
On the Estimation of Reliability of a SoftwareSystem Using Reliabilities of its ComponentsSaileshwar Krishnamurthy�Aditya P. MathurySoftware Engineering Research Center1398 Department of Computer SciencesPurdue University, W. Lafayette, IN 47907, USAApril 21, 1997AbstractWe report an experiment to evaluate a method, known as Component Based ReliabilityEstimation (CBRE), for the estimation of reliability of a software system using reliabili-ties of its components. CBRE involves computing path reliability estimates based on thesequence of components executed for each test input. Path reliability estimates are aver-aged over all test runs to obtain an estimate of the system reliability. In the experimentreported, three components of a Unix utility were seeded with errors and the reliabilityof each component was measured. The faulty components were then introduced system-atically into the utility, in various combinations, to produce several faulty versions of theutility. For each faulty version, test cases were drawn from an operational pro�le to mea-sure the \component-based reliability". The \true reliability" of the faulty version wasestimated using the frequency count approach. The goodness of CBRE was assessed interms of the accuracy and e�ciency of the estimates with respect to the \true reliability."Results from this experiment suggest that CBRE yields reasonably accurate results at ane�cient rate. However, the accuracy and e�ciency of CBRE is sensitive to the dependencyamong successive calls to a component.Index terms:: Components and reliability, software testing, software reliability.
�Saileshwar Krishnamurthy's research was supported by an award from the Center for Advanced Studies,IBM Toronto Laboratories. email: krish@cs.purdue.edu.yAditya P. Mathur's research was supported in part by an award from the Center for Advanced Studies, IBMToronto Laboratories and NSF award CCR-9102331. All correspondence regarding this report may be sent toAditya P. Mathur. email: apm@cs.purdue.edu 1

Contents1 Introduction 42 Component Based Reliability Estimation 52.1 Example : 62.2 Component dependence : 73 Design of experiment 93.1 Terminology : 93.2 Assumptions : 103.3 Experimental setup : 103.4 Methodology : 104 Results 135 Analysis 165.1 Accuracy : 165.2 E�ciency : 165.3 Dependence : 166 Discussion 18

2

List of Figures1 Example function call graph of a system with 4 components : : : : : : : : : : : 72 True reliability and component-based reliability for grep with faulty componentlex. : 143 True reliability and component-based reliability for grep with faulty compo-nents: lex and dfaanalyze. : 154 True reliability and component-based reliability for grep with faulty compo-nents: dfaanalyze,regex compile : 155 lex: Component-based reliability/true reliability vs degree of independence. : : 176 lex,dfaanalyze: Component-based reliability/true reliability vs degree of in-dependence. : 177 True reliability and component-based reliability (degree of independence = 2)for grep with faulty components: lex,dfaanalyze. : : : : : : : : : : : : : : : : 18List of Tables1 Sample reliabilities for the components in the example. : : : : : : : : : : : : : : 72 Sample test cases and reliability for the program in the example. : : : : : : : : 73 Sample test cases for the example program. : 84 Complexities and frequency of occurrence of modules in grep. : : : : : : : : : : 115 List of components in grep seeded with faults. Fault density=0.01. : : : : : : : 116 Faulty versions of grep. : 117 Reliabilities of selected components in grep. : 148 Dependent component based reliability estimates. : : : : : : : : : : : : : : : : : 14
3

