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Summary. We propose model-based inference for differential gene expression, using a non-

parametric Bayesian probability model for the distribution of gene intensities under different

conditions. The probability model is a mixture of normals. The resulting inference is simi-

lar to a popular empirical Bayes approach used for the same inference problem. The use of

fully model-based inference mitigates some of the necessary limitations of the empirical Bayes

method. We argue that inference is no more difficult than posterior simulation in traditional

nonparametric mixture of normal models. We illustrate the proposed method in two examples,

including a simulation study and a microarray experiment to screen for genes with differential

expression in colon cancer versus normal tissue. In the examples we show how the nonpara-

metric Bayes approach facilitates the evaluation of posterior expected false discovery rates

(FDR). We also show how inference can proceed even in the absence of a null sample of

known non-differentially expressed scores. This highlights the difference to alternative empiri-

cal Bayes approaches based on plug-in estimates.

KEY WORDS: Density Estimation; Dirichlet Process; Gene Expression; Microarrays; Mixture

Models; Nonparametric Bayes.

1. Introduction

We discuss the use of nonparametric Bayesian inference to analyze data from microarray

experiments conducted to screen for differential gene expression over conditions of interest.

The probability model is a variation of traditional Dirichlet process (DP) mixture models.

The model includes an additional mixture corresponding to the assumption that observed

transcription levels arise as a mixture over non-differentially and differentially expressed

genes. Inference proceeds as in DP mixture models, with an additional set of latent indica-

tors to resolve the additional mixture.

1.1. Background

With the recent advent in DNA array technologies, a new class of large data sets emerge

from microarray experiments that allow researchers to measure the relative expression of
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thousands of genes simultaneously. Microarrays measure mRNA concentrations by labeling

the sample with a dye and then allowing them to hybridize to spots on the array. Each spot

contains either DNA oligomers (typically 25 nucleotides) or a longer DNA sequence (hun-

dreds of nucleotides long) designed to be complementary to a particular messenger RNA

of interest. There are two main types of arrays: Oligonucleotide arrays generated by pho-

tolithography techniques to synthesize oligomers directly on the slide (primarily Affymetrix

arrays); and cDNA arrays generated by mechanical gridding, where prepared material is

applied to each spot by ink-jet or physical deposition. For oligonucleotide microarrays,

cross-hybridization may occur, that is, multiple genes may hybridize to the same spot.

Therefore oligonucleotide arrays must measure each gene with a probe set of oligomers (for

example, Affymetrix arrays use probe set sizes of 32-40), and the identification of a gene

is only made if “positive” hybridization can be detected in the majority of the probes in

the set. Oligonucleotide arrays are manufactured with probes that form a perfect match

(PM) and a mismatch (MM) with the target polynucleotide of interest. The PM oligo probe

will contain a segment of a wild-type allele (creating a perfect complementary match with a

segment of the target polynucleotide of interest), while the MM oligo probe will be a copy of

the PM oligo that has been altered by one base at a central position, usually the thirteenth

position. In current practice, Affymetrix oligonucleotide arrays measure a single sample at a

time with a single type of dye. In contrast, cDNA microarrays can use two or more different

fluorescent dyes to label different samples, thus allowing simultaneous monitoring of mul-

tiple samples on the same array. See Wu (2001) for an introductory review of microarray

technologies.

Statistical methods applicable to the analysis of such data have an important role to

play in the discovery, validation, and understanding of various classes and subclasses of

cancer. See, for example, Eisen et al. (1998), Alizadeh et al. (2000), Ben-Dor et al. (1999,

2000), Alon et al. (1999), Golub et al. (1999), Moler et al. (2000), and Xing and Karp (2001).

The different stages of a microarray experiment include experimental design, image analysis,

graphical presentation and normalization, identification of differentially expressed genes, and

finally clustering or classification of the gene expression profiles. See Smyth et al. (2002) for

a review of statistical issues and corresponding methods for these stages. In this article, we

focus on identifying differential gene expression. We use the term “expression level” to refer

to a summary measure of relative red to green channel intensities in a fluorescence-labeled

cDNA array or a summary difference of the PM and MM scores from an oligonucleotide

array.
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1.2. Inference for Differential Expression

Recently, statisticians and researchers in bioinformatics have focused much attention on the

development of statistical methods to identify differentially expressed genes, with special

emphasis on those methods that identify genes that are differentially expressed between

two conditions. Many methods are based on a notion of thresholding, imposing an arbi-

trary threshold of signal difference, or fold-change ratio, between experimental and control

samples, above which differences are considered to be real. Many implementations of such

thresholds for ratios of expression levels allow for the fact that the variability of these ratios

is not constant across mean expression levels. The use of fold-change ratios can be ineffi-

cient and erroneous. The uncertainty associated with dividing two intensity values further

increases overall errors (Newton et al., 2001; Yang et al., 2001; Miles, 2001). The methods

are often variants of Student’s t-test that conduct a hypothesis test at each gene and subse-

quently correct for multiple comparisons. Earlier simple methods were discussed in Schena

et al. (1995), Schena et al. (1996), DeRisi et al. (1996) and and Lönnstedt and Speed (2002).

Chen et al. (1997) considered a less arbitrary threshold by using replicated housekeeping

genes. Methods that implicitly assume a non-constant coefficient of variation were proposed

by Baggerly et al. (2001), Newton et al. (2001), and Rocke and Durbin (2001).

A recent strategy for the detection of differentially expressed genes, called significance

analysis of microarrays (SAM), has been described by Tusher et al. (2002). SAM identifies

genes with statistically significant changes in expression by assimilating a set of gene-specific

t-tests. The approach incorporates means and standard deviations across experimental

conditions in the computation of a relative difference in gene expression. Each gene is

assigned a score on the basis of its change in gene expression relative to the standard

deviation of the repeated measurements for this specific gene corresponding to different

experimental conditions. To prevent the denominator of the t-statistic from getting too

small, Tusher et al. (2002) proposed a refinement of the t statistic by adding a constant

term a0 to the denominator of the standardized average. The constant term a0 can be

taken to equal the nth percentile of the standard errors of all the genes, as suggested by

Efron et al. (2001), or as a value that minimizes the coefficient of variation of the t-statistic,

as suggested by Tusher et al. (2002).

