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Optimized Halftoning Using Dot Diffusion and
Methods for Inverse Halftoning
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Abstract—Unlike the error diffusion method, the dot diffusion ~ Mitsa and Parker have optimized the ordered dither matrix
method for digital halftoning has the advantage of pixel-level par- [9] for large sizes like256 x 256 to get the blue noise ef-

allelism. However, image quality offered by error diffusion is still fect. This is a compromise between parallelism and image
regarded as superior to most of the other known methods. In this quaiity

paper, we show how the dot diffusion method can be improved by . . . .
optimization of the so-called class matrix. By taking the human ~ The dot diffusion method for halftoning introduced by
visual characteristics into account we show that such optimiza- Knuth [8] is an attractive method which attempts to retain
tion consistently results in images comparable to error diffusion, the good features of error diffusion while offering substantial
without sacrificing the pixel-level parallelism. Adaptive dot diffu- parallelism. However, surprisingly, not much work has been
sion is also introduced and then a mathematical description of dot d ' timizati ' f th ’ led cl trix. In thi
diffusion is derived. Furthermore, inverse halftoning of dot dif- one on op.lmlza lon or the so-calle C"?‘SS matrix. in this
fused images is discussed and two methods are proposed. The firstvork, we will show that the class matrix can further be
one uses projection onto convex sets (POCS) and the second oneptimized by taking into account the properties of human
uses wavelets. Of these methods, thewz_:lveletmethod does_notmakeisua| system (HVS). The resulting halftones will then be of
use of the knowledge of the class matrix. Embedded multiresolu- the similar quality as for error diffusion. Since dot diffusion
tion dot diffusion is also discussed, which is useful for rendering at | ff, . d lleli it to b
different resolutions and transmitting images progressively. @S0 O_ ers mcregse para e|sm, ', now appears 10 be an
attractive alternative to error diffusion.

In this paper, we first review the dot diffusion method in
Section II. In Section Ill, the optimization of class matrix
will be discussed and adaptive dot diffusion will be intro-
. INTRODUCTION duced. In Section 1V, we will give a mathematical descrip-

IGITAL halftoning is the rendition of continuous-tone pic-tion of dot diffusion method. Furthermore we will address
Dtures on displays that are capable of producing only twhe inverse halftoning problem in Sections V-VII. Inverse
levels. There are many good methods for digital halftoning: of@alﬁonlqg has'a wide range Qf apphcapons such as compres-
dered dither [1], error diffusion [2], neural-net based metho@on. printed image processing, scaling, enhancement, etc.
[3], and, more recently, direct binary search (DBS) [4]. Orderdl these applications, operations can not be done on the
dithering is a thresholding of the continuous-tone image withfé/ftone image directly, and inverse halftoning is mandatory.
spatially periodic screen [1]. In error diffusion [2], the error j§OF inverse halftoning, two methods are discussed. One of
“diffused” to the unprocessed neighboring pixels. the methods uses projection onto convex sets (POCS) which

Ordered dithering is a parallel method, requiring Ondﬁ an iterative algorithm. The other one is based on wavelet
pointwise comparisons. But the resulting halftones sufféecomposition of images to differentiate the halftoning noise
from periodic patterns. On the other hand, error diffusdéPm the original image. Then a simple yet efficient algo-
halftones do not suffer from periodicity and offer bludithm for inverse halftoning of dot diffused images is pro-
noise characteristic [5] which is found to be desirable. Posed and compared to other methods. In Section VIII, em-

The main drawback is that error diffusion is inherently sdiedded multiresolution dot diffusion is discussed. Preliminary
rial2 Also, there occur worm-like patterns in near mid-grayersions of parts of this paper have been presented at recent
regions and resulting halftones have ghosting problems [g§pnferences [10]-{12].

Index Terms—blue noise, dot diffusion, error diffusion,
halftoning, inverse halftoning, stochastic screening.
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pixel locations(ny, ns) belonging to clasg and define the TABLE |
halftone pixels to be CLASS MATRIX C USED IN KNUTH'S
METHOD
1, if z(ny, no) > 0.5
hing, na) = - ’ = 1 3549 41133(30|16|24 |32
(n1, n2) 0, if z(ng, n2) <0.5. @

43(59(57|54]2206 |8 |11
We also define the erre(ny, no) = x(n1, n2) —h(ng, no). s1|63|62|46(1a]2 |3 |19

We then look at the eight neighbors 6i,, n») and replace

the contone pixel with an adjusted version for those neighbors

which have a higher class number (i.e., those neighbors that have

not been halftoned yet). To be specific, neighbors with higher

class numbers are replaced with 13]1]4)20]52/64|61]45
251179 |28]4048 56|37

39|47 (5538|2618 1027

29|15(23|31]3650|42]34

2115 |7 |12]4416058]53

z(¢, §) + 2e(n1, n2)/w (for orthogonal neighbors) (2a)
x(4, j) + e(n1, n2)/w  (for diagonal neighbors)  (2b)

wherew is such that the sum of errors added to all the neigh- 11 58 45
bors is exactly:(n1, n2). The extra factor of two for orthogonal /T\@ Ly D
neighbors (i.e., vertically and horizontally adjacent neighbors) G |

is because vertically or horizontally oriented error patterns are 42 <1133
more perceptible than diagonal patterns.

The contone pixelsc(ni, n2) which have the next class |
numberk + 1 are then similarly processed. The pixel values ®/ @‘1’ \CD
x(n1, no) are of course not the original contone values but the 40 63 47
adjusted values according to earlier diffusion steps (2). When
the algorithm terminates, the sign&{n, n2) is the desired
halftone. Fig. 1. Error diffusion from a point to the neighbor points.

This diffusion process is illustrated in Fig. 1. The numbers
in the matrix are elements of a class matrix and the integers in
the bubbles are relative weights of diffusion coefficients. The \ G
neighbors of 33 with higher class numbers are those labeled as @
58, 45, 42, 40, 63, and 47. The error created at 33 is divided by
the sum of relative weights of diffusion coefficients, which is )
24+1+2+14+24+1 = 9in this case. The result of the division, Radial Frequency,fy
¢, is the error to be diffused to diagonal neighbors, ands
diffused to orthogonal neighbors. Since there are 64 classes, the ~ F19- 2. Typical desired radial spectrum characteristics.
algorithm completes the halftoning in 64 steps.

Usually, an image is enhanced [8] before dot diffusion is
applied. For this the continuous image pixé€lé:, j) are re-
placed byC’(i, j) = (C(4, j) — aC(i, §))/(1 — «) where
Cli, j) = Yub_ ) YUE | Clu, v)/9. Here, the parameter
« determines the degree of enhancement. # 0, there is no
enhancement, and the enhancement increasesnaseases. If
«a = 0.9 then the enhancement filter simplifies to

C'(i, j) = 8C(i, j) + C(i, §) — > C(u, v).
0< (u—i)?+(v—yj)?<3 two barons and two near-barons (Table I). The quality of the

resulting halftones still exhibits periodic patterns similar to or-
dered dither methods (see Fig. 6). Knuth has also produced a
class matrix with one baron and near-baron, but unfortunately
these were vertically lined up to produce objectionable visual
artifacts. In our experience, the baron/near-baron criterion does

Knuth introduced the notion dfaronsandnear-baronsn the not appear to be the right choice for optimization. To explain
selection of his class matrix. A baron has only low-class neigthis, define ak-baron to be a position which hashigh-level
bors, and a near-baron has one high class neighbor. The quaighbors. Thug = 0 corresponds to a baroh,= 1 to a near
tization error at a baron cannot be distributed to neighbors, anaron, andt = 8 to anantibaron We have produced a class
the error at a near-baron can be distributed to only one neighboatrix which minimizes the number éf-barons sequentially
Knuth's idea was that the number of barons and near-bardos 0 < k£ < &. The resulting halftone quality was found in
should therefore be minimized. He exhibited a class matrix withost cases to be slightly worse than Knuth’s original results,

Pr dp/ Ozg i)

W(tp

‘lg
Radial Frequency,fy

Fig. 3. Weight function used in the optimization.