1 IntroductionReliability of a software system is its probability of failure free operation in a given environ-ment. Several approaches have been proposed to measure reliability [10]. As argued by Horganand Mathur [7, 8], these approaches are not entirely satisfactory for use in practical softwaredevelopment environments. The goal of research reported here is to experimentally investigatea method for estimating the reliability of a system given the reliabilities of its componentsand of their interfaces with other components. This method is termed \Component-BasedReliability Estimation" and is referred to as CBRE. Considering the variety of programs 1 andprogramming languages to which CBRE can be applied, the term \component" de�es a generalpurpose formal de�nition. In this report a component is viewed as any collection of programfunctions. An example given later in Section 3 illustrates this de�nition. The interface betweentwo components could be another component, a collection of global variables, a collection ofparameters, a set of �les, or any combination of these.CBRE relies on using the sequence of components executed during system or subsystemtesting. In this sense it is di�erent from the approach reported by Laprie and Kanoun [9] whichmodels a system using the Markov chains and computes system reliability using a knowledge ofcomponent interconnections, their failure rates, inter-component transition probabilities, andother statistical information. A comparison of our approach with the one proposed by Laprieand Kanoun has not been attempted in this report.CBRE appears equally applicable to the estimation of the reliability of complete softwaresystems and of their subsystems. For example, the experiment reported here used a Unixutility as a system. The same utility may also be considered as a subsystem of another system.The two primary needs that led us to propose and experiment with CBRE are given in thefollowing.1. The need to understand how the system reliability depends on its component reliabilitiesand their interconnections.2. The need to make reliability estimates early in the system development cycle.The �rst of the above needs arises from a desire to know which system components needrelatively thorough testing. Considering that resources are limited, development managersneed reliable metrics to help apportion testing e�ort. CBRE allows one to conduct sensitivityanalysis to meet this need. However, in the experiment reported in this report, no sensitivityanalysis was performed. How one may go about performing such analysis is discussed inSection 6.The second of the above needs arises from a desire to know early enough the quality of thecomponents completed so far. Resorting to reliability estimation at the end of the develop-ment leaves little room for redoing, partly or fully, components that might be responsible forunacceptable system reliability.1We use the words \program" and \system" interchangeably.4

The remainder of this report is organized as follows. Section 2 explains the CBRE approachwith an example. In Section 3 we describe the design of our experiment. The results appearin Section 4. In Section 5 we present a brief analysis of the results. A discussion on variousaspects of CBRE appears in Section 6.2 Component Based Reliability EstimationCBRE is applied in three steps. In the �rst step one identi�es the components and theirinterfaces in the system under consideration. In the second step one estimates the reliabilitiesof components and their interfaces. Dependencies amongst components are also identi�ed inthis step. In the third step the system reliability is computed. The �rst two steps need notbe applied in that order. Identi�cation of components, interfaces and their reliabilities can bedone when the components become available. The experiment reported is concerned only withthe third step. The �rst two steps are discussed by Garg [5]. However, we are not aware of anyevaluation so far of the entire CBRE approach.Below we illustrate the third step of CBRE which is the estimation of system reliabilitygiven component reliabilities. Interface reliabilities are assumed to be 1 in this experiment.We begin with the de�nition of an operational pro�le.De�nition 1 Let I denote the input domain of a program such that I = S1�i�nSDi, whereSDi is a subdomain of I. An \operational pro�le" is a mapping from the set of subdomainsfSD1; SD2 : : :SDng to probabilities; the sum of these n probabilities is 1.In the de�nitions below, it is assumed that the system under consideration is tested on inputsgenerated in accordance with a given operational pro�le. However, as discussed in Section 6,CBRE can also be applied when the operational pro�le is not available.De�nition 2 The \true reliability" of a program P , which could be a component or a system,is the probability of successful operation of P on any input selected from its input domain.In adapting this method to software systems, we consider the components executed for eachtest case. A sequence of components along a path traversed for test case t can be considered asa series system that is executed for a subset of test cases of which t is one element. The CBREapproach is based on computing a \reliability estimate" for each path. If the reliability ofindividual components is assumed to be independent of each other, known as the independenceassumption, then the path reliability is the product of component reliabilities given that theinterface reliabilities are assumed 1.An interesting case occurs when at least one component, say component C, along a path isinvoked from inside a loop several times during one execution. If the independence assumptionholds, the path reliability will tend to 0 with the increase in the number of times C is executed.If most paths executed have components within loops and that these loops are traversed asu�ciently large number of times, individual path reliabilities are likely to be low resulting in5

