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Optimized Halftoning Using Dot Diffusion and
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Abstract—Unlike the error diffusion method, the dot diffusion
method for digital halftoning has the advantage of pixel-level par-
allelism. However, image quality offered by error diffusion is still
regarded as superior to most of the other known methods. In this
paper, we show how the dot diffusion method can be improved by
optimization of the so-called class matrix. By taking the human
visual characteristics into account we show that such optimiza-
tion consistently results in images comparable to error diffusion,
without sacrificing the pixel-level parallelism. Adaptive dot diffu-
sion is also introduced and then a mathematical description of dot
diffusion is derived. Furthermore, inverse halftoning of dot dif-
fused images is discussed and two methods are proposed. The first
one uses projection onto convex sets (POCS) and the second one
uses wavelets. Of these methods, the wavelet method does not make
use of the knowledge of the class matrix. Embedded multiresolu-
tion dot diffusion is also discussed, which is useful for rendering at
different resolutions and transmitting images progressively.

Index Terms—blue noise, dot diffusion, error diffusion,
halftoning, inverse halftoning, stochastic screening.

I. INTRODUCTION

D IGITAL halftoning is the rendition of continuous-tone pic-
tures on displays that are capable of producing only two

levels. There are many good methods for digital halftoning: or-
dered dither [1], error diffusion [2], neural-net based methods
[3], and, more recently, direct binary search (DBS) [4]. Ordered
dithering is a thresholding of the continuous-tone image with a
spatially periodic screen [1]. In error diffusion [2], the error is
“diffused” to the unprocessed neighboring pixels.

Ordered dithering is a parallel method, requiring only
pointwise comparisons. But the resulting halftones suffer
from periodic patterns. On the other hand, error diffused
halftones do not suffer from periodicity and offer blue
noise characteristic [5] which is found to be desirable.1

The main drawback is that error diffusion is inherently se-
rial.2 Also, there occur worm-like patterns in near mid-gray
regions and resulting halftones have ghosting problems [8].
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1More recently, it has been shown thatgreen noiseis more appropriate
for nonideal printers, which suffer from dot gain [6]. In this paper we
consider ideal printer models.

2It can be shown [7] that error diffusion for anM �N image can,
in principle, be implemented inM+N steps by using sufficient number
of parallel computations.

Mitsa and Parker have optimized the ordered dither matrix
[9] for large sizes like to get the blue noise ef-
fect. This is a compromise between parallelism and image
quality.

The dot diffusion method for halftoning introduced by
Knuth [8] is an attractive method which attempts to retain
the good features of error diffusion while offering substantial
parallelism. However, surprisingly, not much work has been
done on optimization of the so-called class matrix. In this
work, we will show that the class matrix can further be
optimized by taking into account the properties of human
visual system (HVS). The resulting halftones will then be of
the similar quality as for error diffusion. Since dot diffusion
also offers increased parallelism, it now appears to be an
attractive alternative to error diffusion.

In this paper, we first review the dot diffusion method in
Section II. In Section III, the optimization of class matrix
will be discussed and adaptive dot diffusion will be intro-
duced. In Section IV, we will give a mathematical descrip-
tion of dot diffusion method. Furthermore we will address
the inverse halftoning problem in Sections V–VII. Inverse
halftoning has a wide range of applications such as compres-
sion, printed image processing, scaling, enhancement, etc.
In these applications, operations can not be done on the
halftone image directly, and inverse halftoning is mandatory.
For inverse halftoning, two methods are discussed. One of
the methods uses projection onto convex sets (POCS) which
is an iterative algorithm. The other one is based on wavelet
decomposition of images to differentiate the halftoning noise
from the original image. Then a simple yet efficient algo-
rithm for inverse halftoning of dot diffused images is pro-
posed and compared to other methods. In Section VIII, em-
bedded multiresolution dot diffusion is discussed. Preliminary
versions of parts of this paper have been presented at recent
conferences [10]–[12].

II. REVIEW OF DOT DIFFUSION

The dot diffusion method for halftoning has only one design
parameter, calledclass matrix C. It determines the order
in which the pixels are halftoned. Thus, the pixel positions

of an image are divided into classes according to
( , ) where and are constant integers.
Table I is an example of the class matrix for ,
used by Knuth. There are 64 class numbers. Let be
the continuous tone (contone) image with pixel values in the
normalized range . Starting from class , we process
the pixels for increasing values of. For a fixed , we take all
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pixel locations belonging to class and define the
halftone pixels to be

if
if .

(1)

We also define the error .
We then look at the eight neighbors of and replace
the contone pixel with an adjusted version for those neighbors
which have a higher class number (i.e., those neighbors that have
not been halftoned yet). To be specific, neighbors with higher
class numbers are replaced with

(for orthogonal neighbors) (2a)

(for diagonal neighbors) (2b)

where is such that the sum of errors added to all the neigh-
bors is exactly . The extra factor of two for orthogonal
neighbors (i.e., vertically and horizontally adjacent neighbors)
is because vertically or horizontally oriented error patterns are
more perceptible than diagonal patterns.

The contone pixels which have the next class
number are then similarly processed. The pixel values

are of course not the original contone values but the
adjusted values according to earlier diffusion steps (2). When
the algorithm terminates, the signal is the desired
halftone.

This diffusion process is illustrated in Fig. 1. The numbers
in the matrix are elements of a class matrix and the integers in
the bubbles are relative weights of diffusion coefficients. The
neighbors of 33 with higher class numbers are those labeled as
58, 45, 42, 40, 63, and 47. The error created at 33 is divided by
the sum of relative weights of diffusion coefficients, which is

in this case. The result of the division,
, is the error to be diffused to diagonal neighbors, andis

diffused to orthogonal neighbors. Since there are 64 classes, the
algorithm completes the halftoning in 64 steps.

Usually, an image is enhanced [8] before dot diffusion is
applied. For this the continuous image pixels are re-
placed by where

. Here, the parameter
determines the degree of enhancement. If , there is no

enhancement, and the enhancement increases asincreases. If
then the enhancement filter simplifies to

This algorithm is completely parallel requiring nine additions
per pixel, and no multiplications.

