
Chmin satisfies the “apriori” feature since given any item.deand

its subsetd*, we haveC,,in (A, m) < Crin(A*, m) because the
minimum of a larger set (e.g., mifi,3,5})) cannot be higher than
its subset (e.g., migB,5})). Second,Cy.:» Can incorporate any
measuren for two items and thus can accommodate different tasks

3.2 Complex Matching Selection

Correlation mining can discover true semantic matchings and,
as expected, also false ones due to the existence of coincidental
correlations. For instance, in Books domain, the mining result may
have both{author} = {first name, last name}, denoted byM;
and {subject} = {first name, last name}, denoted byM,. We

(e.g., mining positive and negative correlations) and be customized can seelM; is correct, whileM, is not. The reason for having

to achieve good mining quality.

Leveraging the “apriori” feature af'....., we develop Algorithm
APRIORICORRMINING (Figure 3) for discovering complex match-
ings, in the spirit of the classic Apriori algorithm for association
mining [1]. That is, we find all the correlated items with length
I + 1 based on the ones with length

With C...n, we can directly define positively correlated attributes
in group discovery and negatively correlated attribute groups in
matching discovery. A set of attributgsiy, ..., A, } is positively
correlated attributesdenoted byPC, if Crin({A1, ... An}, mp)
> T,, wherem,, is a measure for positive correlation afy is
a given threshold. Similarly, a set of attribute grougs,, ...,
G} is negatively correlated attribute groupdenoted byNC, if
Crmin({G1, ..., G}, my) > T,,, Wwherem,, is a measure for neg-
ative correlation and’, is another given threshold.

the false matchind//; is that in the schema data, it happens that
subject does not often co-occur witfirst name andlast name.

The existence of false matchings may cause matching conflicts.
For instance,M; and M5 conflict in that if one of them is cor-
rect, the other one will not. Otherwise, we get a wrong match-
ing {author} = {subject} by the transitivity of synonym relation-
ship. Since our mining algorithm does not disco§author} =
{subject}, M; and M, cannot be both correct.

Leveraging the conflicts, we select the most confident and con-
sistent matchings to remove the false ones. Intuitively, between
conflicting matchings, we want to select the more negatively cor-
related one because it indicates higher confidence to be real syn-
onyms. For example, our experiment shows that)asis coinci-
dental, it is indeed that, (M1) > m, (M), and thus we select
M, and removel/,. Note that, with larger data size, semantically
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correct matching is more possible to be the winner. The reason is

that, with larger size of sampling, the correct matchings are still T T T
negatively correlated while the false ones will remain coincidental ) o Auwibutesin Books Domain .
and not as strong. Figure 6: Attribute frequencies in Books domain.
Before presenting the selection algorithm, we need to develop & yomain finds matchingst as (matchings are followed by their
strategy forankingthe discovered matchings. That is, for amy scores):
ary complex matchings;: Gj, = Gj, = ... = Gj,,, we have a M;: {author} = {last name, first name}, 0.95
score functiors(M;, m.,) to evaluatel/; under measurer,, . M,: {author} = {last name}, 0.95

While Section 3.1 discussed a measure for “qualifying” candi- - {subject} = {category}, 0.92
dates, we now need to develop another “ranking” measure as the ;. - {author} = {first name}, 0.90
score function. Since ranking and qualification are different prob- .. {subject} = {last name, first name} , 0.88
lems and thus require different properties, we cannot apply the .. {subject} = {last name}, 0.88 and
measure’,,,:;, (Equation 1) for ranking. Specifically, the goal of M;: {subject} = {first name}, 0.86.
qualification is to ensure the correlations passing some threshold. It | the first iteration M, is ranked the highest and thus selected.
is desirable for the measure to support downward closure to enabley, particular, althoughs(Mi,m,) = s(Ma, my), M is ranked
an “apriori” algorithm. In contrast, the goal of ranking is to com- higher sinceM; = M,. Now we remove the conflicting parts of
pare the strength of correlations. The downward closure enforces,ipe other matchiﬁgs. For instanckl, conflicts with M, on au-
by definition, that a larger item set is always less correlated than its ynor. After removingauthor, Mx only contains one attribute and
subsets, which is inappropriate for ranking correlations of different g ot a matching any more. So we remave from M. Similarly,

sizes. Hence, we develop another meagtye., the maximain, M, and M5 are also removed. The remaining matchings /afg

value among pairs of groups in a matching, as the score fungtion Mg andM-. In the second iteratior\/s is ranked the highest and

