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Abstract

In this paper, a recurrent compensatory neuro-fuzzy system (RCNFS) for identification and prediction is proposed.
The compensatory-based fuzzy method uses the adaptive fuzzy operations of neuro-fuzzy systems to make fuzzy
logic systems more adaptive and effective. A recurrent network is embedded in the RCNFS by adding feedback
connections in the second layer, where the feedback units act as memory elements. In this paper, the RCNFS model
is proved to be a universal approximator. Also, an online learning algorithm is proposed which can automatically
construct the RCNFS. There are no rules initially in the RCNFS. They are created and adapted as online learning
proceeds through simultaneous structure and parameter learning. Structure learning is based on the degree measure
and parameter learning is based on the ordered derivative algorithm. Finally, the RCNFS is used in several sim-
ulations. The simulation results of the dynamic system model have shown that (1) the RCNFS model converges
quickly; (2) the RCNFS model requires a small number of tuning parameters; (3) the RCNFS model can solve
temporal problems and approximate a dynamic system.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, neuro-fuzzy systems[1,4,9,12,17,21]have been demonstrated to be successful. Most tradi-
tional neuro-fuzzy systems (NFSs) combine the capability of neural networks to learn from processes
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and the capability of interpolative reasoning under linguistic information pertaining to numerical vari-
ables. They can only be applied to parameter learning based on the ordered derivative algorithm in which
the parameters of the membership functions and the connected weights are adjusted and in which the
structure of the NFSs has been determined and fixed in advance[11,17]. Sugeno[21] was one of the first
to propose self-learning NFSs. Fuzzy rules are automatically generated from training data. A thorough
study of NFSs has been done by various researchers[1,5,12]. However, a major disadvantage of existing
neuro-fuzzy systems is that their application is limited to static problems as a result of their internal feed-
forward network structure. Inefficiency occurs for temporal problems. Hence, a recurrent neuro-fuzzy
system capable of solving temporal problems is needed.

In a dynamic system, the output is a function of past inputs or past outputs or both. Identification of
this kind of system is not as direct as a static system, and to deal with temporal problems of a dynamic
system, the recurrent neural network and the recurrent neuro-fuzzy system have attracted great interest.
Hence, for nonlinear system processing, the most commonly used model is the neural network or the
neuro-fuzzy system. If a feedforward network is adopted for this task, then we should know the number
of delayed inputs and outputs in advance and feed these delayed inputs and outputs as a taped line into
the network input[15].

The problem with this approach is that the exact order of the dynamic system is usually unknown.
To solve this problem, recurrent networks for processing dynamic systems have been considered, and
interest in its use has grown steadily in recent years[3,4,6,8,13,24]. In [3], the network is a feedforward
multilayer perceptron network with an extra set of context nodes for copying the delayed states of the
hidden nodes back to the network input. In[24], a recurrent neuron-fuzzy network was proposed. The
structure of the network is similar to the recurrent radial basis function network mentioned above. In[6],
the authors provided for a recurrent self-organizing neural fuzzy inference network (RSONFIN) with
online supervised learning ability. The RSONFIN expands the basic ability of a neural fuzzy network to
cope with temporal problems via the inclusion of some internal memories, called context elements. In
[8], a recurrent fuzzy neural network (RFNN) was proposed. In RFNN, the recurrent property is achieved
by feeding the output of each membership function back to itself so that each membership value is
only influenced by its previous value. In[13], the dynamic fuzzy-neural network (DFNN), consisting of
recurrent TSK rules, was developed. The premise and defuzzification parts are static while the consequent
parts of the fuzzy rules are recurrent neural networks with the internal feedback and time delay synapses.
In [4], the TSK-type recurrent fuzzy network (TRFN) structure was proposed. The recurrent property
comes from feeding the internal variables back to both the network input and output layers. The internal
variables are derived from fuzzy firing strengths. The proposal calls for a design of TRFN using either
neural networks or genetic algorithms, depending on the learning environment.

Many papers[3,4,6,8,13,24]have dealt with how to optimize fuzzy membership functions and how
to choose an optimal defuzzification scheme for applications by using learning algorithms to adjust the
parameter of fuzzy membership functions and defuzzification functions. Unfortunately, for optimizing
fuzzy logic reasoning and selecting optimal fuzzy operators, only static fuzzy operators are often used
to create fuzzy reasoning[25]. Because the conventional neuro-fuzzy system can only adjust fuzzy
membership functions by using fixed fuzzy operations, such as Min and Max, the compensatory neuro-
fuzzy system[25] with adaptive fuzzy reasoning is more effective and adaptive than the conventional
neuro-fuzzy systems with non-adaptive fuzzy reasoning[12]. Therefore, an effective neuro-fuzzy system
should be able not only to adaptively adjust fuzzy membership functions but also to dynamically optimize
adaptive fuzzy operators.
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In this paper, a recurrent compensatory neuro-fuzzy system (RCNFS) is proposed. The RCNFS is a
recurrent multi-layer connectionist network for fuzzy reasoning and can be constructed from a set of fuzzy
rules. In the RCNFS, the recurrent property is achieved by feeding the output of each membership function
back to itself so that each membership value is influenced by its previous value. In this configuration,
each internal variable is responsible for memorizing the temporal history of its membership value. At
the same time, the compensatory fuzzy inference method uses adaptive fuzzy operations of neuro-fuzzy
systems that can make the fuzzy logic system more adaptive and effective.

