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Abstract—While all systems have non-functional requirements 

(NFRs), they may not be explicitly stated in a formal 

requirements specification. Furthermore, NFRs may also be 

externally imposed via government regulations or industry 

standards. As some NFRs represent emergent system proprieties, 

those NFRs require appropriate analysis and design efforts to 

ensure they are met. When the specified NFRs are not met, 

projects incur costly re-work to correct the issues. The goal of our 

research is to aid analysts in more effectively extracting relevant 

non-functional requirements in available unconstrained natural 

language documents through automated natural language 

processing. Specifically, we examine which document types (data 

use agreements, install manuals, regulations, request for 

proposals, requirements specifications, and user manuals) 

contain NFRs categorized to 14 NFR categories (e.g. capacity, 

reliability, and security). We measure how effectively we can 

identify and classify NFR statements within these documents. In 

each of the documents evaluated, we found NFRs present. Using 

a word vector representation of the NFRs, a support vector 

machine algorithm performed twice as effectively compared to 

the same input to a multinomial naïve Bayes classifier. Our k-

nearest neighbor classifier with a unique distance metric had an 

F1 measure of 0.54, outperforming in our experiments the 

optimal naïve Bayes classifier which had a F1 measure of 0.32.  

We also found that stop word lists beyond common determiners 

had no minimal performance effect. 

Keywords-non-functional requirements; natural language 

processing; machine learning; classification; documentation 

I.  INTRODUCTION 

Just as with functional requirements, a system’s success 

depends greatly upon adherence to non-functional requirements 

(NFRs). When NFRs are missed or ignored, significant, costly 

issues can arise. A recently deployed U.S. Army intelligence 

sharing application costing $2.7 billion has been labeled as 

useless due to capacity, performance, and usability issues [1]. 

Electronic health record (EHR) systems have been severely 

criticized for lack of usability, which has been one of the prime 

reasons why some EHRs adoption have failed [2].  

Given the need to analyze and implement NFRs from a 

wide variety of available sources, system analysts need to 

quickly identify and categorize NFRs. Business analysts need 

to ensure completeness of their work. System architects need to 

understand constraints such as availability, performance, and 

recovery capabilities to appropriately design architectures to 

meet those constraints. System integrators, those who deploy 

large-scale software systems, need to be aware of NFRs in 

order to place systems into appropriate environments where 

NFRs such as capacity, security, and operational constraints are 

appropriately satisfied. Customers need usable applications 

they can immediately operate with minimal training and with 

appropriate user interface designs to minimize errors. 

Software documentation continues to be a neglected best 

practice, despite persistent pleas from educators and 

practitioners alike [3]. Open-source projects often lack formal 

requirements with developers asserting new requirements 

themselves. For many open-source projects, archived mailing 

lists and message boards are the only available development 

documentation [4]. However, open-source projects typically 

contain administrative, install, and user manuals because the 

contained information is necessary for others to utilize the 

open-source system. Government and industry-based standards 

contain critical NFRs for projects. Sifting through all of the 

possible sources for NFRs, though, is a tedious, time-

consuming effort. 

The goal of our research is to aid analysts in more 

effectively extracting relevant non-functional requirements in 

available unconstrained natural language documents through 

automated natural language processing. 

To meet this goal, we developed a tool-based approach, 

which we call NFR Locator, to classify and extract sentences in 

existing natural language texts into their appropriate NFR 

categories. The classification is necessary to determine what 

role a sentence has. From sentences marked as non-functional, 

we would then extract critical information specific to each NFR 

category. For example, access control NFRs would need 

subjects, resources, and actions extracted to create relevant 

access control policies. We categorized sentences into one of 

these 14 NFR categories: (1) access control, (2) audit, (3) 

availability, (4) capacity and performance, (5) legal, (6) look 

and feel, (7) maintainability, (8) operational, (9) privacy, (10) 

recoverability, (11) reliability, (12) security, (13) usability, and 

(14) other. With NFR Locator, individuals would utilize pre-

defined classifiers to locate and extract NFRs from existing 

natural language documents. If necessary, they can use the tool 

in an interactive mode to train additional classifiers with new 

domain or document types.  

To evaluate our approach, we developed the following 

research questions: 
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 RQ1: What document types contain NFRs in each of the 

14 different categories? 

