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Generation of high-order Bessel beams by use of an axicon
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Abstract

We demonstrate and analyse a method for efficiently generating a high-order Bessel beam of arbitrary order by
illuminating an axicon with the appropriate Laguerre–Gaussian light beam. High-order Bessel beams offer distinct
advantages over other ‘hollow’ light beams for atom guiding. Our high-order Bessel beam generation technique offers a
direct method for coupling cold atoms into this optical atom guide. q 2000 Elsevier Science B.V. All rights reserved.
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In 1987 Durnin established that the free-space
Helmholtz equation has a set of solutions that are

w xpropagation-invariant 1 . These solutions have elec-
tric field amplitudes proportional to Bessel functions.
The zeroth-order beam has a bright central maximum
whereas the higher-order beams have a dark central
core which propagates in free space without any
spreading due to diffraction. Ideal Bessel beams are
of infinite transverse extent and energy and thus can
not be generated experimentally. However, it is pos-
sible to generate finite size approximations to Bessel
beams which propagate over extended distances in a

w xdiffraction free manner 1–4 .
Most of the experiments done to date consider the

simplest of these beams, the zeroth-order Bessel
beam. In this paper we present for the first time a
highly efficient but straightforward technique for
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generating higher-order Bessel beams. Such higher-
order Bessel beams have potential applications in
alignment and indeed the notion of alignment using
intensity minima produced with zone plates has been

w xrecently discussed 5 . Furthermore, we identify that
high-order Bessel beams have applications for atom
guiding and offer advantages over other ‘hollow’
light beams due to their non-diffractive nature and
the fact that the radius of the central minimum can
be of the order of the wavelength of light.

The first experiment by Durnin and co-workers
generated a zeroth-order Bessel beam by illuminat-
ing an annular slit placed in the back focal plane of a

w xlens with a plane wave 1 . This method is very
inefficient as most of the intensity of the illuminating
beam is blocked by the aperture. Much higher effi-
ciencies of around 45% were achieved using holo-

w xgraphic elements 2,3 . The most successful tech-
nique to generate an approximation to a zeroth-order
Bessel beam is by use of a conically shaped optical

w xelement termed an axicon 4 . When illuminated by a
Gaussian beam with a waist size much smaller than
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the hard aperture of the axicon, virtually the whole
input intensity is converted into an approximation to
a Bessel beam. However, to date axicons have only
been used to generate zeroth-order Bessel beams.

Higher-order Bessel beams can be produced di-
rectly from an illuminating Gaussian beam by use of

w xaxicon-type computer generated holograms 3,6 . A
more complicated holographic technique can be used
to efficiently generate a superposition of odd-order
Bessel beams that shows less variation of the central

w xring as the beam propagates 7 . In this paper we
describe the generation of higher-order Bessel beams
with high efficiency by illuminating an axicon with a
Laguerre–Gaussian mode.

The electric field amplitude of a lth order Bessel
beam is given by

E r ,f , z sAexp ik z J k r exp i lf , 1Ž . Ž . Ž . Ž . Ž .l z l r

where J is the lth-order Bessel function, and k andl z

k are the longitudinal and radial components of ther

free-space wavevector, such that k s 2p nrl
2 2(s k qk . The zeroth-order beam has a centralz r

maximum, whereas all the higher-order beams have
zero on-axis intensity surrounded by concentric rings
of light. The central zero of the higher-order Bessel
beams is due to the phase singularity of charge l

Ž .associated with the azimuthal phase term exp i lf .
As the radius of the inner ring, r sr rk , is deter-l l r

mined by the position r of the first maximum of thel

lth-order Bessel function it increases with the order
l. The transverse intensity spectrum of Bessel beams,
on the other hand, does not change at all. Regardless
of their order l it is always a ring of radius k . It isr

Ž .only the azimuthal phase variation exp i lf across
this annular spectrum that distinguishes different or-
der Bessel beams.

This fact can be exploited for the generation of
higher-order Bessel beams. All the above mentioned
experimental methods used to generate zeroth-order
Bessel beams convert an illuminating beam with
plane wave fronts into a beam with an annular
spectrum. If the illuminating plane wave is replaced
by a beam with an azimuthal phase variation

Ž .exp i lf , its azimuthal phase is conserved in the
transformation, as only circular symmetric elements
are involved. Thus the generated beam will have an
annular transverse spectrum with an azimuthal phase

variation, which gives an approximation to a Bessel
beam of order l.