A number of researchers have employed mixture modeling approaches in the analysis

of microarray data. McLachlan et al. (2002) developed the software EMMIX-GENE that

includes a mixture of t distributions, using the Student-t family as a heavy-tailed alternative

to the normal distribution. The use of a mixture of normal distributions as a flexible and

powerful tool to estimate the two distributions related to gene expression has been discussed,

for example, in Pan et al. (2002). They use a parametric bootstrap technique to fix a cut

point in declaring statistical significance for identified genes while controlling for the number
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of false positives. Newton et al. (2004) develop full posterior inference in a mixture model

for gene expression data, using a setup similar to the model proposed in this article. They

propose two alternative implementations, a parametric hierarchical model and a random

histogram model.

Efron et al. (2001) discuss an empirical Bayes approach. They compute the posterior

probability of differential expression by substituting estimates of relevant parameters and

(ratios of) densities based on the empirical distribution of observed transcription levels.

Similar to these methods, our approach starts with assuming that the observed expres-

sion scores are generated from a mixture of two distributions that can be interpreted as

distributions for affected and unaffected genes, respectively. The desired inference about

differential expression for a particular gene amounts to solving a deconvolution problem

corresponding to this mixture. While Efron et al. (2001) proceed by plugging in point esti-

mates, we choose a fully model-based approach. We construct a probability model for the

unknown mixture, allowing investigators to deduce the desired inference about differential

expression as posterior inference in that probability model. We choose Dirichlet process

mixture models to represent the probability model for the unknown distributions. We de-

velop Markov chain Monte Carlo (MCMC) posterior simulation to generate samples from

the relevant posterior and posterior predictive distributions.

2. Data

Alon et al. (1999) used Affymetrix oligonucleotide arrays to monitor expressions of over 6,500

human gene expressions in 40 tumor and 22 normal colon tissue samples. The samples were

taken from 40 different patients, with 22 patients supplying both a tumor and normal tissue

sample. Alon et al. (1999) focused on the 2,000 genes with highest minimal intensity across

the samples, and it is these 2,000 genes that comprise our data set. The microarray data

matrix thus has n = 2, 000 rows and p = 62 columns. We have rearranged the data so that

the tumors are labeled 1 to 40 and the normals 41 to 62. The first 11 columns report tumor

tissue samples collected under protocol P1 (using a poly detector), columns 12-40 are from

tumor tissue samples collected under protocol P2 (using total extraction of RNA), columns

41-51 are normal tissue samples collected under P1 from the same patients as columns 1-11,

and columns 52-62 are normal tissue samples collected under protocol P2 from the same

patients as columns 12-22.

From the data matrix we construct two difference matrices, D and d. The first matrix,

D, contains all the possible differences between tumor and normal tissues within the same

protocol (P1 or P2), with the i-th row of D defined as the vector of all differences for the

i-th gene. The other matrix, d, contains all possible differences within the same conditions
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and same protocol, i.e., differences between all pairs of tumor columns, and between all pairs

of normal columns collected under the same protocol. Also, in constructing D, we exclude

differences of paired columns corresponding to the same patient. Including such differences

would require the introduction of patient specific random effects to model the difference in

variation between differences of paired and independent columns, respectively. Thus patient

to patient variation as well as any other noise is included in both, d and D. But possible

effects due to differential expression in tumor versus normal tissues are included only in D.

We refer to d as the null sample, reporting only residual error, and D as the mixed sample,

including residual error plus a tumor versus normal effect for differentially expressed genes.

The goal of the upcoming discussion is to identify those genes that are differentially expressed

across the two conditions and separate the mixed sample into a subset of non-differentially

expressed genes for which D reports only noise as in d, and differentially expressed genes

that show an additional effect in D.

Let Di and di denote the average of all elements in D and d, respectively, corresponding

to gene i, i.e., the average in the i-th row Di and di, respectively. Similar to Efron et al.

(2001), we construct two sets of Z scores, Znull and Zmix, obtained as

Zmix
i = Di/(α0 + Si)

Znull
i = di/(α′

0 + si)

where Si and si are respectively the standard deviations of Di and di. The offsets α0 and

α′

0 are the correction scores. We use α0 = α′

0 = 0. The specific nature of the summary

scores Zi is not important for the upcoming discussion. In particular, we do not exploit

any distributional assumptions about the statistics Di, di, Si or si. Any alternative statistic

could be used, subject only to assuming independence across i. Finally, we note that the

use of the same underlying raw data to compute the differences in D and d introduces a

dependence of Znull

i and Zmix

i which we ignore in the following development of a sampling

model.

3. A Mixture Model for Gene Expression Data

We assume that a gene is either affected or unaffected by the condition of interest. Hence

we can write the distribution of expression scores Zmix
i as a mixture of two density func-

tions, f0 and f1, representing the density function under unaffected and affected conditions,

respectively. Thus, for Z ∈ {Zmix
i , i = 1, . . . , n} we assume Z ∼ f(Z) with

f(Z) = p0f0(Z) + (1 − p0)f1(Z) (1)

where p0 is the proportion of genes that are not differentially expressed across the two

experimental conditions. Newton et al. (2004) use a similar mixture model setup, albeit
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modeling gene expression rather than difference scores.

The main inference question of interest is about the probability of differential expression.

Using Bayes’ rule for given (f0, f1, p0) we find from (1) the posterior probability of differential

expression

P1(Z | f0, f1, p0) = (1 − p0)f1(Z)/f(Z), (2)

and the complementary probability of non-differential expression P0(Z | f0, f1, p0) =

p0f0(Z)/f(Z). Both probabilities are conditional on assumed (f0, f1, p0). Following the

practice in the literature we label the probabilities P1 and P0 as posterior probabilities,

but note that they might be more appropriately denoted as functions of the parameters.