An online learning algorithm is proposed which can automatically construct the RCNFS. It consists
of structure learning and parameter learning. The structure learning algorithm decides whether to add
a new node which satisfies the fuzzy partition of the input data. The parameter learning algorithm is a
recursive learning algorithm based on the ordered derivative scheme[23]. This algorithm can tune the
free parameters in the RCNFS simultaneously to minimize an output error function.

The proposed learning algorithm has two advantages. First, it does not require a human expert’s
assistance, its structure is obtained from the input data. Second, it converges quickly, requires a small
number of tuning parameters.

This paper is organized as follows. Section 2 describes the compensatory neuro-fuzzy system. Section
3 describes the basic structure and functions of the RCNFS. The online structure and parameter learning
algorithms of the RCNFS is presented in Section 4. Next, Section 5 presents the results of the simulation
of several problems. Finally, the conclusions are given in the last section.

2. The compensatory operation

Zimmermann[26] first defined the essence of compensatory operations. Zhang and Kandel[25] pro-
posed more extensive compensatory operations based on the pessimistic operation and the optimistic
operation. The pessimistic operation can map the inputsxi to the pessimistic output by making a
conservative decision for the pessimistic situation or for even the worst case. For example,
p(x1, x2, . . . , xN) = MIN (x1, x2, . . . , xN) or �xi . Actually, thet-norm fuzzy operation is a pessimistic
operation.

The optimistic operation can map the inputsxi to the optimistic output by making an optimistic decision
for the optimistic situation or for even the best case. For example,p(x1, x2, . . . , xN) = MAX (x1, x2, . . . ,

xN). Actually, the t-conorm fuzzy operation is an optimistic operation. The compensatory operation can
map the pessimistic inputx1 and the optimistic inputx2 to make a relatively compromised decision for
the situation between the worst case and the best case. For example,c(x1, x2) = x

1−�
1 x

�
2, where� ∈ [0,1]

is called the compensatory degree. Many researchers[10,9,16,20]have used the compensatory operation
in fuzzy systems successfully.

The general fuzzy if–then rule is as follows:

Rj : IF x1 isA1j and. . .andxn isANj THEN y is bj , (1)

wherexi andyare the input dimensions and output variables, respectively;Aij is the linguistic term of the
precondition part with membership function�Aij

; bj is the constant consequent;i is the input dimension,
i = 1, . . . , N ; N is the number of existing dimensions;j is the number of rules,j = 1, . . . , R; andR is
the number of existing rules.
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For an input fuzzy setA′ in U, thejth fuzzy rule (1) can generate an output fuzzy setb′
j in v by using

the sup-dot composition

�b′
j

= sup
x∈U

[�A1j×···×ANj→bj
(x, y) • �A′(x)], (2)

wherex = (x1, x2, . . . , xN). �A1j×···×ANj
(x) is defined in a compensatory operation

�A1j×···×ANj
(x) = (uj )

1−�j (vj )
�j , (3)

where�j ∈ [0,1] is a compensatory degree. The pessimistic operation and the optimistic operation are
as follows:

uj =
N∏
i=1

�Aij
(xi), (4)

vj =
[

N∏
i=1

�Aij
(xi)

]1/N

. (5)

For simplicity, we can rewrite

�A1j×···×ANj
(x) =

[
N∏
i=1

�Aij
(xi)

]1−�j+�j /N

. (6)

Since�A′(xi) = 1 for the singleton fuzzifier and�b′
j
(y) = 1, according to (2) we have

�b′
j
(y) =

[
N∏
i=1

�Aij
(xi)

]1−�j+�j /N

. (7)

Therefore, we can rewrite the fuzzy if–then rule as follows:

Rj : [IF x1 isA1j and. . .andxN isANj ]1−�j+�j /N THEN y is bj . (8)

3. The structure of the RCNFS model

In this section, we describe the RCNFS. Recently, Lee and Teng[8] proposed a model, called the
RFNN architecture, for learning and tuning a fuzzy predictor. Our model is similar to the RFNN except
for layer three. Layer three of the RFNN uses the product operator while layer three of our model uses
the compensatory operator. For initializing parameters in the RFNN model, the rule number should be
given in advance. But in our proposed model, users need not give it any a priori knowledge or even any
initial information.

The structure of the RCNFS is shown in Fig. 1, which is systematized intoN input variables,R-term
nodes for each input variable,M output nodes, andN × R membership function nodes. The RCNFS
consists of four layers andN + (N ×R)+R +M nodes, whereRdenotes the number of existing rules.
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Fig. 1. Structure of the proposed RCNFS.

