
Data-driven Fluid Simulations using Regression Forests

L’ubor Ladický∗†

ETH Zurich

SoHyeon Jeong∗†

ETH Zurich

Barbara Solenthaler†

ETH Zurich

Marc Pollefeys†

ETH Zurich

Markus Gross†

ETH Zurich
Disney Research Zurich

Figure 1: The obtained results using our regression forest method, capable of simulating millions of particles in realtime. Our promising
results suggest the applicability of machine learning techniques to physics-based simulations in time-critical settings, where running time
matters more than the physical exactness.

Abstract

Traditional fluid simulations require large computational resources
even for an average sized scene with the main bottleneck being a
very small time step size, required to guarantee the stability of the
solution. Despite a large progress in parallel computing and effi-
cient algorithms for pressure computation in the recent years, real-
time fluid simulations have been possible only under very restricted
conditions. In this paper we propose a novel machine learning
based approach, that formulates physics-based fluid simulation as
a regression problem, estimating the acceleration of every particle
for each frame. We designed a feature vector, directly modelling
individual forces and constraints from the Navier-Stokes equations,
giving the method strong generalization properties to reliably pre-
dict positions and velocities of particles in a large time step setting
on yet unseen test videos. We used a regression forest to approx-
imate the behaviour of particles observed in the large training set
of simulations obtained using a traditional solver. Our GPU im-
plementation led to a speed-up of one to three orders of magnitude
compared to the state-of-the-art position-based fluid solver and runs
in real-time for systems with up to 2 million particles.

CR Categories: I.3.3 [Computer Graphics]: Computational Ge-
ometry and Object Modeling Physically based modeling; I.2.6 [Ar-
tificial Intelligence]: Learning;

Keywords: fluid simulation, data-driven, regression forest

∗The authors assert equal contribution and joint first authorship
†e-mail:lubor.ladicky,sohyeon.jeong,solenthaler,marc.pollefeys,grossm@inf.ethz.ch

1 Introduction

Computing high-resolution fluid simulations with traditional state-
of-the-art approaches is very challenging, as they require tremen-
dous computational resources to compute a scene with millions of
particles. The main bottleneck is the severe restriction on the time
step size needed to guarantee stability, and thus simulation times
are typically in the range of hours to days on high-end computers,
making it impossible to achieve high-resolution fluids in real-time.

The standard Smoothed Particle Hydrodynamics [Lucy 1977]
(SPH) method approximates continuous quantities in the Navier-
Stokes differential equations using discrete particles with appropri-
ate smoothing kernel and replaces a continuous advection by an
advection of particles. The approach does not deal with the incom-
pressibility constraint directly, which causes significant visually un-
pleasant artifacts.

Recent work has addressed this problem and either enforce a den-
sity invariance condition or a divergence-free velocity field. A
predictive-corrective scheme has been introduced where pressure
values are iteratively updated to satisfy the zero compression con-
straint [Solenthaler and Pajarola 2009]. The performance has been
further improved by discretizing and iteratively solving the pres-
sure Poisson equation [Ihmsen et al. 2013]. Most recently, a posi-
tion based fluid (PBF) approach has been presented [Macklin and
Mueller 2013], where first all particles are advected, and then pro-
jected to the manifold of feasible solutions by iteratively correct-
ing positions of particles to satisfy the incompressibility constraint.
PBF allows to use a larger time step compared to its counterparts. A
density invariance condition has also been combined with a multi-
scale scheme [Horvath and Solenthaler 2013] to further speed-up
the computation. Despite all these improvements, high-resolution
fluids are still computed offline.

An alternative to particle-based approaches are grid-based meth-
ods that approximate continuous quantities on a discrete regular
grid [Enright et al. 2002]. Incompressibility is enforced on the
grid by solving the Poisson’s equation, making the velocity field
divergence-free. To speed up grid-based simulations, the solution
space can be restricted to simpler topology [Chentanez and Müller
2010; Chentanez and Müller 2011]. To avoid discretization artifacts
of grid-based methods, the hybrid FLIP model [Zhu and Bridson

2005] solves advection on particles directly.

In order to address the problem of computational performance, var-
ious types of data-driven simulations have been explored. These
methods do not depend on the discretization level, but rather use
a reduced representation of the simulation space. Hence, they are
targeted at computing interactive simulations that still are able to
obtain fine details. The most common data-driven approaches for
fluid simulations are based on Galerkin projection [Treuille et al.
2006; Gupta and Narasimhan 2007; De Witt et al. 2012], that trans-
forms the dynamics of the fluid simulation to operations on linear
combinations of preprocessed snap-shots (tiles). Reduced represen-
tations are typically obtained using dimensionality reduction tech-
niques, such as Principal Component Analysis, restricting the rich-
ness of the representation, but providing the desired speed-up. The
method had been extended to very large simulation spaces [Wicke
et al. 2009] by decomposing the problem into simulation tiles with
the dynamics operating only on the low dimensional reduced space.
The consistency between tiles is enforced using a constraint reduc-
tion method. Cubature models exactly evaluate the fluid dynamics
at a sparse set of domain positions and then extrapolate these values
to the remaining area [Kim and Delaney 2013]. A state graph has
been presented in [Stanton et al. 2014], building upon the observa-
tion that in simple games only a small set of fluid states are visited.
At game play, the state graph is traversed and the best matching
fluid state is displayed. Another data-driven approach [Raveendran
et al. 2014] aimed to generate a large number of fluid simulations
by interpolating existing preprocessed simulations.