low system reliability estimates despite the chance that the system reliability is higher thanestimated. This leads to the problem of modeling inter- and intra-component dependencies.This problem has been addressed in the experiment described here.De�nition 3 The component trace of a program P for a given test case t is the sequence ofcomponents executed when P is executed against t. Such a trace is denoted by M(P; t).De�nition 4 The \component-based reliability" estimate of a program P with respect to a testset T , is given by: Rc = P8t2T RtcjT jwhere the reliability of the path in P traversed when P is executed on test-case t 2 T is givenby: Rtc = Y8m2M(P;t)RmDe�nition 5 Let Rtf be the true reliability of P measured over the test set T . The relativeerror � in estimates of Rc is de�ned as: � = jRc�Rtf jRtfDe�nition 6 Let Nc be the number of executions of P used to arrive at Rc. The �-e�ciencyof the estimate is denoted by ��, where � � �. The �-e�ciency is computed as:�� = 1� NcNtfE�ciency as de�ned above can be negative when Nc < Ntf which implies that CBRE is notan appropriate method to use for the system under consideration for the given �. We use �� asa measure of how fast Rc will converge as compared to the convergence of Rtf . It is importantto note that CBRE does not require that Rtf be computed for a given software system. Rtfwas computed in the experiments reported here to evaluate the goodness of CBRE.2.1 ExampleConsider a hypothetical system with component-call graph as in Figure 1. The componentreliabilities for this system are listed in Table 1. The reliabilities vary from 0.6 to 0.9. Data inTable 2 shows four test cases and reliability estimates for the system. The �rst test case resultsin the component trace 1,2,4. The reliability of this path is R1�R2�R4 = 0:9�0:6�0:9 = 0:49.The third test case resulted in the component trace 1,3,2,3,2,3,4. The reliability for this pathis R1 � R22 � R33 � R4 = 0:9 � 0:62 � 0:83 � 0:9 = 0:15. The system reliability estimate of0.42 is obtained by averaging over the path reliabilities.6

m1��	 @ @Rm2 -�@ @R m3��	m4Figure 1: Example function call graph of a system with 4 componentsTable 1: Sample reliabilities for the components in the example.Component Reliability1 0.92 0.63 0.84 0.92.2 Component dependenceGiven two components C1 and C2 of a software system we say that C2 depends on C1 if theprobability of failure, i.e. the reliability of C2 is e�ected in any way by the execution of C1.If C1 and C2 are di�erent components then this dependence is known as inter-componentdependence, else it is known as intra-component dependence. Inter-component dependencecan arise, for example, due to an error in the design of the interface between C1 and C2.Thus, when C2 is tested in an environment in which C1 is not present, it might not fail atall. However, when tested in the presence of C1 it might fail due to an error in interfacing thetwo components. Intra-component dependence can arise, for example, when a component Cis invoked more than once in a loop by another component C 0 and successive calls to C makeuse of the state of C 0.Computing path reliability as the product of the reliabilities of the components executed onTable 2: Sample test cases and reliability for the program in the example.Test case Component traces Reliability1 1,2,4 0.492 1,3,4 0.653 1,3,2,3,2,3,4 0.154 1,2,3,4 0.39System reliability 0.427

Table 3: Sample test cases for the example program.Test case Component traces ReliabilityDOI = 1 DOI = 2 DOI = 31 1,2,4 0.49 0.49 0.492 1,3,4 0.65 0.65 0.653 1,3,2,3,2,3,4 0.39 0.19 0.154 1,2,3,4 0.39 0.39 0.39System reliability 0.48 0.43 0.42this path, relies on the assumption that these components are independent of each other. Thismay not be true in software systems since components are often tightly coupled. Speci�cally,when a component is executed in a loop, it may be the case that multiple occurrences of thiscomponent are not independent.There are several ways of modeling both inter- and intra component dependence. In theexperiment reported we assumed that components were independent, i.e. there is no inter-component dependency. Intra-component dependency was modeled by \collapsing" multipleoccurrences of a component on an execution path into a single call. The assumption here is thatall occurrences of a component on an execution path are dependent. An alternative approachcould \collapse" multiple occurrences of a component into k occurrences, where k > 0. If anypath contains l copies of a component, and l < k, then no further \collapsing" need be done.k is referred to as the degree of independence and abbreviated as DOI. Complete dependenceis modeled by setting DOI to 1 and complete independence by setting DOI=1.The e�ect of DOI on reliability estimates is illustrated using the example in Section 2.Table 3 lists four sample test cases for the example program. The table also lists the component-based reliability for degree of independence (DOI) values 1, 2 and 3. The third test case leadsto a component trace of f1; 3; 2; 3; 2; 3; 4g. The reliability for this path assuming di�erent valuesof DOI are given below.� (with DOI = 1) R1 �R2 �R3 �R4 = 0:9� 0:6� 0:8� 0:9 = 0:39� (with DOI = 2) R1 �R22 �R32 � R4 = 0:9� 0:62 � 0:82 � 0:9 = 0:19� (with DOI = 3) R1 �R22 �R33 � R4 = 0:9� 0:63 � 0:83 � 0:9 = 0:15Larger values of DOI lead to smaller estimates of path, and hence system, reliabilities. Asthe example here is hypothetical and we do not know what is the \true reliability" of theprogram, we cannot determine which value of DOI is the most appropriate for this example.We discuss this issue again in the following section with respect to the program used in theour experiment. 8