Instead of conditioning on the observed data (Znull
i , Zmix

i , i = 1, . . . , n) and marginalizing

with respect to all unknown quantities, which would commonly be referred to as a posterior

probability, P1 conditions on the unknown parameters (f0, f1, p0) and does not make use of

the data beyond the Z score for the gene under consideration.

Efron et al. (2001) propose to estimate P0 by an empirical Bayes approach, substituting

point estimates for f0/f and p0. To derive a point estimate for p0 they observe that non-

negativity of P1 implies p0 ≤ minZ f(Z)/f0(Z), and propose to substitute the bound as

point estimate p̂0 ≡ minZ f(Z)/f0(Z). This could easily be replaced by better estimates.

For example, Storey (2002) proposes a straightforward estimate for p0 based gene specific

p-values. The advantage of using the upper bound on p0 is simplicity and the conservative

nature of the implied approximation for the reported probabilities of differential expression.

To estimate f0/f they construct a logistic regression experiment, set up such that the

odds are π(Z) = f(Z)/(f(Z) + f0(Z)). The corresponding estimate π̂ gives an implied

estimate q̂ = (1 − π̂)/π̂ for q = f0/f . We will refer to P̂0(Z) = p̂0 q̂(Z) and P̂1(Z) =

1−P̂0(Z) as empirical Bayes estimates. The bound p̂0 overestimates p0 and hence introduces

a corresponding bias in P̂0(Z) and P̂1(Z).

This limitation of the empirical Bayes approach can be overcome by a fully model-based

Bayesian approach that introduces a probability model on (f0, f1, p0) and computes posterior

probabilities of differential expression as appropriate marginal posterior probabilities.

3.1. Non-parametric Bayesian Approach (NPBA)

Defining a prior probability model for the unknown quantities in (1), and combining this with

the relevant sampling distributions we can derive a posterior distribution for the unknown

f0, f1 and p0. The implied posterior distribution on P1 = (1− p0)f1/f provides the desired

probabilities of differential expression. The key features of this approach are that it replaces

point estimates for f0/f and p0 by a full description of uncertainties and appropriately

accounts for these uncertainties. Another important advantage is that inference can proceed
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even without the null sample Znull
i . See the discussion in Section 5.1 for details. Also, the

approach inherits other relevant advantages of coherent posterior inference. In particular,

once we introduce a joint probability model across all genes and samples, we can provide

joint inference on multiple genes, including accounting for multiplicities based on the joint

posterior distribution across all genes. We explain details and illustrate these issues in the

context of the examples in section 5.

Defining a prior probability model for inference in (2) requires investigators to choose

a probability model for the unknown densities f0 and f1. Bayesian inference for random

distributions, like f0 and f1, is known as nonparametric Bayesian inference (Walker et al.,

1999). By far the most popular nonparametric Bayesian model is the Dirichlet process (DP).

A random probability distribution G is generated by a DP if for any partition A1, . . . , Ak of

the sample space the vector of random probabilities G(Ai) follows a Dirichlet distribution:

(G(A1), . . . , G(Ak)) ∼ Dir(M G?(A1), . . . , M G?(Ak)). We denote this by G ∼ DP(M, G?).

Two parameters need to be specified: a scalar parameter M , and the base measure G?. The

base measure G? defines the expectation, E{G(B)} = G?(B), and M is a precision param-

eter that defines variance. Properties and definition of the DP are discussed in Ferguson

(1973) or Antoniak (1974). A useful result is the construction by Sethurman (1994). Let δx

denote a point mass at x. Any G ∼ DP(M, G?) can be represented as G(·) =
∑

∞

h=1 whδµh
(·)

with

µh
i.i.d.
∼ G?, and wh = Uh

∏

j<h

(1 − Uj) with Uh
i.i.d
∼ Beta(1, M). (3)

In words, realizations of the DP are almost surely discrete. The locations µh of the point

masses are a sample from G?, and the random weights wh are generated by a “stick-breaking”

procedure. The almost sure discreteness is inappropriate in many applications. A simple

extension to remove the constraint to discrete measures is to introduce an additional con-

volution, representing a random probability measure F as

F (x) =

∫
f(x|θ) dG(θ) with G ∼ DP(M, G?). (4)

Such models are known as DP mixtures (MDP) (Escobar, 1988; MacEachern, 1994; Escobar

and West, 1995). Using a Gaussian kernel, f(x|µ, S) = N(x; µ, S) ∝ exp[−(x−µ)T S−1(x−

µ)/2], and mixing with respect to θ = (µ, S) we obtain density estimates resembling tra-

ditional kernel density estimation. See, for example, MacEachern and Müller (2000) for a

recent review of MDP models and posterior simulation methods.

We use DP mixture models as in (4) to define prior models for f0 and f1. Let N(x; m, S)

denote a normal probability density function for the random variable x with moments (m, S).

We assume

fj(z) =

∫
N(z; µ, σ2) dGj(µ) and Gj ∼ DP(M, G?

j ), for j = 0, 1. (5)
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Using the stick-breaking representation (3), we can write model (5) equivalently as

f0(z) =
∞∑

h=1

ωhN(z; µh, σ2) (6)

with locations µh and weights ωh generated by the stick-breaking prior (3). An analogous

representation holds for f1. Thus, similar to McLachlan et al. (2002) and Pan et al. (2002),

we represent the unknown densities f0 and f1 as mixtures of normals. For the base measures

G?
j we use

G?
0 = N(b, σ2

0) and G?
1 = 0.5 N(−b1, σ

2
1) + 0.5 N(b1, σ

2
1).

The base measure for the null scores is unimodal, centered at zero. The base measure for

scores from differentially expressed genes is symmetric bimodal, reflecting the prior belief

that differential expression (on the log scale) in either direction is equally likely.