In this paper we explore a novel data-driven fluid approach (see
Figure 2, that is capable of simulating a large number of particles at
interactive frame rates. Our machine learning method formulated as
a regression problem is capable of learning and reliably predicting
positions and velocities of particles in a setting with a very large
time step. We designed a feature vector that fully represents the
state of a particle and its context in a form that is rich enough to en-
code all necessary information required to predict the next state, and
takes constant-time to evaluate. The individual dimensions of the
feature vector directly correspond to individual forces and incom-
pressibility constraint of the Navier-Stokes equations in surround-
ing regions at different scales. Using this feature vector we tested
three different prediction and correction learning schemes to mimic
various fluid simulation solvers. A large number of random training
videos were generated using the position-based fluid method and
used for training as a ground truth. As a regression method we used
regression forests [Breiman 2001], a powerful approach success-
fully applied to various real-time tasks such as Kinect body-part
regression [Taylor et al. 2012] or camera relocalization [Shotton
et al. 2013]. Our method managed to successfully learn the be-
haviour of fluid particles from the training examples and provides a
good alternative for real-time applications of fluid simulations such
as computer games or interactive design. GPU implementation of
our algorithm significantly outperforms any existing approaches in
terms of running time by a factor of 10 − 1000 depending on the
simulation parameters.

2 Designing the feature vector

In this section we describe the general form of the context-based
feature vector we are going to use to model fluid dynamics. The
restriction to fast regression methods, such as regression forest,
yields several requirements for the form of a feature vector. It
needs to model the behaviour of other particles in both close or far
neighbourhood without the necessity to explicitly calculate nearest
neighhours. The evaluation of a particular dimension of a feature
vector should be possible in constant time, resulting in a running
time linear with the number of particles. A feature vector needs to

Figure 2: A general concept of machine learning approach applied
to fluid dynamics. Given a set of training videos, we extract training
pairs of transitions between current and next state of each particle,
build a feature vector, capable of modelling quantities in Navier-
Stokes equations, and train a regressor, predicting the next state of
each particle. During test stage for a new previously unseen scene
we extract the feature vector for each particle and apply the trained
regression model to predict the velocity of a particle as a correction
to an advected state.

be rich enough to model all possible constellations of neighbouring
particles. Furthermore, it should be robust to small deviations; a
small ϵ-change of the input should result into a small change of a
feature vector. One such representation is based on context-based
integral features, defined as a flat-kernel sums of rectangular re-
gions surrounding the particle. In our case they will model ”re-
gional” forces and constraints of the Navier-Stokes equations. Their
main adventage is the constant-time evaluation and robustness to a
small shift (unlike point-wise features), crucial for systems with
varying density of particles. Various forms of integral features have
been previously used for example in the face detector of [Viola and
Jones 2004] to calculate Haar wavelets, or in 2D semantic pixel-
wise classifiers [Shotton et al. 2006; Ladicky et al. 2009] for the
fast bag-of-words representation calculation.

2.1 Context-based integral features

Let S be a discretized space of points x = (x, y, z) ∈ S and R
be the box [xRmin, x

R
max] × [yRmin, y

R
max] × [zRmin, z

R
max], where

xRmin ≤ xRmax, yRmin ≤ yRmax and zRmin ≤ zRmax, and let ΩR be
the membership function for the box R:

ΩR(x) =

{
1 if x ∈ R

0 otherwise.
(1)

The integral feature ϕf
R of a point-wise feature f(x) is defined as

sum of f(x) over the box R:

ϕf (R) =
∑
x∈S

f(x)ΩR(x). (2)

The integral feature is directly tied to the average response over
the box; given R, the average response can be obtained from the
integral feature just by simple division by the number of points in
the box. The main strength of these features is the efficiency of
their evaluation. In the preprocessing stage we calculate integral
volumes, defined as:

ψf (x, y, z) := ϕf ([0, x]× [0, y]× [0, z]) (3)

for each feature f . An integral volume can be calculated once for
all particles in linear time with the size of the space S. For any box
R an integral feature ϕf (R) can be calculated in constant time as:

ϕf (R)= ψf (xRmax, y
R
max, z

R
max)− ψf (xRmin, y

R
max, z

R
max)

− ψf (xRmax, y
R
min, z

R
max)− ψf (xRmax, y

R
max, z

R
min)

+ ψf (xRmin, y
R
min, z

R
max) + ψf (xRmin, y

R
max, z

R
min)

+ ψf (xRmax, y
R
min, z

R
min)− ψf (xRmin, y

R
min, z

R
min). (4)

The membership functions ΩR̄k
over all boxes starting at zero

R̄k = [0, xR̄k] × [0, yR̄k] × [0, zR̄k] form a basis for any func-
tion f :

f(x) =
∑
R̄k

αf

R̄k
ΩR̄k

(x) (5)

with coefficients:

α
f

R̄k
=

1

8

(
ϕ
f
(x

R̄k , y
R̄k , z

R̄k) − ϕ
f
(x

R̄k + 1, y
R̄k , z

R̄k) (6)

− ϕ
f
(x

R̄k , y
R̄k + 1, z

R̄k) − ϕ
f
(x

R̄k , y
R̄k , z

R̄k + 1)

+ ϕ
f
(x

R̄k + 1, y
R̄k + 1, z

R̄k) + ϕ
f
(x

R̄k + 1, y
R̄k , z

R̄k + 1)

+ ϕ
f
(x

R̄k , y
R̄k + 1, z

R̄k + 1) − ϕ
f
(x

R̄k + 1, y
R̄k + 1, z

R̄k + 1)
)
,

implying that there is a bijection between all function values f(x)
and integral features ψf (x).