Dependence modeling in our experiment is exploratory in nature. We decided to explorehow well a given dependence model will work. As discussed in Section 6, perhaps a morescienti�c way would be to use the system architecture and source code to determine the natureof dependence. Also, we decided to consider distinct components on a path to be independentof each other simply because inter-component dependence did not appear to be the prime causeof poor accuracy in our experiment.3 Design of experimentThe experiment reported here was aimed at investigating the accuracy and e�ciency of CBRE.More precisely, the objectives of the experiment are:1. To study the accuracy of Rc (component-based reliability) estimates of a system withrespect to its Rt (true reliability) observed over a test set T . De�nition 5 formalizes thenotion of accuracy.2. To study the e�ciency of Rc estimates of a system with respect to its Rtf estimates overa test set T . De�nition 6 formalizes the notion of e�ciency.3.1 Terminology1. S: Program under test; grep is used in the experiment.2. OP : Operational pro�le for S - constrains the generation of random inputs sampled fromthe input domain.3. N : Number of components in S4. Nm: Number of components seeded with errors.5. Nf : Number of faulty versions of S.6. Nfm: Number of faulty components in a faulty version of S.7. Mj : jth faulty component in the system; components are arbitrarily assigned distinctnumbers.8. jMj j: Number of executable lines of code in Mj9. Rj : Reliability of Mj .10. FD: Fault density, or the number of errors seeded per executable line of code.11. Ei: Set of errors seeded in component Mi.12. E: Set of errors seeded in the program S, E = S1�i�n Ei.9

13. �: Con�dence level required for convergence of reliability. We uses a 99% con�dencelevel and hence � is 0.99.14. �r: Half-width of the con�dence interval; we use 0.05.15. z�=2: Prob(jZ < Z�=2j) � 1��=2, where Z is a random variable representing the Stan-dard Normal Distribution.16. Output: The output of a program S when executed with an input t is denoted by S(t).3.2 Assumptions� Nm components of the program under test are seeded with errors such that8i; 1 � i � Nm; jEijjMij = FD.� The reliability of components not seeded with errors is assumed to be 1.� The reliability of all component interfaces is assumed to be 1.3.3 Experimental setupThe GNU version of grep was used in the experiment. The grep utility consists of about 12,000lines of C code. The experiment was performed on a Sun Sparc 5 running under the Solaris 2.5.1operating system. Components for seeding faults were chosen based on their complexitiesmeasured in the number of basic blocks and their frequency of occurrence measured using theUnix utility prof. The standard regression test suite of 123 test cases that is supplied with theGNU version of grep was used for pro�ling. The eight components of grep that we examinedare listed in Table 4. The four relatively low complexity components are unsuitable for seedingfaults at the density levels required. Three components out of the remaining four were chosenand seeded with faults as described in Table 5. Faulty versions of grep were constructed inthree ways as described in Table 6.3.4 Methodology1. Construct an operational pro�le for grep. We used the operational pro�le used earlierby Garg [5].2. Measure the reliability of each component Mi in S.� For each component Mi in S, generate a faulty program Si by seeding S with errorsin Ei.� Instrument Si such that during each run whenever component Mi is invoked, itsComponent ID (CID) is written to a �le.10