For notational convenience, we relabel the data as zi, i = 1, · · · , n, for the null sample

Znull and zi, i = n + 1, · · · , 2n, for the mixed sample Zmix. Let f = p0 f0 + (1 − p0) f1

denote the sampling distribution for the mixed sample. For the null sample, the sampling

distribution is f0 itself, without the additional mixture in f . In summary, the likelihood is

p(z1, · · · , z2n | f0, f1, p0) =

n∏

i=1

f0(zi)

2n∏

i=n+1

f(zi). (7)

We complete the model with a prior probability model for p0 and the parameters of the base

measures G∗

0 and G∗

1. We assume a uniform prior p0 ∼ Unif(0.05, 1), conjugate normal priors

on hyperparameters b and b1, b ∼ N(m, τ2), and b1 ∼ N(m1, τ
2
1 ), and inverse gamma priors

on the variance parameters, σ2 ∼ IG(ασ, βσ), σ2
0 ∼ IG(α0, β0), and σ2

1 ∼ IG(α1, β1). The

total mass parameter M in the DP priors is fixed as M = 1. We use fixed hyperparameters

m, m1, τ
2, τ2

1 , ασ, βσ, α0, β0, α1, and β1.

4. Posterior Inference

Posterior inference in the proposed model is carried out using MCMC simulation (Tier-

ney, 1994). Implementation is greatly simplified by two computational devices. Firstly, as

usual with DP models, posterior simulation is based on the the marginal posterior, after

marginalizing with respect to the unknown random measures G0 and G1, or equivalently,

f0 and f1. See, for example, MacEachern (1998). In other words, we do not represent the

actual random functions f0 and f1. Later, in section 4.2 we discuss an algorithm that allows

us to add inference on f0 and f1 in a straightforward manner. The second computational

strategy that simplifies implementation is related to the mixtures appearing at various levels

of the proposed model. One mixture appears in equation (5) when we construct the DP
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mixture of normal models for f0 and f1. A second mixture appears in the representation

of the sampling distribution f for the mixed sample in equation (1). MCMC in mixture

models usually proceeds by deconvoluting the mixtures via the introduction of latent vari-

ables (Diebolt and Robert, 1994; Robert, 1996). We will follow the same strategy here. The

resulting MCMC scheme is no more difficult than posterior simulation in standard MDP

models with DP mixtures of normals, as described, e.g. in MacEachern (1998). In fact,

the only difference is that minor modifications are required in calculating the resampling

probabilities for some of the indicators. We elucidate details of this modification below.

4.1. Markov Chain Monte Carlo Simulation

Posterior simulation is implemented by a Gibbs sampling scheme, iterating over draws from

the complete conditional posterior distributions (Tierney, 1994). For the construction of

the Gibbs sampler, it is convenient to consider an equivalent representation of the involved

mixtures as hierarchical models. The mixtures in (1) and (5) are replaced by a hierarchical

model

zi ∼ N(µi, σ
2) and µi ∼





G0 if ri = 0,

G1 if ri = 1;

with latent indicators ri ∈ {0, 1} defined by

Pr(ri = 0) =





1 for i = 1, · · · , n,

p0 for i = n + 1, · · · , 2n.
(8)

The latent variables µi break the DP mixtures assumed for f0 and f1. The latent indicators

ri break the additional mixture implied in the definition of f as f = p0f0+(1−p0)f1. MCMC

posterior simulation proceeds as usual in DP mixture models, with a slightly modified

expression for the conditional posterior probabilities used to re-sample the latent µi. The

key observation when considering the complete conditional posterior for µi is that the latent

µi corresponding to the non-affected sample points zi, i = 1, · · · , n, can only have ties with

other µj ’s that either correspond to other non-affected sample points, j ∈ {1, . . . , n}, or

are imputed as arising from f0, i.e., j ∈ {n + 1, . . . , 2n} and rj = 0. However, µi, i =

n + 1, · · · , 2n, corresponding to sample points arising from the mixture can be matched

with any other µj , j 6= i. Let g0(µ) ∝ N(zi; µ, σ2)G?
0(µ), c0 =

∫
N(zi; µ, σ2)G?

0(µ) dµ, and

analogously for g1(µ) and c1. Below we write “· · · ” in the conditioning set to indicate

the data and all other parameters except the parameter before the conditioning bar. For

i = 1, · · · , n, we find

(µi| · · · ) =





µj , j 6= i and rj = 0 with pr. c N(zi; µj , σ

2),

∼ g0(µi) with pr. c c0.
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Here c is the common proportionality constant to ensure that the probabilities add up to

one.

Let n−

0 = #{h : h 6= i and rh = 0} denote the number of data points different from zi

with r indicator equal 0, and analogously for n−

1 . For i = n + 1, · · · , 2n, we jointly update

µi and ri with

(µi, ri| · · · ) =






(µj , 0), j 6= i, rj = 0 with pr. γ p0
1

M+n
−

0

N(zi; µj , σ
2),

(µj , 1), j 6= i, rj = 1 with pr. γ p1
1

M+n
−

1

N(zi; µj , σ
2),

µi ∼ g0(µi) and ri = 0 with pr. γ p0
M

M+n
−

0

c0,

µi ∼ g1(µi) and ri = 1 with pr. γ p1
M

M+n
−

1

c1.

Again, γ denotes the common proportionality constant. Actual implementation is further

simplified by keeping track of a set of unique µ values {µ?
j , j = 1, · · · , k} and corresponding

indicators {r?
j , j = 1, · · · , k}.

The remaining steps of the Gibbs sampler generate p0, σ
2, b, σ2

0 , b1 and σ2
1 from the

respective complete conditional posterior distributions. Using the conjugate hyperpriors

defined earlier, the complete conditional posterior distributions are a beta distribution for

p0, inverse gamma distributions for the variance parameters, and normal distributions for

the location parameters b and b1.