Let us consider the learning problem for a translation invariant
quantity q(xi) as a function of its contextual features f(xk − xi):

q(xi) := q(f(x1 − xi), f(x2 − xi), ...). (7)

The bijection between f(x) and ψf (x) means that without losing
any information we can reformulate the learning problem as:

q(xi) := q(ψf (R̄1 + xi), ψ
f (R̄2 + xi), ...), (8)

or use more general over-representation with all boxesRk (not only
R̄ starting from zero) as:

q(xi) := q(ϕf (R1 + xi), ϕ
f (R2 + xi), ...). (9)

For a fluid simulation the learnt quantity q could be either acceler-
ation or correction to advected velocity, as described in Section 3.

2.2 Integral features for SPH

We are interested in building a regressor predicting the position and
the velocity of a particle in the next frame as a function of the posi-
tions and velocities of all particles in the current frame. As a feature
vector, we could use the integral velocities and densities over re-
gions placed relatively to the position of a particle. However, such a
learning approach is doomed to fail. In the regression forest setting
such features are not sufficiently discriminative to reach a conclu-
sion about every expected outcome in a reasonable depth of a tree.
The problem lies in the lack of invariance of such features. Context-
based integral features are invariant to translation, however integral
velocities are not inertia-independent. Ignoring this important sym-
metry would require a huge amount of training data, modelling all
possible interactions at all possible absolute velocities of interacting
particles, not only at all their relative velocities. Such symmetries
of the fluid equations (or physics in general) could be enforced di-
rectly by building a feature vector using forces and constraints from
the Navier-Stokes equations.

In SPH [Monaghan 1992], the state of physical quantities at any
point of space is represented as an interpolation of the states of dis-
crete particles using appropriate smoothing kernel functions. Any
scalar quantity A(x) at a point x is approximated using the set of
particles X as:

A(x) =
∑
j∈X

mjAj

ρj
W (x− xj) =

∑
j∈X

ÃjW (x− xj), (10)

where mj is the weight, ρj is the density and Aj is the scalar quan-
tity of the j-th particle, Ãj =

mjAj

ρj
, and W (x) is a spherically

symmetric smoothing kernel. This interpolation procedure is ap-
plied to the density and pressure fields, and in each iteration particle
positions and velocities are integrated using the estimated accelera-
tions by applying a standard Euler gradient step.

Our goal is to find the acceleration field by solving the Navier-
Stokes equations for incompressible fluids:

dv

dt
+ v · ∇v =

1

ρ

(
−∇p+ µ∇2v + σ∇2x+ g

)
, (11)

subject to the incompressibility constraint inside the fluid ρ(x) =
ρ0.

The viscosity term in SPH is approximated as in [Müller et al.
2003]:

avisci =
µ

ρ0

∑
j

(vj − vi)∇2W (xj − xi). (12)

The corresponding integral viscosity feature (2) for any ∇2W (.)
takes the form:

Φvisc
X,R(xi)=

µ

ρ0

∑
j∈X

(vj − vi)ΩR(xj − xi) (13)

=
µ

ρ0

(∑
j∈X

vjΩR(xj − xi)− vi

∑
j∈X

ΩR(xj − xi)
)

The functions Φvisc
X,R(xi) for all boxes R are invariant to inertia,

modelling the acceleration due to the viscosity in the Navier-Stokes
equations. The feature for a particular box R can be calculated
efficiently using 4 integral volumes, one for density ψN

X counting
the number of particles N in a box, and three for each dimension
of the velocity ψvx

X , ψvy
X , and ψvz

X . The three components of the
feature Φvisc

X,R are obtained as:

(Φvisc
X,R)

x(xi) =
µ

ρ0
(ϕvx

X,R(xi)− vxi ϕ
N
X,R(xi))

(Φvisc
X,R)

y(xi) =
µ

ρ0
(ϕ

vy
X,R(xi)− vyi ϕ

N
X,R(xi))

(Φvisc
X,R)

z(xi) =
µ

ρ0
(ϕvz

X,R(xi)− vzi ϕ
N
X,R(xi)). (14)

The surface tension term, modelled using the Laplacian, can be ap-
proximated as [Thürey et al. 2010]:

ateni =
σ

ρ0

∑
j

(xj − xi)∇2W (xj − xi). (15)

The corresponding integral tension feature (2) for any ∇2W (.)
takes the form:

Φten
X,R(xi)=

σ

ρ0

∑
j∈X

(xj − xi)ΩR(xj − xi) (16)

=
σ

ρ0

(∑
j∈X

xjΩR(xj − xi)− xi

∑
j∈X

ΩR(xj − xi)
)

The feature for a particular box R can be calculated similarly to
viscosity using 4 integral volumes, for density ψN

X and three for
each dimension ψx

X, ψy
X, and ψz

X. The three components of the
feature Φten

i,R are obtained as:

(Φten
X,R)

x(xi) =
σ

ρ0
(ϕx

X,R(xi)− xiϕ
N
X,R(xi))

(Φten
X,R)

y(xi) =
σ

ρ0
(ϕy

X,R(xi)− yiϕ
N
X,R(xi))

(Φten
X,R)

z(xi) =
σ

ρ0
(ϕz

X,R(xi)− ziϕ
N
X,R(xi)). (17)

The pressure p for an incompressible fluid can be computed us-
ing the ideal gas state equation and is a linear function of the den-
sity [Desbrun and Cani 1996] p = kρ, where k is a constant. Ap-
plying SPH to the pressure term we get:

apresi = − k

ρ0
∇

∑
j

mjW (xj − xi). (18)

The corresponding integral pressure feature (2) for any W (.) can
be defined using a discrete derivative as:

Φpres
X,R (xi)=

k

ρ0
∇

∑
j∈X

ΩR(xj − xi) (19)

=
k

ρ0

∑
j∈X

ΩR(xj − xi +∆en)− ΩR(xj − xi −∆en),

where ∆en is the unit vector in the n-th dimension.