Nodes in layer 1 are input nodes, which represent input variables. Nodes in layer 2 are called input term
nodes and act as membership functions to express the input fuzzy linguistic variables. Nodes in this layer
are used to calculate Gaussian membership values. Each node in layer 3 is called a compensatory rule
node. Nodes in layer 3 are equal to the number of compensatory fuzzy sets corresponding to each external
linguistic input variable. Links before layer 3 represent the preconditions of the rules, and links after layer
3 represent the consequences of the rule nodes. Nodes in layer 4 are called output nodes, where each
node is for an individual output of the system. The links between layer 3 and layer 4 are connected by
the weighting valueswjk.
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The RCNFS realizes a fuzzy model in the following form:

Rule-j : [IF h1j isA1j andh2j isA2j . . .andhNj isANj ]1−�+�/N , THEN y′ iswj, (9)

where fori = 1,2, . . . , N , hij = xi + u
(2)
ij (t − 1)�ij , y′ is the output variable,Aij is the linguistic term

of the precondition part,wj is the constant consequent part,N is the number of input variables, and�ij
denotes the link weight of the feedback unit. In other words, the input of each membership function is the
network inputxi plus the temporal termu(2)ij �ij . Therefore, the fuzzy system, with its memory (feedback
units), can be considered to be a dynamic fuzzy inference system.

Next, we shall describe the operation functions of the nodes in each layer of the RCNFS model. In the
following description,u(l) denotes the output of a node in the lth layer.
Layer1 (Input node): No computation is done in this layer. Each node in this layer is an input node,

which corresponds to one input variable, only transmits input values to the next layer directly:

u
(1)
i = xi. (10)

Layer2 (Input term node): Nodes in this layer correspond to one linguistic label of the input variables
in Layer 1 and to a unit of memory. That is, the membership value specifying the degree to which an input
value and a unit of memory belong to a fuzzy set is calculated in Layer 2. The Gaussian membership
function, the operation performed in Layer 2, is

u
(2)
ij = exp

(
− [hij − mij ]2

�2
ij

)
, (11)

wheremij and�ij are, respectively, the mean and variance of the Gaussian membership function of the
jth term of theith input variablexi . In addition, the inputs of this layer for discrete timet can be defined
by

hij (t) = u
(1)
i (t) + u

(2)
ij (t − 1)�ij , (12)

whereu(2)ij (t − 1) denotes the feedback unit of memory, which stores the past information of the system,
and where�ij denotes the link weight of the feedback unit.
Layer 3 (Compensatory rule node): Nodes in this layer represent the precondition part of one fuzzy

logic rule. They receive the one-dimensional membership degrees of the associated rule from the nodes of
a set in Layer 2. Here, we use the compensatory operator previously mentioned to perform IF-condition
matching of fuzzy rules. As a result, the output function of each inference node is

u
(3)
j =

(∏
i

u
(2)
ij

)1−�j+(�j /N)

, (13)

where the
∏
i

u
(2)
ij of a rule node represents the firing strength of its corresponding rule and where�j ∈

[0,1] is called the compensatory degree. When�j is turned, the compensatory operator becomes more
adaptive.
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Layer4 (Output node): This layer acts as an output layer. The node in this layer is labeled
∑

, and it
sums all incoming signals to obtain the final inferred result

u
(4)
k =

∑
j

u
(3)
j wjk, (14)

where the weightwjk is the output action strength of thekth output associated with thejth rule, andu(4)k

is thekth output of the RCNFS.
Finally, the overall representation of inputx and thekth output is

yk(t) = u
(4)
k (t) =

R∑
j=1

wjk

{
N∏
i=1

exp

[
− [u(1)i (t) + u

(2)
ij (t − 1)�ij − mij ]2

�2
ij

]}1−�j+(�j /N)

, (15)

whereu(1)i = xi , �j = c2
j /(c

2
j + d2

j ) is the compensatory degree,mij , �ij , �ij , cj , dj , andwjk are the

tuning parameters, andu(2)ij (t − 1) = exp{−[u(1)i (t − 1) + u
(2)
ij (t − 2)�ij − mij ]2/(�ij )2}. Explicitly,

when the RCNFS is used, the same inputs at different times yield different outputs. As above, the number
of tuning parameters for the RCNFS isR × (N × 3 + 2 + M), whereN, R, andM denote the number
of inputs, existing rules, and outputs, respectively. By inspecting the structure of the proposed RCNFS
network, we find that the recurrent properties are achieved by involving internal memory in the form of
feedback connections to the feedforward CNFS network[9].

Since a recurrent neuron has an internal feedback loop, it captures the dynamic response of a system.
We show that the universal approximation characteristic of the CNFS network is extended to the RCNFS.
Therefore, the proposed RCNFS can be shown to be a universal uniform approximation for continu-
ous functions over compact sets. The detailed proof is shown in the appendix. We have the following
result.

Theorem 1. Universal approximation theorem—for any real continuous functiong in a compact set
U ⊂ �N , and for any given arbitrary� > 0, there is a modelf such that

sup
x∈U

‖f (x) − g(x)‖ < �. (16)

Here‖ • ‖ can be any norm.
This theorem shows that if the RCNFS has a sufficiently large number of compensatory fuzzy rules,

then it can approximate any continuous function inC(�N) over a compact subset of�N . For system over
identification, the theorem means that for any given continuous output trajectoryyd(t) of any nonlinear
dynamic system over any compact time-intervalt ∈ [t0, T ], the outputy(t)of the RCNFS can approximate
yd(t) uniformly with arbitrarily high accuracy.

4. The online learning algorithm

In this section, we present an online learning algorithm for constructing the RCNFS. The proposed
learning algorithm consists of a structure learning phase and a parameter learning phase. Structure learning
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is based on the degree used to determine the number of fuzzy rules. Parameter learning is based upon
supervised learning algorithms. The ordered derivative algorithm that minimizes a given cost function
adjusts the weights in the consequent part, the parameters of the membership functions, the weights of
the feedback, and the compensatory degree.