4.2. Inference on f0 and f1

The MCMC outlined in section 4.1 was greatly simplified by marginalizing with respect to

the unknown distributions f0 and f1. However, the final goal of our analysis is inference

about P1 = (1 − p0) f1/f . Alternatively to using P1 we could exploit the interpretation

of the latent variables ri as indicators of differential expression. We could use the imputed

values for ri to report posterior probabilities of differential expression. For example, we could

plot ergodic averages of the posterior simulated ri values against zi. However, we prefer to

use ergodic averages of the simulated curves P1, because the curve P1 already marginalizes

with respect to the imputed ri. It can be argued (Casella and Robert, 1996) that such Rao-

Blackwellized estimates are generally preferable.

Posterior inference on P1 requires discussion of the posterior on f0 and f1. In general,

inference on the unknown distribution in DP mixture models is challenging. See Gelfand

and Kottas (2002) for a discussion. However, some important simplifications are possible in

our application. See the appendix for details.
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5. Simulation Study and Application

In section 5.1, we perform a small simulation study to illustrate the proposed approach.

Results are compared with the known true parameter values in the simulation. In section 5.2,

we analyze a colon data set from Alon (1999), and compare the results under the proposed

nonparametric Bayesian model with inference obtained from the empirical Bayes approach.

5.1. Simulation Study

We simulate a sample of n = 10, 000 gene expression scores Znull
i , i = 1, . . . , n, from f0 =

N(0, 1), and a sample Zmix
i , i = 1, . . . , n, from f = p0 f0+(1−p0) f1 with f1 = 0.5 N(−2, 1)+

0.5 N(2, 1) and p0 = 0.8.

Bayesian nonparametric inference is set up according to the proposed approach. We

fixed the hyperparameters as m = 0, m1 = 1, ασ = 2, βσ = 1, α0 = 1, β0 = 0.2, α1 = 1,

and β1 = 0.2. We summarize results here. We will use Y to generically denote the observed

data.

Figure 1 shows the posterior mean curves E(f0|Y ), E(f1|Y ) and E(f |Y ), together with

the true distributions used in the simulation. Posterior inference correctly recovers the true

curves. Not surprisingly, the bias for f1 is larger than for f0 and f . While f0 and f are

easily estimated from the relatively large samples Znull and Zmix, the data gives only indirect

evidence for f1, implied by the deconvolution of (1). Figure 2 illustrates the uncertainty

about the estimated distributions.

Let P 1(zi) denote the marginal posterior probability E{P1(zi|f0, f1, p0)|Y } for every

gene, i = 1, . . . , n. The structure of the proposed model implies that this marginal posterior

probability of differential expression depends on the gene only through the observed score

zi, making it meaningful to consider P 1(z) as a function of z, as shown in Figure 3. For

comparison, Figure 3 also shows the true proportion of differentially expressed genes for

each z. Figure 4 shows the uncertainty in P1 by plotting 10 random draws from p(P1 | Y ).

Inference for the binary indicator ri is completely summarized in the marginal posterior

probability P 1(zi) = P (ri = 1 | zi, Y ). There is no uncertainty about the posterior probability

of differential expression for a given gene. (As the expectation of a binary variable P 1

already shows the entire posterior of ri.) The uncertainty reported in Figure 4 relates to the

uncertainty of the curve P1 as a function of the random distributions f0 and f1.

The estimated posterior probabilities of differential expression can be used to carry out

the multiple comparison to classify genes into affected and unaffected by the condition of

interest. If we assume an underlying (0, 1, c) hypothesis testing loss we would declare all

genes with P 1(zi) > c/(1 + c) as differentially expressed. Table 1, second row, reports

the marginal posterior probabilities P 1(z) over a range of z values. In this example, using
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Fig. 1. Posterior mean curves E(f0|Y ), E(f1|Y ) and E(f |Y ) (solid curves) and true distributions

(dashed curves). The higher bias in estimating f1 reflects that the data includes only indirect infor-

mation about f1. Inference has to be derived by deconvoluting the mixture f = p0 f0 + (1 − p0) f1.

P 1 > 0.5 (i.e., c = 1) leads to classifying genes with |z| > 2.2 as differentially expressed.

The marginal posterior probabilities appropriately adjust for the observed level of noise. We

illustrate this by considering two additional simulations with lower and higher proportions

of non-differentially expressed genes, using (true) p0 = 0.4 and p0 = 0.95, respectively. For

p0 = 0.4 the cutoff shifts to |z| > 1.2. For higher levels of noise, p0 = 0.95, the cutoff shifts

even further to |z| > 5.2 (see Table 1). Alternatively, the shifting cutoff can be thought of

as a Bayesian adjustment for multiplicities. With higher p0 there is an increasingly larger

number of false comparisons. Posterior probabilities appropriately adjust (Scott and Berger,

2003).

A useful generalization of frequentist type-I error rates to multiple hypothesis testing is

the false discovery rate (FDR) introduced in Benjamini and Hochberg (2002). Let δi denote

an indicator for rejecting the i-th comparison, i.e., flagging gene i as differentially expressed.

Recall from equation (8) the definition of ri as indicators for true differential expression of
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Fig. 2. The four panels illustrate posterior uncertainty in f0, f1 and f . Panel (a) through (c) plot 10

draws from f0 ∼ p(f0|Y ), f1 ∼ p(f1|Y ) and f ∼ p(f |Y ), respectively. To allow easier comparison,

panel (d) combines plots (a) through (c). Notice the high uncertainty in f1.
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Fig. 3. Posterior mean curve P 1(z) = E{P1(z|f0, f1, p0) | Y } for P1 = (1 − p0)f1/f (solid curve).

For comparison the dashed curve plots average true indicators ri (binned over z scores). The ri

indicators are defined as ri = 1 if zi ∼ f1 and ri = 0 if zi ∼ f0.