To model the pressure also from obstacles, we calculate the integral
volume of the density ψO

X, which includes not only fluid particles,
but also particles composing the obstacles. Thus, the three compo-
nents of the pressure feature Φpres

i,R are calculated as:

(Φpres
X,R)x(xi)=

k

ρ0
(ϕO

X,R(x+∆ex)− ϕO
X,R(x−∆ex))

(Φpres
X,R)y(xi)=

k

ρ0
(ϕO

X,R(x+∆ey)− ϕO
X,R(x−∆ey))

(Φpres
X,R)z(xi)=

k

ρ0
(ϕO

X,R(x+∆ez)− ϕO
X,R(x−∆ez)). (20)

The incompressibility constraint can be incorporated using the ad-
ditional integral feature, modelling the restriction of the number of
particles in a certain region as:

Φcomp
X,R (xi) = ϕO

X,R(xi). (21)

The final feature vector is a concatenation of the feature vectors
of each component of the Navier-Stokes equations, calculated on a
large fixed set of randomly sampled boxes R. It models the state
of each particle without any loss of information, except the loss
due to the discretization, which was reduced by applying trilinear
interpolation when approximating a certain quantity of a particle
into a grid. Each dimension of the feature vector can be interpreted
either as a regional force or a constraint over a region.

3 Learning fluid dynamics

In the learning stage, our goal is to build a regressor, capable of
predicting the next state of a particle i in each frame n using the
feature vector ΦX(xi). The exact formulation of the regression
problem has a very large impact on the final performance of the
method. We considered three different ways to predict the next
state, each one trying to mimic certain fluid dynamics solver.

1. Learning naı̈ve prediction We can formulate the regression
problem as:

an
i := Reg(ΦX(i)), (22)

where an
i is the acceleration of the i-th particle in the n-th frame

and Reg(·) is a learnt regression function. Using this prediction,
we integrate the velocity and the position of each particle using
midpoint integration as:

vn+1
i = vn

i + an
i ∆t (23)

xn+1
i = xn

i +
vn
i + vn+1

i

2
∆t (24)

where ∆t is the time step between two frames. Numerical integra-
tion of this form models the remaining advection term in the Navier-
Stokes equations. This formulation is able to directly learn the
acceleration including gravity. This formulation does not directly
deal with the incompressibility constraint, because the knowledge
of densities is insufficient to predict where the fluid might get com-
pressed. Conceptually, this approach tries to mimic the standard
SPH method, where the acceleration is also directly predicted based
on the current state of a system.

2. Learning correction Given a current state of the system,
we first advect all particles using external force accelerations aext

(such as gravity) as:

vn∗
i = vn

i + aext∆t (25)

xn∗
i = xn

i +
vn
i + vn∗

i

2
∆t, (26)

apply the collision detection to xn∗
i , and formulate the regression

problem as learning of the correction:

∆vcorr
i := Reg(ΦX∗(i)). (27)

The predicted correction is then applied as:

vn+1
i = vn∗

i +∆vcorr
i (28)

xn+1
i = xn∗

i +
∆vcorr

i

2
∆t. (29)

For a fixed time step ∆t the learning of the correction of veloc-
ity is equivalent to the learning of the correction of position. This
approach directly handles incompressibility, because it can detect
any possible compression after the advection and can do an appro-
priate adjustment. Unlike the naı̈ve prediction it is self-correcting;
any wrong correction in one iteration can be corrected in the next
frame. Conceptually, the approach tries to mimic position based
fluids (PBF) [Macklin and Mueller 2013], which corrects the po-
sitions of particles after advection, as well as grid based methods,
which correct velocities after advection, such that the velocity field
becomes divergent free. Unlike in PBF, the regressor takes into ac-
count a larger neighbourhood system, which does not require sev-
eral iterations to converge.

3. Learning prediction with hindsight Given a current state of
the system, we first advect all particles the same way as in the pre-
vious correction approach using (25) and (26) and apply collision
detection. Then, we formulate the regression as:

an
i := Reg(ΦX∗(i)) (30)

and do the advection as in (23) and (24). Unlike in the naı̈ve pre-
diction approach, the regressor is capable to predict possible fluid
compression and to do a suitable adjustment of an acceleration.
Conceptually, this approach is similar to the predictive-corrective
incompressible SPH (PCISPH) approach [Solenthaler and Pajarola

Algorithm 1 Regression tree evaluation.
Input: D, Φ(x), tree, outputDim
Output: q
for all i ∈ D do
depth = 0
N = tree.root
while N term = 0 do
fdepth = Φ(x)Nf (i)
if fdepth ≥ Nθ then
N = Nright

else
N = N left

depth = depth+ 1
for d = 1 to outputDim do
qd(i) = Ncd · f +Nbd

2009], where accelerations are iteratively predicted including up-
dated pressure forces.

These three proposed regression approaches can be in principle
combined, however it would lead to a significant slow-down of the
method.

3.1 Regression forests

A regression forest is an ensemble of uncorrelated binary regres-
sion trees, each one independently predicting a desired quantity q.
The final prediction of a regression forest is obtained by averaging
predictions of all trees.

