On the Estimation of Reliability of a Software
System Using Reliabilities of its Components

Saileshwar Krishnamurthy*
Aditya P. Mathur!

Software Engineering Research Center
1398 Department of Computer Sciences
Purdue University, W. Lafayette, IN 47907, USA

April 21, 1997

Abstract

We report an experiment to evaluate a method, known as Component Based Reliability
Estimation (CBRE), for the estimation of reliability of a software system using reliabili-
ties of its components. CBRE involves computing path reliability estimates based on the
sequence of components executed for each test input. Path reliability estimates are aver-
aged over all test runs to obtain an estimate of the system reliability. In the experiment
reported, three components of a Unix utility were seeded with errors and the reliability
of each component was measured. The faulty components were then introduced system-
atically into the utility, in various combinations, to produce several faulty versions of the
utility. For each faulty version, test cases were drawn from an operational profile to mea-
sure the “component-based reliability”. The “true reliability” of the faulty version was
estimated using the frequency count approach. The goodness of CBRE was assessed in
terms of the accuracy and efficiency of the estimates with respect to the “true reliability.”
Results from this experiment suggest that CBRE yields reasonably accurate results at an
efficient rate. However, the accuracy and efficiency of CBRE is sensitive to the dependency
among successive calls to a component.

Index terms:: Components and reliability, software testing, software reliability.

*Saileshwar Krishnamurthy’s research was supported by an award from the Center for Advanced Studies,
IBM Toronto Laboratories. email: krish@cs.purdue.edu.

T Aditya P. Mathur’s research was supported in part by an award from the Center for Advanced Studies, IBM
Toronto Laboratories and NSF award CCR-9102331. All correspondence regarding this report may be sent to
Aditya P. Mathur. email: apm@cs.purdue.edu

Contents

1 Introduction

2 Component Based Reliability Estimation

2.1 Example . .

2.2 Component dependence oL Lo

3 Design of experiment

3.1 Terminology
3.2 Assumptions

3.3 Experimental setup

3.4 Methodology
4 Results

5 Analysis
5.1 Accuracy .
5.2 Efficiency .
5.3 Dependence

6 Discussion

10
10
10

13

16
16
16
16

18

List of Figures

Example function call graph of a system with 4 components 7
True reliability and component-based reliability for grep with faulty component
1 X, . o o e e e e e 14
True reliability and component-based reliability for grep with faulty compo-
nents: lex and dfaanalyze. L.l e e 15
True reliability and component-based reliability for grep with faulty compo-
nents: dfaanalyze,regex.compile 15
lex: Component-based reliability /true reliability vs degree of independence. . . 17
lex,dfaanalyze: Component-based reliability/true reliability vs degree of in-
dependence. L e 17
True reliability and component-based reliability (degree of independence = 2)

for grep with faulty components: lex,dfaanalyze. 18

List of Tables

0 =1 O T =W N =

Sample reliabilities for the components in the example.
Sample test cases and reliability for the program in the example.

Sample test cases for the example program.

Complexities and frequency of occurrence of modules in grep. 11
List of components in grep seeded with faults. Fault density=0.01. 11
Faulty versions of grep. L 11
Reliabilities of selected componentsin grep. 14
Dependent component based reliability estimates. 14

1 Introduction

Reliability of a software system is its probability of failure free operation in a given environ-
ment. Several approaches have been proposed to measure reliability [10]. As argued by Horgan
and Mathur[7, 8], these approaches are not entirely satisfactory for use in practical software
development environments. The goal of research reported here is to experimentally investigate
a method for estimating the reliability of a system given the reliabilities of its components
and of their interfaces with other components. This method is termed “Component-Based
Reliability Estimation” and is referred to as CBRE. Considering the variety of programs! and
programming languages to which CBRI can be applied, the term “component” defies a general
purpose formal definition. In this report a component is viewed as any collection of program
functions. An example given later in Section 3 illustrates this definition. The interface between
two components could be another component, a collection of global variables, a collection of
parameters, a set of files, or any combination of these.

CBRE relies on using the sequence of components executed during system or subsystem
testing. In this sense it is different from the approach reported by Laprie and Kanoun [9] which
models a system using the Markov chains and computes system reliability using a knowledge of
component interconnections, their failure rates, inter-component transition probabilities, and
other statistical information. A comparison of our approach with the one proposed by Laprie
and Kanoun has not been attempted in this report.