Initially, there are no nodes in the network except the input–output nodes, i.e., there are no any rule
nodes and memberships. They are created dynamically and automatically as learning proceeds upon
receiving online incoming training data by performing the structure and parameter learning processes.
The details of the structure learning phase and the parameter learning phase are described in the rest of
this section.

4.1. The structure learning phase

The first step the structure learning is to determine whether to extract a new rule from the training
data as well as to determine the number of fuzzy sets in the universal of discourse of each input variable,
since one cluster in the input space corresponds to one potential fuzzy logic rule, withmij and �ij
representing the mean and variance of that cluster, respectively. For each incoming patternxi rule firing
strength can be regarded as the degree to which the incoming pattern belongs to the corresponding
cluster.

For computational efficiency, we can use the compensatory operation of the firing strength obtained
from [�u

(2)
ij ]1−�+�/N directly as the degree

Fj =
[∏

i

u
(2)
ij

]1−�j+�j /N

, (17)

whereFj ∈ [0,1]. According to the degree, the criterion for generating a new fuzzy rule and a new
wavelet base for new incoming data is described as follows. Find the maximum degreeFmax

Fmax = max
1�j �R(t)

Fj , (18)

whereR(t) is the number of existing rules at timet . If Fmax�F , then a new rule is generated, where
F ∈ (0,1) is a prespecified threshold that decays during the learning process. Once a new rule is generated,
the next step is to assign the initial mean, variance, and weight of the feedback for the new membership
function. Since our goal is to minimize an objective function, the mean, variance, and weight of the
feedback are all adjustable later in the parameter learning phase. Hence, the mean, variance, and weight
of the feedback for the new membership function are set as follows:

m
(R(t+1))

ij = xi, (19)

�
(R(t+1))

ij = �init , (20)

�
(R(t+1))

ij = random, (21)

u
(2)
ij (t − 1)(R(t+1)) = 0, (22)
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wherexi is the new input data and�init is a pre-specified constant. Since the generation of a membership

function corresponds to the generation of a new fuzzy rule, the compensatory degreec
(R(t+1))

j , d
(R(t+1))

j ,

i.e., �
(R(t+1))

j = (c
(R(t+1))

j )2/((c
(R(t+1))

j )2 + (d
(R(t+1))

j )2), and the weight,w
(R(i+1))

j , associated with a new

fuzzy rule has to be decided. Generally, the weight of the feedback�
(R(t+1))

j , the compensatory degree

c
(R(t+1))

j , d
(R(t+1))

j , and the weightw
(R(t+1))

j are selected with random values in[−1,1].
The whole algorithm for the generation of new fuzzy rules as well as fuzzy sets in each input variable

is as follows. We make the assumption that no rules initially exist:
Step1: IF xi is the first incoming pattern THEN do

{Generate a new rule
with meanmi1 = xi , variance�i1 = �init , weight of feedback�i1 = random,
compensatory degreec1 = random, d1 = random, weightw1 = random

where�init is a prespecified constant.
}

Step2: ELSE for each newly incomingxi , do
{FindFmax = max

1�j �R(t)

Fj ,

IF Fmax�F

do nothing
ELSE
{R(t+1) = R(t) + 1
generate a new rule

with meanm
R(t+1)
ij = xi , variance�

R(t+1)
ij = �init ,

weight of feedback�
R(t+1)
ij = random, compensatory degreec

R(t+1)
j = random,

d
R(t+1)
j = random, weightw

R(t+1)
j = random

where�init is a prespecified constant.}
}

4.2. The parameter learning phase

After the network structure is adjusted according to the current training pattern, the network then enters
the parameter learning phase to adjust the parameters of the network optimally based on the same training
pattern. The learning process involves determining the minimum of a given cost function. The gradient
of the cost function is computed and the parameters are adjusted along the negative gradient. Because the
RCNFS is a dynamic system with feedback connections, the learning algorithm used in the feedforward
radial basis function networks[14] or adaptive fuzzy systems[22] cannot be applied to it directly. Also,
due to the online learning property of the RCNFS, the offline learning algorithms for the recurrent neural
networks, like backpropagation through time and time-dependent recurrent backpropagation[11], cannot
be applied here. Instead, the ordered derivative[23], which is a partial derivative whose constant and
varying terms are defined using an ordered set of equations, is used to derive our learning algorithm.
When the single output case is considered for clarity, our goal is to minimize the cost functionE, which
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is defined as follows:

E(t + 1) = 1

2
[y(t + 1) − yd(t + 1)]2, (23)

whereY (t + 1) is the model output andYd(t + 1) is the desired output at timet + 1. When the ordered
derivative learning algorithm is used, the free parameters of the RCNFS are adjusted such that the error
defined in Eq. (23) is less than the desired threshold value after a given number of training cycles. The
parameter learning algorithm based on the ordered derivative algorithm is described below:
Layer4: The error term to be propagated is calculated as

�(4)(t + 1) = − �E

�y
(t + 1) = yd(t + 1) − y(t + 1). (24)

And the weight is updated by the amount

�wj(t + 1)= − �E

�wj

(t + 1) =
[
−�E

�y
(t + 1)