Evaluation of a regression tree An evaluation for a tree for a
particle i is performed by starting in the root node N = treeroot

and eventually reaching a leaf node by iteratively moving either to
its right or left child (denoted as Nright and N left) based on the
value of the decision function δ(Φ(x)Nf (i) ≥ Nθ), where Nθ

is the threshold and Φ(x)(i) is the value of one particular dimen-
sion Nf of the feature vector Φ(x) for a particle i. Note that not
all feature dimensions of a feature vector have to be calculated for
each particle to reach the leaf node, it can be at most as many as
the maximum depth of a tree. The prediction of a given tree is
the value of the output function qN (·) of a reached terminal leaf
node N . The most common output function is a constant vector
qN (Φ(x)) = qN

0 . More complicated functions such as a linear
function of a possibly high-dimensional input vector are typically
not used to avoid over-fitting. Except the constant output function
qN
0 , we propose to use a good trade-off between constant and linear

cases; the linear function of the feature used along the way between
the root and a leaf node. Let Npath be the set of internal nodes
between a leaf node N and the root node, and fNpath(Φ(x)) the
set of feature values, evaluated along the way. The linear output
function of the leaf node N for each output dimension d takes the
form:

qNd (Φ(x)) = Ncd · fNpath(N)(Φ(x)) +Nbd , (31)

where Ncd is a set of linear weights of the length limited by the
maximum depth of a tree and Nbd is the bias term. The use of this
output function has several advantages. On the one hand, it is much
more general than a constant function, on the other hand, with the
sufficient amount of data per leaf node there is not much space for
over-fitting. The increase of evaluation time is negligible for the
learning problems where the slowest part is the on-fly evaluation
of features, such as in our case. A detailed implementation of the
regression tree evaluation is shown in the pseudo-code Algorithm 1.

Algorithm 2 The first stage of regression tree training.
Input: D, featureDim, randomCount, outputDim,
maxDepth, minSize
Output: tree
tree.root = CreateNode()
AddToQueue(queue,

[
tree.root D 0

]
)

while NotEmpty(queue) do[
N D̂ depth

]
= GetFirst(queue)

if (depth < maxDepth) & (|D̂| ≥ minSize) then
N term = 0
errbest = ∞
for m = 1 to randomCount do
feat = GetRandomNumber(1, featureDim)
for all θ do
D̂right = {i ∈ D̂|Φk(i) ≥ θ}
D̂left = D̂ \ D̂right

err = |D̂right|
|D̂| varq(D̂

right) + |D̂left|
|D̂| varq(D̂

left)

if err < errbest then
Nf = feat
errbest = err
Nθ = θ

D̂right = {i ∈ D̂|Φ(x)Nf (i) ≥ Nθ}
Nright = CreateNode()
AddToQueue(queue,

[
Nright D̂right depth+ 1

]
))

D̂left = D̂ \ D̂right

N left = CreateNode()
AddToQueue(queue,

[
N left D̂left depth+ 1

]
))

else
N term = 1

Training of a regression tree Training consists of two stages;
learning the structure of each tree with the most discriminative de-
cision functions (feature indexes Nf and thresholds Nθ) for each
internal nodeN , and finding the output functions (coefficientsNcd

and a bias Nbd) for each leaf node N and output dimension d. The
first stage is done in a standard greedy fashion as in [Breiman 2001].
Starting with the root node, for each unprocessed internal node in
the queueN and its subset of data D̂, that reaches this internal node,
we find the most discriminative feature index Nf and a threshold
Nθ by minimizing the error (weighted variance):

err =
|D̂right|
|D̂|

varq(D̂
right) +

|D̂left|
|D̂|

varq(D̂
left), (32)

where D̂right is the subset of the data D̂ that ends up on the right
side of the tree:

D̂right = {i ∈ D̂|ΦNf (i) ≥ Nθ}, (33)

D̂left = D̂ \ D̂right is its complement, |D̂| is the number of ele-
ments and varq(D̂) is the variance of the quantity q on the set D̂.
The optimization of the error (32) is performed by randomly sam-
pling a subset of dimensions of the feature vector Φ(x), brute force
evaluation of the error for a set of thresholds θ and remembering the
best splitting function so far. The randomness in the training pro-
cedure guarantees that the individual trees will significantly differ
from each other, making predictions more robust. Trees are stopped
being grown when the number of samples is below a threshold or
the depth of a tree reached its predefined limit. The learning of the
structure of a tree is described in detail in the pseudo-code Algo-
rithm 2.

The bottleneck of the first stage of training is typically a high mem-
ory consumption; the method needs to keep in memory either fea-

Algorithm 3 The second stage of regression tree training.
Input: Φ(x), outputDim, tree, D
for all terminal N do
AN = 0,BN = 0

for all i ∈ D do
depth = 0
N = tree.root
while N term = 0 do
fdepth = Φ(x)Nf (i)
if fdepth ≥ Nθ then
N = Nright

else
N = N left

depth = depth+ 1

AN = AN +

[
f
1

] [
fT 1

]
,BN = BN +

[
f
1

]
q(i)T

for all terminalN, d ∈ {1, ..., outputDim} do[
Ncd

Nbd

]
= (AN)−1BN

d

ture vectors of all the training data points or structures able to gen-
erate them (integral volumes in our case). Even using a large clus-
ter of computers, the first stage learning process can very unlikely
process more than one billion data points. We want to fit linear
functions to each leaf node of a tree, and thus there would be not
enough data to avoid over-fitting. To deal with this problem, we fix
the structure of the trees using the result of the first stage process,
and show that it is possible to deal with an almost arbitrary amount
of data to determine optimal linear coefficientsNcd and a biasNbd

for each leaf node N and each output dimension d using a standard
least-squares linear regression. Given a leaf node data D̂ and its
set of features along the path f := fNpath , the solution for each
dimension d can be found in closed form as:[
Ncd

Nbd

]
=

∑
i∈D̂

[
f(i)
1

] [
f(i)T 1

]−1∑
i∈D̂

[
f(i)qd(i)
qd(i)

