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ABSTRACT 

Two findings serve as the hallmark for hemispheric specialization during lateralized 

lexical decision.  First is an overall word advantage, with words being recognized more quickly 

and accurately than non-words (the effect being stronger in response latency).  Second, a right 

visual field advantage is observed for words, with little or no hemispheric differences in the 

ability to identify non-words.  Several theories have been proposed to account for this difference 

in word and non-word recognition, some by suggesting dual routes of lexical access and others 

by incorporating separate, and potentially independent, word and non-word detection 

mechanisms.  We compare three previously proposed cognitive theories of hemispheric 

interactions (callosal relay, direct access, and cooperative hemispheres) through neural network 

modeling, with each network incorporating different means of interhemispheric communication.  

When parameters were varied to simulate left hemisphere specialization for lexical decision, 

only the cooperative hemispheres model showed both a consistent left hemisphere advantage for 

word recognition but not non-word recognition, as well as an overall word advantage.  These 

results support the theory that neural representations of words are more strongly established in 

the left hemisphere through prior learning, despite open communication between the 

hemispheres during both learning and recall. 

 

 

Keywords:  neural networks, hemispheric independence, hemispheric specialization, word 

recognition, lexical decision, lateralization. 
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INTRODUCTION 

 Despite prominent connectivity between the left and right hemispheres, asymmetries in 

their cognitive functionality are well established.  For over a century, researchers have observed 

both left and right hemisphere specialization for a variety of tasks, often through examination of 

remaining function following lateralized brain damage (for review, see Hugdahl & Davidson, 

2003).  For example, recent research shows a loss of semantic comprehension (Hagoort, 1998) 

and syntactic ability (Grodzinski, 2000) following left hemisphere insult, indicating an important 

role for the left hemisphere in these tasks.  Yet we know that both hemispheres display a wide 

range of cognitive abilities, with language deficits often being manifest even with loss in the 

non-dominant hemisphere.  For example, both left and right hemisphere loss have been shown to 

disrupt readers’ ability to comprehend complex syntax (Caplan, Hildebrandt, & Makris, 1996), 

as well as their ability to perform lexical ambiguity resolution (Grindrod & Baum, 2003). 

 While the above examples involve special populations with localized damage to one or 

both cerebral hemispheres, controlled psychological tasks may also uncover hemispheric 

asymmetries.  The lexical decision task, which calls on an observer to identify the lexical 

category (word or non-word) of a briefly presented stimulus, often shows a right visual field 

(RVF) advantage (Bradshaw & Gates, 1978; Chiarello, 1985; Leiber, 1976).  Emotion perception 

and metric spatial processing, both believed to be right hemisphere specialized, are also best 

when lateralized to the left visual field (LVF) compared to the RVF (Banich & Federmeier, 

1999; Christman & Hackworth, 1993).  These visual field advantages indicate hemispheric 

specialization of the contralateral hemisphere due to organization of the visual system, with a 

RVF advantage indicating a left hemisphere specialization and a LVF advantage indiciating a 

right hemisphere advantage.  These effects are particularly relevant because such stimulus 
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lateralization is in many ways less straightforward than neuropsychological approaches.  We 

know that interhemispheric transfer occurs at least as early as V1 (Houzel, Carvalo, & Lent, 

2002), and that visual information is shared between the hemispheres even when the target 

stimulus is lateralized.  Thus, such manipulations can, at best, provide a conservative measure of 

asymmetric cognitive abilities (for review see Zaidel, 1979). 

 The left hemisphere specialization for word recognition may be due to any number of 

cognitive factors.  Orthographic, phonological, and semantic characteristics of a word may all 

affect fluency of its retrieval, as evidenced by both behavioral and physiological research (see 

Binder et al, 2003 for review).  Several models have been proposed to explain psycholinguistic 

effects on word retrieval, and how they may affect the two cerebral hemispheres differently.  

Chiarello (1988) describes that lexical decision is characterized by pre-lexical, lexical, and post-

lexical processing stages.  The pre- and post-lexical stages involve stimulus encoding and 

response making, respectively, and are not believed to differ between the cerebral hemispheres.  

However, the lexical stage involves matching the lexical stimulus with stored entries, termed 

lexical access, an event that may well be left hemisphere specialized (Zouridakis, Simos, Breir, 

& Papanicolaou, 1998).    It is during lexical access that semantic and phonological 

characteristics have their most clear impact, perhaps in different ways for the two hemispheres.  

For example, words that have been semantically primed may be easier to access, and it has been 

suggested that the right hemisphere possesses a more diffuse semantic association network 

(Burgess and Simpson 1988; see Coney 2002 for a review).  It is conceivable that such semantic 

asymmetries may impact word recognition, even for unprimed words, although it is difficult to 

propose how this might occur for lexical decision.  Phonological processing has also been 
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demonstrated to differ between the hemispheres, with only the left hemisphere demonstrating a 

capability for phonological output, as described next.  

 Many models of word recognition have posited dual routes involved in lexical access 

(Ellis & Young, 1988; Ellis, Young, & Anderson, 1988; Young & Ellis, 1985).  The first route is 

often equated with lexical access, as it involves matching the observed lexical stimulus with 

known entries in search for a match.  The second route, however, is not lexical in nature and 

involves orthographic to phonemic translation.  This translation, which produces a phonological 

output for the observed stimulus, is believed to be available only to the left hemisphere, thereby 

providing it with a processing advantage.  Numerous forms of dual-route models have been 

proposed (see Coltheart 1993 for review), although mixed support for the use of dual routes in 

lexical decision has been observed (Iacoboni & Zaidel, 1996).  Seidenberg and McClelland 

(1989) observed that dual lexical and phonemic routes are not necessary to show many of the 

phonological effects common with word recognition tasks.  Other research concerning different 

aspects of linguistic ability such as verb tense translation (Joanisse & Seidenberg, 1999) and 

non-word pronunciation (Seidenberg, Plaut, Petersen, McClelland, & McRae, 1994) have also 

shown that connectionist models can perform as well as multiple system approaches (e.g. dual 

routes) at predicting human language performance.   

One difficulty with the interpretation of hemispheric asymmetries is that it is not entirely 

clear what some of the terminology used to describe them means.  For example, even though 

most neurolinguists agree that language is specialized to the left hemisphere, there is less 

agreement regarding the relationship between specialization and interaction.  Specialization may 

imply dominance, with tasks such as speech production being performed solely by the left 

hemisphere.  With such dominance, only one hemisphere is capable of performing the given 
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task, and the second non-dominant hemisphere must take a secondary role during processing.  