Formally, thus also selectedV/s and M- are removed because they conflict
with M3. Now M is empty and the algorithm stops. The final

Crmaax (MJ" mn) = max mn (Gjr’ Gjt)7VGjr7 Gjt»jr 7é Je- (2)
It is possible to get ties if only considering tl%,.. value; we
thus develop a natural strategy for tie breaking. We take a “top-
k” approach so that in fact is a set of sorted scores. Specifically, 4. CORRELAT_ION MEAS_URE
given matchings/; and My, if Conax (M, mn) = Crmaz (Mg, mn), In this section, we discuss the positive measugeand the nega-
we further compare their second highest values to break the tie. ~ tive measuren.,, used as the component®f..;» (Equation 1) for
If the second highest values are also equal, we compare the thirdPOSitive and negative correlation mining respectively in Algorithm
highest ones and so on, until breaking the tie. N-ARY SCHEMAMATCHING (Section 3). o
If two matchings are still tie after the “top-k” comparison, we As discussed in [20], a correlation measure by definition is a test-
choose the one with richer semantic information. We consider ing on thecontingency table Specifically, given a set of schemas
matching M, semantically subsumesatching M;, denoted by ~ and two specified attributed, and A,, there are four possible
M; = M, if all the semantic relationships i/, are covered ~ Combinations ofA, and A, in one schemab;: A,, A, are co-

output is thusM; and M. n

in M;. For instance{arrival city} = {destination} = {to} = present inS;, only A, presents inf;, only A, presents ir;, and
{arrival city} = {destination} because the synonym relationship 4, A4 are co-absent ii$;. Thecontingency tabl¢5] of A, and
in the second matching is subsumed in the first one. Alaothor} A, contains the number of occurrences of each situation, as Fig-

= {first name, last name} > {author} = {first name} because ure 5 shows. In particularfi, corresponds to the n_umber of co-
the synonym relationship in the second matching is part of the first. Presence oft, andA,; fio, for andfoo are denoted similarlyf;..

Combining the score function and the semantic subsumption, we i the sum off11 andfo1; f+o, fo+ andfi are denoted similarly.
rank matchings with following rules: 1) K(M;, m.,) > s(My, m,,), ~ f+=+ isthe sumoffi1, fio, for and foo.

M; is ranked higher thad/y,. 2) If s(M;,my,) = s(My,mn) The design of a correlation measure is often empirical. To our
andM; = My, M, is ranked higher thai/,. 3) Otherwise, we knowledge, there is no good correlation measure universally agreed
rank M; and M;, arbitrarily. Algorithm GETMATCHINGRANK - upon [20]. For our matching task, in principsey measure can be
FIRsT (Figure 4) illustrates the pseudo code of choosing the highest a@Pplied. However, since the semantic correctness of the mining re-
ranked matching with this strategy. sultis of special importance for the schema matching task, we care

Algorithm MATCHING SELECTION shows the selection algorithm. More the ability of the measures on differentiating various corre-
matching,M;, in each iteration. After choosinty;, we removethe  Which has not been extensively studied before. _
inconsistent parts in remaining matchings (lines 6 - 10). The final ~ We first identify the quality requirements of measures, which
output is the selected-ary complex matchings without conflict. ~ areé imperative for schema matching, based on the characteristics
Note that we need to do the ranking in each iteration instead of Of Web query interfaces. Specifically, we observe that, in Web in-
Sorting a“ the matchings in the beginning because after removing terfaces, at’[l’lbute fl’equenCIeS are eXtremer non-unlform, S|m||ar

the conflicting parts, the ranking may change. The time complex- t0 the use of English words, showing some Zipf-like distribution.
ity of Algorithm MATCHINGSELECTION is O(v?), wherev is the For instance, Figure 6 shows the attribute frequencies in Books do-

number of matchings iM. main: First, the non-frequent attributes results in the sparseness of
the schema data (e.g., there are over 50 attributes in Books domain,
Example 1: Assume runningN-ARY SCHEMAMATCHING in Books but each schema only has 5 in average). Second, many attributes are



