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Chromosomal aneuploidy is commonly observed in neoplastic diseases and is an important prognostic marker. Here we examine

how gene expression profiles reflect aneuploidy and whether these profiles can be used to detect changes in chromosome copy

number. We developed two methods for detecting such changes in the gene expression profile of a single sample. The first

method, fold-change analysis, relies on the availability of gene expression data from a large cohort of patients with the same dis-

ease. The expression profile of the sample is compared with that of the dataset. The second method, chromosomal relative

expression analysis, is more general and requires the expression data from the tested sample only. We found that the relative

expression values are stable among different chromosomes and exhibit little variation between different normal tissues. We

exploited this novel finding to establish the set of reference values needed to detect changes in the copy number of chromosomes

in a single sample on the basis of gene expression levels. We measured the accuracy of the performance of each method by apply-

ing them to two independent leukemia datasets. The second method was also applied to two solid tumor datasets. We conclude

that chromosomal aneuploidy can be detected and predicted by analysis of gene expression profiles. This article contains Supple-

mentary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat. VVC 2006 Wiley-Liss, Inc.

INTRODUCTION

Numerical and structural abnormalities of chro-

mosomes are frequently detected in cancer and con-

stitute a key mechanism in cancer progression

(Albertson and Pinkel, 2003; Vogelstein and Kinzler,

2004). The level of cellular proto-oncogenes may be

enhanced by genomic amplification (e.g., MYCN in

neuroblastoma), and tumor suppressor genes may be

inactivated by deletion (e.g., the retinoblastoma

gene RB1 on chromosome band 13q14). However,

whether whole-chromosome aneuploidy (i.e., the

gain or loss of a chromosome) has a central role in tu-

mor initiation (Nowak et al., 2002; Duesberg and Li,

2003) or is a consequence of the genomic instability

of cancer cells (Zimonjic et al., 2001; Wang et al.,

2004) remains unknown. Genomic amplification of a

region of DNA on a specific gene such as MYCN
could be as much as a 300-fold increase (Brodeur

et al., 1984), which would dramatically affect the

expression level of that gene. The biological mecha-

nism that causes whole-chromosomal aneuploidy is

different from that which causes DNA amplification,

which typically duplicates (or deletes) one copy of

either the whole chromosome or a large segment of

it. The effect of whole-chromosome aneuploidy on

gene expression also differs from that of DNA

amplification in that it potentially affects the expres-

sion of all of the genes on the chromosome but in a

moderate manner (Schoch et al., 2005; Tsafrir et al.,

2006).

Recent studies support a crucial role for whole-

chromosomal aneuploidy in cancer pathogenesis

(Hanks et al., 2004; Hernando et al., 2004; Izraeli,

2005; Teixeira and Heim, 2005). Leukemias may be

defined as a group of malignant diseases in which

genetic abnormalities in a hematopoietic cell give

rise to clonal proliferation. Acute lymphoblastic leu-

kemia (ALL) is the most common childhood neo-

plasm. Among the most common subtypes of child-
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hood, ALL is high-hyperdiploid (HD) ALL (so

called because the modal number of the leukemic

cells is >50 chromosomes), which is associated with

a good prognosis (Pui et al., 2001). Trisomies of spe-

cific chromosomes are also of prognostic value

(Heerema et al., 2000; Moorman et al., 2003). There-

fore, it is important to identify HD ALL, which can

be detected by cytogenetic analysis and determina-

tion of the DNA index of the leukemic cells. How-

ever, cytogenetic analysis may be unsuccessful,

especially in multicenter settings, and is not rou-

tinely performed on most solid tumors.

Gene expression profiling is being evaluated for

implementation in the routine diagnostic workup

of leukemias and solid tumors. Recent studies re-

ported an association between numerical chromo-

somal aberrations and gene expression levels

(Hughes et al., 2000; Virtaneva et al., 2001; Pollack

et al., 2002; Nigro et al., 2005). They suggest that

when a chromosome is missing or extra copies are

present, the expression of its genes may be

enhanced or decreased. However, it is not clear what

proportion of genes is expressed in concordance

with gene dosage (Phillips et al., 2001; Platzer et al.,

2002). If this proportion is large enough, then nu-

merical chromosomal aberrations could be identified

from the gene expression profile (GEP). Schoch

et al. (2005) explored the effect of chromosomal an-

euploidy on gene expression in acute myeloid leuke-

mia (AML). For the aberrant chromosomes, they cal-

culated the proportion of genes with fold changes in

expression, either greater than (duplication) or less

than (deletion) one. The fold change in expression

was calculated by dividing the average expression

level of each gene in the sample with aberrational

chromosomes by its average expression level in the

normal karyotype samples. Most of the genes (67–

87%) showed fold changes greater than one. Note

that this does not mean that 67–87% of the genes

were affected by the aneuploidy; we would expect

50% of the genes to show this much change in

expression by chance. However, this finding suggests

that GEP analysis detects chromosomal aneuploidy.