CBRE appears equally applicable to the estimation of the reliability of complete software
systems and of their subsystems. For example, the experiment reported here used a Unix
utility as a system. The same utility may also be considered as a subsystem of another system.

The two primary needs that led us to propose and experiment with CBRE are given in the

following.

1. The need to understand how the system reliability depends on its component reliabilities

and their interconnections.

2. The need to make reliability estimates early in the system development cycle.

The first of the above needs arises from a desire to know which system components need
relatively thorough testing. Considering that resources are limited, development managers
need reliable metrics to help apportion testing effort. CBRE allows one to conduct sensitivity
analysis to meet this need. However, in the experiment reported in this report, no sensitivity
analysis was performed. How one may go about performing such analysis is discussed in
Section 6.

The second of the above needs arises from a desire to know early enough the quality of the
components completed so far. Resorting to reliability estimation at the end of the develop-
ment leaves little room for redoing, partly or fully, components that might be responsible for

unacceptable system reliability.

!'We use the words “program” and “system” interchangeably.

The remainder of this report is organized as follows. Section 2 explains the CBRE approach
with an example. In Section 3 we describe the design of our experiment. The results appear
in Section 4. In Section 5 we present a brief analysis of the results. A discussion on various

aspects of CBRE appears in Section 6.

2 Component Based Reliability Estimation

CBRE is applied in three steps. In the first step one identifies the components and their
interfaces in the system under consideration. In the second step one estimates the reliabilities
of components and their interfaces. Dependencies amongst components are also identified in
this step. In the third step the system reliability is computed. The first two steps need not
be applied in that order. Identification of components, interfaces and their reliabilities can be
done when the components become available. The experiment reported is concerned only with
the third step. The first two steps are discussed by Garg[5]. However, we are not aware of any
evaluation so far of the entire CBRE approach.

Below we illustrate the third step of CBRE which is the estimation of system reliability
given component reliabilities. Interface reliabilities are assumed to be 1 in this experiment.

We begin with the definition of an operational profile.

Definition 1 Let I denote the input domain of a program such that I = \J;<;<,5D;, where
SD; is a subdomain of T. An “operational profile” is a mapping from the set of subdomains
{SD,5D5...5D,} to probabilities; the sum of these n probabilities is 1.

In the definitions below, it is assumed that the system under consideration is tested on inputs
generated in accordance with a given operational profile. However, as discussed in Section 6,

CBRE can also be applied when the operational profile is not available.

Definition 2 The “true reliability” of a program P, which could be a component or a system,

s the probability of successful operation of P on any input selected from its input domain.

In adapting this method to software systems, we consider the components executed for each
test case. A sequence of components along a path traversed for test case ¢ can be considered as
a series system that is executed for a subset of test cases of which ¢ is one element. The CBRE
approach is based on computing a “reliability estimate” for each path. If the reliability of
individual components is assumed to be independent of each other, known as the independence
assumption, then the path reliability is the product of component reliabilities given that the
interface reliabilities are assumed 1.

An interesting case occurs when at least one component, say component ', along a path is
invoked from inside a loop several times during one execution. If the independence assumption
holds, the path reliability will tend to 0 with the increase in the number of times C' is executed.
If most paths executed have components within loops and that these loops are traversed a

sufficiently large number of times, individual path reliabilities are likely to be low resulting in

low system reliability estimates despite the chance that the system reliability is higher than
estimated. This leads to the problem of modeling inter- and intra-component dependencies.

This problem has been addressed in the experiment described here.

Definition 3 The component trace of a program P for a given test case t is the sequence of

components executed when P is executed against t. Such a trace is denoted by M(P,1).