This algorithm is completely parallel requiring nine addition
per pixel, and no multiplications.

I1l. OPTIMIZATION OF CLASS MATRIX
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Fig. 4. Original image, peppers.
Fig. 5. Floyd—Steinberg error diffusion.

leading us to conclude that baron minimization is not the righ
approach. In Section IlI-A we introduce a different optimization
criterion based on the HVS, and show that the image quality
significantly improved, though the class matrix does not mini
mize barons.

A. Objective Function Based on Blue Noise

It has been observed in the past that the error in a gooe
halftone should have thielue noiseproperty [5]. This means
that the noise energy should mostly be in the high frequency
region where it is known to be less perceptible. We will show
how to incorporate blue noise characteristics into the clas
matrix optimization.

Imagine that we have a constant gray image;, n2) = g
where0 < g < 1. Let h(n1, n2) denote the halftoned version.
Since the halftone is supposed to create the perception of t
gray level, the average number of dark pixels should be equal
the original gray levet. Typically, therefore, the dark pixels are
spatially distributed with a certain average frequetfigyalled
the principal frequencywhich increases with gray level The ,
preference for blue noise [5] (high-frequency white noise) in
halftoning arises because noise energy at a significantly higher Fig. 6. Dot diffusion with Knuth's class matrix.
spatial frequency thayj, is less perceivable. Thus, we can opti-
mize a halftoning method for a particular gray leydly forcing

the noise spectrum to be concentrated abgyve Calculating the Noise Spectrurmn order to implement the

Thi . Lo optimization, we first need to compute the noise spectrum. The
is does not, however, imply optimality at other gray Ievel?ialftone atterrh ) for the gray levelx( ) =
Interestingly however, if the gray levelduring the optimiza- has the eF;rori(n 77111,)712 g — hin gny) whichniga?N ;A‘?

1, 2) = - 1, 2/

tion phase is chosen carefully, the resulting halftones for arbi- : e .
trary natural images are excellent. For example we optimiz'erHage' Imagine that this is divided inio x L blocks so there

= 2 i — o —
the class matrix in the dot diffusion method for the gray lev reB = (IV/L)" blocks. (In our experimen = 256, L = 64,

1 : . =16.) Let E,,(I1, I3) be theL x L DFT of themth block of
g = = and obtained very good halftones for natural images a . .
we dleGmonstrate in this section efnl, n2). We define the average noise spectrum as

B-1
1
" 3Nkote that a grey level of O represents white and a grey level of 1 represents P(ly, o) = B E |Em(ly, 1)
ack.

m=0
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TABLE I
CLASS MATRIX C' OBTAINED BY PARABOLIC WEIGHTING FUNCTION

591246 6028|1432

2112514411158

33
63

45 | 43

2412001342 5 |54

64 | 52 40 4717

35|57 1550(48 |4

62
26
38

41 | 17 61
56

31

22
39
29

49
23
27

2 |53

16 | 37

From this we compute the so-calleadially averaged power
spectrumP,.(k,.) wherek, is a scalar called the radial fre-
quency. Sincel, | and|l| range from 0 ta_/2, k,. ranges from
0 to L/+/2. We take specific integer values fby and calculate
P,.(k,.) as follows. For each chosén define an annulusl(k,.)

in the ({1, I») plane by the equation

‘leﬂ%—kr

The quantityA, which determines the width of the annulus, is
chosen as unity in our calculation. Wit (%,.) denoting the
number of elements iA(%,.), the radially averaged power spec-
trum of the error for gray leve} is then

2.

I, 12 CA(ky)

< A/2.

NED P(ly, 1s).

0.8

The class matrix in the dot diffusion method should be optivs
mized such that this radial spectrum is appropriately shaped fq,,
awell-chosen fixed gray level In terms of the radial frequency |
variablek,., the principal frequency for the halftone of gray level
g is given by

fg = kmax\/g

wherek,..x = L. Infact, forg > 0.5, since black pixels are
more in number, the halftone is perceived as a distribution of
white dots [5] and we have to takfg = knaxv/1 — g.

The aim of the optimization is to shag&(%,.) by choice of
the class matrixC so that most of its energy is moved to t &
regionk, > f, (as demonstrated in Fig. 2). We therefore defin
the cost function

Fig.
parabolic weighting function.
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7. Dotdiffusion with enhancement afick 8 class matrix optimized using

ig. 8. HVS functionH (u, v) for T = 0.2. The axes are/= andv/x.

h utside (see Fig. 3). (In Section 111-B we consider more sophisti-
%ated weighting functions.) In the optimization the integral was
replaced with a discrete sum. The choice of the class matrix that

minimizes this sum was performed using garwise exchange

5o
(C, g) = /0 Pk )w(ky) dk,.

The idea is to choose the weighting functietik,.) such that
upon minimization of the above functiod;.(k,.) has a low
frequency cutoff at principal frequendfy, sharp transition re-
gion, and a flat high frequency region. The weight function was
chosen to bev(k,.) = (k. — f,)*> for 0 < k. < f, and zero

algorithm[13] described as follows.

1) Randomly order the numbers in the class matrix.

2) List all possible exchanges of class numbers.

3) If an exchange does not reduce cost, restore the pair to
original positions and proceed to the next pair.

4) If an exchange does reduce cost, keep it and restart the
enumeration from the beginning.

5) Stop searching if no further exchanges reduce cost.
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Fig.9. Dot diffusion with enhancement afick 8 class matrix optimized using Fig. 10. Dot diffusion with no enhancement ahiet 8 class matrix optimized
HVS function. using HVS function.

6) Repeat the above steps a fixed number of times and ke®epOther Choices for the Weighting Function

the best class matr|?<. _ ) For simplicity we have chosen our weighting function above
Choice of Gray Level:Since the algorithm can be applied, o the parabolas(k,) = (k. — f,)? for 0 < k. < f, and
. T - ™ g — T = g
onlylto a gl\:jen gray level, (tjhﬁ ﬁray Ievfel ShﬁUId be clhos ro outside. Another alternative is to use the HVS function as
vv||se Y, In order to get gg;o a tcf)nes E_r other gray evfe e weighting function. The HVS function has been derived in
also. In our experience If we perform this optimization O[14] and [15] experimentally. In the frequency domain the HVS

a fixed small gray level (e.gg = 15, §, etc.), we get good f o ic approximated well by

halftones for natural images also. Class matrices obtained
from optimization with a very small gray level will not work,

/12 2
because there is not much error to diffuse to other points H(u, v) = aL® exp ! utv
during the dot diffusion process. Mid gray levels are not suit- s(¢) clog(L) +d

able, first because there are huge diffusions between points,
and second, even unoptimized algorithms yield perceptuaperea = 131.6, b = 0.3188, ¢ = 0.525, andd = 3.91.

pleasing halftones for mid gray anyway. The actual gray levéfe usedL = 0.091 in our experiments wheré is the av-

used in the optimization wag = % and it was found ex- €rage luminance. Furthermore, the phase dependent function

perimentally. The optimized class matrix is shown in Table&(®) is defined as(¢) = ((1 — w)/2) cos(4¢) + ((1 +w)/2)

Il. Notice that the optimal class matrix hagveral barons Wherew = 0.7 and¢ = atan(u/v). With h(x, y) denoting

and near barons the inverse Fourier transform &f (u, v), the discretized ver-
Example: The 512 x 512 continuous tone peppers imagesionh[m, n] = h(1T'm, T'n) is used in the calculations. In Fig.