Table 1. Classification into differentially and non-differentially expressed genes. The table re-

ports marginal posterior probabilities of differential expression P 1(z) across three experiments

(rows) and across z scores (columns). Posterior probabilities corresponding to rejection are

highlighted in bold face. The rejection region is defined by a bound on the posterior expected

false discovery rate, FDR ≤ α (see the text for details). The first column reports the true value

p0 used in the simulations. Note how posterior inference automatically adjusts for the higher

level of noise in the experiments with larger p0.

Observed z scores

p0 -5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00

0.4 1.00 1.00 0.98 0.87 0.46 0.19 0.43 0.85 0.98 1.00 1.00

0.8 0.94 0.90 0.75 0.41 0.14 0.07 0.13 0.44 0.81 0.93 0.96

0.95 0.46 0.42 0.27 0.11 0.05 0.03 0.04 0.10 0.28 0.43 0.50
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Fig. 4. Posterior uncertainty about P1. The plot shows 10 draws of p(P1|Y ) to illustrate posterior

uncertainty about P1.
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Fig. 5. Posterior expected false discovery rate FDR = E(FDR | Y ) for each of the three simulation

experiments with low, medium and high true proportion negatives (i.e., non-differentially expressed

genes). Assuming rejection regions of the type P 1(zi) > γ, the figures show FDR as a function of

the cutoff γ. The dotted lines indicate the smallest cutoff γ∗ to achieve FDR ≤ α for α = 0.45. In

each figure the legend indicates the corresponding bound on |zi|. See the text for more explanation.

gene i. We define FDR as

FDR =

∑
(1 − ri)δi∑

δi

, (9)

the fraction of false rejections, relative to the total number of rejections. The ratio in

(9) defines a summary of the parameters (ri), the decisions (δi) and the data (indirectly,

through the decisions). As such it is neither Bayesian nor frequentist. How we proceed to

estimate and/or control it depends on the chosen paradigm. Traditionally one considers the

(frequentist) expectation E(FDR), taking an expectation over repeated experiments. This is

the definition used in Benjamini and Hochberg (2002). Applications of FDR to microarray

analysis are discussed, for example, in Storey and Tibshirani (2003) and Reiner et al. (2003).

Extensions are discussed by Genovese and Wasserman (2002, 2003), who also introduce the

definition of posterior expected FDR as FDR = E(FDR | Y ) = [
∑

(1 − P 1(zi))δi]/
∑

δi.

We consider decision rules that classify a gene as differentially expressed if P 1(zi) > γ∗.

In analogy to classical hypothesis testing, we fix γ∗ as the minimum value that achieves a

certain pre-set false discovery rate, FDR ≤ α. The same rule, including the use of data-

dependent posterior expected FDR, is used in Newton et al. (2004). See Newton et al. (2004)

for more discussion. It can be shown (Müller et al., 2004) that under several loss functions

that combine false negative and false discovery counts and/or rates the optimal decision rule

is of this form. Figure 5 shows how the cutoff is obtained for three simulations with true

p0 = 0.4, 0.8 and 0.95. We use α = 0.45 (Since maxP 1(zi) = 0.6 for the third simulation, it

is impossible to achieve any FDR ≤ 0.4). Genes with FDR beyond the cutoff are highlighted

in bold face in Table 1. As before, the rule adjusts to increasing levels of noise by defining
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increasingly more conservative cutoffs.

All reported inference is conditional on the data, including the null sample as described in

Section 2. Recall that the null sample Znull
i was based on differences di taken under the same

biologic condition. Implicit in the use of the null sample is the assumption that the scores

Znull
i arise from the same distribution as scores Zmix

i for non-differentially expressed genes.

The latter are based on differences across different biologic conditions. If the investigator

is not willing to make this assumption, the proposed non-parametric Bayesian approach

still allows to proceed with the desired inference. The only change would be to drop the

first factor from the likelihood (7), i.e., remove observations zi, i = 1, . . . , n, from the data.

Everything else remains unchanged. The deconvolution proceeds on the basis of the prior

information. Of course, the loss of the strong information contained in the null sample leads

to considerably more uncertainty in the final inference. Figure 6 shows the same inference

as Figure 4, but without the use of the null data. Although we do not recommend to use the

approach without the null data in practice, the possibility to do so highlights the difference

between the plug-in approach in the empirical Bayes procedure discussed earlier and the

proposed model based posterior inference.
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Fig. 6. Same as Figure 4, but without the null data Znull
i . Notice the significantly increased uncertainty.
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5.2. Gene Expression Profiling of Colon Cancer

We analyze the data set reported in Alon et al. (1999). The data format was described in

Section 2. We compare inference under the proposed nonparametric Bayesian model with

the empirical Bayes estimate discussed earlier.

Figure 7 shows the marginal posterior distribution p(p0|Y ). The bound p̂0 used as point

estimate by the empirical Bayes method is far out in the tail of the posterior distribution,

indicating that p̂0 might lead to very conservative estimates for P0 and P1 (by underestimat-

ing P1). Figures 8 through 10 show comparative inference for f1, f0, f and P1. As expected,

the posterior mean curve P 1(z) is estimated lower under the empirical Bayes method than

under the proposed nonparametric Bayesian approach. Figure 9 summarizes the posterior

distributions p(f0|Y ), p(f1|Y ) and p(f |Y ).
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Fig. 7. Analysis of colon cancer data. The histogram depicts the marginal posterior p(p0|Y ) from

the nonparametric Bayesian model. Compare with the point estimate bp0 = 0.39 under the empirical

Bayes method.