Others take specialization to mean greater facility of one hemisphere or the other, with no 

limitations on which hemisphere takes control during task performance (Zaidel, Clarke, & 

Suyenobu, 1990).  One difference between these views is apparent: the first assumes that for a 

lateralized cognitive task stimulus information must undergo interhemispheric transfer when 

presented to the non-dominant hemisphere, whereas the second makes no such assumption.  

Thus, although both theories acknowledge a certain degree of hemispheric specialization, they 

differ on the issue of hemispheric independence.  The first relates greater left hemisphere ability 

with dependence of the right hemisphere on left hemisphere resources for successful completion 

(low independence), whereas the second acknowledges greater left hemisphere ability while 

retaining the option of right hemisphere control (independence).   

There have been several models proposed for how hemispheric specialization and 

interaction relate, particularly in the field of language (Zaidel, Clarke, & Suyenobu, 1990; see 

Table 1 for a review).  First, the callosal relay model assumes that the left hemisphere is 

specialized for language, and also that the right hemisphere is dependent on the left for 

successful linguistic processing.  The term “callosal relay” is used because it assumes stimulus 

information is “relayed” from the right to the left hemisphere when information is presented to 

the LVF, thereby allowing the dominant left side to receive all input and control processing.  

Evidence for this model comes not only from numerous historical studies showing language loss 

following left hemisphere damage, but also from fMRI studies showing strong left hemisphere 

lateralization during lexical decision (Calandra-Buonaura et al., 2002).  Calandra-Buonara et al 

(2002) observed that left hemisphere activation, and not right hemisphere activation, was 

strongly associated with successful lexical decision performance.  Similar findings come from 
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fMRI studies of phonological fluency (Alvarez-Linera et al., 2002), and phonetic and semantic 

analysis (Binder et al., 1997), supporting a left hemisphere dominant view.  

 

 

 

Lateralized lexical decision has also uncovered evidence for the callosal relay of 

linguistic information between the hemispheres.  Lateralized lexical decision involves a subject 

identifying the lexical category of a stimulus (word or non-word)  presented either to the left or 

right of fixation, thus ensuring that it is contained within a single visual field and sent 

exclusively to a single hemisphere for processing (right hemisphere for LVF and left hemisphere 

for RVF).  Mohr, Pulvermuller, and Zaidel (1994) showed that lateralized lexical decision 

performance was best when a copy of the target stimulus was presented to each visual field, an 

effect that could only be expected if the hemispheres are not independent processors.  Iacoboni 

and Zaidel (1996) also showed that the inclusion of distracter stimuli in the visual field opposite 

the target reduced word recognition ability.  Although distracter stimuli impaired both LVF and 

RVF word recognition ability, the effect was much stronger for LVF targets, as predicted by the 
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callosal relay model.  The stronger effect of RVF distracters on LVF targets supports the callosal 

relay model because this model requires left hemisphere involvement when the stimulus is 

presented to the right hemisphere (LVF): RVF distracters should, and do, have the most 

disruptive effect.  These results do not explicitly support a callosal relay model as much as a 

model of hemispheric dependence (in whatever form); however they provide an important 

indication that resources are shared between the hemispheres during word recognition. 

In contrast, the direct access model assumes both hemispheric specialization and 

independence.  Thus, poor lateralized LVF performance for language tasks is not due to loss 

from having to transfer stimulus information from the right to the left hemisphere, but instead to 

reduced efficacy of the right hemisphere in performing the processing itself.  For the direct 

access model, it is assumed that the hemisphere directly receiving the stimulus information is the 

one making the response, with little involvement from the contralateral hemisphere.  Although it 

would be difficult to assert that the hemispheres work in complete isolation during word 

recognition, there is still good reason to believe that they retain largely independent processing 

abilities.  The strongest proof of this comes from split-brain research showing that each 

hemisphere is separately capable of perceiving, reasoning, and acting without participation from 

the other (Bogen, 2000; Zaidel et al., 1990).  It may be that the open connectivity between the 

hemispheres in the normal brain makes it difficult to identify these independent processing 

capabilities, which become apparent in the split-brain. 

Although the direct access and callosal relay models have been successful in exploring 

the role of hemispheric independence, they both imply one hemisphere or the other “takes 

charge” of any given cognitive task.  It is at least equally plausible that the two hemispheres 

work jointly towards the processing of any stimulus, such that left hemisphere specialization 
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does not necessarily indicate a greater ability to independently perform a given cognitive task but 

rather a processing advantage when greater left hemisphere involvement is fostered.  Visual field 

asymmetries may therefore tap asymmetries in hemispheric representation or participation, rather 

than differences in their capability to individually process a stimulus to completion.  We term 

this model the cooperative hemispheres model because hemispheric independence (direct access) 

or dependence (callosal relay) is traded for a cooperative, dynamic relationship based on bilateral 

lexical representation. 

The cooperative hemispheres model is often addressed in the context of neural assemblies 

representing lexical entries taking residence in both hemispheres.  Pulvermuller and Mohr (1996) 

describe how bilateral neural assemblies may demonstrate left hemisphere processing 

advantages, as stimuli directed to that hemisphere are likely to ignite a greater portion of the 

assembly and therefore activate the representation.  As such, the hemispheres are neither fully 

independent nor specialized, and processing involves an interactive process that may (or may 

not) show asymmetries based on the form of neural representation itself.   

If words are represented jointly between the hemispheres, then the neural activity which 

represents them must be “bound” such that activity in different cortical areas, or in opposite 

hemispheres, forms a coherent assembly.  Such binding may take place through synchronous or 

coherent neural firing, as explored through electroencephalographic (EEG) recording.  Engel, 

Konig, Kreiter, and Singer (1991) were the first to observe synchronization of neural activity 

between the hemispheres for the processing of low-level stimuli in the cat.  Subsequent work 

confirmed coherence of neural firing between the hemispheres during more complex cognitive 

processing in humans, such as verbal and spatial processing (Corsi-Caberra, Gutierrez, Ramos, & 

Arce, 1988), visual comparison (Knyazeva et al., 1999), and object recognition (Mima, 
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Oluwatimilehin, Hiraoka, & Hallet, 2001).  For language, EEG coherence increases have been 

associated with the processing of certain lexical stimuli (Weiss & Mueller, 2003), supporting a 

view of bilateral neural assemblies for lexical entries.   If such neural assemblies are widely 

distributed, comprising neurons in multiple cortical areas and even between the hemispheres, 

then measuring laterality should be accomplished not by guessing which hemisphere “owns” a 

cognitive process, but instead by observing the relative balance of neural contributions within the 

hemispheres for successful performance (Pulvermuller & Mohr, 1996).  Recent techniques such 

as fMRI provide promising approaches to this goal, and indeed have shown a relative lack of 

right hemisphere involvement in lexical decision (Calandra-Buonaura et al., 2002), counter to a 

cooperative hemispheres view. 