Recently, Crawley and Furge (2002) presented a

method for identifying cytogenetic changes in hepa-

tocellular carcinoma GEPs. They used a ‘‘sign test’’

to detect expression biases associated with whole

chromosomes (or whole chromosomal arms). In their

study, the regions with copy number changes that

were found in >35% of the samples were compared

with modifications in regions that were detected by

comparative genomic hybridization (CGH) in previ-

ous studies. However, the accuracy of detection of

such regions in a single sample was not measured.

Tsafrir et al. (2006) investigated the relationship

between DNA copy number (as measured by array

CGH and using single nucleotide polymorphism

[SNP] chip arrays) and gene expression in colon

cancer. They showed that although the relation

between gene copy number and expression level is

complex and noisy when viewed on the single-gene

level, when examined on a larger scale (by smooth-

ing both types of data), a clear correlation between

these factors is observed. Yi et al. (2005) performed

two statistical tests to find genes that were differen-

tially expressed in samples of tumor and normal tis-

sues. The chromosomes were scanned using sliding-

window analysis to detect regions with significant,

differential gene expression. In each window, the

scores of the statistical tests for the different genes

were summed, and the region was detected if the

scores exceeded a certain empirically determined

threshold. This method was used to detect potential

regions of genomic alterations in prostate cancer

gene expression data. One of the regions they found

is well known for high-frequency deletions; how-

ever, this detection method is based on analysis of a

group of samples and cannot be used to detect chro-

mosomal alterations in a single sample.

To what extent can changes in whole-chromo-

some (or chromosome arm) copy number be identi-

fied by GEP analysis of a single sample? Here we

present a systematic analysis of this unresolved

question. We explore two approaches for detecting

changes in chromosomal copy number from GEP

analysis at the single-sample level. One approach

relies on the availability of a large gene expression

dataset of patients with the same disease, and the

other, more general method relies on analysis of

expression data from the tested sample alone. We

measured the accuracy of both methods by apply-

ing them to two independent leukemia datasets

that included corresponding cytogenetic informa-

tion. The second method was also applied to two

solid tumor datasets. To the best of our knowledge,

this is the first report of a reliable method that

detects changes in chromosome copy number via

GEP analysis of a single sample.

MATERIALS ANDMETHODS

Gene Expression Datasets

The following six gene expression datasets were

measured on the Affymetrix HG-U133A array and

are analyzed in this paper.

1. St. Jude dataset comprising 132 ALL sam-

ples, 18 of which were HD >50 (Ross et al.,
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2003). Cytogenetic information on copy num-

ber(s) of chromosome 21 was available for all

samples in this dataset (see Supplementary

Table 1).

2. Johns Hopkins Hematopoietic Stem Cells

(Johns Hopkins SC) dataset included 6 nor-

mal hematopoietic stem cell samples (Geor-

gantas et al., 2004).

3. Colon cancer dataset containing samples of

normal lung (n ¼ 5), liver (n ¼ 10), and colon

(n ¼ 24) and samples of colon polyps (n ¼
30), colon tumors (n ¼ 114), and metastasized

tumors (n ¼ 19) (Tsafrir et al., 2006).

4. Scripps dataset of 158 normal tissue samples

obtained from 79 tissues (Su et al., 2004).

5. Zurich dataset included 20 ALL samples and

cytogenetic data for all chromosomes (see

Supplementary Table 2) (Betts and Schaefer,

unpublished).

6. Human Stem Cells (Human SC) dataset

included 17 samples of embryonic stem cells,

keratinocyte stem cells, and hematopoietic

stem cells (Golan-Mashiach et al., 2005).

The following two gene expression datasets were

measured on the Affymetrix HG-U95Av2 array:

1. Uveal melanoma dataset included 20 samples

of uveal melanoma; 10 of the samples had

one copy of chromosome 3 (monosomy 3);

the other 10 samples had 2 copies of it

(disomy 3) (Tschentscher et al., 2003).

2. Scripps-U95 dataset contains 58 samples from

29 normal tissues (Su et al., 2002).

Preprocessing the datasets

The datasets that were measured on the Affyme-

trix HG-U133A array were normalized by Affyme-

trix Microarray Suite 5.0 (MAS 5.0) software. The

datasets that were measured on the Affymetrix

HG-U95A array were normalized by MAS 4.0 soft-

ware. Each dataset was filtered by omitting probe

sets that got a ‘‘present’’ call in two or fewer of the

samples. A threshold was applied by setting

expression levels at 30 for any probe set with

expression level less than or equal to 30 in a partic-

ular sample.

When there were two or more probe sets for the

same gene (defined as those with the same gene

symbol), their expression levels were combined as

follows. The Pearson correlation coefficient was

calculated for each pair of probe sets in the group;

then the largest subgroup in which each pair of

probe sets had a correlation coefficient higher than

0.5 was found by simple scanning. If the size of the

chosen subgroup was larger than 1, then the aver-

age expression level of that group of probe sets

represented that of the gene in each sample. Oth-

erwise, one probe set was chosen to represent the

gene: first, all probe sets without ‘_s_’ or ‘_x_’ in

their identity were found (‘_s_’ or ‘_x_’ indicates

probe sets that are less specific). If there were no

such probe sets, one probe set was chosen ran-

domly. Otherwise, the probe set without ‘_s_’ or

‘_x_’ and with the largest number of present calls

throughout the samples was chosen. After this pro-

cess, each gene that passed the filter had one

expression value in each sample.