The posterior probabilities of differential expression P 1(zi) for the 2000 genes range from

0.498 to 1.0, corresponding to |zi| between 0.035 and 3.290, respectively. The first quartile,

median, and third quartile of the reported P 1(zi) are 0.638, 0.839, and 0.980. To estimate

the number nd of differentially expressed genes, the user can consider the ergodic average of

the number of indicators ri that equal unity. The marginal posterior distribution p(nd | Y )

is shown in Figure 11. However, often in practice, statistical significance does not necessarily
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Fig. 8. Estimated curve P 1(z) under both, the empirical Bayes method (EMBA) and the proposed

nonparametric Bayesian approach, for the Alon colon cancer data. The lower estimate under the

EMBA is a direct consequence of the overestimated bp0.

imply strong biological significance. Thus, investigators may wish to calibrate between a

desired FDR and the number of significant genes, as discussed in Section 5.1. For fixed

values of α ranging from 0.001 to 0.2, threshold values on the observed scores zi, denoted as

Z∗, and the smallest cutoff γ∗ to achieve FDR ≤ α are depicted in Table 2, along with the

estimated number of significant genes. As |Z∗| increases, the number of genes identified as

significant by NPBA decreases along with a decreasing FDR. Investigators can use Table 2

to calibrate the results that give the best biological interpretation.

The original analysis described in Alon et al. was a clustering approach based on a deter-

ministic annealing algorithm applied to both the tissues and the genes in two separate steps.

They identified groups of gene clusters whose expression is correlated across tissue types, and

clusters that separate tumor and normal tissues. However, they had to rely on a number of

additional ad-hoc procedures to evaluate the discriminatory strength of each gene (without

proper adjustment for false discovery or multiple comparisons) and to assess whether the

separation between tumor and normal tissues depended on only a few genes, or is reflected

in the majority of genes used to cluster. Our approach provides a relatively easy and straight-

forward way to answer these questions based on the posterior probabilities. In particular,

there are 420 genes with posterior probabilities greater than 0.990. The smooth muscle gene
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Fig. 9. Posterior distributions for the unknown densities (Alon colon cancer data). The first three

panels summarize the posterior distributions on f0, f1 and f , respectively, by showing 10 draws from

p(f0|Y ), p(f1|Y ) and p(f |Y ), respectively. For easier comparison the fourth panel combines the plots

from the first three panels into one figure.
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Fig. 10. Posterior uncertainty for P1 (Alon colon cancer data). The figure shows 10 draws from

p{P1|Y }. Compare with the posterior mean curve shown in Figure 8.
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Fig. 11. Posterior p(nd | Y ) for the number of discoveries.
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Table 2. Estimated number nd of sig-

nificant differentially expressed genes

identified by NPBA for different values

of FDR (Alon colon cancer data). Z∗

denotes a threshold value for the ob-

served z-scores; γ∗ denotes the small-

est cutoff to achieve FDR ≤ α.

|Z∗| γ∗ FDR cnd

0.008 0.500 0.200 1938

0.241 0.549 0.150 1667

0.360 0.655 0.100 1393

0.580 0.803 0.050 1083

1.000 0.967 0.010 579

1.200 0.990 0.005 422

1.302 0.995 0.001 346

cluster (J02854, T60155, M63391, D31885, X74295, X12369) has posterior probablities of

at least 0.998 for each individual gene, while the top discriminatory ribosomal gene cluster

(T79152, T95018, T57633, T62947, T52185, T57630) results in posterior probability esti-

mates of greater than 0.998 for each gene, except for T57630 having an estimated posterior

probability of 0.993. Alon et al. also identified 29 ribosomal protein genes (Table 1 in Alon

et al.) that appear to be related to cellular metabolism such as an ATP-synthase compo-

nent and an elongation factor. Our approach can use the posterior probabilities to rank the

strength of these genes in discriminating between normal and tumor tissues. In particular,

of these, only 13 has estimated posterior probabilities greater than 0.95; while the two ribo-

somal genes with weakest discriminatory ability are (H77302, T63484) with corresponding

posterior probabilities of differential expression of 0.56 and 0.51. In general, our approach

provides a rigorous but straightforward way to assess gene membership of genes in clusters

generated by a plethora of available clustering techniques.

The simulation-based implementation of posterior inference allows investigators to com-

pute posterior probabilities for any event of interest under the posterior or posterior predic-

tive distribution. The relevant probabilities are computed as appropriate ergodic averages

under the proposed MCMC simulation. For example, it is possible to make joint inference

about a sub-group of genes being differentially expressed. Posterior simulation keeps track

of the indicators ri for all the genes. Evaluating the joint probability of a sub-group of

genes being differentially expressed amounts to counting how often ri = 1 for all genes in

the subset of interest. For example, the probability of six smooth muscle genes (J02854,

T60155, X12369, M63391, D31885, and X74295 ) or six ribosomal genes (T79152, T95018,
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T57633, T62947, T52185 and T57630) being joint differentially expressed is 0.996 and 0.985,

respectively.

6. Conclusion

We described a model-based nonparametric Bayesian approach as an effective framework

for studying the relative changes in gene expression for a large number of genes under two

different conditions. It uses a variation of traditional Dirichlet process mixtures to model

the population of affected and unaffected genes, thereby enabling full probabilistic posterior

inference to be carried out through a deconvolution process of the mixtures in the MCMC

simulation. Compared to the empirical Bayes approach of Efron et al. (2001) based on

plug-in values of the density functions under the different conditions, we demonstrated

via a simulation study and a colon cancer data set, that our method can avoid the bias

inherent in the former when estimating the posterior probability of differential expression.

We also addressed the multiple testing issues that arise when dealing with a large number

of simultaneous tests (genes). A strength of the approach we have presented is that the

rejection regions can be adaptively chosen to accommodate a pre-specified and biologically

meaningful FDR chosen by the investigator; thus an appropriate threshold value can be

directly calculated for the summary expression score to declare significance.

A critical assumption is that gene expression scores are independently identically dis-

tributed where the important aspect of the variation of gene expression across tissue samples

can be captured sufficiently well by a binary variable (affected versus unaffected). While it

is obvious that complex interactions between expression levels of several genes are likely to

be present in practice (for example, as a result of carcinogenic pathways for cancer data),

the underlying independence approximation is still useful to determine whether expression

level differences are significant solely on a gene-by-gene basis.