In the current paper we use a different approach to exploring hemispheric interaction: 

neural network modeling.  One benefit of neural network modeling is that computational models 

may be defined based on theories of human cognition, and then tested to measure relative 

success of the cognitive (i.e., theoretical) models upon which they are based.  For example, we 

may define computational models (i.e., neural networks) based on the direct access and callosal 

relay theories of hemispheric interaction and train the networks to learn under these different 

architectures while measuring the efficacy of each.  As most previous bi-hemispheric neural 

network research has focused on the mechanisms by which activity is shared between the 

hemispheres rather than the functional relevance of such transfer (Anninos, Argyrakis, & 

Skouras, 1984; Anninos & Cook, 1988; Cook & Beech, 1990; Reggia & Levitan, 2003; Ringo, 

Doty, Demeter, & Simard, 1994), this proves to be a fruitful area of current and  future research.  

However, special concern must be made to ensure that computational models adequately 

represent the cognitive theories for which they stand, because without such accurate 
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representation results from the computational models become less informative.  In the current 

study, we recognize that some aspects of the cognitive theories regarding hemispheric 

specialization and interhemispheric transfer may not be completely addressed by the neural 

networks tested.  However, the primary features of the theories are represented (e.g. asymmetric 

transfer, independent hemispheric output, etc…), as discussed below.  Also, the different neural 

networks are identical except for these key features, thus ensuring other aspects of the 

computational models are not the source of differences in their ability to predict actual 

behavioral data. 

Past studies using neural networks have explored the importance of hemispheric 

interaction, particularly in the field of language.  For example, previous studies have shown that 

lateralization emerges in computational models during such tasks as letter identification under a 

variety of circumstances in which the left hemisphere shows a processing advantage (Shevtsova 

& Reggia, 1999; Reggia and Levitan, 2003).  Specifically, left hemisphere specialization was 

shown to arise through larger left hemisphere size, greater cortical excitability, or a faster 

learning rate.  Reggia and Levitan (2003) also observed that the greatest laterality occurred when 

models used inhibitory callosal connections, supporting the assertion that the corpus callosum is 

functionally inhibitory in nature (Cook, 1986).  Similar findings have been observed in other 

hemispheric models, including of phoneme sequence generation (Reggia, Goodall, & Shkuro, 

1998, Shkuro et al, 2000) and dual spatial/linguistic recognition (Howard & Reggia, In press).   

The current paper builds upon such previous neural network research to examine the 

functional significance of hemispheric asymmetries and interactions during word recognition.  

We use a neural network to simulate word recognition, without making any assumptions about 

the cognitive mechanisms by which such a task is performed in the actual brain; the only 
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manipulation is how the hemispheres are allowed to interact.  Thus, our model represents the 

simplest possible approach to the problem, with a single neural network being composed of two 

hemispheres tasked with storing, and later recognizing, a corpus of words.  Three different 

computational models are tested, each based on one of the cognitive theories of hemispheric 

interaction summarized above: the callosal relay, direct access, and cooperative hemispheres 

theories.  Although each theory/model assumes left hemisphere specialization for word 

recognition (Table 1), they take different perspectives regarding hemispheric independence (i.e., 

how the hemispheres interact).  The results predicted by each model are compared to those 

observed in human performance for the same task to gain a beter idea for how the two 

hemispheres interact during normal (human) word recognition. 

 

METHODS 

Model Description 

 Three computational models are compared, a callosal relay model, a direct access model, 

and a cooperative hemispheres model.  As shown in Figure 1, each consists of an input layer, two 

association layers (LH and RH, representing left and right hemispheric regions, respectively) and 

one or more output layers.  The input layer is a three by five grid, with rows representing each 

letter and columns representing the five different possible graphemes for each letter position.  

The input layer is fully connected to both association layers, so during training both left and right 

association layers receive the same input (as justified below). 

 Each association layer consists of a 10 by 10 array of elements, connected in the 

following manner.  Each node has a positive connection to its immediate neighbors with strength 

we, and an inhibitory connection to all second order neighbors (those adjacent to immediate 
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neighbors) with strength wi.  Additionally, each node shares a positively weighted connection 

with its homotopic partner node in the opposite hemisphere, as well as that contralateral node’s 

immediate neighbors (connection weight wx).  This arrangement incorporates a “Mexican-hat” 

topography of shared intra-hemispheric connectivity, while ensuring that activity patterns are 

also shared inter-hemispherically. 

 

 

Figure 1.  Three computational models are compared, the callosal relay, direct access, and 
cooperative hemispheres models.  The callosal relay model has strong right to left, but minimal 
left to right connectivity, and response output only from the left hemisphere.  The direct access 
model has minimal connectivity between the hemispheres, and separate left and right 
hemispheric outputs.  Finally, the cooperative hemispheres model has strong interhemispheric 
connections, as well as a single output receiving connections from both left and right 
hemispheric association areas. 
 

  

Activity sij for each association layer node ij is in the interval [0,1] and based on the 

following dynamics 

( ) 1
1

−⋅−+⋅+⋅= ijh
eijs

ij eCsC
dt
ds γ   

where hij is the cumulative linearly-weighted activity reaching hemisphere association node ij, 

the parameter γ is the gain of the sigmoid function, and Ce>0 and Cs<0 are cortical excitivity and 
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self-inhibition parameters, respectively.   The activation dynamics are simulated numerically 

using an Euler method with a time step of dt=0.1.  Other parameters Cp, Cloc, and Cx multiply the 

activity reaching node ij from the primary layer, neighboring intra-hemispheric, and homotopic 

inter-hemispheric sources, respectively, to determine the value of hij.  The value for Cx, which 

controls relative contribution from inter-hemispheric transfer of activity, differs between the 

three models to control for the level of hemispheric interaction.  As shown in Table 2 and as 

illustrated in Figure 1, Cx is minimal for left to right transfer, but significant for right to left 

transfer, in the callosal relay model.  It is minimal in both directions for the direct access model 

(i.e., very little inter-hemispheric transfer of activity), but is more significant for the cooperative 

hemispheres model. 
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 The three models also differ in their connectivity to the output layer(s), a 60 node vector 

representing each of the 60 words in the training vocabulary (see Figure 1).  The callosal relay 

model uses a single output layer to which the left but not right hemisphere is fully connected.  