Definition 4 The “component-based reliability” estimate of a program P with respect to a test

set T, is given by:

Ywier Re
R.=="———=
1T

where the reliability of the path in P traversed when P is executed on test-case t € T is given

by:
Ri= J] Bnm
YmeM (P,t)

Definition 5 Let Ry be the true reliability of P measured over the test set T. The relative

error € in estimates of R. is defined as:

€= |Rc—Rtf|
Ry

Definition 6 Let N, be the number of executions of P used to arrive at R.. The d-efficiency
of the estimate is denoted by ns, where € < 6. The é-efficiency is computed as:

C

— .,

ns =1

Efficiency as defined above can be negative when N, < Ny which implies that CBRE is not
an appropriate method to use for the system under consideration for the given §. We use ;s as
a measure of how fast R, will converge as compared to the convergence of R;;. It is important
to note that CBRE does not require that R;s be computed for a given software system. R

was computed in the experiments reported here to evaluate the goodness of CBRE.

2.1 Example

Consider a hypothetical system with component-call graph as in Figure 1. The component
reliabilities for this system are listed in Table 1. The reliabilities vary from 0.6 to 0.9. Data in
Table 2 shows four test cases and reliability estimates for the system. The first test case results
in the component trace 1,2,4. The reliability of this path is Ry x Ro x Ry = 0.9x0.6x0.9 = 0.49.
The third test case resulted in the component trace 1,3,2,3,2,3.4. The reliability for this path
is Ri X Ro? X R3® x Ry = 0.9 X 0.6% x 0.8% x 0.9 = 0.15. The system reliability estimate of
0.42 is obtained by averaging over the path reliabilities.

/@\
K e

@

Figure 1: Example function call graph of a system with 4 components

Table 1: Sample reliabilities for the components in the example.

Component | Reliability

1 0.9
2 0.6
3 0.8
4 0.9

2.2 Component dependence

Given two components €7 and C5 of a software system we say that Cy depends on (7 if the
probability of failure, i.e. the reliability of (5 is effected in any way by the execution of (7.
If ¢1 and (5 are different components then this dependence is known as inter-component
dependence, else it is known as intra-component dependence. Inter-component dependence
can arise, for example, due to an error in the design of the interface between 7 and (5.
Thus, when (5 is tested in an environment in which 7 is not present, it might not fail at
all. However, when tested in the presence of 'y it might fail due to an error in interfacing the
two components. Intra-component dependence can arise, for example, when a component '
is invoked more than once in a loop by another component C’ and successive calls to C' make
use of the state of C".

Computing path reliability as the product of the reliabilities of the components executed on

Table 2: Sample test cases and reliability for the program in the example.

Test case | Component traces | Reliability

1 1,2,4 0.49
2 1,3,4 0.65
3 1,3,2,3,2,3.4 0.15
4 1,2,3,4 0.39
System reliability 0.42

Table 3: Sample test cases for the example program.

Test case | Component traces Reliability
DOI=1|DOI=2|DOI=3
1 1,2,4 0.49 0.49 0.49
2 1,3,4 0.65 0.65 0.65
3 1,3,2,3,2,3,4 0.39 0.19 0.15
4 1,2,3,4 0.39 0.39 0.39
System reliability 0.48 0.43 0.42

this path, relies on the assumption that these components are independent of each other. This
may not be true in software systems since components are often tightly coupled. Specifically,
when a component is executed in a loop, it may be the case that multiple occurrences of this
component are not independent.

There are several ways of modeling both inter- and intra component dependence. In the
experiment reported we assumed that components were independent, i.e. there is no inter-
component dependency. Intra-component dependency was modeled by “collapsing” multiple
occurrences of a component on an execution path into a single call. The assumption here is that
all occurrences of a component on an execution path are dependent. An alternative approach
could “collapse” multiple occurrences of a component into £ occurrences, where k£ > 0. If any
path contains [copies of a component, and [< k, then no further “collapsing” need be done.
k is referred to as the degree of independence and abbreviated as DOI. Complete dependence
is modeled by setting DOI to 1 and complete independence by setting DOI=cc.

The effect of DOI on reliability estimates is illustrated using the example in Section 2.
Table 3 lists four sample test cases for the example program. The table also lists the component-
based reliability for degree of independence (DOI) values 1, 2 and 3. The third test case leads
to a component trace of {1,3,2,3,2,3,4}. The reliability for this path assuming different values

of DOI are given below.

o (with DOl =1) Ry x R2 X R3 x Ry = 0.9 x 0.6 x 0.8 x 0.9 =0.39
o (with DOI = 2) Ry x Ry* x R3* x Ry = 0.9 x 0.6% x 0.82 x 0.9 = 0.19

o (with DOI = 3) Ry x Ro® x R3® x Ry = 0.9 x 0.6° x 0.8° x 0.9 = 0.15

Larger values of DOI lead to smaller estimates of path, and hence system, reliabilities. As
the example here is hypothetical and we do not know what is the “true reliability” of the
program, we cannot determine which value of DOI is the most appropriate for this example.
We discuss this issue again in the following section with respect to the program used in the

our experiment.