The approach described here can be extended to the exploration of gene interactions.

Consider the simple subset of just two interacting genes. A natural extension of our approach

is to choose a mixture of an appropriate bivariate distribution for the dual non-differentially

expressed components, and several other mutually exclusive bivariate distributions for the

differentially expressed components. This would require an extension of the two-component

mixture in (1). However, such an approach would be limited to essentially known subsets

of highly dependent genes. It would not be suitable for inference about large networks and

for generically modeling dependence of large sets of genes. Such extensions would more

naturally build on models using mixtures for individual gene expression, rather than dif-

ferences. Models that include such mixtures are developed, for example, in Newton et al.

(2004), Parmigiani et al. (2002) or Chen and Ibrahim (2004). A practical limitation of
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the proposed model is the computation intensive implementation. While details depend on

the specific implemenation, a typical run length for a posterior simulation following the de-

scribed MCMC scheme was 30 seconds for 1000 iterations and a data set with 2000 genes

(on a PC Pentium with 2.53 GHz and 1GB RAM). If reasonable point estimates for differ-

ential expression are sufficient, we recommend to use a quick and simple method, like the

empirical Bayes method in Efron et al. (2001) or the Beta uniform mixture (Pounds and

Morris, 2003).

An important limitation of the described approach is the (practical) reliance on the null

sample. Although one could proceed without the null sample, as shown in Figure 6, the use of

the null sample significantly sharpens the inference. The method can not be recommended for

practical use if it is not reasonable to assume exchangeability of difference scores computed

across the same biologic condition (Znull) and scores arising from differences for non-affected

genes, computed across different biologic conditions (Zmix).

Our modeling framework allows for other kinds of elaboration including the combination

of information across microarray technologies and gene-specific sensitivities (that may induce

non-linearities in expression levels) due to different RNA preparations, different dyes, and

different growth conditions. Generalizations in this direction would require the use of a

regression on sample-specific covariates in the probability model for f0 and f1. One possible

approach is the use of dependent DP models (De Iorio et al., 2004).

Further research into alternative prior structures to capture different sources of variation

and potential interactions between genes will provide more precise estimates of differential

gene expression and more accurate assessments of significant changes, thus reducing errors

in downstream tasks, such as classification and cluster analysis.

Supplementary information and software updates are available at

http://odin.mdacc.tmc.edu/~kim
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Appendix: Posterior Simulation for f0 and f1.

Let Y denote the observed data. The posterior means, E(f0|Y ) and E(f1|Y ), can be shown

to be identical to the posterior predictive distribution in the MDP model. We exploit this

to evaluate posterior estimates for f0 and f1. Using full conditional posterior distributions

that are already evaluated in the course of the MCMC simulation we can further simplify

the computation by using an ergodic average of these conditional predictive distributions.

This allows computationally efficient evaluation of E(f0|Y ) and E(f1|Y ). However, for

the desired full posterior inference about the probability of differential expression P1 more

information is required. We need posterior samples from the posterior p(fj|Y ), j = 0, 1,

on the unknown densities themselves. This is difficult in general. Below we describe a

computational algorithm that allows easy (approximate) simulation in the context of the

proposed model.

First, using f0 as example, we note that the posterior mean E(f0|Y ) is equal to the

posterior predictive distribution. Let z2n+1 denote a new Znull score. We find

p(z2n+1 | Y ) = E[p(z2n+1 | Y, f0) | Y ] = E[f0(z2n+1) | Y ].

Let θ denote the vector of all model parameters, and let θ(i) denote the parameters imputed

after i iterations of the MCMC simulation. We evaluate p(z2n+1 | Y ) as

p(z2n+1|Y ) = E[p(z2n+1 | Y, θ) | Y ] ≈
1

T

T∑

i=1

p(z2n+1 | θ(i), Y ) =
1

T

T∑

i=1

p(z2n+1 | θ(i)).

The terms in the last average are easily computed. Recall that {µ∗

j , j = 1, . . . , k} are the

unique values of the latent variables µi, and r∗j are the corresponding indicators ri. Without

loss of generality assume that the µ∗

j are arranged with r∗j = 0 for j = 1, . . . , k0 and r∗j = 1

for j = k0 + 1, . . . , k. Let nj = #{i : µi = µ∗

j} denote the number of µi equal to µ∗

j and let

N0 = #{i : ri = 0} denote the number of ri = 0. We use a superindex (i) to identify the

imputed parameter values after i iterations of the MCMC simulation. We find

p(z2n+1 | θ(i)) ∝

k
(i)
0∑

j=1

n
(i)
j N

(
z2n+1; µ

∗(i)
j , σ2(i)

)
+ MN

(
z2n+1; b

(i), σ
2(i)
0 + σ2(i)

)
. (10)

Uncertainty in f0 is illustrated through posterior draws of f0. For the following argument

we consider augmenting the imputed parameter vector θ(i) with the random distribution G0

defined in (5). Given θ(i), the conditional posterior for G0 is a DP with updated parameters,

(G0|θ
(i), Y ) ∼ DP(H0, M + N

(i)
0 ) with H0 ∝ M (i)G∗

0 +

k
(i)
0∑

j=1

n
(i)
j δ

µ
∗(i)
j

. (11)
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The large total mass parameter M +N
(i)
0 implies that the random measure G0 is close to the

conditional expectation H0, the DP base measure in (11). We exploit this to approximate

a posterior draw G0 ∼ p(G0 | θ(i), Y ) as G0 ≈ H0, and thus a posterior draw for f0 as
∫

N(µ, S(i)) dH0(µ), i.e.,

f0(z) ∝ M

∫
N(z; µ, σ2(i)) dG∗

0(µ) +

k
(i)
0∑

j=1

n
(i)
j N(z; µ

∗(i)
j , σ2(i)).

The latter is simply the predictive distribution conditional on θ(i) in (10). The same mech-

anism can be applied to obtain samples from f1(z2n+1|Y ).
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