 RQ2: What characteristics, such as keywords or entities 

(time period, percentages, etc.), do sentences assigned to 

each NFR category have in common? 

 RQ3: What machine learning classification algorithm 

has the best performance to identify NFRs? 

 RQ4: What sentence characteristics affect classifier 

performance? 

Our research has the following contributions: 

 Process and tool to identify NFRs by categories within 

available natural language documentation 

 Distribution report containing the NFR categories and 

frequencies by document type 

 Empirical performance results for machine learning 

classifiers on NFRs 

 Sentence similarity algorithm to use with a k-nearest 

neighbor classifier or a k-medoids clustering algorithm.  

 Publically-available labeled corpus of identified NFRs1 

The rest of this paper is organized as follows. Section II 

reviews the background for this paper. Next, Section III 

describes related work. Section IV presents our proposed 

approach, NFR Locator. Then, Section V describes the research 

methodology. Section VI presents the results of our study. 

Section VII discusses limitations of the study. Section VIII 

presents future work. Finally, Section IX concludes the paper. 

II. BACKGROUND  

A. Non-functional Requirements 

While NFRs have existed since the early days of software 

engineering, consensus does not exist for the name or the 

definition of a NFR [5]. Many simply refer to them as the 

“ilities,” the quality aspects of a system. Others have taken to 

labeling NFRs as systemic requirements [6]. The IEEE 

Recommended Practice for Software Requirements terms 

NFRs as constraints [7]. Our concern resides with how NFRs 

place different constraints on systems, how to quickly identify 

such constraints, and then to extract relevant information for 

the NFR. While the number of such constraint categories is 

rather large (Lawrence Chung et al. identified 156 NFR 

categories [8]), we choose to concentrate on 14 categories 

frequently appearing in literature and practical use. 

B. Machine Learning and Classification 

As our process seeks to identify NFRs from unconstrained 

natural language texts, we need flexible, yet effective 

classification methods to handle different documents and 

multiple ways of expressing similar concepts.. Machine 

learning provides such a foundation for our work. While 

techniques and algorithms vary widely in machine learning, 

they can be generally divided into two primary categories: 

supervised learning and unsupervised learning. In supervised 

learning, people train classifiers with labeled data. People and 

systems then use these classifiers to decide in which class a 

                                                           
1 https://github.com/RealsearchGroup/NFRLocator 

previously unseen instance belongs. In contrast, unsupervised 

learning algorithms search data for common patterns 

(clusters). The data is not directly labeled, but rather groups of 

common instances are created.  

As part of this work, we utilized a k-nearest neighbor 

classifier (k-NN), which is a supervised algorithm. k-NN 

classifiers work by classifying a test item based upon which 

items previously classified are closest to the current test item. 

The classifier finds the k nearest “neighbors” and returns a 

majority vote of those neighbors to classify the test item. A 

distance metric determines the closeness between two items. 

Euclidean distance often serves as a metric for numerical 

attributes. For nominal values, the distance is binary - zero if 

the values are the same or one if they differ. k-NN classifiers 

may use custom distance functions specific to current 

problem. Advantages of k-NN classifiers include ability to 

incrementally learn as new items are classified, to classify 

multiple types of data, and to handle large number of item 

attributes. The primary drawback to k-NN classifiers is that if 

they have n items stored, classification takes      time.  

We evaluated other machine learning algorithms including 

naïve Bayes and Support Vector Machine (SVM). A naïve 

Bayes classifier works by selecting a class with the highest 

probability from a set of trained data sets given a specific 

document. Fundamentally, it assumes that each feature of a 

class exists independently of other features. Despite such an 

oversimplification, the approach performs effectively in real-

world problems. Naïve Bayes classifiers typically require 

fewer trained instances than other classifiers.  SVM classifiers 

work by finding the optimal separator between two classes.  