Dependence modeling in our experiment is exploratory in nature. We decided to explore
how well a given dependence model will work. As discussed in Section 6, perhaps a more
scientific way would be to use the system architecture and source code to determine the nature
of dependence. Also, we decided to consider distinct components on a path to be independent
of each other simply because inter-component dependence did not appear to be the prime cause

of poor accuracy in our experiment.

3 Design of experiment

The experiment reported here was aimed at investigating the accuracy and efficiency of CBRE.

More precisely, the objectives of the experiment are:

1. To study the accuracy of R. (component-based reliability) estimates of a system with
respect to its R; (true reliability) observed over a test set 7. Definition 5 formalizes the

notion of accuracy.

2. To study the efficiency of R, estimates of a system with respect to its Ry estimates over

a test set T'. Definition 6 formalizes the notion of efficiency.

3.1 Terminology

1. §: Program under test; grep is used in the experiment.

2. OP: Operational profile for 5 - constrains the generation of random inputs sampled from

the input domain.
3. N: Number of components in §
4. N,,: Number of components seeded with errors.
5. Ny: Number of faulty versions of 5.
6. Ny Number of faulty components in a faulty version of 5.

7. M;: 4t faulty component in the system; components are arbitrarily assigned distinct

numbers.
8. |M;|: Number of executable lines of code in M;
9. R;: Reliability of M;.
10. F'D: Fault density, or the number of errors seeded per executable line of code.
11. E;: Set of errors seeded in component M;.

12. FE: Set of errors seeded in the program S, £ = {J;<;<,, L.

13. «a: Confidence level required for convergence of reliability. We uses a 99% confidence

level and hence « is 0.99.
14. 6,: Half-width of the confidence interval; we use 0.05.

15. 24 /90 Prob(|Z < Z,/5]) < 1—a/2, where Z is a random variable representing the Stan-

dard Normal Distribution.

16. Qutput: The output of a program S when executed with an input ¢ is denoted by S(¢).

3.2 Assumptions

e N, components of the program under test are seeded with errors such that

| E;|

=FD
| M;|

Vi,1 <i< N,

e The reliability of components not seeded with errors is assumed to be 1.

e The reliability of all component interfaces is assumed to be 1.

3.3 Experimental setup

The GNU version of grep was used in the experiment. The grep utility consists of about 12,000
lines of C code. The experiment was performed on a Sun Sparc 5 running under the Solaris 2.5.1
operating system. Components for seeding faults were chosen based on their complexities
measured in the number of basic blocks and their frequency of occurrence measured using the
Unix utility prof. The standard regression test suite of 123 test cases that is supplied with the
GNU version of grep was used for profiling. The eight components of grep that we examined
are listed in Table 4. The four relatively low complexity components are unsuitable for seeding
faults at the density levels required. Three components out of the remaining four were chosen
and seeded with faults as described in Table 5. Faulty versions of grep were constructed in

three ways as described in Table 6.

3.4 Methodology

1. Construct an operational profile for grep. We used the operational profile used earlier

by Garg[5].
2. Measure the reliability of each component M; in 5.

o For each component M, in 5, generate a faulty program 5; by seeding .5 with errors
in F;.

o Instrument §; such that during each run whenever component M; is invoked, its
Component ID (C'ID) is written to a file.

10

Table 4: Complexities and frequency of occurrence of modules in grep.

Module Complexity (No. of blocks) ‘ Frequency (No. of calls) ‘
_obstack_begin 12 86
alloca 16 13
regex_compile 991 123
_getopt_internal 129 123
reset 14 650
kwsmusts 26 117
lex 267 856
dfaanalyze 110 117

Table 5: List of components in grep seeded with faults. Fault density=0.01.

Component Number | Number
of Lines | of Faults
lex 312 4
dfaanalyze 215 3
regex_compile 954 10

Table 6: Faulty versions of grep.