Identifying Differentially Expressed Genes

To find genes that differentiate two groups of

samples in a given dataset, we used the Wilcoxon

rank-sum test for each gene. To deal with the prob-

lem of multiple comparisons, we applied the false

discovery rate (FDR) method (Benjamini and

Hochberg, 1995) to the resulting P-values (parame-

ter Q ¼ 0.05).

To detect overrepresented chromosomes in the

group of differentiating genes, we calculated a P-
value for each chromosome. The P-value reflects

the extent to which that group of genes is enriched

on a particular chromosome. Specifically, for each

chromosome i (i ¼ 1–22, X, and Y), we calculated

the number of genes, ni, and the number of differ-

entiating genes, dni. Then we calculated a hyper-

geometric P-value for getting dni or more genes

from this chromosome in the differentiating group

of genes, assuming it is a random group of genes.

Fold-Change Analysis

To identify extra chromosomes in a single sample

from a large dataset, we assume that when a gene is

located on a chromosome that has more than two

copies, its expression level will be increased. There-

fore, the basis of this analysis is calculating for each

gene its fold-change value, fg, which is defined as the

expression level of gene g in the given sample di-

vided by its median expression level in all samples

included in the dataset. Two analyses were done.

First, the median fold change for each chromosome

i ¼ 1–22, X and Y, in the sample was calculated as

follows: fi ¼ medianðffg jg ¼ 1; . . . ; nigÞ. The value

fi is indicative of the likelihood that chromosome i
has extra copies in the given sample. The more fi
exceeds 1, the greater the likelihood that an addi-

tional copy (or copies) of chromosome i is present.
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Second, the fold-change P-value for each chro-

mosome i ¼ 1–22, X and Y, was calculated. We

determined the P-value for the number of upregu-

lated genes. The null assumption is that for each

gene g from chromosome i (g ¼ 1, . . . , ni), P(fi > 1)

¼ 0.5. Let Ai be the group of genes whose fold-

change value is larger than 1. Then Ai ¼ {gfg > 1,

g ¼ 1, . . . , ni}. Let Ni be the size of this group.

Then a P-value, pi, is assigned to each chromosome

by calculating the probability that this group is of

size Ni or more, by using the binomial distribution,

under the null assumption. Like fi, pi reflects how
likely it is that chromosome i has extra copies in

the given sample but in a slightly different way.

The smaller the value of pi, the more likely it is

that chromosome i has extra copies in the sample.

Fold-change prediction of extra chromosomes

We predict that chromosome i has extra copies in a

given sample only if fi and pi both satisfy their re-

spective conditions. Specifically, if pi is lower than
a cutoff value and fi is higher than another cutoff

value, then we predict that the chromosome has

extra copies in the sample. We used the following

sets of cutoff values: fold change at 1.01,

1.02, . . . , 1.49, 1.50 and P-value at 0, 0.01, . . . , 0.39,
0.40. For each pair of fold-change and P-value cut-

off values, we made a prediction for each chromo-

some. Then we measured the quality of these pre-

dictions.

Fold-change detection of missing chromosomes

The analysis described above can be also applied

to detect missing chromosomes. The only change

is that the fold-change value (or median fold-

change value) should be <1 for missing chromo-

somes.

Chromosomal Relative Expression Analysis

The chromosomal relative expression (CRE) is

calculated for each chromosome i as follows: For

each sample a, we calculate the median expression

level of the genes in the chromosome. We then

divide each of those individual median values by

the median expression level of all genes in the

sample. The log-relative expression level of chro-

mosome i in sample a is determined by performing

the logarithm (base 2) to get li,a. We then calculate

the mean, ai, and SD, si, of the li,a in all samples.

Because the number of genes on chromosome Y

is small (i.e. 49 probe sets), we excluded it from

this analysis. The output is two vectors of size 23,

a ¼ ða1; . . . ; a22; aXÞ of the mean values and

s ¼ ðs1; . . . ; s22; sXÞ of the SD values. For each chro-

mosome, the distribution of the log-relative

expression level is close to Gaussian (Supplemen-

tary Fig. 1). For a given sample, a, the CRE vector

contains the 23 values li,a. This analysis yields for

each dataset a pair of CRE vectors, a and s. The

datasets were combined, and all samples were ana-

lyzed together, yielding a ‘‘representative’’ CRE.

CRE prediction of chromosomal gains and losses

Using the representative CRE mean and SD vec-

tors, we can predict whether a chromosome in a

given sample has extra copies or is missing. We cal-

culate the CRE vector (l1,a, l2,a , . . . , lX,a) of the

given sample a, as described above. Then a P-value
is assigned to each chromosome by calculating the

probability of its log-relative expression value

being higher (or lower) than an effective Gaussian

distribution, with mean and SD values of the rep-

resentative CRE in this chromosome. The smaller

the P-value, the more confident we are of our pre-

diction. After calculating a P-value for each chro-

mosome, we predict that a chromosome is extra (or

missing) in the sample if its P-value is lower than

a predetermined cutoff value that is applied to

the analysis of all of the chromosomes. We used

the following set of P-value cutoffs: 0.001,

0.002 , . . . , 0.149, 0.150.