Thus, only activity in the left hemisphere association area directly contributes to the output 

response.  The direct access model includes two separate output vectors, identical except that one 

receives connection from the left hemisphere (left hemisphere output) and one from the right 

hemisphere (right hemisphere output).  It is conceivable that for the direct access model the left 

hemisphere and right hemisphere outputs could produce conflicting outcomes, although only a 

single output is actually chosen based on which passes threshold first, as described below.  

Finally, the cooperative hemispheres model includes a single output vector that receives full 

connectivity from both hemispheric association areas.   

Input stimuli presented to each model propagate within the recurrently connected 

association layers until a stable activity pattern is achieved for both hemispheres.  Once activity 

settles, defined as ( ) training
tRHtRHtLHtLH ssss ∆<−+−∑ −− 1,,1,, , then activity passes to the output 

layer.  Each output node takes a value between 0 and 1 based on the logistic function 

( ) 1
1

−⋅−+= ijh
ij es γ  where hij is the input activity reaching output node sij, and the output node with 

the greatest value is designated the winner.  For the direct access model, there are two output 

layers and so there were a total of (60 x 2) 120 possible nodes, any one of which could be a 

winner for any particular stimulus.  Although there were two output layers, only a single node 

that reached threshold first was identified as winner for the direct access model, and that node 

could be from either the left or right hemisphere output. 

 All weights were initialized randomly between 0.0 and 0.1 before training.  Learning in 

all three of the computational models was instantiated using a backpropagation learning rule, 
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with wji being the connection weight from node i to node j, ai being activity in node i and aj being 

activity in node j:   

 ∆wji=µ ⋅ δj ⋅ai 

     where δ j = γ ⋅ aj ⋅ (1-aj) ⋅ (tj – aj) for output nodes 

     and δ j = γ ⋅ aj ⋅ (1-aj) ⋅ (∑
k

δk ⋅ wjk) for association nodes j, summing over  

output nodes k 

 

The derivative of the logistic equation embedded in the parameter δ  for association nodes is 

appropriate since the weight changes occur only at equilibrium (i.e. after activity has settled in 

the cortical layers), when ( ) ( )ijh
seij eCCs ⋅−+⋅−= γ1 .  Weights between input and association 

layers, as well as between association and output layers, were adjusted after activity settled.  

Activity was considered to have reached a steady state (i.e. settled) once activity change  in a 

single time step dropped below threshold parameter ∆training.  To incorporate a left hemisphere 

advantage, the learning rate µ for the left hemisphere was 50% higher than for the right 

hemisphere in all three models.  There is good reason to believe that neurotransmitter 

concentrations differ between the cerebral hemispheres (Tucker, 1987; Tucker & Williamson, 

1984).  Such differences may lead to asymmetries in synaptic plasticity, and therefore 

hemispheric differences in learning.  Although little is known about learning differences between 

the hemispheres, previous work has shown such learning rate asymmetries lead to hemispheric 

specialization similar to that which occurs in the human brain (e.g. Shevtsova & Reggia, 1999). 

 It would also be possible to vary other aspects of the model in order to set a left 

hemisphere advantage.  Shevtsova and Reggia (1999) observed that greater cortical excitability, 

as well as larger network size, also provide processing benefits.  Although it would have been 

possible to vary both of these aspects of the current models, we chose to focus on learning rate 
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for three reasons.  First, as described above, an advantage in learning provides a simple and 

intuitive way of exploring the left hemisphere advantage.  It is easy to understand, and also to 

predict, the outcome from having a single hemisphere being a faster learner, and this advantage 

provided a simple way to explore left hemisphere processing advantages in word recognition  

Second, differences in cortical excitability and network size differences are not as easily 

instantiated using bi-hemispheric neural networks, as each introduces problematic asymmetries 

in activity levels that make performance asymmetries more difficult to identify.  We hope to 

explore potential solutions for examining  such asymmetries in the future.  Third, past modeling 

has suggested that asymmetric hemispheric learning speed can be viewed as a common factor 

leadning to lateralization (i.e. it is the critical factor even if the hemispheric asymmetry used in a 

model is size or excitability (Reggia et al, 1998). 

 All parameters were the same across computational model type, except for those relating 

to interhemispheric transfer of activity (as described above).  Cortical excitability (Ce=1) and self 

inhibition (Ci=-1) constants were matched with Shevtsova and Reggia’s (1999) model of letter 

recognition, from which this model was loosely derived.  Gain of the sigmoid function was set to 

two, and based on previous experience this value proved adequate to ensure rapid (but not too 

rapid) learning.  The weight values for intrahemispheric excitatory (we=1) and inhibitory 

connections (wi=-2) were chosen to ensure a strong effect of lateral inhibition while ensuring that 

activity in the entire network did not become suppressed by overwhelming inhibitory influences.  

Inter-hemispheric connection weights (wi=.5) were set at half local excitatory connections to 

ensure that inter-hemispheric connections did not overpower local excitatory ones.  A search of 

the parameter space for each of these values was conducted, and it was determined that only 

alteration of the interhemispheric connection weight values (wi) significantly impacted 
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performance of the models.  If wi was set above approximately 0.8, inter-hemispheric activity 

overwhelmed local intra-hemispheric influences making results uninterpretable.   

 A total of 1000 training epochs were conducted, with each of the 60 word stimuli 

presented to both hemispheres/association areas in a randomly permuted order.  It was chosen to 

use bilateral presentation during training because we wanted to foster bilateral representation of 

the target stimuli.  We recognize that bilateral lexical representation is a controversial topic, as is 

the nature of storage for lexical stimuli given the splitting of the visual fields.  There is good 

evidence that, although the visual fields overlap some due to organization of ganglia cells in the 

retina (Reinhard & Trauzettel-Klosinski, 2003), both hemispheres receive only part of the input 

from a centrally fixated word (see Shillcock et al, 2000, for review).  Thus, normal reading 

should involve splitting of a word between the left and right visual fields, and consequently the 

left and right hemispheres.  However, it is an assumption of this paper, as well as those addressed 

earlier regarding the different cognitive models of hemispehric interaction, that lexical 

representation consists of a complete and intact entry in one or both hemispheres.  Although this 

sets aside the concern regarding the splitting of visual information between the visual fields 

during centralized word viewing, it does allow for an examination of joint hemispheric lexical 

representation.  It should be recognized that there is controversy regarding how words are 

processed during centralized, as well as lateral fixation, and that it is not assured that both 

hemispheres receive complete stimulus information during either presentation design.  However, 

the goal of the current study was not to examine how words are learned during centralized or 

lateral presentation, but rather to learn more about how lexical entries are accessed in the two 

cerebral hemispheres.   
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A total of 10 simulations were conducted for each computational model.  For each 

simulation weights were initially randomized, and words were presented in a different randomly 

permuted order for each training epoch.  Appendix A includes a list of all 60 words, as well as 

the 60 non-words, presented during the final testing session (described below).  Words were used 

in both training and testing, non-words were used only during testing.  Words were, in effect, 

matrices representing possible consonant-vowel-consonant (CVC) trigrams.  Row one represents 

all possible initial consonants, the second row prepresents all vowels, and the third row the final 

consonants.  A total of 60 legal words, as well as 60 non-words were taken from the 125 possible 

CVC combinations.  The bigram frequency of each word and non-word was also computed and 

analyzed, as discussed in the Results section. 