C. Classification Evalutation 

To compare the results, we used recall, precision, and the 

F1 measure. To compute these values, we first need to 

categorize the classifier’s predictions into three categories for 

each classification value. True positives (TP) are correct 

predictions. False positives (FP) are predictions in which the 

sentence of another classification is classified as the one under 

evaluation. False negatives (FN) are predictions in which a 

sentence of the same classification under evaluation is placed 

into another classification. From these values, we define 

precision (P) as the proportion of corrected predicted 

classifications against all predictions against the classification 

under test:               . We define recall as the 

proportion of classifications found for the current classification 

under test: R = TP/(TP+FN). The   measure is the harmonic 

mean of precision and recall, giving an equal weight to both 

elements:      
   

   
. From a NFR perspective, recall is 

more important than precision in that we want to extract all 

relevant NFRs from the available documents. However, 

precision cannot be ignored in that producing large amounts of 

false positives will frustrate users. 

III. RELATED WORK 

 

While text classification, especially with regards to term 

frequency-inverse document frequency (TF-IDF), has been 
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studied for a relatively long period of time [10], NFR 

classification first appeared in the literature in 2006 [11]. In 

their work, Cleland-Hung et al. applied TF-IDF with an 

additional parameter to specify the frequency of indicator 

terms for a NFR category as compared to the appearance of 

those terms in the requirement currently under test. To 

evaluate their scheme, they collected 15 sample requirements 

specifications from term projects in a Master’s level class at 

DePaul University. They made this collection public through 

the PROMISE Data Repository [12]. Their work performed 

extremely well on the basis of a 0.8129 recall, meaning that 

they successfully found 81% of the possible NFRs in the 

dataset. However, their precision was a 0.1244 indicating a 

large number of false positives. While they intentionally 

choose to maximize recall, users would be frustrated with their 

process due to the large numbers of false positives to examine 

and discard. 

In 2009, Casamayor et al. [13] repeated the experiment, but 

with using a multinomial naïve Bayes classifier coupled with 

an Expectation Maximization algorithm to boost the classifiers 

performance by labeling untrained data with guesses based 

upon the already trained data set. Unfortunately, we have not 

been able to duplicate their results which had an overall 

accuracy around 0.97. By training a naïve Bayes classifier 

with their documented approach with all 625 instances in the 

data set, we have only produced an accuracy result of 0.89 by 

then testing all of the sentences. While not an appropriate 

testing approach, the result approximates the maximum 

theoretical performance on the data set with a given algorithm. 

Zhang et al. [14] repeated the experiment again in 2011, 

but utilized a SVM with a linear kernel as their classifier. They 

reported significantly higher precision results, although lower 

recall results than Cleland-Huang et al. but did not provide 

details. Interestingly, they demonstrated that the performance 

of individual words was higher than models with multi-words. 

Our work builds upon the prior work in that we utilized the 

same data set as part of our experiments, but we analyzed 

significantly more examples with multiple document types. 

We also examined the use of custom distances functions with 

a k-NN classifier. We studied the effect of different sentence 

characteristics on classification performance. 

IV. NFR LOCATOR 

We now present our two-step process, NFR Locator, to 
extract NFR sentences within existing unconstrained natural 
language documentation.  

For input, the process takes any natural language document 
related to a project. The process parses the natural language 
into an internal representation and then based upon relevant 
features, classifies sentences into specific NFR categories or 
returns “not applicable” if the sentence does not specify a NFR. 

A. Step 1: Parse Natural Language 

The process begins by entering the text into the system, 

parsing the text and converting the parsed representation into 

NFR Locator’s sentence representation (SR). The SR 

represents each sentence as directed graph where the vertices 

are words and the edges are the relationships between words. 

The tool parses text with the Stanford Natural Language 

Parser (NLP) and, for each sentence, outputs a graph in the 

Stanford Type Dependency Representation (STDR) [15]. We 

choose the STDR as it incorporates the sentence’s structural 

information in a concise and usable format. 

From the STDR generated by the parser, we create our SR. 

Fig. 1 shows the SR for the sentence “The system shall 

terminate a remote session after 30 minutes of inactivity.” 

Although, in general the SR can be considered a tree, 

situations exist (primarily due to conjunctions) in which a 

vertex has multiple parents. Vertexes correspond to words in 

the sentence and contain the word, the word’s lemma and 

collapsed part of speech. Edges correspond to the relationship 

between two words (unchanged from the STDR). For 

prepositions, edges also represent the corresponding word 

(e.g., “of” and “after” by “prep_of” and “prep_after”). 