(F|g 4) was halftoned by using Knuth’s class matrix (F|g 6ﬁ, the HVS function is shown faf = 0.2. Notice that the HVS

and by the optimized class matrix (Fig. 7). It is clear that th&eighting filter has three basic properties:

new method is visually superior to unoptimized dot diffusion 1) it is a decaying function in terms of frequency;

method. In fact, the new method offers a quality comparable to 2) HVS response along thig° line is 1/+/2 of the response

Floyd—Steinberg error diffusion method (Fig. 5). Error diffused to horizontal and vertical lines;

images suffer from worm-like patterns which are notin the orig- 3) weights are nonzero for all frequencies.

inal image, whereas dot diffused halftones do not contain these\gte that the parabolic weight function is circularly sym-

artifacts. Notice that the artificial periodic patterns in Fig. 6 arg etric. and becomes zero after a certain frequency. So, the par-

absent in Fig. 5 and in the new method (Fig?7). abolic weighting function does not have properties 2 and 3.
We optimized the class matrix with this HVS function as the
weighting function. The resultis shown in Table Ill. The dot dif-

“Note that pairwise exchange algorithm yields a local minimum of the cofijsed image of a constant gray levek % with the class ma-

function. We start the pairwise exchange with random class matrices and t A : - . .

the class matrix having the least local minimum in order to get closer to tﬁﬁ% optimized using HVS funCtlon_ and the dot dlffu_sed Imqge

global minimum. Global minimum is not guaranteed. of the same constant gray level with the class matrix optimized

5The halftone and inverse halftone images can be found in [36]. using the parabolic weight function are shown in Fig. 11. From
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TABLE Il be 2.0 by Knuth. The reasons for this selection are that 1) it is
CLASS MATRIX C OBTAINED BY PARABOLIC HVS FUNCTION desirable to diffuse more errors in the vertical and horizontal di-
rections, and keep more errors in the diagonal directions where
the eye sensitivity is known to be lower and 2) it reduces the
number of multiplications if3 is chosen as a power of two.
621 |58)17/27)30147)9 In Knuth’s method, the choicé = 2 was rather crucial be-
20[15|10]63 19|42 |39 cause there was no optimization of the class matrix. We have
8114126116356 |49 153|509 found experimentally that when the class matrix is optimized
for a choserf3, the results are relatively insensitivedas long
as itis in the ranga < 3 < 2. However there are slight ver-
tical and horizontal patterns whe¢h= 0.5. For3 < 1/4 and
3524 |51{13]43/6045]20 A > 4 more serious artifacts are noticeable. In principle the dif-
fusion coefficient can be chosen with greater degree of freedom.
For example we can choose it such that it depends on the class
number as well as the direction of diffusion. At this time how-
ever we do not have an optimization algorithm to optimize such
a general set of diffusion coefficients.

48 (325212528466 |22

38 (64 (5412235 |2 |34

~

4 |8 |3 [33|31(35]57,61

29| 4137140 |50 |44 36|11

D. Remarks

Fig. 11. Optimized dot patterns fgr = ;. Top: Using HVS functionand  The optimization of class matrix was done in Section IlI-A for
bottom: using the parabolic weighting function. constant gray level images only. For this, it is necessary to pick
the constant gray level strategically such that, for most natural
images with multiple gray levels, the halftone quality is good. A
natural question here is whether we can we make the class ma-
trix adaptive. For example, imagine a library of optimal class
matrices{C;} with C; optimized for theith gray level. We can
divide the image int&® x 8 blocks, and for each block a dif-
ferent class matrix can be used depending on the average gray
level there. We have done experiments with this idea. Assuming
that the image is enhanced prior to halftoning (as in Section II),
we found the advantage of the adaptive scheme to be insignif-
icant. However if there is no enhancement prior to halftoning,
then adaptive dot diffusion is significantly better than non adap-
tive (compare Figs. 10 and 12). Besides the obvious advantages
brought into play by adaptation, there is another reason why this
is so: the grid of pixels formed by a given class number is not a
periodic grid in the adaptive case. Any periodicity artifacts cre-
ated by the periodic class matrix are therefore broken. But there
is another problem, namely the boundary effects between the
blocks having different class matrices are apparent.

Another parameter in the dot diffusion is the enhancement
filter. The enhancement lessens the objectionable halftoning ar-
Fig. 12. Adaptive dot diffusion with no enhancement &nd8 class matrices tifacts in other grey levels which are not closegte= % This
optimized using HVS function. can be seen from the resulting image obtained by dot diffusion

with enhancement (Fig. 7) and the image obtained by the dot
the dot patterns it can be seen that the HVS function aligns ti¢fusion without enhancement (Fig. 10). The periodic patterns
pattern in diagonal directions, and the dot pattern looks more $how up almost everywhere in the dot diffused images if en-
regular. The dot diffused image of the peppers image using th&encement is not done prior to halftoning. The enhancement
class matrix optimized with the HVS function is shown in Fig. Yilter used has a parameter(see Section I) which controls the
Notice the dark area between the tall pepper and the fat pepgegree of enhancement whete= 0 means no enhancement
on the left bottom: The vertical patterns in Fig. 7 do not exisinda = 0.9 is the value used in our experiments. The enhance-
in Fig. 9. So, we can conclude that the experimentally derivegent parametex can be lessened to 0.8 without any perceivable
HVS weighting function is a better cost function. difference.

C. Effect of Diffusion Constants E. Dot Diffusion Without Enhancement

The diffusion constang is the ratio between the horizontal In all the discussions so far, the halftoning step is preceded
diffusion coefficient and the diagonal diffusion coefficient of théy an enhancement filter (described in Section I). The enhance-
dot diffusion process. The diffusion constant has been chosemtent step reduces halftoning noise, but might be objectionable
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TABLE IV
THE 16 x 16 CLASS MATRIX

208 | 1 14 |18 |29 |56 |19 (103 |82 |98 |75 | 145 | 150 | 170 | 171 | 173
4 7 24 |37 (57 |51 |66 |88 | 146 131 | 138 | 159 [ 183 | 185 | 196 | 222
8 15 |25 |38 [68 |70 [ 87 |6 107 [ 153 | 151 | 166 | 184 | 193 | 225 | 2

16 (27 |44 {54 |52 |102]116 | 132 | 140 | 137 | 167 | 120 | 209 | 224 | 227 | 5

23 [40 |53 (72 |8 | 104|165 136 | 158 | 174 | 114 | 191 | 223 | 226 | 228 | 17
41 |8 |73 |84 | 105|118 | 168 | 134 | 169 | 181 | 201 | 220 | 232 | 229 | 13 | 22
48 121 |55 | 106 | 124 | 133 | 147 | 177 | 180 | 203 | 221 | 231 | 246 | 3 21 | 42
77 |74 | 128 | 110 | 139 | 135 | 179 | 182 | 207 | 197 | 230 | 245 | 247 | 20 | 43 | 50
81 | 100 | 113 | 148 [ 143 | 172 | 178 | 204 | 219 | 233 | 244 | 249 | 248 | 34 [ 49 | 69
109 | 108 | 141 | 144 | 186 | 164 | 205 | 218 | 234 | 243 | 250 | 256 | 45 | 46 | 71 | 80
111 | 142 | 89 |76 | 176 | 206 | 215 | 235 | 242 | 251 | 255 | 39 |47 | 78 | 117 | 101
112 | 149 | 161 | 175 | 202 | 216 | 236 | 241 | 252 | 253 | 254 [ 62 | 63 |94 |95 | 126
152 | 160 | 190 | 200 | 198 | 217 | 237 [ 240 | 26 |32 [61 |8 (93 |96 | 125 115
157 | 189 | 192 | 210 | 214 { 238 [ 239 (30 |33 60 |65 |92 [119 |79 | 129 | 156
188 1195|1199 | 213 {10 |11 |31 [36 |59 |64 |91 |97 (123 | 130 | 155 | 162
194 | 211 | 212 | 9 12 |28 (35 [58 |67 {90 |99 | 122 | 127 | 154 | 163 | 187

Fig. 15. Ax > bis aclosed set.