Combining the Fold-Change and Chromosomal

Relative Expression Analyses

For each sample, the predictions by both meth-

ods are combined by applying an AND gate: for

each chromosome, if both methods predict extra

copies, then that chromosome is indeed predicted

to have extra copies; if neither or only one method

predicts extra copies, then no extra copies of that

chromosome are predicted. As described above,

the fold-change prediction is made according to

two cutoff values, and the CRE prediction is made

according to one cutoff value. The combined pre-

diction is therefore made according to all three of

those cutoff values.

Quality of the Prediction

To measure the quality of the prediction, we

assume that there is a large group of samples. Each

prediction is made for all of the samples together

(and for all of the chromosomes). Now we look at

the set of all ‘‘points’’ (i.e. ‘‘the number of samples

multiplied by the number of chromosomes ana-

lyzed’’). For example, the St. Jude dataset contains

132 points (only chromosome 21 was analyzed).

According to conventional cytogenetics, we define

positives (P) in the sample as points in which extra
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copies of the chromosome are present, and nega-

tives (N) as points in which they are not. We con-

sider the pair a true positive (TP) if a chromosome

is predicted to be added in a specific sample and

the cytogenetic data agree. The pair is considered

a false positive (FP) if a chromosome is predicted

to be added in a specific sample and the cytoge-

netic data do not agree. In the same way, we define

true negatives (TN) and false negatives (FN). TP/

(TP þ FN) is called the TP rate (TPR), and FP/

(FP þ TN) is called the FP rate (FPR).

For each prediction made, we calculated its

TPR and FPR. The tradeoff between these rates

is presented in a ‘‘receiver operating characteristic’’

(ROC) curve. The TPR and FPR values are ob-

tained by varying the parameters of the predictor

(i.e. the cutoff values). Therefore, we can choose

the cutoff values that result in a prediction of a

specific accuracy (i.e. at specific values of TPR and

FPR).

RESULTS

Extra Chromosome Copies are Reflected in the

Gene Expression Profile

Our analysis of the St. Jude dataset to examine

the effect of extra chromosome(s) on gene expres-

sion revealed that the genes that differentiate the

HD > 50 samples from the rest of the samples

come from the extra chromosomes. We calculated

a P-value for each chromosome to determine its

enrichment in genes that differentiated these

groups (Fig. 1). Genes residing on chromosomes 4,

6, 10, 14, 18, 21, and X were significantly enriched

(the standard FDR method was applied to the 24

P-values; they pass it when parameter Q ¼ 0.08).

These seven chromosomes are the ones most com-

monly involved in trisomies of HD > 50 ALLs (i.e.

trisomies that appear in >50% of patients with HD

> 50 ALL) (Teixeira and Heim, 2005). Chromo-

some 17 also frequently undergoes trisomy in HD

> 50 ALL, but it did not achieve a significant P-
value in our analysis. However, the same analysis

of differentiating genes whose average level of

expression is higher in HD > 50 samples than in

others did identify chromosome 17. These findings

indicate that the group of differentiating genes is

enriched with genes from the extra chromosomes.

In addition, as might be expected, the expression

levels of multiple genes located on extra chromo-

somes are usually higher than that seen when no

extra chromosomes are present (Supplementary

Fig. 2).

Gene Expression Profile Identifies Changes in the

Number of Chromosomes in a Single Sample

Chromosomes with frequent trisomies can be

detected on the basis of the GEP from several sam-

ples; however, does a single sample contain enough

information to allow us to identify extra chromo-

somes? This question is clinically relevant, because

clinical laboratories routinely need to analyze indi-

vidual samples that are not part of a large study

group. In our first approach to addressing this ques-

tion, we assumed that the sample was part of a

large experiment and compared its expression data

with that obtained in the large experiment. In our

second approach, we assumed that there were no

similar expression data with which to compare the

sample. In both of these approaches, we measured

the accuracy of the detection.

Comparison with a large gene expression dataset:

Chromosomal expression fold-change analysis

First we compared the expression level of each

gene in the sample with that of the same gene in

the dataset by calculating its fold change. This

comparison may indicate whether a gene is located

on an extra chromosome. Because the dataset

could have included samples that contain addi-

tional chromosomes, we assumed that there was no

information available that identified the samples

that contained numerical chromosome changes.

This approach made the analysis generally applica-

ble. To deal with this problem, the dataset must be

large; thus, we expected that for all chromosomes,

most of the samples did not contain extra copies or

deletions. By using the median gene expression

Figure 1. P-values for enrichment of chromosomes in the differenti-
ating group. The x-axis represents the chromosomes, and the y-axis
represents the negative logarithm of the chromosomes’ enrichment
P-values.
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level in the fold-change calculation, we minimized

the effect of additional chromosomes in a minority

of the samples.

We analyzed each of the 132 St. Jude samples as

individual samples; the whole dataset served as the

comparative dataset. We obtained the cytogenetic

copy number information for chromosome 21 in

each of the 132 samples; thus, the analysis was con-

fined to chromosome 21, and the two factors, me-

dian fold change and fold change P-value, were
calculated for each sample to predict whether any

contained extra copies of chromosome 21. The

quality of the prediction is represented by an ROC

curve (Fig. 2).