III. OPTIMIZATION OF CLASS MATRIX

Knuth introduced the notion ofbaronsandnear-baronsin the
selection of his class matrix. A baron has only low-class neigh-
bors, and a near-baron has one high class neighbor. The quan-
tization error at a baron cannot be distributed to neighbors, and
the error at a near-baron can be distributed to only one neighbor.
Knuth’s idea was that the number of barons and near-barons
should therefore be minimized. He exhibited a class matrix with

TABLE I
CLASS MATRIX C USED IN KNUTH’S

METHOD

Fig. 1. Error diffusion from a point to the neighbor points.

Fig. 2. Typical desired radial spectrum characteristics.

Fig. 3. Weight function used in the optimization.

two barons and two near-barons (Table I). The quality of the
resulting halftones still exhibits periodic patterns similar to or-
dered dither methods (see Fig. 6). Knuth has also produced a
class matrix with one baron and near-baron, but unfortunately
these were vertically lined up to produce objectionable visual
artifacts. In our experience, the baron/near-baron criterion does
not appear to be the right choice for optimization. To explain
this, define a -baron to be a position which hashigh-level
neighbors. Thus corresponds to a baron, to a near
baron, and to anantibaron. We have produced a class
matrix which minimizes the number of-barons sequentially
for The resulting halftone quality was found in
most cases to be slightly worse than Knuth’s original results,
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Fig. 4. Original image, peppers.

leading us to conclude that baron minimization is not the right
approach. In Section III-A we introduce a different optimization
criterion based on the HVS, and show that the image quality is
significantly improved, though the class matrix does not mini-
mize barons.

A. Objective Function Based on Blue Noise

It has been observed in the past that the error in a good
halftone should have theblue noiseproperty [5]. This means
that the noise energy should mostly be in the high frequency
region where it is known to be less perceptible. We will show
how to incorporate blue noise characteristics into the class
matrix optimization.

Imagine that we have a constant gray image
where . Let denote the halftoned version.
Since the halftone is supposed to create the perception of the
gray level, the average number of dark pixels should be equal to
the original gray level.3 Typically, therefore, the dark pixels are
spatially distributed with a certain average frequencycalled
theprincipal frequency, which increases with gray level. The
preference for blue noise [5] (high-frequency white noise) in
halftoning arises because noise energy at a significantly higher
spatial frequency than is less perceivable. Thus, we can opti-
mize a halftoning method for a particular gray levelby forcing
the noise spectrum to be concentrated above.

This does not, however, imply optimality at other gray levels.
Interestingly however, if the gray levelduring the optimiza-
tion phase is chosen carefully, the resulting halftones for arbi-
trary natural images are excellent. For example we optimized
the class matrix in the dot diffusion method for the gray level

and obtained very good halftones for natural images as
we demonstrate in this section.

3Note that a grey level of 0 represents white and a grey level of 1 represents
black.

Fig. 5. Floyd–Steinberg error diffusion.

Fig. 6. Dot diffusion with Knuth’s class matrix.

Calculating the Noise Spectrum:In order to implement the
optimization, we first need to compute the noise spectrum. The
halftone pattern for the gray level
has the error , which is an
image. Imagine that this is divided into blocks so there
are blocks. (In our experiment , ,

.) Let be the DFT of the th block of
. We define the average noise spectrum as
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TABLE II
CLASS MATRIX C OBTAINED BY PARABOLIC WEIGHTING FUNCTION

From this we compute the so-calledradially averagedpower
spectrum where is a scalar called the radial fre-
quency. Since and range from 0 to , ranges from
0 to . We take specific integer values for and calculate

as follows. For each chosen define an annulus
in the plane by the equation

The quantity , which determines the width of the annulus, is
chosen as unity in our calculation. With denoting the
number of elements in , the radially averaged power spec-
trum of the error for gray level is then

The class matrix in the dot diffusion method should be opti-
mized such that this radial spectrum is appropriately shaped for
a well-chosen fixed gray level. In terms of the radial frequency
variable , the principal frequency for the halftone of gray level

is given by

where . In fact, for , since black pixels are
more in number, the halftone is perceived as a distribution of
white dots [5] and we have to take .

The aim of the optimization is to shape by choice of
the class matrix so that most of its energy is moved to the
region (as demonstrated in Fig. 2). We therefore define
the cost function

The idea is to choose the weighting function such that
upon minimization of the above function, has a low
frequency cutoff at principal frequency , sharp transition re-
gion, and a flat high frequency region. The weight function was
chosen to be for and zero

Fig. 7. Dot diffusion with enhancement and8�8 class matrix optimized using
parabolic weighting function.

Fig. 8. HVS functionH(u; v) for T = 0:2. The axes areu=� andv=�.

outside (see Fig. 3). (In Section III-B we consider more sophisti-
cated weighting functions.) In the optimization the integral was
replaced with a discrete sum. The choice of the class matrix that
minimizes this sum was performed using thepairwise exchange
algorithm [13] described as follows.

1) Randomly order the numbers in the class matrix.
2) List all possible exchanges of class numbers.
3) If an exchange does not reduce cost, restore the pair to

original positions and proceed to the next pair.
4) If an exchange does reduce cost, keep it and restart the

enumeration from the beginning.
5) Stop searching if no further exchanges reduce cost.
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Fig. 9. Dot diffusion with enhancement and8�8 class matrix optimized using
HVS function.

6) Repeat the above steps a fixed number of times and keep
the best class matrix.4

Choice of Gray Level:Since the algorithm can be applied
only to a given gray level, the gray level should be chosen
wisely, in order to get good halftones for other gray levels
also. In our experience if we perform this optimization for
a fixed small gray level (e.g., , etc.), we get good
halftones for natural images also. Class matrices obtained
from optimization with a very small gray level will not work,
because there is not much error to diffuse to other points
during the dot diffusion process. Mid gray levels are not suit-
able, first because there are huge diffusions between points,
and second, even unoptimized algorithms yield perceptually
pleasing halftones for mid gray anyway. The actual gray level
used in the optimization was , and it was found ex-
perimentally. The optimized class matrix is shown in Table
II. Notice that the optimal class matrix hasseveral barons
and near barons.