l [AP[_'AP[ l l [AP[_‘AP[ l l [AP[_'AP[ l

Ay 5 5 10 Aq i 49 150 A, |81 9 90
-A; | 5 85 | 90 A, | 1 1 2 A, | 9 1 10
(al) Example of sparseness problem  (b1) Example of rare attribute problem (c1) Example of frequent attribute problem
with measurdift: with measurelaccard with measur&laccard
Less positive correlation A, as rare attribute Ap and A, are independent
but a highelLift = 17. andJaccard= 0.02. but a highedaccard= 0.82.
l [ Ap [ DAy ] | l [ Ap [ 24y ] | l [ Ap [ DA ] |
A, [55] 20 | 75 B 1 25 1726 B 8 1 9
-A, | 20 5 25 —-A, |25 T 26 -A | 1 90 | 91
(a2) Example of sparseness problem  (b2) Example of rare attribute problem (c2) Example of frequent attribute problem
with measureift: with measurelaccard with measurdlaccard
More positive correlation no rare attribute Ap and A, are positively correlated
but a lowerLift = 0.69. andlaccard= 0.02. but a lowedaccard= 0.8.

Figure 7: Examples of the three problems.

rarely used, occurring only once in the schemas. Third, there existwhen considering negative correlations. Specifically, the rare at-
some highly frequent attributes, occurring in almost every schema. tribute problem can be stated as when eitdgror A, is rarely

These three observations indicate that, as the quality require-observed, the measure should not considgrand A, as highly
ments, the chosen measures should be robust against the follownegatively correlated because the number of observations is not
ing problems:sparseness problefior both positive and negative  convincing to make such judgement. For instance, considdaitie

correlations rare attribute problenfor negative correlations, and  card (i.e.,Jaccard= m) measure, it will stay unchanged
frequent attribute problerfor positive correlations. In this section,  when bothfi; and fio + fo1 are fixed. Therefore, to some de-
we discuss each of them in details. gree, Jaccardcannot differentiate the subtlety of correlations (e.g.,

fi0 =49, fo1 =1 and fio = 25, fo1 = 25), as Example 3 illus-
trates. Other measures suchCamnfidenceandCosinehave similar
problem. This problem is not critical for positive correlation, since
attributes with strong positive correlations cannot be rare.

The Sparseness Problem

In schema matching, it is more interesting to measure whether
attributes are often co-present (i.¢;) or cross-present (i.ef10
and fo1) than whether they are co-absent (i,&q). Many correla- ) ] )
tion measures, such a2 andLift, include the count of co-absence E>§ample 3: Figure 7(b) illustrates the rare attribute problem. In
in their formulas. This may not be good for our matching task, be- this example, we choose a common measure: Jtweard The
cause the sparseness of schema data may “exaggerate” the effect ofélue ofJaccardis between O td. Jaccardclose to 0 means neg-
co-absence. This problem has also been noticed by recent correla&tive correlation andaccardclose to 1 positive correlation. Fig-
tion mining work such as [20, 16, 14]. In [20], the authors use the Ure 7(P) shows thalaccardmay not be able to distinguish the situa-
null invarianceproperty to evaluate whether a measure is sensitive tions of rare attribute. In particular, Jaccard considers the situations

to co-absence. The measures for our matching task should satisfyn Figure 7(b1) and Figure 7(b2) as the same. But Figure 7(b2) is
this null invariance property. more negatively correlated than Figure 7(b1) becadisen Fig-

Example 2: Figure 7(a) illustrates the sparseness problem with an ure 7(b1) is more like a rare event than true negative correlaion.

example. In this example, we choose a common measureifthe To differentiate the subtlety of negative correlations, we develop
(i-e, Lift = Joofin) - (Other measures considerirfgo have simi- a new measurel{-measure (Equation 3), as the negative correla-
lar behavior.) The value dfift is between O totoco. Lift = 1 tion m,,. The value ofH is in the range from 0 to 1. Al value
means independent attributds;ft > 1 positive correlation and  close to O denotes a high degree of positive correlatior] alue

Lift < 1 negative correlation. Figure 7(a) shows thift may close to 1 denotes a high degree of negative correlation.