Utilizing a pre-order traversal, the process creates the SR from 

the Stanford graph. As each vertex is created, we make two 

changes to the nodes. First, to avoid multiple versions of the 

same word, we use the lemma2 of the original word. Second, 

to avoid differences in the part of speech, we collapse the parts 

of speeches for all nouns, verbs, and adjectives to their base 

category. For example, we treat all plural nouns and proper 

nouns as just nouns. Similarly, verbs with different tenses are 

treated collectively as a single group. We also utilize a very 

small stop word list to remove common determiners3 from the 

SR as demonstrated in Figure 1 with the dashed lines. 

 

B. Step 2: Classify Sentences 

Once the tool completes the parsing and initial analysis of 

a sentence, a  -NN classification algorithm classifies each 

sentence into one or more NFR categories. Sentences 

classified besides “not applicable” appear on generated reports 

from the tool for use outside of the system. 

A  -NN classifier predicts a classification by taking a 

majority vote of the existing classifications of the   nearest 

neighbors to the item under test. Thus, in our situation, to 

                                                           
2 A lemma is the base word form for a set of words. For instance, 

sang, sing, and sung all have the same lemma, “sing.” Lemmas are 

more precise than stems as they take into account part of speech 

and other factors. 
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Figure 1. Sentence Representation 
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classify a sentence into one of the 14 categories, the classifier 

needs to find which existing classified sentences are most 

similar to the current sentence under test.  -NN classifiers use 

a distance metric to find the closest neighbors. This metric is 

the sum of the differences among the attributes used to 

determine the classification. Typically, Euclidean distance 

serves as a metric for numerical attributes while for nominal 

values, the distance is generally considered to be zero if both 

attribute values are the same or one if they differ. Our situation 

is more complex as we have a variable number of attributes to 

consider for each sentence based upon the sentence length. 

Additionally, certain words may be more closely related to one 

another than other words. As such, we need to utilize a custom 

distance metric to compute a value representing the difference 

between two sentences.  

Our distance metric is a modified version of Levenshtein 

distance [16]. Rather than using the resulting number of edits 

to transform one string into another as the value as the 

Levenshtein distance does, our metric computes the number of 

word transformations to change one sentence into another. 

Rather than strictly using just zero or one as the difference 

between words, the metric uses the function defined in Fig. 2. 

The function first checks the structure of graph around each 

vertex to ensure it corresponds to other vertex. Next, the 

functions checks to see if the two vertices are the same 

(lemmas are equal). In line 7, we check if both words are 

numbers. Next line 8 checks to see if both words are the same 

type of named entity such as a person or an organization. Then 

in line 9, the process checks to see if the two words are related 

through sets of cognitive synonyms (synsets) within WordNet4 

via semantic relationships (hypernym or hyponym). If a 

relationship value is found, then a value between 0.1 and 0.4 is 

returned based upon the number of relationships traversed. 

Finally, a default value of 1 is returned if none of the other 

conditions are met.  

Once the classification is complete, the user may review 

the predicted classifications and related sentences. If 

necessary, they can correct the classifications within the tool. 

As the user completes each classification, those classifications 

would be used within the  -NN classifier as additional 

sentences are processed. 

                                                           
4 http://wordnet.princeton.edu/ 

V. RESEARCH METHOD 

This section describes the context regarding our problem 

and NFR categories. We also discussed how we collected 

relevant documents and prepared those documents for use 

within our evaluations. 

A. Context 

We chose the EHR domain to initially evaluate our 

research questions. A wide variety of open and closed source 

EHRs, various industry standards (HL7 5 , CCHIT 6 ), 

governmental regulations, and other document sources exist to 

elicit documentation. While not directly to healthcare, we 

included the PROMISE NFR Data Set [12] in our evaluations 

to provide comparisons to prior research. 

The nine initial NFR categories were chosen based upon 

existing NFR classification work [11,13,14] with the 

PROMISE NFR Data Set. From industry experience, we 

added reliability and recoverability. We also combined 

performance and scalability into a single category as the two 

concepts are considered together in system architecture and 

design activities. To meet future research needs, we separated 

access control and audit from security. As there were specific 

NFRs that did not readily fall into any other existing 

categories, we added “other” to categorize these NFRs.  By 

using the “other” category, we avoid placing NFRs into 

categories in which they do not belong.  If the “other” NFRs 

were placed into existing categories, machine learning 

algorithms would perform less effectively due to irrelevant 

terms and sentences within a specific category. 