Example: The continuous tone peppers image
(Fig. 4) was halftoned by using Knuth’s class matrix (Fig. 6),
and by the optimized class matrix (Fig. 7). It is clear that the
new method is visually superior to unoptimized dot diffusion
method. In fact, the new method offers a quality comparable to
Floyd–Steinberg error diffusion method (Fig. 5). Error diffused
images suffer from worm-like patterns which are not in the orig-
inal image, whereas dot diffused halftones do not contain these
artifacts. Notice that the artificial periodic patterns in Fig. 6 are
absent in Fig. 5 and in the new method (Fig. 7).5

4Note that pairwise exchange algorithm yields a local minimum of the cost
function. We start the pairwise exchange with random class matrices and take
the class matrix having the least local minimum in order to get closer to the
global minimum. Global minimum is not guaranteed.

5The halftone and inverse halftone images can be found in [36].

Fig. 10. Dot diffusion with no enhancement and8� 8 class matrix optimized
using HVS function.

B. Other Choices for the Weighting Function

For simplicity we have chosen our weighting function above
to be the parabola for and
zero outside. Another alternative is to use the HVS function as
the weighting function. The HVS function has been derived in
[14] and [15] experimentally. In the frequency domain the HVS
function is approximated well by

where , , , and .
We used in our experiments where is the av-
erage luminance. Furthermore, the phase dependent function

is defined as
where and . With denoting
the inverse Fourier transform of , the discretized ver-
sion is used in the calculations. In Fig.
8, the HVS function is shown for . Notice that the HVS
weighting filter has three basic properties:

1) it is a decaying function in terms of frequency;
2) HVS response along the line is of the response

to horizontal and vertical lines;
3) weights are nonzero for all frequencies.

Note that the parabolic weight function is circularly sym-
metric, and becomes zero after a certain frequency. So, the par-
abolic weighting function does not have properties 2 and 3.
We optimized the class matrix with this HVS function as the
weighting function. The result is shown in Table III. The dot dif-
fused image of a constant gray level with the class ma-
trix optimized using HVS function and the dot diffused image
of the same constant gray level with the class matrix optimized
using the parabolic weight function are shown in Fig. 11. From
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TABLE III
CLASS MATRIX C OBTAINED BY PARABOLIC HVS FUNCTION

Fig. 11. Optimized dot patterns forg = . Top: Using HVS function and
bottom: using the parabolic weighting function.

Fig. 12. Adaptive dot diffusion with no enhancement and8�8 class matrices
optimized using HVS function.

the dot patterns it can be seen that the HVS function aligns the
pattern in diagonal directions, and the dot pattern looks more ir-
regular. The dot diffused image of the peppers image using the
class matrix optimized with the HVS function is shown in Fig. 9.
Notice the dark area between the tall pepper and the fat pepper
on the left bottom: The vertical patterns in Fig. 7 do not exist
in Fig. 9. So, we can conclude that the experimentally derived
HVS weighting function is a better cost function.

C. Effect of Diffusion Constants

The diffusion constant is the ratio between the horizontal
diffusion coefficient and the diagonal diffusion coefficient of the
dot diffusion process. The diffusion constant has been chosen to

be 2.0 by Knuth. The reasons for this selection are that 1) it is
desirable to diffuse more errors in the vertical and horizontal di-
rections, and keep more errors in the diagonal directions where
the eye sensitivity is known to be lower and 2) it reduces the
number of multiplications if is chosen as a power of two.

In Knuth’s method, the choice was rather crucial be-
cause there was no optimization of the class matrix. We have
found experimentally that when the class matrix is optimized
for a chosen , the results are relatively insensitive toas long
as it is in the range . However there are slight ver-
tical and horizontal patterns when . For and

more serious artifacts are noticeable. In principle the dif-
fusion coefficient can be chosen with greater degree of freedom.
For example we can choose it such that it depends on the class
number as well as the direction of diffusion. At this time how-
ever we do not have an optimization algorithm to optimize such
a general set of diffusion coefficients.

D. Remarks

The optimization of class matrix was done in Section III-A for
constant gray level images only. For this, it is necessary to pick
the constant gray level strategically such that, for most natural
images with multiple gray levels, the halftone quality is good. A
natural question here is whether we can we make the class ma-
trix adaptive. For example, imagine a library of optimal class
matrices with optimized for the th gray level. We can
divide the image into blocks, and for each block a dif-
ferent class matrix can be used depending on the average gray
level there. We have done experiments with this idea. Assuming
that the image is enhanced prior to halftoning (as in Section II),
we found the advantage of the adaptive scheme to be insignif-
icant. However if there is no enhancement prior to halftoning,
then adaptive dot diffusion is significantly better than non adap-
tive (compare Figs. 10 and 12). Besides the obvious advantages
brought into play by adaptation, there is another reason why this
is so: the grid of pixels formed by a given class number is not a
periodic grid in the adaptive case. Any periodicity artifacts cre-
ated by the periodic class matrix are therefore broken. But there
is another problem, namely the boundary effects between the
blocks having different class matrices are apparent.

Another parameter in the dot diffusion is the enhancement
filter. The enhancement lessens the objectionable halftoning ar-
tifacts in other grey levels which are not close to . This
can be seen from the resulting image obtained by dot diffusion
with enhancement (Fig. 7) and the image obtained by the dot
diffusion without enhancement (Fig. 10). The periodic patterns
show up almost everywhere in the dot diffused images if en-
hancement is not done prior to halftoning. The enhancement
filter used has a parameter(see Section II) which controls the
degree of enhancement where means no enhancement
and is the value used in our experiments. The enhance-
ment parameter can be lessened to 0.8 without any perceivable
difference.