give a higher value to less positively correlated attributes. In the fo1 fio

scenario of schema matching, the table in Figure 7(a2) should be M (Ap, Aq) = H(Ap, Aq) = fifie ®)
more positively correlated than the one in Figure 7(al) because in L ) : )
Figure 7(a2), the co-presencéi{) is more frequently observed _ H-measure satisfied the quality requirements: On one hand, sim-
than the cross-presence (eithfap or fo1), while in Figure 7(al), ilar to Jaccard Cosineand Confidence H-measure satisfies the

the co-presence has the same number of observations as the crosg_U" invariance property and thus avoids the sparseness problem by
presence. Howevet,ift cannot reflect such preference. In partic- '9norng fO(}- On the other h}?‘”d: by multiplying individual effect
ular, Figure 7(al) gets a much highsft and Figure 7(a2) is even  Of fo1 (i.e..#2) andfio (i.e., £1%), H-measure is more capable of
evaluated as not positively correlated. Similar example can also bereflecting subtle variation of negative correlations.

found for negative correlation withift. The reasorift gives an ) - )

inappropriate answer is th#o incorrectly affects the result. m The Frequent Attribute Problem for Positive Correlation

We exp|0red the 21 measures in [20] and Xﬁa‘neasure in [4] For pOSitiVe Correlations, we find th%nﬁdence\]accard Co-
Most of these measures (including andLift) suffer the sparse- sineand H-measure are not quite different in discovering attribute
ness problem. That is, they consider both co-presence and co-groups. However, all of them suffer the frequent attribute prob-
absence in the evaluation and thus do not satisfy the null invariancelem. This problem seems to be essential for these measures: Al-
property. The only three measures supporting the null invariance though they avoid the sparseness problem by ignofing as the

property areConfidenceJaccardandCosine cost, they lose the ability to differentiate highly frequent attributes
) ) . from really correlated ones. Specifically, highly frequent attributes
The Rare Attribute Problem for Negative Correlation may co-occur in most schemas just because they are so frequently
AlthoughConfidenceJaccardandCosinesatisfy the null invari- used, not because they have grouping relationship (e.g., In Books

ance property, they are not robust for the rare attribute problem, domain,isbn andtitle are often co-present because they are both



very frequently used). This phenomenon may generate uninterest-
ing groups (i.e.false positivesin group discovery.

date strin integer
Example 4: Figure 7(c) illustrates the frequent attribute problem \_%}veg_[

with an example, where we still usaccardas the measure. Fig- :
’ . : ) th d t

ure 7(c) shows thataccardmay give a higher value to independent ‘ mon ‘ ‘ Y ‘ ‘ 1me ‘ ‘ ay ‘
attributes. In Figure 7(c1)4, and A, are independent and both Figure 8: The compatibility of types.
of them have the probabilities 0.9 to be observed; while, in Fig-
ure 7(c2),A, and A, are really positively correlated. However,  the same name with different meanings) — we address this problem
Jaccardconsiders Figure 7(c1) as more positively correlated than py distinguishing entities by both names and types. For instance,
Figure 7(c2). In our matching task, a measure should not give a the attribute nameeparting in the Airfares domain may have two
hlgh value for frequently observed but Independent attributes. meanings: a datetime type as departing da’[e’ or a String type as

The characteristic of false groupings is that yhe value is very departing city. With type recognition, we can recognize that there
high (since both attributes are frequent). Based on this characteris-are two different types ofleparting: departing (datetime) and
tic, we add another measugg™- in m,, to filter out false groupings.  departing (string), which indicate two attribute entities.
Specifically, we define the positive correlation measuggeas: In general, type information, as a constraint, can help the sub-

1— H(A,, Ay, oo, §equent stgps of.syntactic merging an.d correlation-based match-
myp(Ap, Ag) = fog ™0 4) ing. In particular, if the types of two attributes are not compatible,
0, otherwise,

we consider they denote different attribute entities and thus neither
whereT} is a threshold to filter out false groupings. To be consis- merge them nor match them.

tent withm,,, we also use thé/-measure imn,,. Since type information is not explicitly declared in Web inter-
faces, we developtgpe recognizeto recognize types from domain
5. DATA PREPARATION values of attribute entities. For example, a list of integer values de-

The query schemas in Web interfaces are not readily minable notes an integer type. In the current implementation, type recogni-
in HTML format; as preprocessing, data preparation is essential tion supports the following types: any, string, integer, float, month,
to prepare “schema transactions” for mining. As shown in Fig- day, date, time and datetime. (An attribute with only an input box is
ure 2, data preparation consists of:fd)m extraction- extracting given an any type since the input box can accept data with different
attribute entities from query interfaces in Web pagesy@¢ recog- types such as string or integer.) Two types@mpatiblef one can
nition — recognizing the types of the attribute entities from domain subsume another (i.e., ti@arelationship). For instance, date and
values, and 3¥yntactic merging- syntactically merging these at-  datetime are compatible since date subsumes datetime. Figure 8
tribute entities. lists the compatibility of all the types in our implementation.