The illuminating beams are best described in terms
Ž .of Laguerre–Gaussian LG modes, as they have the

desired azimuthal phase variation. They form a com-
plete orthonormal basis set for paraxial light beams
and their electric field amplitude at the beam waist is
given by

< <l r22 2 < l < 2 2E r ,f ,0 sA 2 r rw L 2 r rwŽ . Ž . Ž .0 p 0

=exp yr 2rw 2 exp i lf , 2Ž . Ž .Ž .0

where Ll is a generalised Laguerre polynomial andp

w is the waist size of the beam. The modes are0

characterised by two indices. The radial mode index
p is related to the number of concentric rings, pq1,
in the intensity cross-section and the azimuthal mode
index l describes the charge of the phase singularity.
LG modes may be generated from their Hermite–
Gaussian counterparts by use of a cylindrical lens

w xmode converter 8 or straight from the fundamental
w xGaussian beam by use of holographic techniques 9 .

In some instances laser cavities may be made to
w xoscillate in such modes 10 .

If a single-ringed LG mode with azimuthal mode
index l is used to illuminate an axicon placed at its
beam waist, an approximation to a Bessel beam of

Ž .order l is generated Fig. 1 . This establishes a direct
link via just one optical element between LG modes
and Bessel beams. For a rigorous mathematical
deduction one can evaluate the Fresnel diffraction
integral using the stationary phase method. The dis-
cussion is completely analogous to the one for axi-

Fig. 1. Illuminating an axicon with a Laguerre–Gaussian mode
generates an approximation to a higher-order Bessel beam within
the shaded region. If a hole is drilled through the centre of the
axicon the setup can be used for atom guiding, allowing the atoms
to be funneled from the LG beam into the Bessel beam.
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w xcon-type holograms outlined in Ref. 3 and will be
presented in the Appendix. Although the generated
beam shows a pronounced variation in peak intensity
its transverse profile close to the optic axis approxi-
mates to that of a Bessel beam of order l.

To investigate the conversion of a Laguerre–
Gaussian beam into a higher-order Bessel beam
experimentally we generated LG modes by illumi-

w xnating a computer generated hologram 9 with a
linearly polarised He–Ne laser. We used a selection
of holograms to generate single-ringed beams of
varying azimuthal index with an efficiency of about
30%. The LG beams had a waist size of w s2.5 mm0

and the axicon was positioned at their beam waist. A
hard aperture of radius Rs5 mm was used to filter
out the other diffraction orders of the hologram. The
axicon had an internal angle of gs18, generating a
beam with an annular transverse spectrum of radius

Ž .k fk ny1 g , where ns1.5 is the refractive indexr

of the axicon. The propagation distance of the gener-
ated Bessel beam can be estimated geometrically to
be

z sw krk . 3Ž .max 0 r

The intensity cross-sections of the generated
Bessel beams were examined by magnifying the
beam using a x10 microscope objective and then
recording it on a CCD camera. We generated Bessel
beams with orders ls1 to 4 and investigated their

propagation. Their profile and propagation distance
agree closely with our calculation. The radius of the
inner ring of the generated first order Bessel beam is
only r s21.2 mm and it propagates about z s1 max

29 cm without any spreading. This should be com-
pared with a Laguerre–Gaussian beam with ls1
and the same ring size at its waist, which would have
a Rayleigh range of only about 4 mm.

Fig. 2 shows the profiles for different order beams
at the same distance behind the axicon. The averaged
radial profiles of the beams are also shown together
with the theoretical intensity profile. They show a
very good agreement. The alignment of the axicon
gets more critical the higher the order of the Bessel
beam, as higher order vortices tend to break apart
into l single vortices of charge one if there is any
astigmatism present in the optical system.

The Laguerre–Gaussian beam illuminating the
axicon is hardly apertured and therefore its conver-
sion into a Bessel beam is almost 100% efficient. In
the experiment presented here, the overall efficiency
is obviously limited by the computer generated holo-
grams used to produce the LG beams. However,
there are simple, more efficient methods to generate
LG beams. By use of an open-cavity laser emitting a
Hermite–Gaussian mode, which is then converted
into a LG mode with a simple cylindrical lens mode

w xconverter 8 , the overall efficiency may approach
100%.

Ž . Ž .Fig. 2. Experimental beam cross-sections 355 mm = 355 mm of Bessel beams of order ls1 to 4 from left to right at a distance
zs14 cm behind the axicon. The radial profiles shown are the average of 40 azimuthal sections. They are in excellent agreement with the
calculated profiles which are also shown. The radius of the inner ring increases with the order from r s21.2 mm to r s61.2 mm.1 4
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Most notably, our straightforward conversion of
LG into Bessel beams could be used for atom guid-
ing. Atom guiding along both hollow fibres and
hollow light beams has generated much interest re-

w xcently 11–14 . Blue-detuned LG beams have been
w xused to guide and focus cold atoms 15 . As a result

of diffraction, the cross-section of the guiding beam
increases away from the focal position. By drilling a
hole through the centre of the axicon, our technique
for LG beam to Bessel beam conversion can be used
to channel the atoms into the central minimum of the
high-order Bessel beam which forms a long narrow

Ž .optical guide for the atoms Fig. 1 .
A first indication for the quality of the guide can

be found by looking at the optical dipole potential

" D I r rIŽ . Sat
U r s ln 1q . 4Ž . Ž .2ž /2 1q4 DrGŽ .Ž .