E. Dot Diffusion Without Enhancement

In all the discussions so far, the halftoning step is preceded
by an enhancement filter (described in Section II). The enhance-
ment step reduces halftoning noise, but might be objectionable
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TABLE IV
THE 16 � 16 CLASS MATRIX

Fig. 13. Dot diffusion with no enhancement and16 � 16 class matrix
optimized using HVS function.

Fig. 14. Schematic representation of the dot diffusion process. Herex

represents a vector of all pixels belonging to classk.

in some applications because of its very visible sharpening ef-
fect (e.g., see Fig. 9). It turns out that we can get good halftones
without use of the enhancement step provided we make the class
matrix larger than the standard size. The price paid for

Fig. 15. Ax � b is a closed set.

Fig. 16. Synthesis section of anM channel filter bank.

the larger class matrix is that the parallelism of the algorithm
is compromised. We found that if a matrix is used, the
halftone images resulting from the optimization of this matrix
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Fig. 17. Overlapping blocks used in approximating the QP problem.

are very good even without the enhancement step. (For compar-
ison we note here that whenever enhancement is used, the class
matrix can be as small as without creating noticeable peri-
odicity patterns.) Such optimization was carried out using a gray
scale ramp as the training image. The HVS function of Section
III-A was used in the optimization, and the associated cost was
optimized as in Section III-B using the pairwise exchange algo-
rithm. The optimized class matrix is shown in Table IV.

The peppers image halftoned with the resulting class matrix
is shown in Fig. 13. There are no periodic artifacts in this result.
While the overall visible noise level appears to be higher than
for error diffusion, the problematic halftone patterns of error
diffusion in the mid gray level are eliminated here (examine the
body of the middle pepper in Fig. 5). By comparing Figs. 6 and
13, we see that dot diffusion without enhancement is also
superior to enhanced dot diffusion using Knuth’s matrix
because there are no noticeable periodic patterns any more, and
there are no enhancement artifacts.

In order to obtain an authentic comparison with good printing
quality we have produced three images in Figs. 31–33 using
150 dpi resolution. These are halftoned versions of the Parrot
image. Fig. 31 shows the result of error diffusion, Fig. 32 the
result of direct binary search (DBS) obtained from the website
of the authors of [15], and Fig. 33 shows the result of using the

optimized dot diffusion described above. In terms of
image quality the DBS method is evidently the best one. The
dot diffusion output appears to be comparable to error diffusion
in most areas of the image. Dot diffusion has the advantage that
the complexity is much lower than that of DBS. Moreover it
offers parallelism of implementation unlike error diffusion.

IV. M ATHEMATICAL DESCRIPTION OFDOT-DIFFUSION

We have defined the dot diffusion process in Section II, but we
also want to give a mathematical description of the dot diffusion.
With the aid of this description, we can relate the quantizer error
to halftone error. In addition to providing further insight, this
will also be useful in Section VI for inverse halftoning.

Let us denote the number of classes by. For example if the
class matrix is as in Section II, then Let denote
a vector whose elements are the pixels of the original contone

image belonging to classin some order. Let denote a vector
whose elements are the pixels, in some order, of the contone
image. For example

...

Each of the vectors can be regarded as a
polyphase component [16] of the contone image.

A. Quantizer Error and Halftone Error

In the dot diffusion process, the pixels which are quantized by
the two-level quantizer are modified versionsof the original
vectors , the modification being that we diffuse the quantiza-
tion errors from lower classes processed earlier. Since the pixels
in class 1 are quantized directly, we have

Let denote the halftone vector obtained from quantizing this
to two levels. The quantizer error is then diffused
to those neighbors of the pixels of, which have a higher class
number. For example, is replaced with

where is a matrix representing the diffusion coefficients
[i.e., quantities like and in [(2a)] and (2b)]. We then
quantize with the two-level quantizer to produce the halftone

for all the pixels in class 2. The quantizer error
is then diffused to the higher class pixels. For example, consider
class 3 pixels. In general these pixels receive diffused error from

and so that the modified class 3 pixels are represented by
the vector

Two-level quantization of then produces the halftone for
class 3 pixel positions, and so forth. Thus, in general, the class
vector is modified to

(3)

and then quantized to obtain the halftone. Proceeding in this
way, the halftone pixels for all classes are gener-
ated. The quantizer error vector and halftone error vector
for class are given by

(quantizer error)

(halftoning error)

Subtracting from both sides of (3), we get
, that is,

... (4)
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Fig. 18. Two-dimensional separable PR filter bank.

Fig. 19. Inverse halftoned peppers with POCS (transform domain projection
applied before halftoning).

By starting from the first equation, we can sequentially replace
in terms of , on the right side of (4), resulting in

an expression of the form

...
...

where is a matrix depending on the elements of the smaller
matrices . We now show that can be generated from

as follows: from (4) we can express as

...

...

Fig. 20. Inverse halftoned Lena with POCS (transform domain projection
applied before halftoning).

Fig. 21. Inverse halftoned peppers with POCS (transform domain projection
is not applied before halftoning).
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Fig. 22. Inverse halftoned Lena with POCS (transform domain projection is
not applied before halftoning).

Fig. 23. Wavelet decomposition of an image.

Fig. 24. Wavelet tree used in inverse halftoning.

...

which shows that

...

...

that is

Similarly, can be expressed in terms of , and so
forth. This gives an expression for as a product of simple
matrices, that is, , where repre-
sents diffusion of error to class from all lower classes, and

. For example

(5)

The matrix has determinant equal to unity as seen from
the factored expression (5). It is therefore invertible, and we can
obtain

where . Here can be regarded as the transfer
function from the quantizer errorto the actual halftoning error.
The total halftoning error-squared, defined as , can readily
be computed from this if we know the quantizer error.

B. Expression for Diffused Image

Here is a summary of the main points of the preceding dis-
cussions. Theoriginal contone imageis made from pixels in the
vectors . Thediffused image is made from the pixels in
which are inputs to the two level quantizer. The imagewhose
pixels come from is thehalftone image. The pixels from the
original contone, diffused, and halftone images can be arranged
in the form of vectors , , and as

...
...