Form extraction reads a Web page with query forms and extracts
the attribute entities containing attribute names and domains. For§5 2 Syntactic Merging
instance, the attribute abditte in Figure 1(c) is extracted daame
= “title of book”, domain = any, where “domain = any” means any
value is possible. This task is itself a challenging and independent
problem. We solved this problem by a parsing approach with the
hypothesis of the existence of hidden syntax [21]. Note that there
is no data cleaning in this step and thus the attribute names and
domains are raw data.

We clean the schemas by merging syntactically similar attribute
entities, a common data cleaning technique to identify unique enti-
ties [8]. Specifically, we developame-based mergiranddomain-
based mergindy measuring the syntactic similarity of attribute
names and domains respectively. Syntactic merging increases the
observations of attribute entities, which can improve the effect of

Aft ina the f ¢ dard | correlation evaluation.
izati er exg]actlntg ¢ te dorms, we %e(; orm.somv\e/ sft.ant a;r notrtmt?-t Name-based Merging We merge two attribute entities if they
Ization on the extracted names and domains. We lirst stem attribute, .o gjmjjar in names. We observe that the majority of deep Web

names and domain values using the standard Porter stemming al'sources are consistent on some concise “core” attribute names (e.g.,

gorjthm [17]. Ngxt, we normalize irregular nouns and verbs (e.g., “title”) and others are variation of the core ones (e.g., “title of
children” to “child,” “colour” to cqlor ). Last, We remove COM- oK™, Therefore, we consider attributé, is name-similarto
mon stop words_by a m_anuglly built stop word list, which contains attribute A, if A,'s nameD A,'s name (i.e.,A,, is a variation of
Wo(;d_s cr?mmon |n_EngI|sh, n V\flgb search (e.g“.t,) siﬁrfh ' pa}’ge ), Ag) and A, is more frequently used that, (i.e., A, is the major-
and In the respective domain of interest (e.g:, 00K?, 'movie )- ity). This frequency-based strategy helps avoid false positives. For
We then perform type recognition to identify attribute types. AS j,gance in Books domaitest name is not merged tmame be-
S_ectlon 51 d!scusses, type information helps to |dent|_fy homonyms causdast name is more popular thaname and thus we consider
(i.e., two attributes may have the same name but different types) them as different entities
?”d constra|_n synta<_:t|c merging and correlation-based matching Domain-based Merging We then merge two attribute entities
(S".e" ontiy attrlb_ut;as W'th. compatlt:jle tlype(sj ga\r}vbtla)r_nergfed or mat%heq? they are similar in domain values. In particular, we only consider
'Tcet e type information is not declare f'n % inter aC?S’ WE A€~ attributes with string types, since it is unclear how useful it is to
velop atype recognizeto recognize types from domain values. aagyre the domain similarity of other types. For instance, in Air-
_Finally, we merge attribute entities by measuring the syntactic ¢, oo qomain, the integer valuespssengers andconnections
5|_m|Iar|ty of attr'bL.'te names and_ d_om_aln val_ues (.9, we merge are quite similar, although they denote different meanings.
title (.)f book to tile” by name S|m|Iar|ty). It.|s acommon data We view domain values as a bag of words (i.e., counting the
clea_nlng_ techn_lqug t_o merge syntf';lcncally _s,|m|lar entities by X word frequencies). We name such a laagregate valuesienoted
ploring linguistic similarities. Section 5.2 discusses our merging asV, for attribute A. Given a wordw, we denoteV4(w) as the
strategy. frequency ofw in V4. The domain similarity of attributed,, and
5.1 Type Recognition A, is thus the similarity of/4, andVa,,. In principle, any reason-