X, M = Fy2) j
[2]
(2]
Fig. 13. Dot diffusion with no enhancement addé x 16 class matrix
optimized using HVS function. X ?M '~ F $Z)
L-1 -
Contone Diffused Image Halftone Image
Image X Y I 1 hk
(
0 X ‘M|~ E(2)
L
Diffusion
Control + -
o
Bt
c
quantizer error
Fig. 14. Schematic representation of the dot diffusion process. Hgre XM-1 ?M ™ IT\‘/[.l(Z) -y

represents a vector of all pixels belonging to class

Fig. 16. Synthesis section of &1 channel filter bank.
in some applications because of its very visible sharpening ef-
fect (e.g., see Fig. 9). It turns out that we can get good halftortbe larger class matrix is that the parallelism of the algorithm
without use of the enhancement step provided we make the clsssompromised. We found that ifl& x 16 matrix is used, the
matrix larger than the standafdx 8 size. The price paid for halftone images resulting from the optimization of this matrix
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. Q C C C Q C Q ) f; ; - Tl image belonging to clagsin some order. Let denote a vector
HO|O|O|O|O|C|O|0|0O llell®, o) whose elements are the pixels, in some order, of the contone
2|O|0|0|0|0|0]0|0|0|0|0|0|0|0]0 image. For example

OO0 00 e e e e e e e OO0

1OI0I0 000 e e e e e e CC z1

s|o|C|C]| 0 e e® e e e e e O T2

OO0 000 e 00 e e e OO T =

T1OI0|I0 000 e e e e e e 0

| O00 000 e e e e e e OO TrL

s Olo0 Olo|lo

1:. i: i: ; : : : : : :: :: E { 5 Each of the vectors, zo, ---, £z, can pe regarded as a
oo eeeeeeeee o polyphase component [16] of the contone image.
slolololololclolololololnloolo A. Quantizer Errorg and Halftone Errore

1918717 19719)10) (9] (8] 18] (9)(®] 18] (98] S In the dot diffusion process, the pixels which are quantized by
15

the two-level quantizer are modified versiagsof the original
vectorsz;, the modification being that we diffuse the quantiza-
tion errors from lower classes processed earlier. Since the pixels

. in class 1 are quantized directly, we have
are very good even without the enhancement step. (For compatr-

ison we note here that whenever enhancement is used, the class Y, = 1.
matrix can be as small &sx 5 without creating noticeable peri- _ . .
odicity patterns.) Such optimization was carried out using a gr Lh, denote the halftor_we vector obtained fr_om quant|2|ng this
scale ramp as the training image. The HVS function of Sectidf WO Ievel:'s. The quantlze_r erel =y, — hyis then diffused
[1I-A was used in the optimization, and the associated cost Wg)sthose neighbors of th? pixelsof, Wh'Ch have ahigher class
optimized as in Section IlI-B using the pairwise exchange alggymber. For examples; is replaced with
rithm. Thel6 x 1_6 optimized class matrix is shovyn in Table IV. _ Yy = T2 + Doy (y, — hy)

The peppers image halftoned with the resulting class matrix . ] ] - o
is shown in Fig. 13. There are no periodic artifacts in this resuffhere D21 is a matrix representing the diffusion coefficients
While the overall visible noise level appears to be higher thdk€:» quantities like2/w and1/w in [(2a)] and (2b)]. We then
for error diffusion, the problematic halftone patterns of errdfuantizey, with the two-level quantizer to produce the halftone
diffusion in the mid gray level are eliminated here (examine ttfi for all the pixels in class 2. The quantizer ergor= y, — ha
body of the middle pepper in Fig. 5). By comparing Figs. 6 ang then diffused to the higher class pixels. For example, consider
13, we see thai6 x 16 dot diffusion without enhancement is alsd-/ass 3 pixels. In general these pixels receive diffused error from
superior to8 x & enhanced dot diffusion using Knuth’s matrix?: @ndg, so that the modified class 3 pixels are represented by
because there are no noticeable periodic patterns any more, d§dvector
there are no enha_mcement art_ifacts. _ _ o ys = 23 + Dai(y, — h1) + Daa(yy — ho).

In order to obtain an authentic comparison with good printing
quality we have produced three images in Figs. 31-33 usifig/o-level quantization of; then produces the halftortg for
150 dpi resolution. These are halftoned versions of the Parfass 3 pixel positions, and so forth. Thus, in general, the class
image. Fig. 31 shows the result of error diffusion, Fig. 32 theectorz, is modified to
result of direct binary search (DBS) obtained from the website
of the authors of [15], and Fig. 33 shows the result of using the ~ % — %& T Dia (¥ = bu) + Doy —ho) + -
16 x 16 optimized dot diffusion described above. In terms of + D1y — hi1) ®3)

image quality the DBS method is evidently the best one. Th&q then quantized to obtain the halftdne Proceeding in this
dot diffusion output appears to be comparable to error dlfoSI%y, the halftone pixel;. for all classed < k < L are gener-

in most areas of the image. Dot diffusion has the advantage tha{y The quantizer error vecigy and halftone error vectas,
the complexity is much lower than that of DBS. Moreover iy c|assk are given by

offers parallelism of implementation unlike error diffusion.

Fig. 17. Overlapping blocks used in approximating the QP problem.

q, =Y, — hi (quantizer error)
IV. MATHEMATICAL DESCRIPTION OFDOT-DIFFUSION ex =i — hy (halftoning error)

We have defined the dot diffusion process in Section Il, butw§ptractingh,, from both sides of (3), we gg}, = ex+Dr1g, +
also want to give a mathematical description of the dotdiffusio, ,g, + . .- + D, ,_.q, ,, thatis,

With the aid of this description, we can relate the quantizer error

to halftone error. In addition to providing further insight, this 0 =a

will also be useful in Section VI for inverse halftoning. g4y =ex+ Dorqy
Let us denote the number of classes/byFor example if the

class matrix I x 8 as in Section Il, thelh = 64. Letx; denote

a vector whose elements are the pixels of the original contone : 4)

q; =c3+ Ds1q, + Daq,
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Fig. 18. Two-dimensional separable PR filter bank.
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a

T e Al LR

I. e B e i

Fig. 19. Inverse halftoned peppers with POCS (transform domain projectibig. 20. Inverse halftoned Lena with POCS (transform domain projection
applied before halftoning). applied before halftoning).