For an FPR value of 2.9%, the TPR value was

86% (Table 1). Thus, of 28 samples that had extra

copies of chromosome 21, 24 (86%) were identified

by this method. The rate of identification was

higher for HD > 50 samples: 17 (94%) of the 18

were identified. The actual rate is even higher,

because the two BCR-ABLþ samples with an extra

chromosome 21 were also HD > 50, and both were

captured. Aneuploidy is therefore more easily pre-

dicted in HD > 50 samples. This finding may be

explained, at least in part, by the presence of at

least two extra copies of chromosome 21 in about

70% of the HD > 50 samples. In contrast, <30% of

the non-HD > 50 samples containing additional

copies of chromosome 21 had more than one extra

copy.

We have shown that, given a gene expression

dataset that can be used as a reference and a single

test sample, we can accurately predict whether

there are extra copies of a specific chromosome in a

given sample.

Analysis of a single sample: CRE analysis

If a sample contains an extra copy (or copies) of a

chromosome, we expect that chromosome to show

a median expression level higher than that of the

other chromosomes. However, even in cytogeneti-

cally normal samples, the expression levels of

some chromosomes may not be similar. For exam-

ple, the median expression level of all genes on

chromosome 1 is not equal to the that of all genes

on chromosome 2 (Caron et al., 2001). Because

chromosomes generally have different median

expression values, we evaluated their relative

expression values (i.e. the ratios of median chromo-

somal expression levels). If the relative expression

level of chromosomes is constant in normal sam-

Figure 2. ROC curves for the St. Jude and Zurich datasets. The x-axis represents the false-positives
rate, and the y-axis represents the true-positives rate. A: Fold-change and CRE analyses of chromosome 21
aneuploidy in the St. Jude dataset. B: Fold-change analysis, CRE analysis, CRE analysis based only on normal
blood samples, and the combined analyses (i.e. fold change and CRE) of chromosomes 1–22 and X in the
Zurich dataset.

TABLE 1. Fold-Change Analysis of Chromosome 21 Aneuploidy in 132 ALL Samples from the St. Jude Dataset

Group (n)
No. of samples with
chr 21 aneuploidya TPR (%)b

No. of samples without
chr 21 aneuploidya FPR (%)b

HD > 50 (18) 18 17 (94) 0 0 (0)
Others (114) 10 7 (70) 104 3 (2.9)

Abbreviations: chr, chromosome; FPR, false-positives rate; HD, high-hyperdiploid; TPR, true-positives rate.
aAneuploidy of chromosome 21 was determined by cytogenetic analysis.
bThe true-positives rate and false-positives rate of chr 21 aneuploidy was predicted by fold-change analysis.
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ples, this information could be used to identify

extra chromosomes in a given sample.

We calculated the CRE for normal samples in

each of four datasets. The mean CRE values were

similar (although not identical) throughout different,

cytogenetically normal tissue groups from different

experiments (Fig. 3). The pairs of datasets were

strongly correlated (average Pearson correlation coef-

ficient, r ¼ 0.96) (Supplementary Table 3). When

two values deviated by 0.2, their ratio was still <1.15

(because log2 values are plotted on the y axis).
We then calculated a representative ‘‘normal’’

CRE vector (Fig. 3 heavy line). Chromosomal copy

number in a single sample was determined by

comparing the sample with the normal CRE vec-

tors for each chromosome. If the sample’s CRE for

a specific chromosome deviated from its represen-

tative CRE, we predicted that extra copies of that

chromosome were present in the sample. This

analysis was performed only on chromosome 21

from each sample in the St. Jude dataset (Fig. 2).

The copy number prediction was less accurate

than that of the fold-change analysis. For example,

for an FPR of 2.9%, the TPR was 79% (the P-value
cutoff was 0.06). At this FPR, 22 of 28 (79%) sam-

ples with extra copies of chromosome 21 were

identified. As in expression fold-change analysis,

the rate of identification was higher for HD > 50

samples: 17 of the 18 (94%) HD > 50 samples, all

of which contained an extra copy (or copies) of

chromosome 21, were identified. Therefore, the

presence of extra chromosome(s) can be accurately

predicted from the GEP of a single sample without

the use of a large comparative dataset.

Testing the Methods on all Chromosomes

in an Independent Leukemia Dataset

To validate our novel methods for predicting the

copy number of any chromosome, we analyzed the

copy numbers of all chromosomes in a separate gene

expression dataset of 20 ALL samples from Zurich.

Chromosomal expression fold-change analysis

Each of the 20 samples was analyzed as if it was a

single, isolated sample. The St. Jude dataset

served as the comparable control. The resulting

ROC curve (Fig. 2) showed that although the accu-

racy of the prediction was good, it was lower than

that obtained by comparing a sample from the St.

Jude dataset with the whole St. Jude dataset. This

lower accuracy may result from comparing data

from different experiments. Additionally, in the St.

Jude dataset, we looked only at changes in chromo-

some 21, which often has four extra copies in

HD > 50 samples, whereas here we looked at

changes in all chromosomes, which usually have

only one extra copy (Supplementary Table 2).