. . T . . . able similarity function is applicable here. In particular, we choose
While attribute names can distinguish different attribute entities, y VweV, mVAppVA (W) +Va_ (w) P
D q’ p q

the names alone sometimes lead to the problem of homonyms (i.e.,Sim(Am Aq) = VYweVa,UVa, ,Va, (w)+Va, (w)*




The above three steps, form extraction, type recognition and syn-  Except this difference in target question, we use the same met-
tactic merging, clean the schema data as transactions to be minedric of target accuracy as [10]. Specifically, we assume a “random
More detailed discussion about these data cleaning steps can bejuerier” to ask for closenym set of each attribute according to the

found at the extended report [11]. its frequency. The answer to each question is closenym set of the
queried attribute in discovered matchings. We defitie( 4, | M)
6. EXPERIMENTS as the closenym set of attribut . Given. M. and M, the preci-
We choose two datasets, TEL-8 dataset and BAMM dataset, of sion and recall of the closenym sets of attribdteare:
the UIUC Web integration repository [7] as the testbed of @M Pa,(Mn, M) = ‘Cls(Ajg%ELﬁfXj(?lj‘Mh)' and
framework. The TEL-8 dataset contains raw Web pages over 447 Gl (A | M )ACH’EA M|
deep Web sources in 8 popular domains. Each domain has about Ra, (Mpn, M) = = ]\Cls?Alecﬂj R

20_1)0 sources. The EéAMM dataset Conc:ains.manu.elrl]ly extragted Since more frequently used attributes have higher probabilities
attribute names over 211 sources in 4 domains (with around 50 5 g asked in this “random querier,” we compute the weighted av-

sources per domain), which was first used by [10]. erage of all theP4 .'s and R4 .'s as thetarget precisiorandtarget
In the experiment, we assume a perfect form extractor to extract o oY 0, )
all the interfaces in the TEL-8 dataset into query capabilities by "ecall. The weightis assigned gs7., whereO; is the frequency
manually doing the form extraction step. The reason we do not ©Of attributeA; in the dataset (i.e., its number of occurrences in dif-
apply the work in [21] is that we want to isolate the mining process ferent schemas). Thereforerget precisionandtarget recall of

to study and thus fairly evaluate the matching performance. After M, with respect toM . are:

extracting the raw data, we do the data cleaning according to the Pr(Mp, Mo) =%, 9j Pa (M, M.)
process explained in Section 5. Then, we run the correlation mining I %jo’”” !
algorithm on the prepared data in each domain. Also, in the results, Ry (Mn, M) = ZAj ﬁRAj (M, Me).

we use attribute name and type together as the attribute identifier .
for an attribute entity since we incorporate type recognition in data 6.2 ~Experimental Results
preparation to identify homonyms (Section 5). To illustrate the effectiveness of the mining approach, we only

To evaluate the matching performance and Hhaneasure, we list and count the “semantically difficult” matchings discovered
extensively test th&®©CM framework on the two datasets. First, by the correlation mining algorithm, not the simple matchings by
we test our approach on the TEL-8 dataset and the result showsthe syntactic merging in the data preparation (e(title of book}
goodtarget accuracy Second, we compare ti@CM framework to {title}). Our experiment shows that many frequently observed
with the MGS framework [10], which also matches Web inter- matchings are in fact “semantically difficult” and thus cannot be
faces by a statistical approach, on its BAMM dataset. The result found by syntactic merging.
shows thaDCM is empirically close tdGS in discovering simple Result on the TEL-8 Dataset In this experiment, we run our al-
matchings and furthédCM can find complex matchings, whichis 4 orithm (with /-measure as the correlation measure) on the TEL-8
not supported bMGS. Third, we compare thé/-measure with  ataset. We set the thresholfisto 0.85 andZ}; to 0.6 for positive
other measures on the TEL-8 dataset and the result show&/that  crrelation mining and’, to 0.75 for negative correlation mining.
measure outperforms the others in most cases. We empirically get these numbers by testing the algorithm with var-
6.1 Metrics ious thresholds and choose the best one. As Section 8 will discuss,
more systematic study can be investigated in choosing appropriate
threshold values.