By starting from the first equation, we can sequentially replace
g; interms ofe;, €;,_1, - - -, on the right side of (4), resulting in
an expression of the form

91 €1

q> €2
.| = AL

qr, €r

whereAy, is a matrix depending on the elements of the smaller
matricesD,;. We now show thatd, can be generated from
Aj_, as follows: from (4) we can expregs as

q1
q2
gr =[Dri Dpy - Dp 1] : +er
dr—1
€1
€2
=[Dpn Drz -+ Dpp1]Ar—: : +er

Fig. 21. Inverse halftoned peppers with POCS (transform domain projection
er_1 is not applied before halftoning).
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that is
g=A4re.

Similarly, A;,_; can be expressed in terms df, 5, and so
forth. This gives an expression fet;, as a product of simple
matrices, that isA;, = B;B;_1 --- BoBy, whereBj, repre-
sents diffusion of error to clags from all lower classes, and
B; = 1. For example

1 0 0 0 1 0 00
|0 1 0 O 0 I 00
1710 0 I 0| |Dyy D3 I O
D41 D42 D43 I 0 0 o I
B, B;
I o

(®)

o

o
O ~O O
~ o oo

B,

Fig. 22. Inverse halftoned Lena with POCS (transform domain projection is The matrix Ay, has determinant equal to unity as seen from

not applied before halftoning).

L(x,y)

Clx.y) H(xy)

V(x,y)

Fig. 23. Wavelet decomposition of an image.

H(x.y)
L(xy

HZ(va) HS(X7y) H4(X,Y)

Lix.y) Lxy)| Lixy)

Vixy) %&Y) L&y V&y)

Fig. 24. Wavelet tree used in inverse halftoning.

€1
A, o] @
_ -1
=[Dr Dr Dy 1 I][ s I}
er—1
er
which shows that
q
a5 I 0 A1 O
: Dy, Dy Dy I 0 I
qr, ~ ~~
A,
q
€1
e
er,
——

the factored expression (5). Itis therefore invertible, and we can
obtain

c=TLq

whereT, = A;'. HereT, can be regarded as the transfer
function from the quantizer errarto the actual halftoning error.
The total halftoning error-squared, definededs:, can readily
be computed from this if we know the quantizer ergor

B. Expression for Diffused Image

Here is a summary of the main points of the preceding dis-
cussions. Theriginal contone imagé made from pixels in the
vectorsz;. Thediffused imagey is made from the pixels ig;,
which are inputs to the two level quantizer. The imagehose
pixels come fronti, is thehalftone imageThe pixels from the
original contone, diffused, and halftone images can be arranged
in the form of vectorse, ¢, andh as

z1 Y1 hy
T2 Yo ho
r = : ? y = - ? h = .
xy, yL hL

The quantizer error vectgrand halftone error vectarare de-
fined as

q=y—h, e=x—h.
The diffusion process is schematically depicted in Fig. 14. We
can now express the diffused imagén terms of the original
contone image and the halftone imagk as follows:y = g +
h=Are+h= Ar(xz— h)+ hthatis

y = AL.’L' —|— (I — A[l)h. (6)

This expression allows us to characterize the so-called inverse
halftone set in a nice way. Lgt and/; denote, respectively, the
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ith scalar component af andh. Sincey; is directly quantized chosen from this digitized subsé, the elementg; of % also
to yield i; we see that take values from a discrete set. So we can always find:ar
505, ifhy =1 such .that none of the'’s fa_II i!’l the open intervaq0.5 —¢, 0.5).

Yi { 20.5: if h; = 0. (7) Thatis, not only is (7) satisfied, but the following stronger con-

dition holds:
Given a halftone imagé and the halftone algorithm [e.g., dot
diffusion with class matrix (as in Table II)], theverse halftone
setC is the collection of all image vectots which yield the

halftone imagéh. That is, an image belongs t if and only ¢4 some fixede > 0 that can be precalculated from andh.

if the vectory computed using (6) satisfies (7). _ By following the kind of reasoning that resulted in (8), we see
Notice that if we setr = h in (6) then we geyy = h which  hatif 2 is in the digitized subsep, then

implies in particular that (7) holds. Thus the halftone imége
itselfis a member of . That s, if we perform dot diffusion again Ax>d, and Az <d, (10)
on the halftone imagh, the result is stilk.

>0.5, if hy =1
Yi { <05—¢, ifh;=0 ©)

where the vectod, now depends on as well. Notice that the
C. Closed Convex Subset of the Inverse Halftone Set strict inequality< of (8) has now been replaced with

We will see now that the inverse halftone €ds convex but
not closed. We then show how to construct a sulssetz C
which is closed and convex. This will be useful in Section VI We have just shown that every element of the digitizedset
where we create a contone image from the dot-diffused halftopiisfies (10). The sé® is trivially “closed” because it is finite
using the POCS method. For convenience of discussion let[#8: P- 15]. HoweverD is evidently not convex because a linear
renumber the elements of the halftansuch that it can be par- combinationaz; + (1 — «v)z; of 8 bitimagese; andz; is not

E. Closed Convex Subset

titioned as an 8 bit image for arbitraryr in 0 < « < 1. Now consider a
1 setS; that is bigger tharD by defining it to be theset of all
1 1 image vectorg for which (10) holds, or equivalently, (9) holds.
h= [0} where 1= |.|. By slight modification of the arguments at the end of Section
: IV-D we see that this set is both closed and convex. Since (9)
1 holds, it is also clear that (7) holds which shows thabntinue

The elements of, y, and the matrixA;, are also renumberedto belong in the inverse halftone &t Summarizing, we have
accordingly. Then the diffused image vectonas the form three set®, &1, andC with the inclusion relationship

y:|:ya:|:|:Aa:|$+c DCSlCC

Yy Ay
Cisthe set of allimage vectors which result in the given halftone
whereA,, A, ande do not depend o or y. imageh using the given dot diffusion algorithm. The g&is

The diffused image vectay IS such.t_hay.a z 0.5 X 1 and convex but not closed. The digitized sub%eis closed but not
y, < 0.5 x 1 where the vector inequalities in the previous equa:

tion should be interpreted on an element by element basis. T (égvex. The intermediate s&Y is closed and convex. Notice
is, the inverse halftone sétis the set of all image vectosssuch nally that the closed convex s& described by (10) can be

that described more compactly as

<
A,z > d, and Ay < dy. (8) Az <b

whered = _ﬁ“ andb = _g“ . Note that the above vector-

Given two image vectors) andz® satisfying (8), we can LA 3 _
inequality is interpreted componentwise.

readily verify that the linear combinatiane(? + (1 — o)z®

also satisfies (8) whenever< « < 1. This shows that the set 1 nese ideas will be useful in Section VI where we apply
C is convex. the iterative POCS technique to derive an approximation of the

The set of allz satisfyingA,& > d is interpreted geomet- original contone image from a halftone. Assuming that an 8-bit
rically as in Fig. 15 for the case wheseis a two-dimensional 'Mage is a good approximation of the original contone, the dis-
(2-D) vector. Since the boundad,z = d is included, this is tinction between the three sets is minor. However the fact that
a closed set [17]. The sét,z < d has a similar interpretation, W& can work with the closed convex sgt without much loss
but since the boundary is not included, it is not closed. The ifif 9enerality is significant as we shall see in Section V. It al-
tersection of the two sets describedAyz > d, andAyz < d; lows us to assume that the method of POCS converges to a good
is therefore not closed. Summarizine inverse halftone set  @PProximation of the contone image.
for a dot-diffused halftoné is a convex set but it is not closed

V. INVERSEHALFTONING
D. Digitized Subset Inverse halftoning is the reconstruction of a continuous tone

Now consider a subs& C C such that all images if® are image from its halftoned version. Since there can be more than
digitized to, say, 8 bits/pixel. The sétis clearly not empty be- one continuous tone image giving rise to a particular halftone
cause the halftone imadeis certainly a member db. With z image, there is no unique inverse halftone of a given halftoned
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has been used by Fan [21] for ordered dither images. Wong
[22] has used an iterative filtering method for inverse halftoning
of error diffused images. Finally the method of overcomplete
wavelet expansions has been used in [23] to produce inverse
halftones with good quality. During the process of preparing this
paper, we came across another promising (perhaps the fastest)
method for inverse halftoning which uses space varying filtering
based on gradients obtained from the image [24].