Table 4: Complexities and frequency of occurrence of modules in grep.Module Complexity (No. of blocks) Frequency (No. of calls)obstack begin 12 86alloca 16 13regex compile 991 123getopt internal 129 123reset 14 650kwsmusts 26 117lex 267 856dfaanalyze 110 117Table 5: List of components in grep seeded with faults. Fault density=0.01.Component Number Numberof Lines of Faultslex 312 4dfaanalyze 215 3regex compile 954 10Table 6: Faulty versions of grep.Faulty components Total Total Fault DensityLines Faults FaultsLineslex 13029 4 0.0003lex, dfaanalyze 13047 7 0.0005dfaanalyze, regex compile 13063 13 0.00111

� Use the Algorithm below to generate reliability estimate for each component Mi asfollows:Ri Component-Reliability (Si, S, OP, CID)AlgorithmPurpose To measure the reliability of a component.Inputs S 0, S, OP , CID.Output Reliability of the component having component identi�er CID.Method(a) Set current reliability to 0.(b) Set total executions and failures observed to 0.(c) Sample a test case t randomly from the input domain of S constrained by OP .(d) Execute S 0 and S on t.(e) � If the execution resulted in CID being written by S 0, then increment total executionsby 1, else repeat from Step 2c.� If S(t) 6= Si(t), increment failures observed by 1.(f) � Compute current reliability as (1� failures observedtotal executions)� Build an alpha con�dence interval centered at current reliability. Thevariance is � = p� (1� p), where p is current reliability, and the numberof data points n is total executions� Compute the half-width of the con�dence interval as: z�=2 � �pn .� If the half-width is less than �r , then reliability has not yet converged, repeatfrom Step 2c.(g) Return current reliabilityEnd Method3. Measure the reliabilities of each of the Nf faulty versions of S.� For each faulty version construct a program S 0 such that each execution of S 0 resultsin a \ component trace" consisting of the number of times each faulty componentis executed.� Use the Algorithm below to generate a set of \component traces", denoted by MT ,and estimate Rt as:(Rt,MT) True-Reliability(S 0,S,OP ,Nfm)� The CBRE estimate Rc of S 0 is computed, using De�nition 4, from the componenttraces obtained in the previous step.Algorithm 12

Purpose To measure the reliability of S 0 and generate \collapsed component traces"for each execution.Inputs S 0, S, OP , Nfm.Outputs Reliability of S 0 and component traces.Method (a) Set current reliability to 0.(b) Set total executions and failures observed to 0.(c) Set Modrel ;.(d) Randomly select a test case t from the input domain of S constrained by OP .(e) Execute S and S 0 on t.(f) { Collapse the generated component trace so that no component is repeated.{ Append the collapsed component trace to Modrel.{ Increment total executions by 1.{ If S(t) 6= S 0(t), increment failures observed by 1.(g) { Compute current reliability as (1� failures observedtotal executions){ Build an alpha con�dence interval centered at current reliability. Thevariance is � = p � (1 � p), where p is current reliability, and thenumber of data points n is total executions{ Compute the half-width of the con�dence interval as: z�=2 � �pn{ If the half-width is less than �r, then reliability has not yet converged, repeatfrom Step 3d.(h) Return (current reliability, Modrel).End method4 ResultsUsing the component traces collected as described in the previous section, reliability estimateswere obtained for the selected components and for the faulty versions of grep. Below wepresent the results of the experiments described in Section 3 in tabular and graphical form.Reliabilities of faulty components are listed in Table 7. Reliabilities of lex, dfaanalyze,and regex compile are, respectively, 0.649, 0.334 and 0.343. The CBRE estimates withDOI=1, their accuracy and e�ciency are shown in Table 8. For faulty version 1 of grepthetrue reliability Rt is 0.688 and the component-based reliability Rc is 0.676. For faulty version 2of grepRt is 0.385 and Rc is 0.513. For faulty version 3 of grep Rt is 0.392 and Rc is 0.393.Figure 2 plots the true and component-based reliabilities over executions for faulty version1 of grep, with faulty component lex. This relationship is plotted in Figure 3 for faulty version2 (with faulty components lex and dfaanalyze) and in Figure 4 for faulty version 3 whichcontains the faulty components dfaanalyze and regex compile.13