Faulty components Total | Total | Fault Density
Lines | Faults %
lex 13029 4 0.0003
lex, dfaanalyze 13047 7 0.0005
dfaanalyze, regex_compile | 13063 13 0.001

11

o Use the Algorithm below to generate reliability estimate for each component M; as
follows:

R; <« Component-Reliability (5;, S, OP, CID)

Algorithm

Purpose To measure the reliability of a component.

Inputs S, S, 0P, CID.

Output Reliability of the component having component identifier C'ID.
Method

Set current reliability to 0.

Set total_executions and failures_observed to 0.

)
)
¢) Sample a test case ¢ randomly from the input domain of S constrained by OP.
) Execute 5" and S on ¢.

)

o If the execution resulted in C'TD being written by S/, then increment total executions
by 1, else repeat from Step 2c.
o If S(t) # Si(t), increment failures_observed by 1.

1 — failures_observed)
total_executions

(f) e Compute current reliability as (
e Build an alpha confidence interval centered at current reliability. The
variance is 0 = p X (1 — p), where p is current_reliability, and the number
of data points n is total_executions
e Compute the half-width of the confidence interval as: z, /3 X ﬁ
o If the half-width is less than 6., then reliability has not yet converged, repeat
from Step 2c.

(g) Return current_reliability
End Method

3. Measure the reliabilities of each of the Ny faulty versions of 5.

e For each faulty version construct a program 5’ such that each execution of S’ results

“ component trace” consisting of the number of times each faulty component

n a
is executed.

o Use the Algorithm below to generate a set of “component traces”, denoted by MT,

and estimate R; as:
(R¢,MT) — True-Reliability(5’,5,0P.,Nys,)
e The CBRE estimate R. of S’ is computed, using Definition 4, from the component

traces obtained in the previous step.

Algorithm

12

Purpose To measure the reliability of S’ and generate “collapsed component traces”
for each execution.

Inputs 5',5,0P, Ny,
Outputs Reliability of S” and component traces.
Method

) Set current_reliability to 0.
) Set total_executions and failures_observed to 0.
) Set Modrel — (.
(d) Randomly select a test case ¢ from the input domain of S constrained by OP.
) Execute S and S’ on t.
) — Collapse the generated component trace so that no component is repeated.
— Append the collapsed component trace to Modrel.
— Increment total_executions by 1.

— If S(t) # 5’(t), increment failures_observed by 1.

11— failures_observed)

(g) — Compute current reliability as (o LS 0nserTe

— Build an alpha confidence interval centered at current reliability. The
variance is ¢ = p X (1 — p), where p is current_reliability, and the
number of data points n is total_executions

— Compute the half-width of the confidence interval as: z, /5 X ﬁ

— If the half-width is less than é,., then reliability has not yet converged, repeat
from Step 3d.

(h) Return (current_reliability, Modrel).

End method

4 Results

Using the component traces collected as described in the previous section, reliability estimates
were obtained for the selected components and for the faulty versions of grep. Below we
present the results of the experiments described in Section 3 in tabular and graphical form.
Reliabilities of faulty components are listed in Table 7. Reliabilities of lex, dfaanalyze,
and regex_compile are, respectively, 0.649, 0.334 and 0.343. The CBRE estimates with
DOI=1, their accuracy and efficiency are shown in Table 8. For faulty version 1 of grepthe
true reliability R; is 0.688 and the component-based reliability R, is 0.676. For faulty version 2
of grepR; is 0.385 and R, is 0.513. For faulty version 3 of grep R, is 0.392 and R, is 0.393.
Figure 2 plots the true and component-based reliabilities over executions for faulty version
1 of grep, with faulty component lex. This relationship is plotted in Figure 3 for faulty version
2 (with faulty components lex and dfaanalyze) and in Figure 4 for faulty version 3 which

contains the faulty components dfaanalyze and regex_compile.

13

Table 7: Reliabilities of selected components in grep.

Component Reliability
lex 0.649
dfaanalyze 0.334
regex_compile 0.343

Table 8: Dependent component based reliability estimates.