 

Experimental Testing 

Table 2 presents a list of all parameters used in the testing.  The testing phase differed 

from the training phase in that stimuli were lateralized to represent unilateral visual field 

presentation, as is done experimentally.  Thus, stimulus information was preferentially directed 

to one hemisphere or the other in order to identify hemispheric asymmetries.  This was 

accomplished by presenting each stimulus in full strength to the target hemisphere (left 

hemisphere for RVF trials and right hemisphere for LVF trials), but only at one half strength to 

the contralateral hemisphere.  This was necessary to ensure that one hemisphere received the 

bulk of stimulus information, while recognizing that at this high level of processing some 

interhemispheric transfer must have already taken place.  It is also important to note that the 

current model makes no attempt to model early processes in the visual system, as the input layer 

is assumed to have already assembled features to the level of graphemic representation. 
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For each model, activity was passed to the output layer for each time step and the output 

node with the maximum activity level was determined.  When that value passed a critical value 

omax, then a word response was made.  Also, whenever total change in activity within the 

association areas dropped below ∆testing, over a single time step a non-word response was made.  

These two outcomes represent the cognitive equivalents of the knowing state (word response) 

and cessation of the lexical search (non-word response).  For the direct access model, whenever 

an output node in either output vector reached omax a word response was made, regardless if it 

was the left hemisphere output layer or the right hemisphere output layer.  Thus, it is possible for 

the left hemisphere to make a response, even when the right was initially tasked with recognizing 

the stimulus (LVF presentation).  However, as discussed in detail in the Results section, in no 

case did one hemisphere respond to input presented to the contralateral hemisphere. 

During testing the 60 words, as well as 60 novel non-words, were presented.  Just as with 

behavioral lexical decision experiments, any word stimulus which led to a word response was 

deemed correct, even if a different word node than that presented became active past threshold.  

Similarly, any non-word stimulus which led to a post-threshold output node response was 

deemed incorrect.  Response latencies, which were counted as the number of cycles before a 

response was made, were calculated only for correct trials.  Again, this parallels behavioral 

experiments which traditionally show word advantage in response latency for accurately 

identified words. 

 The parameter ∆testing, was defined as the minimum total change in activity in the left and 

right hemispheres before a non-word response is made.  In effect, for each input to the model 

two processes competed to reach completion first.  Either an output node passed threshold omax 

or the change in activity among all left and right hemisphere nodes dropped below threshold 
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∆testing.  These two parameters were carefully chosen such that response latencies for words and 

non-words were comparable, and it was observed that varying each had nearly identical effects 

on all three models: Lowering omax and raising ∆testing introduces a non-word bias, with the 

opposite changes introducing a word bias.  However, it proved difficult to test any of the models 

with ∆testing so high that mean non-word latency was greater than that for word latency, because 

as this occurs word accuracy falls rapidly.  Consequently, although a comparison of mean word 

and non-word latency results are beyond the scope of this paper, it is worthy of note that it is an 

inherent design constraint that non-word response latency must be greater than word response 

latency, in computer simulations and perhaps in human perception as well.  

Results from the three models were compared against actual data from a recent, purely 

experimental study of the lateralized lexical decision task (Weems & Zaidel, 2003).  In that 

study, fifty participants were tested, all strongly right handed with no history of neurological 

illness.  Two hundred eighty-eight words and non-words were used, each between three and five 

letters in length.  In a manipulation not examined here, half of the words were high frequency 

(>100 instances per million per Francis and Kucera, 1982) and half were low frequency (<10 

instances per million).  All non-words were orthographically legal, matched with the words in 

length.  Appendix B presents a list of the behavioral stimuli used.  Each stimulus was shown 

twice, once in each visual field, for a total of 576 trials.   Stimuli remained on a computer display 

screen for a total of 165 milliseconds, one degree of visual angle away from central fixation.   

Subjects responded bimanually by depressing buttons with both their left and right hands if the 

target was a word, and different buttons with both hands if the target was a non-word.  Rest 

periods every 144 trials were provided, and testing lasted approximately 45 minutes.  Both 

accuracy (percent errors) and latency (time between stimulus presentation and response) 
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measures were collected, and only response latencies for correct trials were analyzed.  

Behavioral data from this study was subjected to a two-way, within subjects Analysis of 

Variance (ANOVA) with factors Visual Field and Target Wordness.  A more detailed description 

of the experimental testing is described elsewhere (Weems & Zaidel, 2003). 

 

RESULTS 

Behavioral data.  Figure 2 shows accuracy and latency results from each of the three 

computational models, as well as for the behavioral data.  For accuracy, main effects of target 

wordness (F1,49=10.64, p<.005) and visual field (F1,49=67.53, p<.001) revealed that non-words 

were identified with fewer errors than words (10.3% and 14.3%) and that stimuli were identified 

more accurately in the RVF compared to the LVF (9.1% and 15.5%).  For latency the same main 

effects were observed, as RVF trials were responded to more quickly than LVF trials (667.6 and 

686.9 msec; F1,49=17.08, p<.001), although words were identified earlier than non-words (665.2 

and 689.3 msec; F1,49=14.49, p<.001).  These two factors interacted for both accuracy 

(F1,49=23.82, p<.001) and latency (F1,49=14.84, p<.001).  Although both words and non-words 

were identified more accurately in the RVF (F1,49=52.42, p<.001 and F1,49=13.48, p<.001, 

respectively), the effect was much stronger for words, leading to a non-word advantage for LVF 

trials (F1,49=19.28, p<.001) but not RVF trials.  For latency, a RVF advantage was observed for 

words (F1,49=23.44, p<.001) but not non-words, leading to a word advantage only for RVF trials 

(F1,49=26.84, p<.001).   