Table 7: Reliabilities of selected components in grep.Component Reliabilitylex 0.649dfaanalyze 0.334regex compile 0.343Table 8: Dependent component based reliability estimates.Faulty Faulty Components Reliability Error(�) E�ciencyVersion Rt Rc � = 0.05 � = 0.011 lex 0.688 0.676 1.78 % 0.97 0.932 lex, dfaanalyze 0.385 0.513 33.25 % 0.99 0.983 dfaanalyze,regex compile 0.392 0.393 0.25 % 0.97 0.97
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

R
el

ia
bi

lit
y

Execution number

System: grep, Module: lex, Invoked multiple times

True reliability
Component-based reliability

Figure 2: True reliability and component-based reliability for grep with faulty component lex.14

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

R
el

ia
bi

lit
y

Execution number

System: grep, Module: (lex,dfaanalyze), Invoked multiple times

True reliability
Component-based reliability

Figure 3: True reliability and component-based reliability for grep with faulty components:lex and dfaanalyze.
0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

R
el

ia
bi

lit
y

Execution number

System: grep, Module: (dfaanalyze,regex_compile), Invoked once

True reliability
Component-based reliability

Figure 4: True reliability and component-based reliability for grep with faulty components:dfaanalyze,regex compile 15

5 AnalysisWe now examine the results presented above in terms of their accuracy and e�ciency. We alsoanalyze the e�ect of modeling intra-component dependency.5.1 AccuracyFrom Table 8 we see that the relative error in the component-based reliability (Rc) estimate ofthe true reliability (Rt) is 1.78% for version 1 of grep. For version 3 the relative error is 0.25%.For both these versions the Rc estimate appears to be a good predictor of the true reliability.However, for version 2 of grep the relative error is 33.25% and the Rc estimate is not a goodpredictor of true reliability. This can also be observed from the graphs in Figures 2, 3 and 4.5.2 E�ciencyFrom Table 8 we see that the 0.05-e�ciency and 0.01-e�ciency is 0.97 and 0.93 for version 1of grep. For version 3 the 0.05-e�ciency is 0.97 and the 0.01-e�ciency is 0.97. For boththese cases, the e�ciency is high and the Rc estimate computes the true reliability very fast.For version 2 of grep the 0.05-e�ciency is 0.99 and the 0.01-e�ciency is 0.98. Although thee�ciency measures for version 2 are high, the poor accuracy of its Rc estimate means thatits Rc values do not converge. Figure 3 illustrates that a high �-e�ciency might not lead torelatively high accuracy. Here the �-e�ciency is computed before the Rc estimate convergedand therefore a relatively high value of �� is obtained. However, the error in the Rc estimatesincreased over subsequent executions leading to poor accuracy.5.3 DependenceAmong the three faulty versions of grep, only version 3 results in Rc estimates being the samefor DOI = 1 and DOI=1. This is explained by the fact that in version 3 the faulty componentsdo not occur more than once on any execution path. As discussed in Section 5.1, the accuracyof the Rc estimate, when DOI=1, is very low for version 2 of grep. For version 1, the faultycomponent occurs more than once on an execution path and the accuracy is relatively higherthan in version 2.Figures 5 and 6 show the ratio between Rc and Rtf for di�erent degrees of independence.The DOI is best when this ratio is close to 1. From Figure 5 we see that for version 1, the bestDOI is 1. However for version 2 (in Figure 6) the best DOI is between 1 and 2. This is whythe error in Rc estimate for version 2 for DOI = 1 is high. Figure 7 shows Rt and Rc estimatesover multiple executions with DOI = 2. Unlike the graph in Figure 3, the Rc and Rt valuesconverge close to each other in Figure 7. However, the accuracy of the reliability estimate isnot as good as it is for version 1 and version 3 of grep. This is perhaps because the ideal valueof DOI for this version lies between 1 and 2. 16

0

2

4

6

8

10

0 2 4 6 8 10 12 14

R
c/

R
tf

Degree of Independence amongst multiple calls to lex

System: grep, Module: lex, Invoked multiple times

Component-based reliability/True(final) reliability

Figure 5: lex: Component-based reliability/true reliability vs degree of independence.
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25