Faulty | Faulty Components Reliability Error(e) Efficiency
Version R R, 6=0.05|6=0.01
1 lex 0.688 | 0.676 | 1.78 % 0.97 0.93

2 lex, dfaanalyze 0.385 | 0.513 | 33.25 % 0.99 0.98

3 dfaanalyze,regex_compile | 0.392 | 0.393 | 0.25 % 0.97 0.97

System: grep, Module: lex, Invoked multiple times
T T T

T T
True reliability —
Component-based reliability -----

Reliability

0.4 | —

0.2 | —

L L L L L L
0 100 200 300 400 500 600
Execution number

Figure 2: True reliability and component-based reliability for grep with faulty component lex.

14

System: grep, Module: (lex,dfaanalyze), Invoked multiple times
1 T T T T T
True reliability ——
Component-based reliability -----
0.8 | B
0.6 B
=
= —
k5 \
@ LN NN o -
04 f B
i
i
0.2 B
0 L L L L L L
0 100 200 400 500 600

Figure 3: True reliability and component-based reliability for

lex and dfaanalyze.

System:

grep, Module:
T

300
Execution number

(dfaanalyze,rege:

grep with faulty

x_compile), Invoked once
T

0.6 |-

Reliability

T T
True reliability —
Component-based reliability

components:

200

300 400

500 600

Execution number

Figure 4: True reliability and component-based reliability for grep with faulty

dfaanalyze,regex_compile

15

components:

5 Analysis

We now examine the results presented above in terms of their accuracy and efficiency. We also

analyze the effect of modeling intra-component dependency.

5.1 Accuracy

From Table 8 we see that the relative error in the component-based reliability (R.) estimate of
the true reliability (R;)is 1.78% for version 1 of grep. For version 3 the relative error is 0.25%.
For both these versions the R. estimate appears to be a good predictor of the true reliability.
However, for version 2 of grep the relative error is 33.25% and the R. estimate is not a good

predictor of true reliability. This can also be observed from the graphs in Figures 2, 3 and 4.

5.2 [Efficiency

From Table 8 we see that the 0.05-efficiency and 0.01-efficiency is 0.97 and 0.93 for version 1
of grep. For version 3 the 0.05-efficiency is 0.97 and the 0.01-efficiency is 0.97. For both
these cases, the efficiency is high and the R. estimate computes the true reliability very fast.
For version 2 of grep the 0.05-efficiency is 0.99 and the 0.01-efficiency is 0.98. Although the
efficiency measures for version 2 are high, the poor accuracy of its R. estimate means that
its R. values do not converge. Figure 3 illustrates that a high é-efficiency might not lead to
relatively high accuracy. Here the é-efficiency is computed before the R. estimate converged
and therefore a relatively high value of 7s is obtained. However, the error in the R, estimates

increased over subsequent executions leading to poor accuracy.

5.3 Dependence

Among the three faulty versions of grep, only version 3 results in R. estimates being the same
for DOI = 1 and DOI=oco. This is explained by the fact that in version 3 the faulty components
do not occur more than once on any execution path. As discussed in Section 5.1, the accuracy
of the R. estimate, when DOI=1, is very low for version 2 of grep. For version 1, the faulty
component occurs more than once on an execution path and the accuracy is relatively higher
than in version 2.

Figures 5 and 6 show the ratio between R. and R;; for different degrees of independence.
The DOI is best when this ratio is close to 1. From Figure 5 we see that for version 1, the best
DOl is 1. However for version 2 (in Figure 6) the best DOI is between 1 and 2. This is why
the error in R, estimate for version 2 for DOI = 1 is high. Figure 7 shows R; and R. estimates
over multiple executions with DOI = 2. Unlike the graph in Figure 3, the R. and R; values
converge close to each other in Figure 7. However, the accuracy of the reliability estimate is
not as good as it is for version 1 and version 3 of grep. This is perhaps because the ideal value

of DOI for this version lies between 1 and 2.

16

System: grep, Module: lex, Invoked multiple times
10 T T T

T T T
Component-based reliability/True(final) reliability -—

Rc/Rtf

0 L L L L L L L

4 6 8 10
Degree of Independence amongst multiple calls to lex

Figure 5: lex: Component-based reliability /true reliability vs degree of independence.