] , (34)

where
[
·
·

] [
· ·

]
is the outer product. Apparently, the solution can

be found by just one pass through the data, keeping in memory all
sums in a matrix and a vector from (34) without any need for keep-
ing any information about each individual sample. For each new
training sample we find the corresponding leaf node and update its
sums. Thus, there are no memory restrictions as in the first stage of
the learning and we can pass through all available data. If we have
a generator of an arbitrary amount of data (such as obtained by a
fluid solver for randomly generated scenes), we can essentially run
this stage of learning till each leaf node contains a sufficient amount
of data required to avoid over-fitting. In practice, we can process
several orders of magnitude more data than in the first stage. The
concept of fixing the structure of the tree and retraining only the
leaf nodes can also be used to estimate the constant output function
q0 =

∑
i∈D̂

q(i)

|D̂| . The learning of the linear coefficients of all leaf
nodes of a tree is described in detail in the pseudo-code Algorithm
3. In general, training leaf nodes after fixing the tree can be used for
any other regression or classification forest problems where a data
generator is available (for example the artificial depth data genera-
tor for human poses in Kinect [Shotton et al. 2011]).

4 Experiments
Training data acquisition The training data was obtained using
the PBF algorithm [Macklin and Mueller 2013] evaluated on the

Figure 3: Examples of the training data, obtained using PBF
solver. For a small time step, PBF can generate a sufficiently high
quality data at a reasonable computational cost.

set of 165 randomly generated scenes. Each scene consisted of
a few bodies of water, sources and randomly moving, interacting,
appearing and disappearing obstacles, such as spheres, cylinders,
boxes or height map terrains. Each training video of 6 seconds
(stored as 188 frames with 32ms time step) contained between 1
and 6 million particles of the radius 0.01m, yielding the require-
ment for a small simulation time step of 1 ms. 5 projections to a
feasible manifold have been made in each 1ms time step. Even
though the running time of our GPU implementation of the PBF
algorithm under the same parameters was the same as in the orig-
inal paper [Macklin and Mueller 2013], under our setting the total
simulation time was approximately 50 minutes per video. Exam-
ple snap shots from the training set are shown in Figure 3. For a
comparison we also simulated 10 videos (a subset of the 165 PBF
videos) using the PCISPH solver [Solenthaler and Pajarola 2009],
taking approximately 10 hours per video to simulate. Comparisons
of the results revealed that PBF might not have been the most suit-
able training data acquisition method for our approach. The data
analysis showed that when interacting with obstacles, many parti-
cles require relatively large correction with respect to the time step
to avoid compression, often corresponding to acceleration exceed-
ing 10g even for a not-moving stable body of fluid. Such problemw
were not observed with the PCISPH. To partially resolve the prob-
lem with the PBF training data, we weighted the influence of each
training sample i by wi = exp(− |ai|

2g
).

Regression forest training The first stage of training was done
on 4% of the particles from a randomly selected subset of 12 ran-
domly rotated and/or mirrored frames from each training video.
This resulted in a total number of 100 million training samples.
A random set of 5000 rectangular boxes of the Gaussian distribu-
tion have been sampled as potential candidates for features used in
the regression trees. The mean and the variance of the Gaussian
distribution has been determined based on a quick test, which uni-
formly distributed boxes tend to be chosen if only a small amount
of data is used. The space was discretized to 0.02m, the same as
the particle diameter, corresponding to approximately one particle
per cell for an uncompressed fluid. The maximum depth of a tree
was set to 20. The training time of the first stage was 4 days per
tree on the cluster of 10 computers. The second stage of training
was done on all particles from 300 randomly rotated and mirrored
frames from each video with a total number of 60 billion training
samples (600× more than in the first stage). Originally we intended
to use the random scene generator of PBF simulations [Macklin and
Mueller 2013] directly in the training pipeline without any neces-
sity to store the intermediate data, however due to a rare divergence

Method CPU runtime GPU runtime
PBF 70.2s 5.25s

PCISPH 720s 100s
Regression forest 2.20s 24.08ms

Table 1: Comparison of approximate running times per frame (T =
32 ms) of CPU and GPU versions of PBF, PCISPH and our regres-
sion forest for one million particles. CPU code was run on the a
single core 3.5GHz Intel processor, GPU version on NVidia GTX
780. We also implemented the multi-core CPU version (speeding
up the method approximately by the number of cores). The per-
formance is shown for a single core to get a fair comparison with
other methods. PBF parameters (timestep, the number of projec-
tions) were the same as we used to build the training set. PBF was
often stable also for a larger time step or smaller number of projec-
tions, but in rare cases it diverged. However, it was not possible to
decrease its running time by an order of magnitude in our setting
due to a small particle radius.

(approximately 5% of the scenes) of the random simulations this
approach was not possible. The training time for the second stage
was 8 hours per tree on the same cluster. Over 99% of the nodes
containing in total over 99.9% training data had at least 5000 train-
ing samples, sufficient to avoid over-fitting. We trained both lin-
ear and constant output functions using this data. Even though the
linear fit decreased the training and evaluation error (see the next
paragraph), visually we did not observe much difference. Due to a
large size of trained model (520MB vs 40MB) we did not use the
linear fit for our real-time GPU simulations.