] [
�y(t + 1)

�wj(t)

]
= �(4)(t + 1)u(3)j (t). (25)

The weight in layer 4 is updated according to the following equation:

wj(t + 1)=wj(t) + �w �wj(t + 1)

=wj(t) + �w�(4)(t + 1)u(3)j (t), (26)

where the factor�w is the learning rate parameter of the weight, andt denotes the iteration number of
the jth.
Layer3: In this layer, only the error term needs to be computed and propagated

�(3)(t + 1)= − �E

�u(3)j

(t + 1) =
[
−�E

�y
(t + 1)

][
�y(t + 1)

�u(3)j (t)

]

= �(4)(t + 1)wj (t). (27)

To eliminate the constraint�j ∈ [0,1], we redefine�j as follows:

�j (t + 1) = c2
j (t + 1)

c2
j (t + 1) + d2

j (t + 1)
, (28)

��j (t + 1)= − �E

��j
(t + 1) =

[
− �E(t + 1)

�u(3)j (t)

][
�u(3)j

��j
(t)

]

= �(3)(t + 1)

[
1

n
− 1

]
ln

[∏
i

u
(2)
ij (t)

]
u
(3)
j (t). (29)

We have

cj (t + 1) = cj (t) + �c

{
2cj (t)d2

j (t)

[c2
j (t) + d2

j (t)]2
}

��j (t + 1), (30)
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dj (t + 1) = dj (t) − �d

{
2c2

j (t)dj (t)

[c2
j (t) + d2

j (t)]2
}

��j (t + 1), (31)

�i(t + 1) = c2
j (t + 1)

c2
j (t + 1) + d2

j (t + 1)
. (32)

In all the above formulas,�c and �d are the learning rate of the parametercj and the parameterdj ,
respectively.
Layer2: The error term is calculated as follows:

�(2)(t + 1)= − �E

�u(2)ij

(t + 1) =
[
− �E(t + 1)

�u(3)j (t)

][
�u(3)j

�u(2)ij

(t)

]

= �(3)(t + 1)
[
1 − �j + �j

n

] [∏
i

u
(2)
ij (t)

](−�j+(�j /n))

∏
l �=i

u
(2)
lj (t)


 , (33)

wherel is thelth dimension. The update mean is

�mij (t + 1)= − �E

�mij

(t + 1) =
[
− �E(t + 1)

�u(2)ij (t)

][
�u(2)ij

�mij

(t)

]

= �(2)(t + 1)u(2)ij (t)

{
2[hij − mij ]

�2
ij

(t)

}{
�hij
�mij

(t) − 1

}
, (34)

where

�hij
�mij

(t) = �ij (t)u
(2)
ij (t − 1)

{
−2[hij − mij ]

�2
ij

(t − 1)

}(
�hij
�mij

(t − 1) − 1

)
. (35)

The updated variance is

��ij (t + 1)= − �E

��ij
(t + 1) =

[
− �E(t + 1)

�u(2)ij (t)

][
�u(2)ij

��ij
(t)

]

= �(2)(t + 1)u(2)ij (t)

{
2
[
hij − mij

] [
(hij − mij ) − �ij (�hij /��ij )

]
�3
ij

(t)

}
, (36)

where

�hij
��ij

(t) = �ij (t)u
(2)
ij (t − 1)

{
2[hij − mij ][(hij − mij ) − �ij (�hij /��ij )]

�3
ij

(t − 1)

}
. (37)

The updated weight of the feedback is

��ij (t + 1)= − �E

��ij
(t + 1) =

[
− �E(t + 1)

�u(2)ij (t)

][
�u(2)ij

��ij
(t)

]
,
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= �(2)(t + 1)u(2)ij (t)

{
−2[hij − mij ]

�2
ij

�hij
��ij

(t)

}
, (38)

where

�hij
��ij

(t) = �ij (t)u
(2)
ij (t − 1)

{
−2[hij − mij ]

�2
ij

�hij
��ij

(t − 1)

}
+ u

(2)
ij (t + 1). (39)

The mean and variance of the membership functions and the weight of the feedback in this layer are
updated as follows:

mij (t + 1) = mij (t) + �m �mij (t + 1), (40)

�ij (t + 1) = �ij (t) + �� ��ij (t + 1), (41)

�ij (t + 1) = �ij (t) + �� ��ij (t + 1), (42)

where�m, ��, and�� are the learning rate parameters of the mean, the variance, and the weight of the
feedback for the Gaussian function, respectively. The values�hij /�mij , �hij /��ij , �hij /��ij are equal to
zero initially and are reset to zero after a period of time to avoid the accumulation of too far away errors.

5. Illustrative examples

The performance of the RCNFS for temporal problems was verified. Several examples and performance
comparisons with other recurrent neuro-fuzzy system are presented in this section. These parameters (�m,
��, ��, �c, �d , �w, �init , F ) are set in advance, and the number of training epochs for the RCNFS in each
example was determined based on the desired accuracy.

5.1. Example 1: Prediction of time sequence

To clearly verify if the proposed RCNFS can learn temporal relationships, a simple time sequence
prediction problem found in[19] was used in the following example.