System: grep, Module: (lex,dfaanalyze), Invoked multiple times

3 T T T T
Component-based reliability/True(final) reliability -—

25 B
=
=
8
[

3 2 -
o
<
2
=
@
15

o 15 —
£
o
o
z

2 1r]
©
-4
@
2
=

05 —

o I I I I
0 25

10 15
Degree of Independence amongst multiple calls to lex

Figure 6: lex,dfaanalyze: Component-based reliability /true reliability vs degree of indepen-
dence.

17

System: grep, Module: (lex,dfaanalyze), Invoked multiple times
1 T T T T T T

True reliability ——

Component-based reliability (Degree of Independence = 2) -----

0.8 | —

Reliability

! !

L L L L
0 100 200 300 400 500 600
Execution number

Figure 7: True reliability and component-based reliability (degree of independence = 2) for
grep with faulty components: lex.dfaanalyze.

6 Discussion

Though the experiment reported here is insufficient to make any general conclusions about the
effectiveness of CBRE, they do help us focus our attention on some key issues that need the
attention of researchers. Below we discuss the issues of dependency, sensitivity, operational
profile, estimation of the reliabilities of components and their interfaces, applicability of CBRE

in a software development environment, and the scalability of CBRE.

Dependency modeling: From the results reported in Section 4, it is clear that the successful
use of CBRE depends significantly on inter- and intra-component dependence. It seems that the
intra-component reliability is likely to be the more important of the two types of dependencies
in determining the accuracy of the system reliability estimate.

As explained earlier, by executing a component an arbitrarily large number of times, it is
easy to bring the system reliability estimate much below its true reliability if intra-component
dependency is ignored. At this point it is not clear how one should go about determining
a suitable value of DOI. It is also not clear whether or not it is appropriate to model the
dependency by “collapsing” multiple executions into fewer executions; certainly the results
from this experiment show that this method appears to be an attractive when viewed with

respect to the accuracy of the reliability estimates.

Sensitivity analysis: One advantage of CBRE is that it provides data that can be used to
analyze the effect of changing component reliability on that of the system. Referring to Table 2

in Section 2, we can express the reliability R. as follows:

RiR3R3 + R1R3Ry + R1R3R3R4 + R1RyR3R, (1)
4

Eq. 1 can be used to determine the variation in R. with respect to that in the reliability of

R, =

any component. This can be done by fixing the reliabilities of all but one component. Note

18

that the above formula depends on the tests executed. A different set of paths through the
system might lead to different closed form formula for R. and hence to different results from

the sensitivity analysis.

Operational profiles: The traditional method of estimating system reliability relies heavily
on the operational profile [10]. It also requires that tests be sampled randomly from the input
domain of the system based on this operation profile. Both the determination of the operational
profile and random sampling of test cases might be impractical in certain applications [7, 8].
CBRE allows one to use the existing test cases to execute the system and obtain reliability
estimates. The existing test cases might be drawn from, or could well be, the system test suite
or a regression test suite.

It is unlikely that in practice the existing test cases might have been generated randomly.
However, using system or regression tests might lead to an R. estimate different from the
reliability perceived by the user of the system. This might happen when the tests used for
estimating R. are not representative of the user’s operational profile. This leads us to propose
that one should be able to associate a risk parameter with the R, estimate. The risk parameter
should be independent of the operational profile. One such risk parameter is the code coverage
as discussed by Horgan and Mathur[7, 8]. However, more research is needed to help in the

selection of and use of appropriate risk parameters to associate with R, estimates.

Component and interface reliabilities: Past research in component based reliability es-
timation has resulted in methods for reliability estimation which assume that component re-
liabilities are available [2, 9]. The issue of how to determine component reliabilities has been
mostly ignored. Of course, one might argue that the reliability of a component can be de-
termined using the same method as the one proposed for determining the system reliability.
However, using arguments from [7, 8] it is clear that this is not always possible. We propose
that when it is not possible to use CBRE or any other available methods to obtain reasonable
estimates of components, a coverage-based estimation technique proposed earlier [5, 11] may
be used. However, this technique still needs extensive experimental evaluation.

The CBRE as described here makes use of interface reliabilities. In the experiment we did
not consider faulty interfaces. In practice, one needs to estimate the reliability of each interface
that is on the path executed by the test cases used in the estimation of R.. When an interface
is a program, any of the methods mentioned above can be used to estimate their reliabilities.
However, when an interface consists of items such as global variables, parameters, and files
it is not clear how to estimate its reliability. A method for integration testing proposed by

Delamaro et. al[3]. seems promising for estimating interface reliabilities.