Comparison of learning approaches We trained one tree for
each learning setup (prediction, correction, prediction with hind-
sight). The naı̈ve approach was not able to deal with moving obsta-
cles, which often led to a compression of the fluid. The algorithm
was not able to self-correct in the next frames, because it has never
seen such distorted states during training. The visual comparison
between correction and prediction with hindsight determined the
correction approach to be a clear winner, mainly due to more realis-
tic splashes and better handling of the incompressibility constraint.
To confirm our visual observation, we measured the absolute L2-
error of the predicted accelerations, re-initialized in every frame
to the PBF solution. Relative errors are not suitable for compari-
son, because accelerations could be arbitrary close to 0 for a stable
fluid. Surprisingly, the quantitative evaluation on the 30 new PBF
test videos showed, that the prediction methods performed quanti-
tatively better than the correction approach. The average error of
naı̈ve prediction was 0.2066ms−2 (0.2150ms−2 with a constant
function), the error of prediction with hindsight was 0.2019ms−2

(0.2071ms−2 with a constant function), but the error of correction
was 0.2313ms−2 (0.2377ms−2 with a constant function). The ab-
solute values should not be taken too seriously due to the already
mentioned problem with PBF data. Quantitative comparisons in a
longer run would be misleading due to the instability of the differ-
ential equations with respect to the ϵ-change of initial conditions.

Speeding up the method Further analysis of the trees revealed,
that viscosity and surface tension are rarely picked as the most dis-
criminative features in the tree nodes. Using only pressure forces
and compressibility the evaluation over particles is equivalent to the
trilinearly interpolated evaluation over the grid cells with nonzero
density. Using this approach it is possible to subsample the grid,
and thus get a significant speed-up. At the 2 × 2 × 2 subsampling
(used for example also in the FLIP method [Zhu and Bridson 2005])
we did not observe any additional approximation artifacts. Viscos-
ity and surface tension can be then included as external forces over
the grid. This approach led to qualitatively similar results at much

1M 2M 4M 8M
Obstacle distance map 4.93 8.80 16.56 17.79

Integral volume calculation 5.78 9.71 21.57 69.95
Particles to grid interpolation 1.00 1.54 3.00 5.21
Regression forest evaluation 4.87 9.87 19.40 37.03
Grid to particles interpolation 3.41 6.48 11.44 20.98

Collision Detection 1.72 3.07 6.05 10.97
CPU-GPU data transfer 2.37 4.61 10.24 18.50

All 24.08 44.08 88.26 161.93

Table 2: Runtime per frame of different components of our real-
time GPU pipeline on NVidia GTX 780 depending on the number
of particles for a simulation with 3 moving obstacles (one box, one
sphere and one cylinder) with 2× 2 grid subsampling. All numbers
are for one particular simulation; the running time depends also
on the number, type and size of obstacles (Obstacle distance map,
collision detection), size of the space (Integral volume calculation),
subsampling and the size of space occupied by particles (regres-
sion forest evaluation). The obstacle distance map does not need to
be recalculated for fixed obstacles. The running time of each indi-
vidual component grows approximately linearly with the size of the
simulation. All results were obtained using one frame (∆t = 1/32
s) as a simulation step.

lower computational cost and memory requirements, because it re-
quires only one integral volume for the density to be calculated.
Eventually, we trained 3 regression trees with this approach and
used it for all our real-time GPU simulations. The snapshots of our
test set simulations rendered using Mitsuba renderer [Jakob 2010]
are shown in Figure 4. The snapshots of comparisons with the PBF
solutions are shown in Figure 5. Our method provides results of
reasonable quality at the running time order(s) of magnitude faster
than any existing solution. The snapshots of our real-time simula-
tions, each one with 1 to 1.5 million particles, with user controlled
obstacles are shown in Figure 6. Our simulations showed the poten-
tial to be applied in interactive applications with user interactions.
The running time comparisons to PCISPH and PBF is shown in Ta-
ble 1. The running time of each component for a million particles
for one particular scene with 3 obstacles is shown in Table 2. The
times depend on several other parameters, such as the size of the
space, type and size of obstacles etc.

Analysis of the weaknesses of the method The main problem
of our method is the same as the weakness of all machine learning
approaches; the learning methods are not capable to extrapolate the
model far outside the data observed during training. This applies
to density, viscosity, particle radius, height of the simulation space
(the distribution of boxes needs to be adapted) and time step (for
correction approach only). The learning method is independent on
external forces, however, the discriminativeness of features often
depends on it. This can be observed for example in the distribution
of boxes chosen during training. It does not have a zero mean, but
it is shifted down due to statistically more probable interaction of
fluid particles with a floor rather than with a roof. Over-fitting to
observed data has also some good sides; the algorithm provides a
very stable non-divergent solution even for cases where the incom-
pressibility constraint can not be fulfilled due to moving obstacles.
A conceptual weakness of our approach is the lack of rotation in-
variance, which is not directly enforced but only induced using lots
of random rotations of the training data. Enforcement of such con-
straint would make the integral features inapplicable and thus sig-
nificantly increase the running time. Another practical problem of
our method is that water surfaces are not always perfectly flat due
to imprecise predictions of our regressor.

Figure 4: The obtained results using our regression forest method (rendered offline). Our learning approach managed to successfully
approximate a large state-space of a behaviour of fluid particles without any significant artifacts. Our method showed the potential to be
useful for an application where running time matters more than the physical exactness, such as in computer games or interactive design.

Figure 5: Comparison with PBF. Our method produced slightly different, but globally similar visually plausible results. Simulations usually
differ for any two different solvers or configurations of a particular solver.

Figure 6: Realtime interactive experiments with user interaction. The experiments showed that our method can be used in interactive realtime
frameworks for fluid simulations with up to 2 million particles. At the moment there are no other alternatives that provide comparably fast
visually pleasant stable solutions at such scales.