Figure 9 illustrates the detailed resultsrefiry complex match-
ings discovered in Books domain. The step of group discovery
found 5 likely groups G:1 to G5 in Figure 9). In particularm,
gives a high value (actually the highest value) for the groulpstf
name (any) andirst name (any). The matching discovery found 6
likely complex matching /1 to Ms in Figure 9). We can see that
" M, and M3 are fully correct matchings, while others are partially

correct or incorrect. Last, the matching selection will chod$e
andMs (i.e., the correct ones) as the final output.
; ; . : Figure 10 shows the results on Airfares and Movies. (The results
E;ggﬁgg%g;%g%gord with a broader meaning, aughor is a of other domains can be found at the extended report [11]). The
: third column denotes the correctness of the matching. In partic-

It is quite complicated to use different measures for different ; .
X ; ; ular, Y means a fully correct matching? a partially correct one
semantic relationships, we therefore report an aggregate measure

for simplicity and, at the same time, still reflecting semantic dif- anqN an incorrect one. Our mining algorlthm (_Jloes find Inter-
. X esting matchings in almost every domain. For instance, in Air-
ferences. For our discussion here, we name synonym, hyponym

and hypernym together atosenym- meaning that they all denote fares domain, we find 5 fully correct matchings, e{glestination

some degrees of closeness in semantic meanings. Our target que S tring)} Eto (strlng_)} {arnval_cny_ (strlng)}_. Also, {_passeng_er
i > . ; integer) = {adult (integer),child (integer),infant (integer}) is
tion now is to ask the set of closenyms of a given attribute. . A L=

partially correct because it missgsnior (integer).

We compare experimentally discovered matchings, denoted by
My, with correct matchings written by human experts, denoted by
M. In particular, we adopt th&arget accuracya metric initially
developed in [10], by customizing tharget questionso the com-
plex matching scenario. The idea of the target accuracy is to mea-
sure how accurately that the discovered matchings answer the targe
questions. Specifically, for our complex matching task, we consider
the target question as, given any attribute, to find its synonyms (i.e.
word with exactly the same meaning as another word, sudject
is a synonym otategory in Books domain), hyponyms (i.e., word
of more specific meaning, e.¢ast name is a hyponym ofwuthor)

Example 5: Forinstance, for matchingA} = {B, C}, the closenym Since, as a statistical method, our approach replies on “sufficient
sets of attributes,, B, C are{B, C}, {A}, {A} respectively. In par- observations” of attribute occurrences, it is likely to perform more
ticular, the closenym sets & does not hav€ sinceB andC only favorably for frequent attributes (i.e., the head-ranked attributes in
have grouping relationship. In contrast, for matchig = {B} = Figure 6). To quantify this “observation” factor, we report the target
{C}, the closenym sets of attributés B, C are{B, C}, {A, C}, accuracy with respect to the attribute frequencies. In particular, we

{A, C} respectively. We can see that the difference of matchings consider the attributes abovéraquency threshold’ (i.e., the num-
can be reflected in the corresponding closenym sets. [ ber of occurrences of the attribute over the total number of schemas



Step Value of | Result Cmin | Cmaz
group g G, = {last name (unknown) first name (any)} 0.94
discovery G, = {title (any),keyword (any)} 0.93
G5 = {last name (any),title (any)} 0.91
G4 = {first name (any),catalog (any)} 0.90
G’ = {first name (any),keyword (any)} 0.87
matching M M, : {author (any)} = {last name (any),first name (any)} | 0.87 | 0.87
discovery M, {author (any)} = {last name (any)} 0.87 | 0.87
M35 {subject (string)} = {category (string)} 0.83 | 0.83
M, {author (any)} = {last name (any),catalog (any)} 0.82 | 0.82
Ms: {author (any)} = {first name (any)} 0.82 | 0.82
Ms: {category (string)} = {publisher (string)} 0.76 | 0.76
matching R R1: {author (any)} = {last name (any),first name (any)} 0.87
selection R, {subject (string)} = {category (string)} 0.83
Figure 9: Running Algorithms N-ARY SCHEMA MATCHING and MATCHING SELECTION on Books domain.
Domain | Final Output After Matching Selection Correct?
Airfares | {destination (string)} = {to (string)} = {arrival city (string)} Y
{departure date (datetime} = {depart (datetime} Y
{passenger (integer} = {adult (integer),child (integer),infant (integer) P
{from (string),to (string)} = {departure city (string),arrival city (string)} Y
{from (string)} = {depart (string)} Y
{return date (datetime} = {return (datetime} Y
Movies | {artist (any)} = {actor (any)} = {star (any)} Y
genre (string)} = {category (string)} Y
cast & crew (any)} = {actor (any),director (any)} Y
Figure 10: Experimental results for Airfares and Movies.
Domain Pr Rt Pr Rt Domain Pr(H) [ Rr(H) | Pr(Q) | Rr(Q)
(20%) | (20%) | (10%) | (10%) (10%) | (10%) | (10%) | (10%)
Books 1 1 i 1 Books 1 1 080 |1
Airfares 1 1 1 0.71 Airfares 1 0.71 0.79 1 0.61
Movies 1 1 1 1 Movies 1 1 0.93 1
MusicRecords| 1 1 0.76 1 MusicRecords| 0.76 1 0.76 1
Hotels 086 |1 0.86 | 0.87 Hotels 0.86 0.87 0.44 1 0.95
CarRentals 0.72 1 0.72 | 0.60 CarRentals 0.72 0.60 0.68 | 0.62
Jobs 1 0.86 | 0.78 | 0.87 Jobs 0.78 0.87 0.64 | 0.87
Automobiles | 1 1 0.93 1 Automobiles | 0.93 1 0.78 1
Figure 11: Target accuracy of 8 domains. Figure 12: Comparison of H-measure andJaccard