Applicability of CBRE in a software development environment: We believe that
CBRE can be applied at all stages of the software development cycle once a part of the system
design is available. When only the architecture, and not the code, is available, one can build
a simulation model based on CBRE and conduct reliability studies such as ones designed to

investigate the impact of component reliability on system reliability for a given architecture.

19

When the code is available, one can actually apply CBRE and ask questions such as “What is
the reliability of a given subsystem 7”, “What is the system reliability 7”7, and “How can the
system reliability be improved 7” A tool based on CBRE can help relate the system reliability

to the reliability of its components and the architecture.

Scalability of CBRE: CBRE is intended for application to large software systems. The time
to execute a system is one parameter that could become a bottleneck in the use of CBRE.
If there are N test cases on which the system is to be executed, the total execution time is
likely to be proportional to N. Considering the rate at which the CBRE estimates converge,
as is evidenced by the efficiency data presented above, it seems that CBRE estimates will
converge much faster than estimates based on random testing using traditional methods for
estimating reliability [10]. Recall that using CBRE does not require random testing; a system
may be executed on system or regression tests and reliability estimates obtained. Considering
the difference in testing schemes implied by CBRE and methods that require random testing
and the efficiency data presented herein, it appears that CBRE is likely to scale up to large
systems more easily than techniques that require random testing.

Based on the above discussion it appears that CBRE is a promising method for estimating
software system reliability. However, several issues, as outlined above, need to be resolved

before it can be applied in practice.

Acknowledgements

The CBRE method reported in here was suggested by James Berger during the Model Devel-
opment Workshop at Purdue held on June 17-18, 1996. Other attendees at the workshop were:
Jose Maldonado, Aditya Mathur, Alberto Pasquini, Vernon Rego, and Nozer Singpurwalla.

References

[1] M. Chen, A. P. Mathur and V. J. Rego: “Effect of testing techniques on software reliability
estimates obtained using a time-domain model,” IFEFE Transactions On Reliability, Vol. 44,
No. 1, March 1995, pp. 97-103.

[2] R. C. Cheung, “A user oriented software reliability model,” IEEFE Transactions on Software
Engineering, vol. SE-6, March 1980, pp118-125.

[3] M. Delamaro, J. Maldonado, and A. P. Mathur, “Integration testing using interface muta-
tions,” Proceedings of the Seventh International Symposium on Software Reliability Engi-
neering, IEEE Computer Society Press, White Plains, New York, pp 112-121, October 30-
November 2, 1996.

[4] R. A. DeMillo and A. P. Mathur: “A grammar based fault classification scheme and its
application to the classification of the errors of TEX,” Technical Report, SERC-TR-165-P,
Software Engineering Research Center, Purdue University, W. Lafayette, IN 47907, 1995.

20

[5] P. Garg, “On code coverage and software reliability,” M.S. Thesis, Department of Computer
Sciences, Purdue University, May 1995.

[6] J. R. Horgan and S. A. London, “ATAC — Automatic Test Analysis for C programs”
Internal Memorandum TM-TSV-017980, Bell Communications Research, 1990.

[7] J. R. Horgan and A. P. Mathur, “Software testing and reliability” Handbook of Software
Reliability Fngineering, pp 531-566, McGraw-Hill, New York, 1996.

[8] J. R. Horgan and A. P. Mathur, “Perils of software reliability modeling,” Technical Re-
port, SERC-TR-160-P, 1995, Software Engineering Research Center, Purdue University,
W. Lafayette, IN.

[9] J. C. Laprie and K. Kanoun, “Software reliability and system reliability,” Handbook of
Software Reliability Engineering, pp 27-70, McGraw-Hill, New York, 1996.

[10] J.D. Musa, A .Iannino, and K. Okumoto, “Software Reliability: Measurement, Prediction
and Application” MecGraw-Hill, New York, 1987.

[11] S. Krishnamurthy and A. P. Mathur, “On predicting the reliability of modules using code
coverage,” CD-ROM in CASCON °96, Toronto, 1996.

21