In Section VI, we show how the POCS method can be applied
for the inverse halftoning of a dot-diffused halftone. The math-
ematical characterization of dot-diffused images developed in
Section IV will be especially useful to construct the so-called
space-domain constraint set, which is a key ingredient in the
development of the algorithm. Even though the wavelet method
gives better results, inverse halftoning using POCS method is
added because of its elegance and generality. In Section VII, we
show how the wavelet method for inverse halftoning [23] can be
modified for the case of dot-diffused images. While the POCS
method often produces better PSNR, the wavelet method typi-

cally yields a more pleasing visual quality.
Fig. 25. Result of simple de-enhancement of dot diffused Lena image.

VI. INVERSEHALFTONING USING POCS

The method of POCS, which is an acronym for projection
onto convex sets, is a powerful algorithm for the approximate
recovery of a signal from partial information. It has been used
very widely in many applications, as elaborated in authoritative
references [25], [26]. To explain the idea in its simplest form,
assume that the unknown signal is knowpriori to belong to
the intersection of two set$; andS,. Assume these are closed
convex sets (see below). Then starting from an arbitrary initial
guess for the signal and performing successive projections onto
these two sets, we can converge to a point in the intersection of
&1 andS,. Even though this intersection may have many ele-
ments and therefore the original signal not exactly recoverable,
careful choice of5; andS; often leads to satisfactory results.

We will first state the POCS method and the associated con-
vergence theorem more precisely. After this we describe how the
method can be applied for recovering a continuous tone image
from its halftoned version. We will see that the specific details
of the convex sef; depend on the details of the dot diffusion
procedure and the class matrix (Section VI-D). Finally in Sec-
tion VI-E, we will show experimental results.

Fig. 26. Result of inverse halftoning using previous method [33].

image. Nevertheless, using the “mostly lowpass” character‘ﬁs‘- Mathematical Background

tics of a natural image, good inverse halftones can be obtainedThe mathematical setting for the POCS method is the fol-
The basic aim in inverse halftoning is to separate the halftonityving. Let the unknown signaff be a vector in a Hilbert space
noise from the original image. In good halftoning algorithmsf, €.9.,¢> space of images. For example it could be a vector
the noise introduced by halftoningtitue, i.e., itis concentrated constructed from some arrangement of the pixels in a contone
in the high frequencies. Thus, simple low pass filtering can rénage. In view of the physical constraints that we happen to
move most of the halftoning noise, but it also removes the edlj@ow, let us assume thdtis in the intersections of known sub-
information. setsSy, Sz, -+ Sy in H. (These may not be subspaces.) As-

Besides lowpass filtering, there are more sophisticated #ime that each of these isclosed convex setand that their
proaches for inverse halftoning. The methoguadjection onto intersectionsS;,.; is nonempty. Lef; be theprojection operator
convex sets (POC8as been used by Analoui and Allebach [19]
for halftone images produced by ordered dithering. For error djf-"A sets is said to be convex if.f +- (1 — a)g belongs taS for anya such
fused halftones, Hein and Zakhor [20] have successfully ust@a 0sas L thde-neverf Lgare inS. A sets equipped with a metric

€., any measure of distance) is said to be closed if the limit of any convergent

the POCS approach. A different method called logical filteringubsequencgf,} in S also belongs tc.
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Fig. 27. Inverse halftoned Lena using the modified wavelet denoising method.

Fig. 29. Dot diffused peppers image without embedded multiresolution
property.

fo, even though the limif};,,, can depend off,. If this limit is
an acceptable approximation ffthen we are happy.

The convergence result continues to be true even if the pro-
jection operatorg’; are replaced with so-calledlaxed projec-
tionsT; [25]. These are defined & = 1 + A\;(F; — 1) where
0 < A; < 2. We shall not require this stronger version.

B. Application of the POCS Theorem for Inverse Halftoning

Consider applying the above result for the problem of
inverse halftoning. The contone imageis halftoned with a
known algorithm (e.g., dot diffusion with known class matrix),
to yield a halftoneh. From thish, and using our knowledge
of the halftoning process, we have to construct a contone
approximationz .-, subject to two conditions: 1) if it is
halftoned, the result is agail and 2)x,p,r0» Should be an
“acceptable” approximation af.

‘ The first condition alone can be satisfied by many images. Let
- . &1 be the set of all images such that the given halftoning algo-
Fig. 28. Inverse halftoned peppers using the modified wavelet denoisiﬂéhm yields the fixed halftoné. The 0_r|g|nal contone image
method. evidently belongs t&; . Moreover, using the description of dot

diffusion process in Section IV it can be shown that the halftone

from H to ;. The projectiors of z ontoS; is defined to be the  itself belongs tas,. We say thats, is thespace domain con-

mized [25, Sec. 2.2]. Define the composite operator which represents the set of “acceptable images” in some sense.
For exampleS; could represent “natural images” which have
pdt P.Pn_1--- P certain smoothness properties. Sideis usually constructed

with the help of lowpass operators (see below), it will be called
and consider the iteratiofy, = Pf;_,, with initial vector thefrequency domain constraint sém the notation of Section
fo € H. Then, according to theOCS theorenf25, Th. 2.4-1], IV the parent Hilbert spac# is ¢», andS; andS, are the two
the vectorf,, converges weakfyto some vectolf};,, in the in- subsets. If these are closed and convex, then we can start from
tersectionS;,,;. This result is true regardless of the initial vectoan arbitrary initial imagef,, in £2 and perform the projections

"The term “weakly” means that the inner produgt, f,) converges to g, =Pifi_1 (space-domain projection)
(f, fum) for any f in H. This is weaker than the requirement th&y ) o
converges tdf,; ., which would mean thatf, — f,,..|| goes to zero. fi = Pag, (frequency-domain projection)
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can give an orthogonal projection interpretation for this partial
reconstruction. Thus, assume that the inp{#t) is in Z,. Let
S C £ be the subspace formed by the basis functions

Mem (1) = fr(n—Mm), L<k<M-1,—0c0o<m< o0

from the deleted channels. Then the partial reconstrugijon
belongs taS+, the orthogonal complement 6t Since orthog-

onal complements are closed subspaces [29], and subspaces are
automatically convex, it follows thag(n) is the projection of

x(n) onto the closed convex sét-. We can take the frequency
domain constraint set to be

S, =S+,

As explained in Section VI-B, in order to implement the POCS

method we have to know how to project an arbitrary interme-

diate image onto the closed convex $gt It is clear that this

can be done by decomposing the image into subbands using an

orthonormal filter bank, and partially reconstructing it as above.
Fig. 18 shows the actual 2-D filter bank used in our work

Fig. 30. Dot diffused peppers image with embedded multiresolution properf@ this frequency domain projection. Hefé(z) and Hi(z)

are one-dimensional filters, so the filter bank has separable 2—-D

analysis filters [16]. The notatiofl (2, 1) means decimation

i-[g?e;[tilcs),r{’é ;V?rpé]st kfaléArﬁg(r)r:glellgirgot:]heeistgrcszgctt?ggegl (tjhlsby two in the horizontal direction and no decimation in the ver-
g 0 tical direction. The notatiorf (2, 1) similarly stands for the