As shown in Figure 2, when the FPR was 6.1%,

the TPR was 80%; this performance is realized for

median fold-change cutoff value of 1.08 and P-
value cutoff of 0.08. The prediction of additional

chromosomes by using these FPR and TPR values

and the cytogenetics information is presented in

Supplementary Figure 3.

CRE analysis

We performed the CRE analysis on each sample

from the Zurich dataset, and again, the accuracy of

the prediction was lower than that obtained by

using the St. Jude dataset (Fig. 2). As in the fold-

change analysis, we explain this loss of accuracy by

the fact that we were looking at all chromosomes

rather than just chromosome 21. Figure 3 shows

that there were chromosomes for which the CRE

was very stable (e.g., chromosomes 1, 8, 12), but

there were also chromosomes for which the CRE

varied across tissues (chromosomes 2, 13, 22).

Therefore, this method performs better when

applied only to chromosome 21.

In Figure 2, we also see that the accuracy of the

prediction obtained with the CRE analysis is lower

than that obtained with the fold-change analysis.

One possible explanation for this observation is the

fact that for some chromosomes, the CRE is vari-

able, as mentioned above. Alternatively, the loss of

accuracy may be attributed to differences in the

comparison data sets. In the fold-change analysis, we

compared ALL samples from the Zurich dataset

Figure 3. Mean CRE values of four datasets of samples with normal
cytogenetics. The x-axis represents the chromosomes 1–22 and X, and
the y-axis represents the logarithm (base 2) of the mean CRE value.
The bold line shows the representative normal CRE calculated on the
basis of the datasets indicated.
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with ALL samples from St. Jude dataset, whereas in

the CRE analysis, we compared the Zurich dataset

with samples from different normal tissues.

To examine this possibility, we performed the

CRE analysis by using only normal blood samples

from the Johns Hopkins HSC, the Human SC, and

the Scripps datasets. The results of this analysis

were only slightly more accurate than those of the

general CRE analysis (Fig. 2). Therefore, we con-

clude that when investigating all chromosomes,

composing a representative CRE from only rele-

vant normal tissue samples will not necessarily

improve the results.

Combining the CRE Analysis with the

Fold-Change Analysis

Because the CRE and fold-change analysis meth-

ods are based on different approaches, it may be

beneficial to combine them when possible. When

we combined the predictions of these two methods

for the Zurich dataset, the accuracy of the prediction

substantially improved (Fig. 2). For example, with

an FPR of 2%, the TPR was 74%. The predicted

chromosomal copy number is compared with the

cytogenetic information in Figure 4.

Discrepancies Between Gene Expression Profile

and Cytogenetic Analyses

To understand potential causes of discrepancy

between the GEP-based calculation of chromosomal

copy number and the cytogenetic data, we re-exam-

ined the cytogenetic information on the discrepant

predictions shown in Table 1 and Figure 4.

In the St. Jude dataset, there were four samples

in which the bioinformatics approach failed to

identify extra copies of chromosome 21 that were

detected by cytogenetic analysis. For one sample

(T-ALL-C7, Supplementary Table 2), a repeated

fluorescence in situ hybridization (FISH) analysis

demonstrated two copies of chromosome 21, in

agreement with the GEP analysis. Thus, the TPR

of the prediction described in Table 1 increased to

96% (FPR ¼ 2.8%) or to 92% for the CRE analysis

at the same FPR. In two of the other three sam-

ples, the abnormal clone composed only a small

proportion (60% or less) of the sample and possibly

contributed less to the overall gene expression

level. This small contribution could explain why it

was missed by the bioinformatics approach. How-

ever, our method successfully identified four other

samples containing only a small amount of the

abnormal clone (Supplementary Table 1).

Nine samples in the Zurich dataset showed dis-

crepancy between the cytogenetics and bioinfor-

matics findings (Supplementary Table 2). Of those,

the discrepancies in three samples (1, 4, and 9) can

be explained. In sample 1, cytogenetic analysis

showed extra material of chromosomes 9, 20, and

22 that was not reflected in the gene expression

analysis. However, re-examination of the cytoge-

netics findings showed that the gains of der(9) and

20 were present only in a subclone of 33% of the

cells, and the gain of the der(22) represented a

gain only of 22pter?22q11.2 in a subclone of 67%

of the cells. In sample 4, cytogenetics analysis

showed an extra copy of chromosome 10 that was

not reflected in the gene expression analysis. Re-

examination of the cytogenetics findings showed

that the extra material resulted from a partial gain

of 10pter?10q22, so a substantial portion of chro-

mosome 10 was not aneuploid. In sample 9, cyto-

genetic analysis showed two extra copies of chro-

mosomes X, and the prediction missed it. For this

sample, FISH analysis demonstrated an extra copy

of chromosome X in 60% of the cells. The cytoge-

netics findings were confirmed by FISH analysis in

an additional four samples (8, 13, 15, and 18). Tak-

ing into account the revised cytogenetics findings,

the TPR of the bioinformatics prediction shown in

Figure 4 is adjusted to 84% for an FPR of 1.9%.