...

The quantizer error vectorand halftone error vectorare de-
fined as

The diffusion process is schematically depicted in Fig. 14. We
can now express the diffused imagein terms of the original
contone image and the halftone image as follows:

that is

(6)

This expression allows us to characterize the so-called inverse
halftone set in a nice way. Let and denote, respectively, the
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th scalar component of and . Since is directly quantized
to yield we see that

if
if .

(7)

Given a halftone image and the halftone algorithm [e.g., dot
diffusion with class matrix (as in Table II)], theinverse halftone
set is the collection of all image vectors which yield the
halftone image . That is, an image belongs to if and only
if the vector computed using (6) satisfies (7).

Notice that if we set in (6) then we get which
implies in particular that (7) holds. Thus the halftone image
itself is a member of . That is, if we perform dot diffusion again
on the halftone image, the result is still .

C. Closed Convex Subset of the Inverse Halftone Set

We will see now that the inverse halftone setis convex but
not closed. We then show how to construct a subset
which is closed and convex. This will be useful in Section VI
where we create a contone image from the dot-diffused halftone
using the POCS method. For convenience of discussion let us
renumber the elements of the halftonesuch that it can be par-
titioned as

where ...

The elements of , , and the matrix are also renumbered
accordingly. Then the diffused image vectorhas the form

where , , and do not depend on or .
The diffused image vector is such that and

where the vector inequalities in the previous equa-
tion should be interpreted on an element by element basis. That
is, the inverse halftone setis the set of all image vectorssuch
that

and (8)

Given two image vectors and satisfying (8), we can
readily verify that the linear combination
also satisfies (8) whenever . This shows that the set

is convex.
The set of all satisfying is interpreted geomet-

rically as in Fig. 15 for the case whereis a two-dimensional
(2-D) vector. Since the boundary is included, this is
a closed set [17]. The set has a similar interpretation,
but since the boundary is not included, it is not closed. The in-
tersection of the two sets described by and
is therefore not closed. Summarizing,the inverse halftone set
for a dot-diffused halftone is a convex set but it is not closed.

D. Digitized Subset

Now consider a subset such that all images in are
digitized to, say, 8 bits/pixel. The set is clearly not empty be-
cause the halftone imageis certainly a member of . With

chosen from this digitized subset, the elements of also
take values from a discrete set. So we can always find an
such that none of the ’s fall in the open interval
That is, not only is (7) satisfied, but the following stronger con-
dition holds:

if
if

(9)

for some fixed that can be precalculated fromand .
By following the kind of reasoning that resulted in (8), we see
that if is in the digitized subset , then

and (10)

where the vector now depends on as well. Notice that the
strict inequality of (8) has now been replaced with.

E. Closed Convex Subset

We have just shown that every element of the digitized set
satisfies (10). The set is trivially “closed” because it is finite
[18, p. 15]. However, is evidently not convex because a linear
combination of 8 bit images and is not
an 8 bit image for arbitrary in . Now consider a
set that is bigger than by defining it to be theset of all
image vectors for which (10) holds, or equivalently, (9) holds.
By slight modification of the arguments at the end of Section
IV-D we see that this set is both closed and convex. Since (9)
holds, it is also clear that (7) holds which shows thatcontinue
to belong in the inverse halftone set. Summarizing, we have
three sets , , and with the inclusion relationship

is the set of all image vectors which result in the given halftone
image using the given dot diffusion algorithm. The setis
convex but not closed. The digitized subsetis closed but not
convex. The intermediate set is closed and convex. Notice
finally that the closed convex set described by (10) can be
described more compactly as

where and . Note that the above vector-
inequality is interpreted componentwise.

These ideas will be useful in Section VI where we apply
the iterative POCS technique to derive an approximation of the
original contone image from a halftone. Assuming that an 8-bit
image is a good approximation of the original contone, the dis-
tinction between the three sets is minor. However the fact that
we can work with the closed convex set without much loss
of generality is significant as we shall see in Section VI. It al-
lows us to assume that the method of POCS converges to a good
approximation of the contone image.

V. INVERSEHALFTONING

Inverse halftoning is the reconstruction of a continuous tone
image from its halftoned version. Since there can be more than
one continuous tone image giving rise to a particular halftone
image, there is no unique inverse halftone of a given halftoned
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Fig. 25. Result of simple de-enhancement of dot diffused Lena image.

Fig. 26. Result of inverse halftoning using previous method [33].

image. Nevertheless, using the “mostly lowpass” characteris-
tics of a natural image, good inverse halftones can be obtained.
The basic aim in inverse halftoning is to separate the halftoning
noise from the original image. In good halftoning algorithms,
the noise introduced by halftoning isblue, i.e., it is concentrated
in the high frequencies. Thus, simple low pass filtering can re-
move most of the halftoning noise, but it also removes the edge
information.

Besides lowpass filtering, there are more sophisticated ap-
proaches for inverse halftoning. The method ofprojection onto
convex sets (POCS)has been used by Analoui and Allebach [19]
for halftone images produced by ordered dithering. For error dif-
fused halftones, Hein and Zakhor [20] have successfully used
the POCS approach. A different method called logical filtering

has been used by Fan [21] for ordered dither images. Wong
[22] has used an iterative filtering method for inverse halftoning
of error diffused images. Finally the method of overcomplete
wavelet expansions has been used in [23] to produce inverse
halftones with good quality. During the process of preparing this
paper, we came across another promising (perhaps the fastest)
method for inverse halftoning which uses space varying filtering
based on gradients obtained from the image [24].

In Section VI, we show how the POCS method can be applied
for the inverse halftoning of a dot-diffused halftone. The math-
ematical characterization of dot-diffused images developed in
Section IV will be especially useful to construct the so-called
space-domain constraint set, which is a key ingredient in the
development of the algorithm. Even though the wavelet method
gives better results, inverse halftoning using POCS method is
added because of its elegance and generality. In Section VII, we
show how the wavelet method for inverse halftoning [23] can be
modified for the case of dot-diffused images. While the POCS
method often produces better PSNR, the wavelet method typi-
cally yields a more pleasing visual quality.