So. If we are W|II|ng_to accept any member in the |ntersec'ﬂerparabIe expander. WitHo(z) and H, (=) denoting a low-

to be a valid approximation of the contoagthen we are done. ass/highpass pair, the signah(no, n,) is the low—low sub-
The POCS algorithm has in the past been applied for inverda>> 9"Pass pal, 9 0 1

halftoning [20]. In the actual algorithm we have to identify th

%Jhand. If y(ng, n1) is reconstructed using this subband alone,
projection operator®, and P, which take an arbitrary image en we can regard it as a “multirate” lowpass version, which at
in Z; and project onto set§; andS,. For our application we

the same time is an orthogonal projection in the mathematical
already showed, using the mathematics of the dot diffusion %ﬁ

nse. In our work we actually used Daubechies’ ten-tap FIR
gorithm (Section V), that the s& is a closed convex set. The " [30] for the lowpass filtetlo (). The highpass filtef, (z)
second point of novelty is with respect to the projection op

was chosen in the usual way [16] to obtain the orthonormal filter
ator P,. In the past, lowpass filtering has been used [20] as an

bank.
approximation foif, the rationale being that, many naturalimp  |mplementation of Space Domain Projection
ages are lowpass. But Lénfqrtunately LTI fltering is not & pro- The space domain constraint on the inverse halftone is that
jection operator, that i&“(e’“) # H(e/“), unlessH(e?*) is | o ! : ;
an ideal filter with passband response of unity and stopband fgShould lie in the closed convex séf defined in Section V.

sponse of zero. In [20] the authors use partial reconstructiohdis i essentially the set of all contone images which can give

from DCT and SVD (singular value decomposition) as oth&fS€ O the given halftoné. As explained in Section VI-B, in

possible choices for the projection operator. In this paper &der to implement the POCS method we have to know how to

use an operator which is not only an orthogonal projection pRolect an arbitrary intermediate image vectoe /£ onto the

retains the properties of a good lowpass filter; this projection f0S€d convex se,. The meaning of a projection was reviewed

constructed from an orthonormal multirate filter bank. in Section VI-A: the projectiors of » onto S, is the unique
vector inS; such that the error norrw — 9| is minimized.

C. Implementation of the Frequency Domain Projection ~ Here the notatiorle|| represents thé; norm v efe. In order
E)(} implement this projection, we simply solve a minimization

Consider Fig. 16, which shows the synthesis section . . o
an M-band ur?iform orthonormal filter ba)llnk [16] with the'?rOIOIem subject to the constraiiite ;. Thus, the projection

. v of the imagewv onto the convex sef; is the solution to the
perfect reconstruction property(n) = x(n). Note that the following constrained optimization problem:
subbandsco(n), - -+, z—1(n) are obtained by feeding(n) '
to the analysis section (not shown) of the same filter bank. min ||v — 9|2 subjectto A9 < b. (11)
Suppose we delete the subband signalén), -- -, za—1(n) v
and perform the synthesis by retaining only the subbandkis follows because the elemeiitef the setS; are completely
zo(n), ---, zr,—1(n). Then the reconstructiomn) # x(n) in  characterized by the propert# < b. This is a quadratic pro-
general, and(n) is called a partial reconstruction. If the filtergramming (QP) problem and can be solved using standard tech-
bank has the orthonormal property [16], [27], [28], then wriques. We used the Matlab optimization toolbox to solve for
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Fig. 31. Floyd-Steinberg error diffusion.

v. In the interest of efficient programming, the QP problem wds. Implementation Details and Experimental Results

broken into several subproblems by partitioning the image intop,q frequency domain projection described above implicitly
blocks. For this, overlapping blocks are used. In Fig. ;7, thecumes that the original contone image is in the suBset
b_chks used are shown. The bIacI_< circles show the pixel P&iven an arbitrary image(no, n1), we can replace it with its
sitions that are changed after solving the QP subproblem, adiection ontos, before halftoning (i.e., compute the partial
white C|_rcles show the pixels used for boundary C(_)ndltlo_ns ?éconstructiory(no, n1) by usingsoo(no, n1) alone, and then
black circles, but they are not changeq after solving t.hIS Q%Iftoney(no, n1)). This preconditioningensures that the de-
subproblem. Afterwards, the block location is moved 8 pixels {Q,eq inverse halftone is indeed in the intersectionSpfand

right or left, till the whole image is covered. The sizes of QP sul;,;vQ_ We found experimentally that for most natural images, the
problem_s ar§x9. Afurthe_r detail in_the implementa'_tipn is thatprojection ontaS, is nearly as good as the original image, so
the matrixA in the constraint equation must be modified to takg,,cy an initial conditioning is not a severe loss of information.
into account the fact that the original images enhanced with a Second, we found that in many examples the POCS algorithm
highpass filter before halftoning (as described in Section I1). R@()nverges to a good solution even without such preconditioning.
call that the matrixA originated from the matrixi;, described £, the peppers and Lena images, Figs. 19-22 show the in-
in Section I\_/Where_ the key equation relating the original i_mag?erse halftoned images. In Figs. 19 and 20 the original image
« and the diffused imaggwasy = Arx + (I — Ar)h. Inthis a5 first projected onto the transform domain Setbefore
equation we have to replactrz with Azz. whereze is the  paiftoning. In Figs. 21 and 22, this preconditioning was omitted.
enhanced version af. The enhancing filter forv = 0.9 (€€ o completeness we mention the PSNR values for the recon-
Section 1) is the 2-D filter structed images. The PSNR values are as follows: peppers with
preconditioning (PSNR= 30.35 dB with respect to original pep-
pers and PSNR: 32.39 dB with respect to projection of peppers
image ontaS,), Lena with preconditioning (PSNR 31.19 dB

with respect to original Lena and PSNR33.08 dB with respect
and we can writec, = Ex whereF is a square matrix (ne- to projection of Lena image ont$y), peppers without precondi-
glecting boundary details, such as lengthening of a signal diiening (PSNR= 29.44 dB), and Lena without preconditioning
to filtering). The modified4 matrix in the constrainds < bin  (PSNR= 30.66 dB). The images are obtained after five itera-
(12) can now be worked out. tions.

Fopn(z0, 21) =10 — (20 + 1 +zo_1)(zl +1 —l—zl_l)
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Fig. 32. Direct binary search (DBS).

VII. I NVERSEHALFTONING USING WAVELETS andV (z, y) using the undecimated wavelet transform. At scale

i1 : . : o .
An inverse halftoning algorithm which use wavelets was cor%— ' (v¥h|||ch V\{'” be described below), the filtering operations

sidered in [23] and [31]. In this method, wavelets are used fje as follows:

differentiate the halftoning noise from the edge information.

The edges are detected at different scales with specific over- L(wy, wp) = F(2'w ) F(2'w2) X (wy, wy),
complete wavelet transform. Since the edges are correlated at H(wy, wa) = G(24w1) F(2'wo) X (w1, w2),
different scales whereas the noise is not, the halftoning noise is Vi(ws, ws) = F(2w)G(2wo) X (wr, ws)

suppressed by thresholding operations wherever the edges are
not prominent (these correspond to steps 2 and 3 in our inverse . . .
b ( P b ShereG and I’ are derived from quadratic spline wavelets.

halftoning method). However, the algorithm in [23] is tailore hese are tabulated along with the synthesis filters in [32, Table

for error diffusion, which has different characteristics than d ) . ’ . ) :
diffusion. If the method in [23] is used for dot diffusion, the rec-f] (our £'is H in that table). The choice of filters given in [32]

Hgtect edges at different scales if they are used in the wavelet tree
shown in Fig. 24 with scalez?’, 21, 22, 23 from left to right. For
ampleH;(x, y) andV;(z, y) represent the horizontal edges,

d vertical edges df;_, (=, ) at scale‘~!, respectively, and

fx, y) is the low pass version df;_;(z, ¥).