5 Conclusions

In this paper we proposed a novel machine learning approach to
learn the fluid dynamics from a set of example simulations. We de-
signed a set of translation and inertia invariant discriminative fea-
tures, which correspond to individual forces and the incompress-
ibility constraint of the Navier-Stokes equations, and trained a re-
gressor, capable of iteratively predicting the next state of each par-
ticle. Our approach showed the potential to be a good replacement
of standard solvers in settings, where running times is more impor-
tant than the exactness of a simulation, such as in computer games
or interactive design. We believe our promising results will encour-
age other researchers to investigate and possibly improve the per-
formance. We also explored several other lines of thoughts, which
despite being well motivated, turned out to be inferior to the final
proposed solution. We believe, that these negative experiments also
contribute to the more complete picture about the application of
machine learning to physics-based simulations.

In our future work we want to try to apply our learning approach
to other similar physics-based problems, such as smoke, fire, cloth
sand, snow, elastic body simulations, etc. Another interesting direc-
tion is to combine learning methods with standard solvers to obtain
both fast and highly accurate simulations.

References

BREIMAN, L. 2001. Random forests. In Machine Learning.

CHENTANEZ, N., AND MÜLLER, M. 2010. Real-time simulation
of large bodies of water with small scale details. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 197–206.

CHENTANEZ, N., AND MÜLLER, M. 2011. Real-time Eulerian
water simulation using a restricted tall cell grid. ACM Transac-
tions on Graphics (Proceedings SIGGRAPH) 30, 82:1–82:10.

DE WITT, T., LESSIG, C., AND FIUME, E. 2012. Fluid simulation
using laplacian eigenfunctions. ACM Trans. Graph. 31, 1, 10:1–
10:11.

DESBRUN, M., AND CANI, M.-P. 1996. Smoothed particles: A
new paradigm for animating highly deformable bodies. In Eu-
rographics Workshop on Computer Animation and Simulation
(EGCAS), Springer-Verlag, 61–76.

ENRIGHT, D., FEDKIW, R., FERZIGER, J., AND MITCHELL, I.
2002. A hybrid particle level set method for improved interface
capturing. Journal of Computational Physics 183, 1, 83–116.

GUPTA, M., AND NARASIMHAN, S. G. 2007. Legendre fluids:
A unified framework for analytic reduced space modeling and
rendering of participating media. In Eurographics/ ACM SIG-
GRAPH Symposium on Computer Animation (2007), D. Metaxas
and J. Popovic, Eds.

HORVATH, C. J., AND SOLENTHALER, B., 2013. Mass preserving
multi-scale SPH. Pixar Technical Memo 13-04, Pixar Animation
Studios.

IHMSEN, M., CORNELIS, J., SOLENTHALER, B., HORVATH, C.,
AND TESCHNER, M. 2013. Implicit incompressible SPH.
IEEE Transactions on Visualization and Computer Graphics.
doi:10.1109/TVCG.2013.105.

JAKOB, W., 2010. Mitsuba renderer. http://www.mitsuba-
renderer.org.

KIM, T., AND DELANEY, J. 2013. Subspace fluid re-simulation.
ACM Transactions on Graphics (Proceedings SIGGRAPH) 32,
4, 62:1–62:9.

LADICKY, L., RUSSELL, C., KOHLI, P., AND TORR, P. H. S.
2009. Associative hierarchical CRFs for object class image seg-
mentation. In International Conference on Computer Vision.

LUCY, L. 1977. A numerical approach to the testing of the fission
hypothesis. The Astronomical Journal 82, 1013–1024.

MACKLIN, M., AND MUELLER, M. 2013. Position based fluids.
ACM Transactions on Graphics (Proceedings SIGGRAPH) 32,
1–5.

MONAGHAN, J. 1992. Smoothed particle hydrodynamics. Ann.
Rev. Astron. Astrophys. 30, 543–574.

MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 154–159.

RAVEENDRAN, K., WOJTAN, C., THUEREY, N., AND TURK, G.
2014. Blending liquids. ACM Trans. Graph. 33, 4 (July), 137:1–
137:10.

SHOTTON, J., WINN, J., ROTHER, C., AND CRIMINISI, A. 2006.
TextonBoost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In European
Conference on Computer Vision.

SHOTTON, J., FITZGIBBON, A., COOK, M., AND BLAKE, A.
2011. Real-time human pose recognition in parts from single
depth images. In Conference on Computer Vision and Pattern
Recognition.

SHOTTON, J., GLOCKER, B., ZACH, C., IZADI, S., CRIMINISI,
A., AND FITZGIBBON, A. 2013. Scene coordinate regression
forests for camera relocalization in rgb-d images. In Conference
on Computer Vision and Pattern Recognition.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible SPH. ACM Transactions on Graphics
(Proceedings SIGGRAPH) 28, 40:1–40:6.

STANTON, M., HUMBERSTON, B., KASE, B., O’BRIEN, J. F.,
FATAHALIAN, K., AND TREUILLE, A. 2014. Self-refining
games using player analytics. ACM Transactions on Graphics
(Proceedings SIGGRAPH) 33, 4, 73:1–73:9.

TAYLOR, J., SHOTTON, J., SHARP, T., AND FITZGIBBON, A.
2012. The vitruvian manifold: Inferring dense correspondences
for one-shot human pose estimation. In Conference on Computer
Vision and Pattern Recognition.

THÜREY, N., WOJTAN, C., GROSS, M., AND TURK, G. 2010. A
multiscale approach to mesh-based surface tension flows. ACM
Trans. on Graphics (Proc. SIGGRAPH) 29, 3.

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model re-
duction for real-time fluids. In ACM Transactions on Graphics
(Proceedings SIGGRAPH).

VIOLA, P., AND JONES, M. 2004. Robust real-time face detection.
International Journal of Computer Vision.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. Transactions on Graphics 28, 3.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Transactions on Graphics (Proceedings SIGGRAPH) 24,
965–972.