Ž .Here, I r is the spatially varying laser intensity,
Dsv yv is the laser frequency detuning fromL 0

the atomic resonance, and G and I are the naturalSat

linewidth and the saturation intensity of the atomic
transition, respectively. As an example, Fig. 3 shows

Ž .the optical potential for a LG beam ls1 of waist
size of 300 mm being converted into a Bessel beam.
This J beam has a central minimum of 15 mm1

radius and propagates for 5 cm without diffractive

Fig. 3. Guiding potential for a ls1 LG beam with waist size
w s300 mm converted into a Bessel beam with radius r s150 1

mm by an axicon sitting at position zs0 mm. The potential is
Žcalculated for rubidium ls780.2 nm, G s2p =6.1 MHz, ISat

2 .s16Wrm , where a laser power of 1 W and a frequency
blue-detuning of Ds3 GHz was assumed.

spreading. The height of the optical potential for the
J beam increases by almost factor of 3 compared to1

the LG beam and the optical potential barrier is
much steeper. Notably, high-order Bessel beams can
have a central minimum of a size approaching the
wavelength of light. In the optical region this size is
comparable to the de Broglie wavelength of an
ultra-cold ensemble of atoms and the atoms may
propagate in modes along the Bessel beam. Thus one
has the prospect of observing atom interference ef-
fects in a purely optically generated atom waveguide.

We have demonstrated a novel and efficient tech-
nique for generating a Bessel beam of arbitrary order
l by illuminating an axicon with a Laguerre–Gaus-
sian light beam of azimuthal index l. We demon-
strated experimentally the generation of high-order
Bessel beam from J to J . Amongst other applica-1 4

tions high-order Bessel beams offer distinct advan-
tages for cold atom guiding due to their narrow
central region and their non-diffracting nature.
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Appendix A

Our transformation of a Laguerre–Gaussian beam
into an approximation to a Bessel beam can be
analysed mathematically using the stationary phase
method to evaluate the Fresnel diffraction integral as

w xdiscussed in Ref. 3 . The field distribution behind
the axicon illuminated by a singled-ringed
Laguerre–Gaussian mode can be described by use of
the Fresnel diffraction integral as

1
2E r ,f , z s exp ik zqr r2 zŽ . Ž .Ž .

il z

=
R lX X X'd r r A 2 r rwŽ .H 0

0

=
X 2 X2exp yr rw exp yik rŽ .Ž .0 r

=
2pX 2 Xexp ikr r2 z df exp i lfŽ .Ž .H

0

=exp yikrX rcos fyf
X rz .Ž .Ž .

A.1Ž .
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Ž X .Here the phase factor exp yik r is due to ther

phase retardation caused by the axicon and the field
Ž Ž . .amplitude of the LG mode Eq. 2 with ps0 has

been factorised into its radial and azimuthal compo-
nents.

The integration over the azimuthal angle f
X can

be performed easily, giving rise to a l th-order Bessel
function:

1
2E r ,f , z s exp ik zqr r2 z exp i lfŽ . Ž .Ž .Ž .

il z

=
R X X Xf r exp yikm r d r ,Ž . Ž .Ž .H l

0

A.2Ž .
where

llX X'f r s2p yi A 2 r rwŽ . Ž . Ž .l 0

=
X 2 X X2exp yr rw r J krr rz A.3Ž . Ž .Ž .0 l

and

m rX srX 2r2 zyk rXrk . A.4Ž . Ž .r

The critical points rX for the principle of stationaryc

phase in the rX integration are the zeros of the first
Ž X.derivative of m r . There is only one critical point,

rX sk zrk, and the leading contribution of the inte-c r
Ž w xgral then behaves as see Chapter 7 of Ref. 16 , Eqs.

Ž . Ž ..3 – 8

R X X Xf r exp yikm r d rŽ . Ž .Ž .H l
0

f rX exp ikm rXŽ . Ž .Ž .l c c
A , A.5Ž .

XŽ2.(km rŽ .c

Ž2.Ž X .where m r s1rz denotes the value of the sec-c
Ž X.ond derivative of m r at the critical point. This

approximation is valid as long as the variation in
Ž X.f r over the region of stationary phase is small.l

This is the case if the periodicity of the Bessel
function is much larger than the width of the station-

2 w xary phase region, requiring that r <zlr4 6 . Ne-
glecting position-independent factors the intensity in
a transverse plane behind the axicon is then propor-
tional to

I r , z Az 2 lq1exp y2 z 2rz 2 J 2 k r , A.6Ž . Ž . Ž .Ž .max l r

where z is the ‘propagation distance’ as definedmax
Ž .by Eq. 3 .

Close to the optic axis, the beam generated by an
axicon illuminated by a Laguerre–Gaussian beam
with azimuthal index l therefore approximates to a
Bessel beam of order l.
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