Tr
ue

 R
el

ia
bi

lit
y

/ C
om

po
ne

nt
-b

as
ed

 re
lia

bi
lit

y

Degree of Independence amongst multiple calls to lex

System: grep, Module: (lex,dfaanalyze), Invoked multiple times

Component-based reliability/True(final) reliability

Figure 6: lex,dfaanalyze: Component-based reliability/true reliability vs degree of indepen-dence. 17

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

R
el

ia
bi

lit
y

Execution number

System: grep, Module: (lex,dfaanalyze), Invoked multiple times

True reliability
Component-based reliability (Degree of Independence = 2)

Figure 7: True reliability and component-based reliability (degree of independence = 2) forgrep with faulty components: lex,dfaanalyze.6 DiscussionThough the experiment reported here is insu�cient to make any general conclusions about thee�ectiveness of CBRE, they do help us focus our attention on some key issues that need theattention of researchers. Below we discuss the issues of dependency, sensitivity, operationalpro�le, estimation of the reliabilities of components and their interfaces, applicability of CBREin a software development environment, and the scalability of CBRE.Dependency modeling: From the results reported in Section 4, it is clear that the successfuluse of CBRE depends signi�cantly on inter- and intra-component dependence. It seems that theintra-component reliability is likely to be the more important of the two types of dependenciesin determining the accuracy of the system reliability estimate.As explained earlier, by executing a component an arbitrarily large number of times, it iseasy to bring the system reliability estimate much below its true reliability if intra-componentdependency is ignored. At this point it is not clear how one should go about determininga suitable value of DOI. It is also not clear whether or not it is appropriate to model thedependency by \collapsing" multiple executions into fewer executions; certainly the resultsfrom this experiment show that this method appears to be an attractive when viewed withrespect to the accuracy of the reliability estimates.Sensitivity analysis: One advantage of CBRE is that it provides data that can be used toanalyze the e�ect of changing component reliability on that of the system. Referring to Table 2in Section 2, we can express the reliability Rc as follows:Rc = R1R2R3 + R1R3R4 + R1R22R33R4 +R1R2R3R44 (1)Eq. 1 can be used to determine the variation in Rc with respect to that in the reliability ofany component. This can be done by �xing the reliabilities of all but one component. Note18

that the above formula depends on the tests executed. A di�erent set of paths through thesystem might lead to di�erent closed form formula for Rc and hence to di�erent results fromthe sensitivity analysis.Operational pro�les: The traditional method of estimating system reliability relies heavilyon the operational pro�le [10]. It also requires that tests be sampled randomly from the inputdomain of the system based on this operation pro�le. Both the determination of the operationalpro�le and random sampling of test cases might be impractical in certain applications [7, 8].CBRE allows one to use the existing test cases to execute the system and obtain reliabilityestimates. The existing test cases might be drawn from, or could well be, the system test suiteor a regression test suite.It is unlikely that in practice the existing test cases might have been generated randomly.However, using system or regression tests might lead to an Rc estimate di�erent from thereliability perceived by the user of the system. This might happen when the tests used forestimating Rc are not representative of the user's operational pro�le. This leads us to proposethat one should be able to associate a risk parameter with the Rc estimate. The risk parametershould be independent of the operational pro�le. One such risk parameter is the code coverageas discussed by Horgan and Mathur [7, 8]. However, more research is needed to help in theselection of and use of appropriate risk parameters to associate with Rc estimates.Component and interface reliabilities: Past research in component based reliability es-timation has resulted in methods for reliability estimation which assume that component re-liabilities are available [2, 9]. The issue of how to determine component reliabilities has beenmostly ignored. Of course, one might argue that the reliability of a component can be de-termined using the same method as the one proposed for determining the system reliability.However, using arguments from [7, 8] it is clear that this is not always possible. We proposethat when it is not possible to use CBRE or any other available methods to obtain reasonableestimates of components, a coverage-based estimation technique proposed earlier [5, 11] maybe used. However, this technique still needs extensive experimental evaluation.The CBRE as described here makes use of interface reliabilities. In the experiment we didnot consider faulty interfaces. In practice, one needs to estimate the reliability of each interfacethat is on the path executed by the test cases used in the estimation of Rc. When an interfaceis a program, any of the methods mentioned above can be used to estimate their reliabilities.However, when an interface consists of items such as global variables, parameters, and �lesit is not clear how to estimate its reliability. A method for integration testing proposed byDelamaro et. al [3]. seems promising for estimating interface reliabilities.Applicability of CBRE in a software development environment: We believe thatCBRE can be applied at all stages of the software development cycle once a part of the systemdesign is available. When only the architecture, and not the code, is available, one can builda simulation model based on CBRE and conduct reliability studies such as ones designed toinvestigate the impact of component reliability on system reliability for a given architecture.19