The test bed that was used is shown in Fig. 2(a). The test bed was in the shape of an “8” and was made
up of a series of 12 points which were to be presented to the network in the order shown. The RCNFS
was asked to predict the succeeding point for every presented point.

Obviously, a static network cannot accomplish this task, since the point at coordinate (0,0) has two
successors: points 5 and 11. The RCNFS must decide the successor of (0,0) based on its predecessor. If
the predecessor is 3, then the successor is 5, whereas if the predecessor is 9, the successor is 11.

In this example, the RCNFS contains only two input nodes, which were activated with the two di-
mensional coordinate of the current point, and two output nodes, which represented the two dimensional
coordinate of the predicted point. A learning rate of�w = �c = �d = �m = �� = �� = 0.05 and
a prespecified threshold ofF = 10−4 were chosen. After training, a root-mean-square (rms) error of
0.000237 was achieved. The predicted values with 12 fuzzy logic rules(�init = 0.08) of RCNFS are
shown in Fig. 2(b). Simulation results show that we can obtain perfect prediction capability.

We also applied the RFNN model[8] and a traditional (non-recurrent) fuzzy neural network (FNN)[1]
to this time prediction problem. Fig. 2(c) shows the prediction results using the RFNN model[8]. In the



C.-J. Lin, C.-H. Chen / Fuzzy Sets and Systems 150 (2005) 307–330 319

figure, the RFNN also obtains prediction capability, but some time prediction points cannot be matched
exactly. Fig. 2(d) shows that a feedforward fuzzy neural network cannot make predictions successfully.
Fig. 2(e) shows the learning curves of the RCNFS model, the RFNN model, and the FNN model.

From the simulation results shown in Fig. 2(d), we can see that the FNN model is inappropriate for time
sequence prediction because of its static mapping. To give a clear understanding of this performance, a

Fig. 2. Simulation results of time sequence prediction: (a) test bed for the next sample prediction experiment in Example 1, (b)
results of prediction using the RCNFS after 1000 training epochs, (c) results of prediction using the RFNN after 1000 training
epochs, (d) results of prediction using the FNN after 1000 training epochs, and (e) learning curves of the RCNFS, the RFNN[8]
and the FNN[1].
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Fig. 2. (Continued).

Table 1
Performance comparison of various existing models on time sequence prediction

RCNFS RFNN[8] FNN [1]

Rule numbers 12 12 12
Nodes 40 40 66
Parameter 120 96 108
RMS error 0.000237 0.0063 0.1758
Epochs 1000 1000 1000

comparison between the RFNN model[8] and the FNN model[1] on the same problem is given in Table 1.
Although the RCNFS needs more adjustable parameters than RFNN and FNN under the same fuzzy rules
that are required, our model can obtain a smaller rms error and can converge more quickly.
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5.2. Example 2: Identification of a nonlinear dynamic system

Consider the following dynamic plant with longer input delays:

yp(t + 1) = 0.72yp(t) + 0.025yp(t − 1)u(t − 1) + 0.01u2(t − 2) + 0.2u(t − 3). (43)

This plant is the same as that used in[7]. In our model, with only two input values,yp(t) andu(t), the
input values were fed to the RCNFS to determine the outputyp(t). The training inputs were independent
and identically distributed (i.i.d.) uniform sequence over[−2,2] for about half of the training time and a
single sinusoid signal of 1.05 sin(	t/45) for the remaining training time. There is no repetition of these
900 training data; that is, we had different training sets for each epoch. The check input signalu(t), the
equation below, was used to determine the identification results:

u(t) =




sin( 	t
25), 0 < t < 250,

1.0, 250� t < 500,
−1.0, 500� t < 750,
0.3 sin( 	t

25) + 0.1 sin( 	t
32),+0.6 sin( 	t

10), 750� t < 1000.

(44)

During the training, we used only 10 epochs, with 900 time steps in each epoch. A learning rate of
�w = �c = �d = �m = �� = �� = 0.05, an initial variance of�init = 0.2, and a prespecified threshold
of F = 10−4 were chosen. After training, the final rms error was 0.0057. Three fuzzy logic rules were
generated. The three rules were
Rule 1: IF[u(t) is�(−0.5757,0.5546)andy(t) is�(−0.3447,0.4765)]0.6434THENy(t+1) is−0.1256.
Rule 2: IF[u(t) is �(0.0330,0.5011) andy(t) is �(0.0137,−0.6984)]0.9909THEN y(t + 1) is 0.9516.
Rule 3: IF[u(t) is �(1.1974,0.3089) andy(t) is �(0.7244,0.6678)]0.3393THEN y(t + 1) is −0.5021.

Fig. 3(a) shows the distribution with some of the training patterns and the final task of the rules in the
[u(t), y(t)] graph. This is due to the parameter learning process, which changes the mean and variance
of each membership function at each time step to minimize the output error function. The membership
functions on theu(t) andy(t) dimension are shown in Figs. 3(b) and 3(c). Fig. 4(a) shows the outputs
of the plant and the RCNFS model. We obtained perfect identification capability. Fig. 4(b) illustrates the
error between the desired output and the RCNFS output. The learning curves of the RCNFS model and
the RFNN[8] model are shown in Fig. 4(c). The figure shows that our model obtained a smaller rms error
and a quicker convergence since the compensatory operator was used.