 These results represent standard lexical decision findings, although the word advantage in 

response latency but not response accuracy is surprising.  Although the word advantage in 

response latency is a reliable and robust finding for lateralized lexical decision, the word 
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Figure 2.  Results obtained from each of the three model types, as well as from behavioral data 
obtained separately.  Vertical axes represent number of iterations before a response is made 
(models) or response latency (behavioral data) and percent incorrect identifications (accuracy; 
words identified as non-words and non-words identified as words).  Error bars represent the 
standard error, and asterisks indicate significant effects in the behavioral results.  While a RVF 
advantage occurs for word recognition only for both behavioral accuracy and latency, it occurs 
for the direct access and cooperative hemispheres models in response latency and for the callosal 
relay and cooperative hemispheres models in response accuracy. 
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advantage for response accuracy is common but less consistent (e.g., Faust, Kravetz, & Babkoff, 

1993; Lambert, 1991).  It is difficult to say why some studies show a word advantage for 

response accuracy while others do not.  As described above regarding the neural models, it was 

impractical to set parameters such that non-word recognition was faster than word recognition, 

perhaps providing useful insight into why this also fails to occur in human recogntion.  However, 

there was no such straight-forward relationship between word and non-word response accuracy, 

indicating that such measures may vary by subject to subject (or even experiment by 

experiment). 

 

Callosal Relay model.  For latency, both words and non-words showed a strong RVF 

advantage, with words being identified faster than non-words.  Although a weak RVF advantage 

was observed for word recognition with response accuracy, this was overshadowed by a ceiling 

effect of performance and few errors overall.  To explore the possibility that overlearning led 

hemispheric asymmetries to be washed out (i.e. that the choice of training epochs – 1000 – led 

the callosal relay model to show minimal asymmetries due to overlearning), performance of the 

model at shorter training intervals was explored.  Results showed that performance between the 

visual fields was nearly identical even as early as 400 training epochs, with near perfect 

performance (<10% errors).  In contrast to words, non-words showed a LVF advantage in 

response accuracy. 

 The lack of a strong RVF accuracy advantage for words, and the strong RVF latency 

advantage for non-words, suggests that performance of the callosal relay model differed 

significantly from the behavioral results.  The hallmark sign of a left hemisphere advantage 

during lexical decision, namely a strong RVF advantage for word recognition, was not apparent 
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in either dependent measure.  It was surprising that such a strong RVF advantage should occur in 

non-word response latency, since these stimuli had not yet been presented to the model.  Indeed, 

one might make the exact opposite prediction: it should take longer for activity to settle for the 

RVF (left hemisphere) due to the more strongly established (through the learning rate advantage) 

attractors generated by its weight matrix. 

 

 

Figure 3.  Mean connection weight values for each model type.  Values in parentheses represent 
mean absolute weight values.  Nearly identical levels of activity are sent to the left and right 
hemispheres for the direct access model.  The callosal relay and cooperative hemispheres 
models, however, show a strong left hemisphere advantage in activity propagation (larger weight 
values).   

 

Although it is a rather general measure that fails to capture much of the connectivity 

reflected in the neural network, mean connection weights between each hemisphere and the 

input/output layers were used to learn more about how each hemisphere contributed to responses.  

Figure 3 shows that connection weights between the input layer and the left and right hemisphere 

strongly differed across the three models.  For the callosal relay model most activity was 

propagated to the left hemisphere rather than the right.  This difference is observed for both 

mean connection weights, as well as the mean absolute value of those connection weights, which 

indicates that the left hemisphere received both stronger excitatory and inhibitory connections 

from the input layer.  Training appears to have led to a minimization of right hemisphere 
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involvement, with most activity (and stimulus processing responsibility) going to the left 

hemisphere. 

One common experimental finding in behavioral lexical decision is that words that are 

more “word-like”, like those that have higher bigram frequency, are identified quicker and more 

accurately than those with fewer neighbors (see Westbury and Buchanan, 2002 for a review).  In 

the current study, we also examined the effect of bigram frequency on word response latency by 

measuring the number of instances each letter pair occurs in the word corpus and examining the 

correlation between bigram frequency for each word and the number of iteration cycles before 

recognition.  We chose to examine bigram frequency for words, rather than non-words, based on 

research showing that bigram frequency has the strongest effect for words, with little impact on 

non-word recognition (Rice & Robinson, 1975).  To calculate bigram frequency, we added the 

number of instances that each letter pair occurs in the 60 word corpus, and calculate the mean 

bigram frequency for each word.  We chose to examine the correlation between bigram 

frequency and response latency, rather than simply comparing bigram frequency for correctly 

and incorrectly identified words, because accuracy was so high that there were too few 

incorrectly identified words to make an accurate comparison.  This relationship between “word-

like-ness” and response latency may be difficult to assess; because so few letters were available, 

there was not the variance of bigram frequency in the current corpus that is encountered in the 

actual English language. For the callosal relay model, the correlation between word bigram 

frequency and response latency was -0.03.  Thus, for this model bigram frequency failed to 

predict speed of word recognition.   

 



Draft copy – not for dissemination 27

Direct Access model.  It is clear from Figure 2 that neither accuracy or latency 

performance demonstrated a RVF advantage.  In fact, the only apparent visual field difference 

was a LVF advantage for non-word accuracy, mimicking the same finding from the callosal 

relay model.  A word advantage was observed for both response accuracy and latency. 

 As with the callosal relay model, we also examined the possibility that the lack of visual 

field differences may be due to an overall ceiling effect for word recognition.  However, like the 

callosal relay model, even as early as after 400 training epochs word recognition performance 

was near perfect (5-10% errors).  It appears that when interaction between the hemispheres is 

minimized, each hemisphere becomes a competent, independent word recognizer.  From Figure 

3, we see that both hemispheres received strong connectivity with the input layer, even though 

the left was specialized for the task.  This result is in contrast to the connectivity pattern with the 

callosal relay model, in which activity propagated substantially more to the left hemisphere.  

Connection weights to the respective output layers were also similar between the hemispheres, 

even though post-hoc analysis showed that the hemisphere receiving the primary input (left 

hemisphere for RVF and right hemisphere for LVF) was the one to respond first in all cases. 

 An examination of the relationship between bigram frequency, as calculated above, and 

response latency showed a weak, negative correlation: -0.13.  The correlation did act in the 

anticipated direction, in that higher bigram frequency led to faster responses (fewer iterations to 

recognition).  The modest degree of the relationship may be due to the inherent limitations from 

defining bigram frequency in the current situation, as discussed previously. 