When the code is available, one can actually apply CBRE and ask questions such as \What isthe reliability of a given subsystem?", \What is the system reliability ?", and \How can thesystem reliability be improved ?" A tool based on CBRE can help relate the system reliabilityto the reliability of its components and the architecture.Scalability of CBRE: CBRE is intended for application to large software systems. The timeto execute a system is one parameter that could become a bottleneck in the use of CBRE.If there are N test cases on which the system is to be executed, the total execution time islikely to be proportional to N . Considering the rate at which the CBRE estimates converge,as is evidenced by the e�ciency data presented above, it seems that CBRE estimates willconverge much faster than estimates based on random testing using traditional methods forestimating reliability [10]. Recall that using CBRE does not require random testing; a systemmay be executed on system or regression tests and reliability estimates obtained. Consideringthe di�erence in testing schemes implied by CBRE and methods that require random testingand the e�ciency data presented herein, it appears that CBRE is likely to scale up to largesystems more easily than techniques that require random testing.Based on the above discussion it appears that CBRE is a promising method for estimatingsoftware system reliability. However, several issues, as outlined above, need to be resolvedbefore it can be applied in practice.AcknowledgementsThe CBRE method reported in here was suggested by James Berger during the Model Devel-opment Workshop at Purdue held on June 17-18, 1996. Other attendees at the workshop were:Jos�e Maldonado, Aditya Mathur, Alberto Pasquini, Vernon Rego, and Nozer Singpurwalla.References[1] M. Chen, A. P. Mathur and V. J. Rego: \E�ect of testing techniques on software reliabilityestimates obtained using a time-domain model," IEEE Transactions On Reliability, Vol. 44,No. 1, March 1995, pp. 97-103.[2] R. C. Cheung, \A user oriented software reliability model," IEEE Transactions on SoftwareEngineering, vol. SE-6, March 1980, pp~118-125.[3] M. Delamaro, J. Maldonado, and A. P. Mathur, \Integration testing using interface muta-tions," Proceedings of the Seventh International Symposium on Software Reliability Engi-neering, IEEE Computer Society Press, White Plains, New York, pp 112-121, October 30-November 2, 1996.[4] R. A. DeMillo and A. P. Mathur: \A grammar based fault classi�cation scheme and itsapplication to the classi�cation of the errors of TEX," Technical Report, SERC-TR-165-P,Software Engineering Research Center, Purdue University, W. Lafayette, IN 47907, 1995.20

[5] P. Garg, \On code coverage and software reliability," M.S. Thesis, Department of ComputerSciences, Purdue University, May 1995.[6] J. R. Horgan and S. A. London, \ATAC { Automatic Test Analysis for C programs"Internal Memorandum TM-TSV-017980, Bell Communications Research, 1990.[7] J. R. Horgan and A. P. Mathur, \Software testing and reliability" Handbook of SoftwareReliability Engineering, pp 531-566, McGraw-Hill, New York, 1996.[8] J. R. Horgan and A. P. Mathur, \Perils of software reliability modeling," Technical Re-port, SERC-TR-160-P, 1995, Software Engineering Research Center, Purdue University,W. Lafayette, IN.[9] J. C. Laprie and K. Kanoun, \Software reliability and system reliability," Handbook ofSoftware Reliability Engineering, pp 27-70, McGraw-Hill, New York, 1996.[10] J. D. Musa, A .Iannino, and K. Okumoto, \Software Reliability: Measurement, Predictionand Application" McGraw-Hill, New York, 1987.[11] S. Krishnamurthy and A. P. Mathur, \On predicting the reliability of modules using codecoverage," CD-ROM in CASCON '96, Toronto, 1996.

21