VI. I NVERSEHALFTONING USING POCS

The method of POCS, which is an acronym for projection
onto convex sets, is a powerful algorithm for the approximate
recovery of a signal from partial information. It has been used
very widely in many applications, as elaborated in authoritative
references [25], [26]. To explain the idea in its simplest form,
assume that the unknown signal is knowna priori to belong to
the intersection of two sets and . Assume these are closed
convex sets (see below). Then starting from an arbitrary initial
guess for the signal and performing successive projections onto
these two sets, we can converge to a point in the intersection of

and . Even though this intersection may have many ele-
ments and therefore the original signal not exactly recoverable,
careful choice of and often leads to satisfactory results.

We will first state the POCS method and the associated con-
vergence theorem more precisely. After this we describe how the
method can be applied for recovering a continuous tone image
from its halftoned version. We will see that the specific details
of the convex set depend on the details of the dot diffusion
procedure and the class matrix (Section VI-D). Finally in Sec-
tion VI-E, we will show experimental results.

A. Mathematical Background

The mathematical setting for the POCS method is the fol-
lowing. Let the unknown signal be a vector in a Hilbert space

, e.g., space of images. For example it could be a vector
constructed from some arrangement of the pixels in a contone
image. In view of the physical constraints that we happen to
know, let us assume thatis in the intersections of known sub-
sets in . (These may not be subspaces.) As-
sume that each of these is aclosed convex set6 and that their
intersection is nonempty. Let be theprojection operator

6A setS is said to be convex if�fff + (1� �)ggg belongs toS for any� such
that 0 � � � 1; wheneverfff; ggg are inS . A setS equipped with a metric
(i.e., any measure of distance) is said to be closed if the limit of any convergent
subsequenceffff g in S also belongs toS .
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Fig. 27. Inverse halftoned Lena using the modified wavelet denoising method.

Fig. 28. Inverse halftoned peppers using the modified wavelet denoising
method.

from to . The projection of onto is defined to be the
unique vector in such that the error norm is mini-
mized [25, Sec. 2.2]. Define the composite operator

and consider the iteration , with initial vector
. Then, according to thePOCS theorem[25, Th. 2.4-1],

the vector converges weakly7 to some vector in the in-
tersection . This result is true regardless of the initial vector

7The term “weakly” means that the inner producthfff ; fff i converges to
hfff ; fff i for any fff in H . This is weaker than the requirement thatfff

converges tofff , which would mean thatkfff � fff k goes to zero.

Fig. 29. Dot diffused peppers image without embedded multiresolution
property.

, even though the limit can depend on . If this limit is
an acceptable approximation of, then we are happy.

The convergence result continues to be true even if the pro-
jection operators are replaced with so-calledrelaxed projec-
tions [25]. These are defined as where

. We shall not require this stronger version.

B. Application of the POCS Theorem for Inverse Halftoning

Consider applying the above result for the problem of
inverse halftoning. The contone imageis halftoned with a
known algorithm (e.g., dot diffusion with known class matrix),
to yield a halftone . From this , and using our knowledge
of the halftoning process, we have to construct a contone
approximation subject to two conditions: 1) if it is
halftoned, the result is again and 2) should be an
“acceptable” approximation of.

The first condition alone can be satisfied by many images. Let
be the set of all images such that the given halftoning algo-

rithm yields the fixed halftone. The original contone image
evidently belongs to . Moreover, using the description of dot
diffusion process in Section IV it can be shown that the halftone

itself belongs to . We say that is thespace domain con-
straint set. For the second condition we have to define a set
which represents the set of “acceptable images” in some sense.
For example could represent “natural images” which have
certain smoothness properties. Sinceis usually constructed
with the help of lowpass operators (see below), it will be called
the frequency domain constraint set. In the notation of Section
IV the parent Hilbert space is , and and are the two
subsets. If these are closed and convex, then we can start from
an arbitrary initial image in and perform the projections

(space-domain projection)

(frequency-domain projection)
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Fig. 30. Dot diffused peppers image with embedded multiresolution property.

That is, . According to the POCS theorem this
iteration converges to a member in the intersection ofand

. If we are willing to accept any member in the intersection
to be a valid approximation of the contone, then we are done.

The POCS algorithm has in the past been applied for inverse
halftoning [20]. In the actual algorithm we have to identify the
projection operators and which take an arbitrary image
in and project onto sets and . For our application we
already showed, using the mathematics of the dot diffusion al-
gorithm (Section IV), that the set is a closed convex set. The
second point of novelty is with respect to the projection oper-
ator . In the past, lowpass filtering has been used [20] as an
approximation for , the rationale being that, many natural im-
ages are lowpass. But unfortunately LTI filtering is not a pro-
jection operator, that is , unless is
an ideal filter with passband response of unity and stopband re-
sponse of zero. In [20] the authors use partial reconstructions
from DCT and SVD (singular value decomposition) as other
possible choices for the projection operator. In this paper we
use an operator which is not only an orthogonal projection but
retains the properties of a good lowpass filter; this projection is
constructed from an orthonormal multirate filter bank.

C. Implementation of the Frequency Domain Projection

Consider Fig. 16, which shows the synthesis section of
an -band uniform orthonormal filter bank [16] with the
perfect reconstruction property Note that the
subbands are obtained by feeding
to the analysis section (not shown) of the same filter bank.
Suppose we delete the subband signals
and perform the synthesis by retaining only the subbands

. Then the reconstruction in
general, and is called a partial reconstruction. If the filter
bank has the orthonormal property [16], [27], [28], then we

can give an orthogonal projection interpretation for this partial
reconstruction. Thus, assume that the input is in . Let

be the subspace formed by the basis functions

from the deleted channels. Then the partial reconstruction
belongs to , the orthogonal complement of. Since orthog-
onal complements are closed subspaces [29], and subspaces are
automatically convex, it follows that is the projection of

onto the closed convex set . We can take the frequency
domain constraint set to be

As explained in Section VI-B, in order to implement the POCS
method we have to know how to project an arbitrary interme-
diate image onto the closed convex set. It is clear that this
can be done by decomposing the image into subbands using an
orthonormal filter bank, and partially reconstructing it as above.