Figure 4. Predictions of aneuploidy made using cytogenetic informa-
tion compared with those made using the combined fold-change and
CRE methods. The prediction was based on the analysis of the Zurich
dataset by combining the fold-change and CRE methods; the fold-
change analysis used the St Jude dataset as a reference. The x-axis lists
the samples, and the y-axis lists the chromosomes. Predicted additional
chromosomes are white. Numbers show the cytogenetic information
(i.e. the number of extra copies of the chromosome in the sample). FPR
¼ 2% and TPR ¼ 74%.
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CRE Analysis of Two Solid Tumor Datasets

To further evaluate the applicability of the CRE

method, we applied it to two solid tumor datasets:

the first is a colon cancer dataset that contains sam-

ples with whole chromosomal arm amplifications;

the second is a uveal melanoma dataset that con-

tains samples with whole-chromosome losses.

Colon cancer dataset

Amplification of the long arm of chromosome 20

(20q) is a known marker of progression of colon

cancer, and overexpression of E2F1 in lung and

liver metastases of human colon cancer is associ-

ated with gene amplification (Iwamoto et al.,

2004). Most of the genes on chromosome 20 reside

on the q arm (i.e. 401 of the 597 chromosome 20

probe sets on the HG-U133A array recognize genes

on the q arm). Thus, aneuploidy in 20q should

result in a detectable change in gene expression.

We performed CRE analyses of chromosome 20 in

the colon cancer dataset and in samples from nor-

mal colon, liver, and lung tissues and composed

the representative CRE from samples of normal

epithelial, colon, liver, and lung tissues. We used

the same P-value cutoff as that used for the St.

Jude data, with an FPR of 2.9% and TPR of 79%

(P ¼ 0.06). The percentage of samples with pre-

dicted duplication of chromosome arm 20q corre-

lated with progression of the malignant phenotype

(Fig. 5). No duplication was predicted in the nor-

mal samples; however, duplications of 20q were

predicted in 26% of polyp samples, 69% of tumor

samples, and 79% of metastases samples. These

results confirm previous findings from the same

samples (Tsafrir et al., 2006), that is, the percent-

age of 20q duplications appeared to increase with

disease progression.

Unlike our approach, the analysis done (Tsafrir

et al., 2006) was not on the single-sample level but

on groups of samples of the same disease progres-

sion state. For validation of their results, FISH

analysis was done on six tumor samples (Tsafrir

et al., 2006); 5 of 6 samples gave clear results. Per

our CRE prediction, 2 of the 5 samples showed no

amplification of 20q, and 3 showed clear amplifica-

tion of the region. Thus, the CRE prediction was

confirmed by FISH analysis.

Uveal melanoma dataset

Uveal melanoma is the most common intraocular

malignancy. About 50% of patients die of metasta-

sis, which almost exclusively originates from pri-

mary tumors that have lost one copy of chromo-

some 3 (Tschentscher et al., 2003). Therefore, the

detection of monosomy 3 is clinically important.

To examine the performance of our CRE method

in detection of whole-chromosomal loss, we ap-

plied it to chromosome 3 in a uveal melanoma

dataset of 20 samples; 10 contained monosomy 3.

The composition of probe sets on the gene expres-

Figure 5. Prediction of chromosome 20 aneuploidy in the colon cancer dataset by CRE analysis. The
prediction used a P-value cutoff of 0.06. The x-axis lists the sample groups of the colon cancer dataset. Sam-
ples in which chromosome 20 is predicted to be at least duplicated are white; the others are black. The
CRE analysis was composed of normal samples of colon, liver, and lung taken from the colon cancer and
Scripps datasets.

Figure 6. Prediction of monosomy 3 in the uveal melanoma dataset
by CRE analysis. The x-axis lists the sample groups of the uveal mela-
noma dataset. The y-axis lists the CRE P-values for each sample. The
prediction used a P-value cutoff of 0.06. The P-values of the monosomy
3 samples are consistently <0.06, and those of the disomy 3 samples are
>0.06. The CRE analysis was composed of normal samples of 29 nor-
mal tissues taken from the Scripps dataset.
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sion array is important for the CRE calculation;

therefore, we measured the 58 samples of normal

tissues from the Scripps-U95 dataset on the same

array as the uveal melanoma dataset (HG-

U95Av2). We used the same P-value cutoff as that

used for the St. Jude data, with an FPR of 2.9%

and TPR of 79% (P ¼ 0.06). The CRE prediction

was 100% accurate for the 20 uveal melanoma sam-

ples (Fig. 6). Therefore, we conclude that CRE

analysis of GEP is applicable to solid tumors and to

detection of both chromosomal gains and losses.

DISCUSSION

We have developed two methods that predict

prognostically significant chromosomal aneuploi-

dies that are discernible in GEPs: fold-change

analysis and the CRE method. Fold-change analy-

sis is more accurate than the CRE method, but it

requires the use of a large dataset of the same dis-

ease, or at least the same tissue type, to which the

test sample can be compared. In the fold-change

analysis, each gene’s expression level in the test

sample is compared with the same gene’s median

expression level in all samples from a closely

related dataset. This comparison minimizes the

variability in the expression of a single gene across

datasets and in different tissues, regardless of nu-

merical chromosomal changes.