The algorithm starts with a dot diffused imagéz, ). Then

sultis not good. This can be seen from Fig. 26 which shows t
result of inverse halftoning the dot diffused Lena by using thée
method in [23]. The image suffers from periodic patterns, whic
represent low frequency noise. There are basically two reas
for the inferior performance: 1) the images are enhanced in

diffusion before halftoning and 2) there is more low-frequenc
noise in dot diffusion. g ) g )1/(3:, y) is de-enhanced with the de-enhancementfilter specified

In the new method, the specific properties of the dot difflflbove' Let us call the res“'“'f‘g |m_agi,@(a:? v). Afterwards, a
sion algorithm are taken into account. The image is enhand@y'-evel wavelet decomposition is appliedfg(, y). Then
before dot diffusion, hence in the inverse halftoning, the d&t" €ach pixel locatiorfz, y), the following is done.
diffused image should be de-enhanced using the inverse of thel) Apply a symmetric FIR Gaussian filtef,(n, m) to
filter Fopn(z1, 20) = 10 — (21 + 1 + 27 D20 + 1 4+ 231). Vi(z, y), andHi(z, v). [fy,(n, m) = ce= (7 4m?)/20%)
Note thatF,,.;(c/*1, ei*2) > 0 for all 0 < wi, wy < 7. We for —3 < n, m < 3, andcis chosen such that the dc gain
use the wavelet tree built from the analysis block shown in Fig.  of the filter is unity.] The first level edge images contain
23. An imageX (z, y) is decomposed intd.(z, y), H(z, y), mostly the halftoning noise, thus low pass filtering these
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Fig. 33. Thel6 x 16 dot diffusion without enhancement.

images reduces the blue noise without harming the edgesiance of the Gaussian filte? is chosen to be 0.5 and the
significantly. thresholds are chosen to Bg = 300 and7; = 20. The results
2) LetEss(x, y) = Va(z, yv)Valz, y)+Ho(x, y)Ha(x, y). are shown in Fig. 27 (PSNR 30.58 dB) and in Fig. 28 (PSNR
<1

If Eas(z, y) then makeVz(z,y) = 0 and = 30.07 dB).

Hy(z, y) = 0. Even though POCS gives higher PSNR values than the
3) LetEsu(x, y) = Va(z, y)Valz, y)+Hs(z, y)Ha(z, y). wavelet method, the wavelet method gives more pleasing re-

If Fsi(z,y) < T» then makeVz(x,y) = 0 and sultsthanthe POCS. This is due to the space domain projection

Hy(x,y) = 0. step in the POCS. Another advantage of the wavelet method is

Steps 2 and 3 are the denoising steps in the algorithm whéhmat, it is not iterative, whereas the POCS is inherently iterative.
Ty andT; are the thresholds determined experimentally. In ord&hus the wavelet method is better than the POCS method for
to discriminate the edges from the halftoning noise, we haveitwerse halftoning. More recently a promising faster method
locate the edges. For this, the above steps perform a cross bais emerged for inverse halftoning of error diffused images
relation between the edges at different scales. If there is a hi@4]. We have not tried applying the algorithm for dot diffused
izontal edge at scaleat (z, y) thenH;(z, v) andH;,1(z, y) images.
will be of the same sign [32]. The same is also true for vertical
edges. Combining the horizontal and vertical edge correlations
gives better results in detecting the diagonal edges. VIl EMBEDDED MULTIRESOLUTION DOT DIFFUSION

4) The above steps have modified the subband signald; Another desired property of images is the embedded mul-
andV; in certain ways. We now use the inverse filter bantiresolution property. If an image has embedded multiresolu-
(synthesis bank) corresponding to Fig. 24, and obtaintian property, the lower resolution images can be obtained from
reconstructed versioﬁo(x, y). The imageﬁo(x, y) is higherresolutionimages. Embedded images require less storage
the desired inverse halftone image. space, and embedding is also useful for progressive transmis-

In inverse halftoning, dot diffusion has an advantage, namesgyon.

even the simple de-enhanced image is a quite reasonable inAs observed by [33], normal halftones do not have embedded
verse halftone (PSNR = 26.62 dB for Lena image) (Fig. 25). Thmaultiresolution property. This can be seen from Fig. 29, where
de-enhanced image is further processed as described above tfibé12 x 512 image is halftoned by dot diffusion and the

parameters used in the method are found experimentally. Tiheer resolution images are obtained by downsampling the
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higher resolution images by two in each direction. The lowastandard dot diffusion. With more optimization work, it should
resolution images are not good representations of the corbe- possible to come even closer to error diffusion quality.
sponding original images. But, the embedded multiresolutiéiurthermore, the parallelism offered by dot diffusion is a great
property can be imposed during the halftoning process. &ulvantage. The dot diffusion algorithm terminates in at most
[33]-[35] this property is imposed on the halftone image & steps for a8 x 8 class matrix, compared t&/ x N steps
follows. First, the lowest resolution image is obtained usingeeded for error diffusion algorithm for ab/ x N image.
the halftoning algorithm. The higher resolution halftones afdoreover, as noticed in [10], the algorithm can in fact be
obtained from the lower resolution halftones, by retaininggrminated in about 50 steps. The conclusion is that Knuth’s
the lower resolution image at the corresponding pixels, addt diffusion method with a carefully optimized class matrix
halftoning the other pixels of the higher resolution. In [34] ani$ very promising; the image quality is comparable to error
[35], the halftoning method was an optimization-based om#ffusion, and the implementation offers more parallelism than
whereas in [33], the method was adaptive error diffusion. \WWeror diffusion. Since enhancement prior to halftoning can be
will exploit the same idea, and we will show how to impose thebjectionable in some cases, we also introduced and optimized
embedded multiresolution property for dot diffused images. 16 x 16 class matrix, which eliminated the need for enhance-
Given a contone imag€y(m, n) of size My x No, we want ment. In this paper, we first optimized the class matrix. Then a
halftone images of smaller siz8%, x Ny, k=0, 1, 2, ---, K, mathematical description of dot diffusion was derived which
to have a fair representation of the original image. We assunmvas particularly useful in inverse halftoning. We also presented
that there exist integerns, and ¢ such thatM_; = piM;  awavelet-based inverse halftoning algorithm which works very
andNj_; = qx N, for k = 1, 2, ... K. Then the halftoning well, even though the class matrix information is not used.
algorithm will be as follows. Furthermore, we have shown that the dot diffusion algorithm
1) ObtainCx (m, n) = C(mpips - P, nqugz - qx) Can be easily modified to have the embedding property. This
form =1,2 -+, My, n = 1,2, ---, Ni. Then ini- is useful for rendering at different resolution levels and for
tialize i askK — 1. transmitting images, progressively.
2) Halftone Cx(m, n), and let the resulting image be
hK(m, 7‘L)
3) DefineCi(m, n) = C(mpop1 - pi; ngoqs -+ g;) for
m=12,-, M;yn=12 ---, N;, wherepg = 1,
0 = 1.
4) For each pixel locatio(vr, n) belonging to class do
a) If (m, n) = (ap;+1, bg;4+1) for somea, b integer,
thenhi(m, 7’L) = hi+1(m/pi+1, ﬂ/qi+1) else
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