Fig. 18 shows the actual 2-D filter bank used in our work
for this frequency domain projection. Here and
are one-dimensional filters, so the filter bank has separable 2–D
analysis filters [16]. The notation means decimation
by two in the horizontal direction and no decimation in the ver-
tical direction. The notation similarly stands for the
separable expander. With and denoting a low-
pass/highpass pair, the signal is the low–low sub-
band. If is reconstructed using this subband alone,
then we can regard it as a “multirate” lowpass version, which at
the same time is an orthogonal projection in the mathematical
sense. In our work we actually used Daubechies’ ten-tap FIR
filter [30] for the lowpass filter . The highpass filter
was chosen in the usual way [16] to obtain the orthonormal filter
bank.

D. Implementation of Space Domain Projection

The space domain constraint on the inverse halftone is that
it should lie in the closed convex set defined in Section IV.
This is essentially the set of all contone images which can give
rise to the given halftone. As explained in Section VI-B, in
order to implement the POCS method we have to know how to
project an arbitrary intermediate image vector onto the
closed convex set . The meaning of a projection was reviewed
in Section VI-A: the projection of onto is the unique
vector in such that the error norm is minimized.

Here the notation represents the norm . In order
to implement this projection, we simply solve a minimization
problem subject to the constraint . Thus, the projection

of the image onto the convex set is the solution to the
following constrained optimization problem:

subject to (11)

This follows because the elementsof the set are completely
characterized by the property . This is a quadratic pro-
gramming (QP) problem and can be solved using standard tech-
niques. We used the Matlab optimization toolbox to solve for
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Fig. 31. Floyd–Steinberg error diffusion.

. In the interest of efficient programming, the QP problem was
broken into several subproblems by partitioning the image into
blocks. For this, overlapping blocks are used. In Fig. 17, the
blocks used are shown. The black circles show the pixel po-
sitions that are changed after solving the QP subproblem, and
white circles show the pixels used for boundary conditions of
black circles, but they are not changed after solving this QP
subproblem. Afterwards, the block location is moved 8 pixels to
right or left, till the whole image is covered. The sizes of QP sub-
problems are . A further detail in the implementation is that
the matrix in the constraint equation must be modified to take
into account the fact that the original imageis enhanced with a
highpass filter before halftoning (as described in Section II). Re-
call that the matrix originated from the matrix described
in Section IV where the key equation relating the original image

and the diffused imagewas . In this
equation we have to replace with where is the
enhanced version of. The enhancing filter for (see
Section II) is the 2-D filter

and we can write where is a square matrix (ne-
glecting boundary details, such as lengthening of a signal due
to filtering). The modified matrix in the constraint in
(11) can now be worked out.

E. Implementation Details and Experimental Results

The frequency domain projection described above implicitly
assumes that the original contone image is in the subset.
Given an arbitrary image , we can replace it with its
projection onto before halftoning (i.e., compute the partial
reconstruction by using alone, and then
halftone ). This preconditioningensures that the de-
sired inverse halftone is indeed in the intersection ofand

. We found experimentally that for most natural images, the
projection onto is nearly as good as the original image, so
such an initial conditioning is not a severe loss of information.
Second, we found that in many examples the POCS algorithm
converges to a good solution even without such preconditioning.

For the peppers and Lena images, Figs. 19–22 show the in-
verse halftoned images. In Figs. 19 and 20 the original image
was first projected onto the transform domain setbefore
halftoning. In Figs. 21 and 22, this preconditioning was omitted.
For completeness we mention the PSNR values for the recon-
structed images. The PSNR values are as follows: peppers with
preconditioning (PSNR 30.35 dB with respect to original pep-
pers and PSNR 32.39 dB with respect to projection of peppers
image onto ), Lena with preconditioning (PSNR 31.19 dB
with respect to original Lena and PSNR33.08 dB with respect
to projection of Lena image onto ), peppers without precondi-
tioning (PSNR 29.44 dB), and Lena without preconditioning
(PSNR 30.66 dB). The images are obtained after five itera-
tions.
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Fig. 32. Direct binary search (DBS).

VII. I NVERSEHALFTONING USING WAVELETS

An inverse halftoning algorithm which use wavelets was con-
sidered in [23] and [31]. In this method, wavelets are used to
differentiate the halftoning noise from the edge information.
The edges are detected at different scales with specific over-
complete wavelet transform. Since the edges are correlated at
different scales whereas the noise is not, the halftoning noise is
suppressed by thresholding operations wherever the edges are
not prominent (these correspond to steps 2 and 3 in our inverse
halftoning method). However, the algorithm in [23] is tailored
for error diffusion, which has different characteristics than dot
diffusion. If the method in [23] is used for dot diffusion, the re-
sult is not good. This can be seen from Fig. 26 which shows the
result of inverse halftoning the dot diffused Lena by using the
method in [23]. The image suffers from periodic patterns, which
represent low frequency noise. There are basically two reasons
for the inferior performance: 1) the images are enhanced in dot
diffusion before halftoning and 2) there is more low-frequency
noise in dot diffusion.

In the new method, the specific properties of the dot diffu-
sion algorithm are taken into account. The image is enhanced
before dot diffusion, hence in the inverse halftoning, the dot
diffused image should be de-enhanced using the inverse of the
filter .
Note that for all . We
use the wavelet tree built from the analysis block shown in Fig.
23. An image is decomposed into , ,

and using the undecimated wavelet transform. At scale
, (which will be described below), the filtering operations

are as follows:

where and are derived from quadratic spline wavelets.
These are tabulated along with the synthesis filters in [32, Table
1] (our is in that table). The choice of filters given in [32]
detect edges at different scales if they are used in the wavelet tree
shown in Fig. 24 with scales , , , from left to right. For
example and represent the horizontal edges,
and vertical edges of at scale , respectively, and

is the low pass version of .
The algorithm starts with a dot diffused image, . Then

is de-enhanced with the de-enhancement filter specified
above. Let us call the resulting image . Afterwards, a
four-level wavelet decomposition is applied to . Then
for each pixel location , the following is done.