 

Cooperative hemispheres model.  Unlike the callosal relay and direct access models, a 

RVF advantage was observed for accuracy of word recognition.  Also of note is that this RVF 
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advantage was limited to words, as non-words showed a weak LVF advantage for both 

dependent measures.  Thus, the cooperative hemispheres model was the only model to mirror 

behavioral results in both response accuracy and latency, demonstrating a RVF advantage for 

words but not non-words 

Like the callosal relay model, the right hemisphere was not strongly connected to the 

input layer (Figure 3), and was also more weakly connected to the output layer.  Indeed, the input 

layer shared twice the connectivity with the left hemisphere than the right, even though the 

cooperative hemispheres model was the only one to allow free activity sharing between the 

hemispheres.  Surprisingly, even the callosal relay model shared stronger connectivity between 

the input layer and right hemisphere, despite the fact that the right hemisphere only contributed 

indirectly (through the left hemisphere) towards response.   

Finally, as with the direct access model, a modest negative correlation was observed 

between bigram frequency and word response latency (-0.18).  Although the relationship was not 

strong, it did act in the anticipated direction: greater word-like-ness led to faster response. 

 

DISCUSSION 

 As with many computational models, each of those discussed here is a gross 

simplification from actual cognitive strategies used during human performance, and the limited 

corpus of words used also limits the generality of our model.  For example, as the stimuli were 

introduced to the hemispheres at the graphemic level without lower level analysis, and also 

presented without any context, this task surely differs from actual performance in many ways.  

However, these simplifications do not substantially diminish the significance of the observed 

results, since each is considered only relative to the others, and since it is how the hemispheres 
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interact that was of primary interest.  Indeed, it is in such simplicity that these models become 

their most informative; if interesting hemispheric asymmetries emerge even when lower level 

aspects of the stimulus processing are ignored, then such models may be useful in describing a 

variety of higher level cognitive tasks. 

 Both the cooperative hemispheres and callosal relay models showed some hemispheric 

specialization in performance accuracy, with the strongest hemispheric differences being in word 

response latency.  These two models included hemispheric transfer (unlike the direct access 

model), thereby allowing activity to remain coordinated between the hemispheres during training 

and subsequent processing.  It is notable that training involved bilateral presentation, so the two 

hemispheres were trained to work together rather than individually.  As a result, any hemispheric 

specialization emerged from the simple dynamics defined by the models, rather than any rules 

imposed by the model design or needs of the task.  This specialization was not dependent on 

asymmetric transfer between the hemispheres, as it occurred both for the cooperative 

hemispheres model (in which activity traveled freely in both directions between the 

hemispheres), and the callosal relay model (in which transfer was primarily right to left).   

 Mean connection weight values between the primary and association layers (Figure 3) 

showed that the callosal relay and cooperative hemispheres models relied much less on the right 

hemisphere for response.  This laterality was observed in contrast to the direct access model, in 

which strong connectivity emerged to both hemispheres and word recognition was high for both 

visual fields (although faster for the RVF).  The lateralization of the cooperative hemispheres 

and callosal relay models led to different outcomes: the callosal relay model showed faster 

recognition for both words and non-words for RVF trials, whereas the cooperative hemispheres 

showed a RVF response latency advantage only for words.  Thus, the cooperative hemispheres 
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model was the only one to mimic behavioral results in both accuracy and latency performance 

(i.e., the only model that showed a RVF advantage in both response measures for words only). 

  The strong asymmetry observed when interhemispheric connectivity was included runs 

counter to some neurological evidence that shows greater interhemispheric connectivity is 

associated with reduced asymmetry.  For example, Aboitiz et al (1992) observed using post-

mortem analysis that greater hemispheric asymmetry in perisylvian size in males is related to 

reduced isthmus size.  Similar results were observed using magnetic resonance imaging, in 

which greater hemispheric asymmetry for males was associated with lower corpus callosum size 

(Dorion et al., 2000).    The difference between these anatomic findings (although still somewhat 

controversial)  and our neural network results may lie in the different metrics used for 

asymmetry.  Anatomically, asymmetry is measured using cortical size, whereas here asymmetry 

is defined functionally.  Perhaps some interhemispheric communication is necessary for left 

hemisphere specialization to occur because, without such communication, each hemisphere 

learns independently (as discussed next regarding the direct access model).  In the brain, where 

the two hemispheres clearly work in tandem, the two hemispheres do not get the opportunity to 

learn independently, and so increased inter-hemispheric connectivity can have limiting effects on 

asymmetry. 

 In contrast, the successful performance of the direct access model, regardless to which 

visual field the stimuli were presented, suggests that this model allowed each hemisphere to 

become a strong word recognizer.  Bilateral competence was supported by the fact that the 

hemisphere receiving the bulk of stimulus information was the one making responses, with the 

left hemisphere being slightly faster for identifying words.  However, the strong recognition 

ability of both hemispheres in this model runs counter to the behavioral evidence presented here 
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and elsewhere (Bradshaw & Gates, 1978; Chiarello, 1985; Leiber, 1976).  For example, word 

recognition ability of the disconnected right hemisphere, a measure only able to be achieved with 

split-brain patients, is typically very low or non-existent (Zaidel, 1990, 1998).  For this reason, it 

remains unlikely that the direct access model, at least as defined here, is a completely adequate 

model for hemispheric word recognition.   

 It is surprising that the model that included symmetric transfer between the hemispheres 

(cooperative hemispheres model), not asymmetric transfer (callosal relay), was the only one to 

show hemispheric specialization effects for both response measures.  The cooperative 

hemispheric model is special because it makes no explicit assumptions about which hemisphere 

is taked with processing a stimulus or making a response.  Indeed, it is difficult to identify which 

hemisphere holds the greatest responsibility for making a response because both are connected to 

the same output mechanisms; any output is based on the summed output of both hemispheres.  

The cooperative hemispheres model, therefore, was the only one to allow intrinsic differences 

between the hemispheres (in this case, learning rate) to govern asymmetries, rather than 

constraints of the model itself. 

Finally, the relationship between bigram frequency and response latency showed that, for 

the cooperative hemispheric and direct access models, more word-like words are identified faster 

than those that are less word-like.   Here, being word-like is defined as sharing bigrams that also 

commonly co-occur in other lexical entries.  However, this correlation was not exceptionally 

strong, reaching -.018 and –0.13, respectively.  Perhaps with a larger vocabulary the correlation 

would have been greater, as 60 words provided only a minimal chance to examine correlations.  