Although the CRE method is less accurate, it is

generally more applicable, because it does not

require a comparable dataset. CRE analysis exam-

ines the average expression levels for all genes on

the chromosome and relates that value to the over-

all expression level in the sample; thus, the analy-

sis is meaningful, even if different tissue types

were used to construct the reference CRE.

As was demonstrated in our comparison of the

fold-change analysis with the CRE analysis, there

is a tradeoff between accuracy and generality. Com-

bining the two methods improves the accuracy of

prediction; this observation implies that the two

methods generate different types of errors. In the

fold-change analysis, errors are not specific to a chro-

mosome, but they might be specific to a sample.

The errors generated by the CRE method are

caused by the variability of the relative expression of

some chromosomes in different samples and tissues.

Although the CRE method can always be applied to

an isolated sample, if a comparable dataset of the

same disease exists, we recommend combining

these two analyses. Although the level of expression

of specific genes greatly varies among different

tissues, we found that the relative chromosomal

expression is stable across various normal tissues.

This novel finding is the basis of the CRE method,

and it suggests that the regulation of the expression

of the genes on a specific chromosome is somehow

averaged to maintain the same relative expression of

those genes throughout normal tissues.

We also addressed the detection of whole-chro-

mosome (or whole-arm) aneuploidy in a single

sample. This type of aberration is common in

many cancers (Teixeira and Heim, 2005), including

hyperdiploid ALL and myeloma, monosomy 7 in

AML, gain of chromosome 7 in brain tumor, and

monosomy 3 in melanoma. The detection of spe-

cific chromosomal gains and losses is, therefore,

clinically important. Our methods can also be

applied to smaller genomic regions to obtain

results of a higher resolution. However, the expres-

sion of a limited number of genes is affected by

genomic amplification or deletion (Schoch et al.,

2005; Tsafrir et al., 2006). Therefore, the resolu-

tion of an expression-based aneuploidy-detection

method is also limited. In addition, the genes

affected might differ across chromosomes (Schoch

et al., 2005), and their location along a single chro-

mosome may not be uniform. Thus, detection of

aneuploidy in smaller chromosomal regions is a

more complex task. Furthermore, to measure the

accuracy of the detection, one must compare their

results with genomic (CGH and SNP) array analy-

sis of the same samples rather than with results

from cytogenetic analysis.

A comparison of gene expression data from with

that from genomic arrays to detect small regions of

chromosomal amplifications or deletions is not

straightforward, because the lengths and locations

of the regions must be defined in both types of

data. By examining whole chromosomes or whole

arms, we simplify this task and facilitate the mea-

surement of the accuracy of detection. In the case

of smaller regions, accuracy of detection is less

properly defined. In summary, determining the re-

solution limits of the methods proposed here will

require a more complex analysis.

We have clearly shown that GEP analysis captures

the prognostically significant aneuploidies in a tumor

sample. Cytogenetic analysis has the advantage of

identifying subclones with specific aneuploidies that

may not be reflected in the GEP; the prognostic sig-

nificance of such findings, however, is unknown.

Nevertheless, most cases of HD ALL can be identi-

fied by either of the methods we have developed.

Results from our tests of the CRE method applied to

the colon cancer and uveal melanoma datasets indi-

cated that this approach is also clinically relevant for

detecting chromosomal aneuploidies in solid tumors,
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which are usually not amenable to cytogenetic analy-

sis. The relevance of the CRE method is strength-

ened by the fact that gene expression profiling is

being evaluated for implementation in the routine

diagnostic workup on leukemias and solid tumors.

We note that genomic (CGH and SNP) arrays are

more suitable for detection of chromosomal aberra-

tions than gene expression arrays. However, it appears

that it will take more time for these analyses to be

included in the routine diagnostic workup.

Finally, the potential importance of this work as a

research tool is greater than its potential as a clinical

tool. For example, many large gene expression data-

sets of multiple types of cancers already exist; these

have good clinical annotation but no genomic data

(i.e. no cytogenetics or CGH). Our methods could be

used to draw a virtual map of chromosomal gains and

losses for each patient. A large amount of data could

also be reanalyzed using our methods to explore, for

example, whether certain trisomies are associated

with a particular outcome (bad or good). When the cy-

togenetics data do not agree with the gene expression

data, another interesting question arises—What is

more relevant for outcome, cytogenetic properties

or gene expression? Is there a clinical difference

between cases in which a specific aneuploidy is

reflected in the gene expression profile and those in

which it is not? The converse question is even more

interesting—Can one elucidate a gene expression sig-

nature of chromosomal aneuploidy in the absence of

actual excess or loss of an individual chromosome?

Could an epigenetic process create a situation of

‘‘pseudomonosomy’’ or ‘‘pseudotrisomy’’? These re-

search questions can now be directly approached by

using our novel methods that are capable of analyzing

single samples. The relevance of our systematic

approach to analyzing how chromosomal aneuploidy

is reflected in gene expression will be further

strengthened when more precise genomic tools

become widely available for direct measurement of

aneuploidy in the routine diagnostic workup.
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