1) Apply a symmetric FIR Gaussian filter, to
, and . [

for , , and is chosen such that the dc gain
of the filter is unity.] The first level edge images contain
mostly the halftoning noise, thus low pass filtering these
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Fig. 33. The16 � 16 dot diffusion without enhancement.

images reduces the blue noise without harming the edges
significantly.

2) Let .
If then make and

.
3) Let .

If then make and
.

Steps 2 and 3 are the denoising steps in the algorithm where
and are the thresholds determined experimentally. In order

to discriminate the edges from the halftoning noise, we have to
locate the edges. For this, the above steps perform a cross cor-
relation between the edges at different scales. If there is a hor-
izontal edge at scaleat then and
will be of the same sign [32]. The same is also true for vertical
edges. Combining the horizontal and vertical edge correlations
gives better results in detecting the diagonal edges.

4) The above steps have modified the subband signals,
and in certain ways. We now use the inverse filter bank
(synthesis bank) corresponding to Fig. 24, and obtain a
reconstructed version . The image is
the desired inverse halftone image.

In inverse halftoning, dot diffusion has an advantage, namely,
even the simple de-enhanced image is a quite reasonable in-
verse halftone (PSNR = 26.62 dB for Lena image) (Fig. 25). The
de-enhanced image is further processed as described above. The
parameters used in the method are found experimentally. The

variance of the Gaussian filter, is chosen to be 0.5 and the
thresholds are chosen to be and . The results
are shown in Fig. 27 (PSNR 30.58 dB) and in Fig. 28 (PSNR

30.07 dB).
Even though POCS gives higher PSNR values than the

wavelet method, the wavelet method gives more pleasing re-
sults than the POCS. This is due to the space domain projection
step in the POCS. Another advantage of the wavelet method is
that, it is not iterative, whereas the POCS is inherently iterative.
Thus the wavelet method is better than the POCS method for
inverse halftoning. More recently a promising faster method
has emerged for inverse halftoning of error diffused images
[24]. We have not tried applying the algorithm for dot diffused
images.

VIII. E MBEDDED MULTIRESOLUTION DOT DIFFUSION

Another desired property of images is the embedded mul-
tiresolution property. If an image has embedded multiresolu-
tion property, the lower resolution images can be obtained from
higher resolution images. Embedded images require less storage
space, and embedding is also useful for progressive transmis-
sion.

As observed by [33], normal halftones do not have embedded
multiresolution property. This can be seen from Fig. 29, where
the image is halftoned by dot diffusion and the
lower resolution images are obtained by downsampling the
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higher resolution images by two in each direction. The lower
resolution images are not good representations of the corre-
sponding original images. But, the embedded multiresolution
property can be imposed during the halftoning process. In
[33]–[35] this property is imposed on the halftone image as
follows. First, the lowest resolution image is obtained using
the halftoning algorithm. The higher resolution halftones are
obtained from the lower resolution halftones, by retaining
the lower resolution image at the corresponding pixels, and
halftoning the other pixels of the higher resolution. In [34] and
[35], the halftoning method was an optimization-based one
whereas in [33], the method was adaptive error diffusion. We
will exploit the same idea, and we will show how to impose the
embedded multiresolution property for dot diffused images.

Given a contone image of size , we want
halftone images of smaller sizes , ,
to have a fair representation of the original image. We assume
that there exist integers and such that
and for . Then the halftoning
algorithm will be as follows.

1) Obtain
for , . Then ini-
tialize as .

2) Halftone , and let the resulting image be
.

3) Define for
, , where ,

.
4) For each pixel location belonging to classdo

a) If for some integer,
then else

if
if

b) , and diffuse the
error as in (2).

5) If , stop else let and go to step 3).

The multiresolution property is demonstrated in Fig. 30
where , , and . The lower
resolution halftones are contained in higher resolution halftones
and halftones at any resolution have a “fair” representation
of the original contone image. For the peppers image, the
embedded multiresolution constraint did not affect the image
quality at the highest resolution. However, there is a slight loss
of quality in the highest resolution halftone image for the Lena
image because of the latter constraint. Thus, at the expense of
a little quality loss, the embedded multiresolution property can
be imposed on the dot diffusion method.

IX. CONCLUDING REMARKS

Even though dot diffusion offers more parallelism than error
diffusion, it has not received much attention in the past. This
is partly because the noise characteristics of error diffusion
method are generally regarded as superior. Although the quality
of dot diffused halftones is not as good as error diffusion,
we have shown that it can be substantially improved over

standard dot diffusion. With more optimization work, it should
be possible to come even closer to error diffusion quality.
Furthermore, the parallelism offered by dot diffusion is a great
advantage. The dot diffusion algorithm terminates in at most
64 steps for an class matrix, compared to steps
needed for error diffusion algorithm for an image.
Moreover, as noticed in [10], the algorithm can in fact be
terminated in about 50 steps. The conclusion is that Knuth’s
dot diffusion method with a carefully optimized class matrix
is very promising; the image quality is comparable to error
diffusion, and the implementation offers more parallelism than
error diffusion. Since enhancement prior to halftoning can be
objectionable in some cases, we also introduced and optimized

class matrix, which eliminated the need for enhance-
ment. In this paper, we first optimized the class matrix. Then a
mathematical description of dot diffusion was derived which
was particularly useful in inverse halftoning. We also presented
a wavelet-based inverse halftoning algorithm which works very
well, even though the class matrix information is not used.
Furthermore, we have shown that the dot diffusion algorithm
can be easily modified to have the embedding property. This
is useful for rendering at different resolution levels and for
transmitting images, progressively.
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