We compared the performance of our model with that of other existing recurrent methods
(ERNN [3], RSONFIN[6], RFNN [8], TRFN-S[4]). The comparison results are tabulated in Table 2.
The results show that the proposed RCNFS model results in smaller rms error than other recurrent
methods.

5.3. Example 3: Identification of a chaotic system

The discrete time Henon system was repeatedly used in the study of chaotic dynamics and was not
too simple in the sense that it was of second order with one delay and two parameters[2]. This chaotic
system is described by

y(t + 1) = −Py2(t) + Qy(t − 1) + 1.0, for t = 1,2, . . . (45)
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Fig. 3. Simulation results of the RCNFS on the membership functions of each input variable in Example 2. (a) The input training
patterns and the final assignment of rules. (b) The distribution of the membership functions in they(t) dimensions. (c) The
distribution of the membership functions in theu(t) dimensions.
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Fig. 4. Simulation results for nonlinear system identification: (a) the outputs of the plant and the RCNFS, (b) the error between
the RCNFS output and the desired output, and (c) learning curves of the RCNFS and the RFNN[8].

Table 2
Performance comparison of various recurrent methods on the identification problem

RCNFS TRFN-S RFNN RSONFIN ERNN
[4] [8] [6] [3]

Parameter 27 33 21 49 54
RMS error (train) 0.0057 0.0067 0.0187 0.0300 0.0360
RMS error (test) 0.0221 0.0313 0.0402 0.0600 0.0780
Epochs 10 10 10 10 10

which, withP = 1.4 andQ = 0.3, produced a chaotic strange attractor as shown in Fig. 5(a). For this
training, the input of the RCNFS wasy(t−1) and the output wasy(t). We first randomly took the training
data (1000 pairs) from the system over the interval[−1.5,1.5]. Then the RCNFS was used to approximate
the chaotic system.
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Fig. 5. Simulation results for identification of a chaotic system: (a) check data of this chaotic system, (b) result of identification
using the FNN[1] for the chaotic system, and (c) result of identification using the RCNFS for the chaotic system.
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Fig. 5. (Continued).

Table 3
Performance comparison of various methods in the chaotic system of Example 3

RCNFS RFNN[8] FNN [1]

Number of rules 9 9 9
RMS error (train) 0.0032 0.0060 0.1238
RMS error (test) 0.0035 0.0067 0.1077
Epochs 100 100 100

In applying the RCNFS to this example, we used 100 epochs for training. Here, the initial point was
[y(1), y(0)]T = [0.4,0.4]T.A learning rate of�w = �c = �d = �m = �� = �� = 0.05, an initial variance
of �init = 0.1, and a prespecified threshold ofF = 10−1 were used. After training, a rms error of 0.0032
was achieved, and nine fuzzy logic rules were generated.

The phase plane of this chaotic system after training for the FNN[1] and the RCNFS are shown in
Figs. 5(b) and (c). In Fig. 5(b), the simulation results show that the FNN is inappropriate for dynamic
chaotic systems because of its static mapping. We compared the performance of our model with[8,1].
The comparison results are tabulated in Table 3. The results show that the proposed RCNFS model is able
to maintain a smaller rms error than other methods.

6. Conclusion

A recurrent compensatory neuro-fuzzy system (RCNFS) was proposed in this paper. Compensatory
operators are used to optimize fuzzy logic reasoning and to select optimal fuzzy operators. Therefore, an
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effective neuro-fuzzy system should be able not only to adaptively adjust fuzzy membership functions
but also to dynamically optimize adaptive fuzzy operators. An online learning algorithm was proposed to
perform structure learning and parameter learning. The simulation results show that the proposed learning
algorithm converges quickly and requires a small number of tuning parameters.
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Appendix A. Proof of the Universal Approximation Theorem

Theorem 1 will be proven using the Stone–Weierstrass theorem. The structure of the proposed RCNFS
is illustrated in Fig. 1. The single output of the RCNFS can be expressed as

y(x) =
R∑
j=1

wju
(3)
j (x), (A.1)

wherex ∈ �N is the input variable of the RCNFS,

u
(3)
j (x) =

[
N∏
i=1

u
(2)
ij (x)

]1−�j+�j /N

, (A.2)

where

u
(2)
ij (x) = exp

(
− [hij (x) − mij ]2

�2
ij

)
, (A.3)

wherehij (t) = x(t)+ u
(2)
ij (t − 1)�ij denotes the input of layer 2, the link weightwj is the output action

strength,mij , �ij ∈ �, andY is the family of functiony : �N → �.

Theorem 2(Stone–Weierstrass Theorem[18]). LetA be a set of real continuous functions in a compact
setU . If (1)U is an algebra.That is, if f1, f2 ∈ A, andc ∈ �, thenf1 +f2 ∈ A, f1f2 ∈ A, andcf1 ∈ A;
(2)A separates points inU . That is, for x, y ∈ U , x �= y, there existsf1 ∈ A such thatf1(x) �= f2(y);
and (3) A vanishes at no point inU . That is, for eachx ∈ U , there existsf1 ∈ A such thatf1(x) �= 0.
Then the uniform closure ofA consists of all real continuous functions inU .

Lemma 1.LetY be the family ofy defined in Eq. (A.1).ThenY ⊂ U , whereU is a compact set.