is aboveT") in both discovered matchings and correct matchings to pirically close to theMGS framework in [10] on discovering sim-
measure the target accuracy. Specifically, we run the algorithms onple 1:1 matchings and further we can find complex matchings that
all the attributes and then report the target accuracy in terms of the MGS cannot. Since the BAMM dataset only contains manually ex-
frequency-divided attributes. In the experiment, we chdbs&s tracted attribute names, we skip the data preparation step in this ex-
20% and 10%. periment. The result shows that we can discover almost all the sim-
Consider the Airfares domain, if we only consider the attributes ple 1:1 matchings found byIGS. In particular, we find{ subject}
above 20% frequency in the matching result, only 12 attributes = {category} in Books,{style} = {type} = {category} in Auto-
are above that threshold. The discovered matchings in Figure 10mobiles {actor} = {artist} and{genre} = {category} in Movies,
become{destination (string)} = {to (string)}, {departure date and {album} = {title} and{band} = {artist} in MusicRecords.
(datetime} = {depart (datetime}, and{return date (datetime) = Further,DCM can find the complex matchindsuthor} = {last
return (datetime}. (The other attributes are removed since they name, first name} in Books, whileMGS can only find either
are all below 20% frequency.) These three matchings are exactly {author} = {last name} or {author} = {first name}.
the correct matchings the human expert can recognize among thegyaluating the H-Measure We compare the-measure with
12 attributes and thus we get 1.0 in both target precision and recall. gther measures and the result shows fianeasure gets better tar-
Next, we apply the 10% frequency threshold and get 22 attributes. get accuracy. As an example, we chodaecard(¢) as the measure
The discovered matchings in Figure 10 are unchanged since all theye compare to. Witdaccard we define then, andm., as

attributes (in the matchings) are now passing the threshold. Com- C(Ap, Ay) i
pared with the correct matchings among the 22 attributes, we do mp(Ap, Ag) = { 0 premah ;”L++ s
miss some matchings such fsabin (string)} = {class (string)} ’ otherwise,
and{departure (datetime) =departure date (datetime}. Also, and

some matchings are partially correct such{passenger (inte- mn(Ap, Ag) = 1—=C((Ap, Ag).

ger)} = {adult (integer),child (integer),infant (integer)}. Hence, We set theT, and 7}, for this Jaccardbasedm, andm,, as

we get 1.0 in target precision and 0.71 in target recall. 0.5 and 0.9 respectively. We compare the target accurady-of

Figure 11 lists the target accuracies of the 8 domains underthreshfneasure andaccardin the situation of 10% frequency threshold.

olds 20% and 10%. From the result_, we can see that our approachThe result (Figure 12) shows thAt-measure is better in both target
does perform better for frequent attributes. precision and target recall in most cases. Similar comparisons show
Result on the BAMM Dataset We test theDCM framework on that H-measure is also better than other measures suCosise

the BAMM dataset used in [10]; the result shows tb&M is em- andConfidence



7. RELATED WORK Further, we propose a new correlation meastfemeasure, for

thus has got great attention. However, existing schema matchingtiveness of both the mining approach and fiieneasure.
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