A wider variance of bigram frequency might also contribute to greater power to examine such 

relationships; having only 15 letters led to few bigrams and therefore little variance in bigram 
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frequency.  Because stimuli were resented in a 3x5 input matrix, rather than serially or some 

more realistic manner, the model also had no way of assessing important orthographic factors 

such as letter position.  Thus, bigram frequency is a relatively artificial construct in the current 

model, although still worthy of inspection.  However, the correct direction of the trend in these 

two models is promising. The lack of a similar significant correlation in the direct access model 

might be linked with the overall fast word recognition it exhibited (i.e., minimal variance in 

response latency), although further examination is warranted.  
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APPENDIX A 
 
 

Input matrix 
Row 1   node 1:B, node 2:H, node 3:L, node 4:P, node 5:W 
Row 2   node 1:A, node 2:E, node 3:I, node 4:O, node 5:U 
Row 3   node 1:D, node 2:G, node 3:M, node 4:N, node 5:T 
 
 
Words 
bad  bud  hit  lit  pit 
bag  bug  hog  log  pod 
ban  bum  hot  lot  pot 
bat  bun  hug  lug  pun 
bed  but  hum  pad  put 
beg  had  hut  pan  wag 
bet  ham  lad  pat  wed 
bid  hat  lag  peg  wet 
big  hem  led  pen  wig 
bin  hen  leg  pet  win 
bit  hid  let  pig  wit 
bog  him  lid  pin  won 
 
 
Non-words 
bam  hin  lin  pim  wen 
bem  hod  lod  pog  wid 
ben  hom  lom  pom  wim 
bim  hon  lon  pon  wod 
bom  hud  lud  pud  wog 
bon  lam  lum  pum  wom 
bot  lan  lun  wad  wot 
han  lat  lut  wam  wud 
hed  lem  pag  wan  wug 
heg  len  ped  wat  wum 
het  lig  pem  weg  wun 
hig  lim  pid  wem  wut 
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APPENDIX B 

Words – behavioral data 

able  camel  few  kind  party  soup 
ache  canon  final  kite  pay  spa 
act  car  find  know  peace  spell 
acute  care  fix  law  peel  stage 
age  chalk  flood  lay  pill  stain 
agile  chant  floor  lazy  plant  stand 
aisle  chasm  found  lead  point  stop 
alone  chill  fox  leap  pool  straw 
amuse  cigar  frost  leash  press  sue 
angel  class  fry  leave  pry  sun 
ant  clear  game  led  put  sword 
apron  close  gap  let  quart  tag 
army  clue  gem  lick  quest  take 
art  color  girl  lid  race  tap 
ask  comb  give  life  rage  tax 
ate  come  glove  light  ram  tin 
attic  comic  gown  local  ran  top 
avid  crisp  great  logic  rat  total 
awe  crown  grill  lost  reach  tow 
bad  cub  gun  lot  ready  truce 
ball  curl  hair  love  real  truth 
bed  cut  halt  low  red  try 
been  dash  hand  major  rhyme  turn 
beg  date  has  make  rid  twin 
bet  day  hawk  man  rinse  type 
big  dig  heard  mar  road  unite 
bike  dim  heavy  mass  robin  use 
bin  does  heir  might  rot  vent 
bind  done  help  mild  rub  view 
bit  door  herb  mole  rude  voice 
bite  doubt  high  money  sail  wall 
black  drive  hike  moral  sat  want 
blend  drum  hip  move  say  war 
blood  due  hit  mow  scare  wasp 
blush  duel  hold  mug  scene  water 
body  dwarf  hook  music  see  way 
boot  early  hope  nail  set  week 
boy  egg  horse  name  sew  wife 
brisk  ego  hot  noisy  shine  wig 
brood  elm  house  oak  short  wink 
brown  end  hymn  off  shy  woman 
bud  epic  idea  old  ski  word 
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bump  erupt  ink  order  skip  world 
buoy  eye  issue  oven  sly  yacht 
burn  face  ivy  owe  small  yea 
bush  fade  jam  own  sniff  yearn 
calf  fairy  job  pan  snore  yet 
call  far  kick  paper  soak  zoo 
 

Non-words – behavioral data 
 
abes  duby  giwn  malk  shurd  uke 
aby  dush  gnith  marf  skoob  undof 
aff  dwo  grue  mimk  skup  unerg 
aften  dyb  gubda  moce  sleed  urt 
aib  dystu  gwe  moge  sneav  ute 
aket  eakem  huc  molp  snep  vacht 
ank  ect  ind  myro  sni  vad 
aprit  edis  inl  neop  soms  vadsi 
arl  eefu  intle  nihc  sorhe  vige 
awb  efec  ipy  nowgy  spack  vight 
balp  eftom  jelp  nus  spo  vired 
bim  ega  jind  odle  spon  voght 
bir  elif  jorl  odolb  sreps  vole 
biue  emd  jov  oftes  srill  vor 
boj  eme  jugh  ouy  stamm  vox 
booce  emin  kaap  ovep  stass  vra 
browl  enco  kade  owk  stin  vro 
bworl  enole  kalem  phoag  stip  vug 
caoul  enot  kard  pih  stoce  vyheg 
cealp  epho  karm  plock  stol  walp 
ceasp  erak  karsp  poj  stosp  wapte 
ced  essek  kere  prisc  susei  wapz 
cew  esu  ket  raih  talpo  welob 
chae  eusac  kewe  rairt  tatur  wevi 
chig  eveol  kide  rajom  tec  witer 
chrea  evom  kleap  reaj  tesb  wols 
cipe  ewa  klim  ree  theex  wom 
clell  fambi  klo  reoy  tift  wug 
cobin  fas  knue  resu  tinop  xis 
crael  faw  koes  rieh  tivis  yad 
crean  feli  kos  rik  tiwch  yag 
crice  feri  krasp  riker  tof  yare 
crill  fiech  kug  rimic  tog  yas 
cumis  flude  kuy  rine  toh  yatol 
cur  fofto  kworp  rolam  tosp  yats 
danh  foo  lacle  rolic  tov  yax 
dayv  foten  laipt  romo  tra  yed 
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deaty  fov  lalc  rons  treal  yelc 
deha  foz  lar  ruof  tren  yis 
dem  fult  lare  rusic  trosh  yoc 
dhol  fux  laz  ryc  trown  yoom 
dinf  galk  lifun  sacla  tsik  yow 
diy  gax  lin  saj  turp  yub 
doi  geami  lirg  sar  tus  zay 
dorw  geb  liw  scyne  tuz  zimat 
drelo  gep  lorch  sdu  twip  zix 
drila  ger  lum  seab  tworc  zow 
droor  gip  lund  sert  tyn  zwap 
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