Proof of Lemma 1.Here, the membership function

0 < �Aij
(hij ) = exp

[
− (hij − mij )

2

(�ij )2

]
�1

and, therefore, the continuous functionu(3)j (x) is closed and bounded for allx ∈ �N . That is,Y ⊂ A. �
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Proof of Theorem 2.First, we prove thatY is an algebra. Letf1, f2 ∈ Y , such that we can write them as

f1(x)=
R1∑
j1=1

w1j1u1(3)j1
(x)

=
R1∑
j1=1

w1j1


 N1∏
i1=1

u1(2)i1j1
(x)




1−�1j1+�1j1/N1

=
R1∑
j1=1

w1j1


 N1∏
i1=1

exp

(
− (hi1j1(x) − m1i1j1)

2

(�1i1j1)
2

)
1−�1j1+�1j1/N1

, (A.4)

f2(x)=
R2∑
j2=1

w2j2u2(3)j2
(x)

=
R2∑
j2=1

w2j2


 N2∏
i2=1

u2(2)i2j2
(x)




1−�2j2+�2j2/N2

=
R2∑
j2=1

w2j2


 N2∏
i2=1

exp

(
−(hi2j2(x) − m2i2j2)

2

(�2i2j2)
2

)
1−�2j2+�2j2/N2

, (A.5)

wherew1j andw2j ∈ �, ∀j , andhij is a time sequence ofxi , for i = 1,2, . . . , N . That is,

hij (1)= xi(1),
...

hij (t)= xi(t) + u
(2)
ij (t − 1)�,

= xi(t) + exp

[
− (hij (t − 1) − mij )

2

(�ij )2

]
�ij .

Therefore, we have

f1(x) + f2(x) =
R1∑
j1=1

w1j1u1(3)j1
(x) +

R2∑
j2=1

w2j2u2(3)j2
(x) (A.6)

Sinceu1(3)j andu2(3)j are Gaussian in form (this can be verified by straightforward algebraic operations),
then Eq. (A.6) is in the same form as Eq. (A.1), so thatf1 + f2 ∈ Y . Similarly, we have

f1(x)f2(x) =
R1∑
j1=1

w1j1u1(3)j1
(x)

R2∑
j2=1

w2j2u2(3)j2
(x) (A.7)
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which is also in the same form as Eq. (A.1). Hence,f1f2 ∈ Y . Finally, for arbitraryc ∈ �

cf1(x) =
R1∑
j1=1

cw1j1u1(3)j1
(x) (A.8)

which is again in the form of Eq. (A.1). Hence,cf1 ∈ Y . Therefore,Y is an algebra.
Next, we prove thatY separates points inU . We prove this by constructing a requiredf . That is,

we specifyf ∈ Y such thatf (x′) �= f (y′) for an arbitrarily givenx′, y′ ∈ U , with x′ �= y′. We
choose two fuzzy rules in the form of Eq. (9) for the fuzzy rule base. Letx′ = (x′

1, x
′
2, . . . , x

′
N) and

y′ = (y′
1, y

′
2, . . . , y

′
N). If x′

i �= y′
i , we can choose two fuzzy rules as the fuzzy rule base. Furthermore, let

the Gaussian membership functions be

�Ai1
(xi)= exp

(
− (hi1 − x′

i)
2

�2

)

= exp

(
− (xi + u

(2)
i1 �i1 − x′

i )
2

�2

)
, (A.9)

�Ai2
(xi)= exp

(
− (hi2 − y′

i)
2

�2

)

= exp

(
− (xi + u

(2)
i2 �i2 − y′

i)
2

�2

)
. (A.10)

Thenf can be expressed as

f =w1

[
N∏
i=1

exp

(
− (xi + u

(2)
i1 �i1 − x′

i)
2

�2

)]1−�1+�1/N

+w2

[
N∏
i=1

exp

(
− (xi + u

(2)
i2 �i2 − y′

i)
2

�2

)]1−�2+�2/N

, (A.11)

wherew1, w2 are the link weights. With this system, we have

f (x′)=w1

[
N∏
i=1

exp

(
−(u

(2)
i1 �i1)2

�2

)]1−�1+�1/N

+w2

[
N∏
i=1

exp

(
−(x′

i + u
(2)
i2 �i2 − y′

i)

�2

)]1−�2+�2/N

, (A.12)

f (y′)=w1

[
N∏
i=1

exp

(
−(y′

i + u
(2)
i1 �i1 − x′

i)

�2

)]1−�1+�1/N

+w2

[
N∏
i=1

exp

(
−(u

(2)
i2 �i2)

�2

)]1−�2+�2/N

. (A.13)
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Sincex′ �= y′, there must be somei such thatx′
i �= y′

i . Hence,f (x′) �= f (y′). Therefore,Y separates
points inU .

Finally, we prove thatY vanishes at no point ofU . By Eq. (A.1),u(3)j is constant and not equal to zero.

That is, for allx ∈ �N , u(3)j (x) > 0. If we choosewj > 0 (j = 1,2, . . . , R), theny > 0 for anyx ∈ �N .
That is, anyy ∈ Y with wj > 0 can serve as the requiredf .

In summary, the RCNFS is a universal approximator. Using theStone–Weierstrass theoremand the
fact thatY is a set of real, continuous inU , we have proven the theorem.�
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