B. Study Procedure 

To perform this study, we first collected a series of 11 

documents related to EHRs. The specific source locations are 

listed within our available labeled corpus7. For requirement 

specifications, we utilized the CCHIT Ambulatory 

Requirements, iTrust [17], and the PROMISE NFR Data Set. 

To represent documents from an open-source project without a 

formal requirements document, we utilized the OpenEMR 8 

Install Manual and User Manual. We analyzed two data use 

agreements (DUAs) from the Centers for Medicare & 

Medicaid Services 9  and the North Carolina Department of 

Public Health. DUAs are legal contracts among two or more 

parties that specify what data is shared, who can access the 

data (authorizations), and for what purpose the data may be 

used (purposes) [18]. We also used two request for proposals 

(RFPs) from organizations within the state of California for 

EHR systems. Many organizations use RFPs to solicit vendor 

bids for software systems. The RFPs often contain detailed 

lists of requirements for vendors to provide a response as to 

their capabilities in meeting a particular requirement. To 

                                                           
5 http://hl7.org 

6 http://cchit.org 

7 https://github.com/RealsearchGroup/NFRLocator 

8 http://www.open-emr.org/ 

9 http://www.cms.gov/ 

computeVertexDistance(Vertex a, Vertex b) 

 1: if a = NULL or b = NULL return 1 

 2: if a.partOfSpeech <> b.partOfSpeech return 1 

 3: if a.parentCount <> b.parentCount return 1 

 4: for each parent in a.parents 

 5:     if not b.parents.contains(parent) return 1  

 6: if a.lemma = b.lemma return 0 

 7: if a and b are numbers, return 0 

 8: if ner classes match, return 0 

 9: wnValue = wordNetSynonyms(a.lemma,b.lemma) 

10: if wnValue > 0 return wnValue 

11: return 1 

Figure 2. Compute Vertex Distance Logic 
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represent governmental regulations, we utilized three sections 

of the United States Code of Federal Regulations (CFRs) 

related to healthcare. 

We then converted those 11 documents into a text-only 

format using the “save as” feature in the relevant document 

application. The only changes made to the resulting text files 

were to account for misplaced line breaks and to remove table-

based information that the natural language processor cannot 

process. Next, we imported each document into NFR Locator. 

First, we performed cluster analysis on the imported document 

to look for common sentences and detect patterns among those 

sentences. Each sentence (or line) in the file was then 

manually classified into (1) one or more NFR categories; (2) 

functional (FT); or (3) not-applicable (NA). We allowed a 

sentence to be placed into multiple categories with the 

exception of “not-applicable.” For example, we categorize 

“The system has capability to electronically provide patient 

reports on demand following and allow for hiding private 

information to comply with HIPAA Privacy and Security 

requirements” into functional and into two NFR categories 

(legal and privacy) due to the different sentence elements. 

We validated the classifications through several 

approaches. First, we computed clusters for all of the different 

sentences within a document and then compared the assigned 

labels and sentence content. We also generated listings by 

classification of the sentences to check for mislabeled 

sentences. As we labeled documents, we used already 

classified sentences in the k-NN classifier to examine 

similarities among the current sentence being labeled and 

those already classified. Any discrepancies in the predicted 

categories could easily be traced back to the source sentences 

and appropriate changes made. An internal validity threat may 

exist as the first author performed all of the initial sentence 

classifications. To check if this was a significant issue or not, 

we had six software developers classify a representative 

sample of 30 sentences. Utilizing Randolph’s Online Kappa 

Calculator [19], we had a free-marginal kappa of 0.714, 

indicating adequate inter-rater agreement, by comparing the 

first authors selections against the majority vote of the other 

raters. 

Once documents are completely labeled, we performed 

various experiments on the labeled data through the use of 

different classification algorithms and sentence features. To 

evaluate classifiers, we tested each classifier with a stratified 

n-fold cross-validation and computed the precision, recall, and 

   measure. With the n-fold cross-validation, data is randomly 

partitioned into n folds based upon each fold of approximately 

equal size and equal response classification. For each fold, the 

classifiers are trained on the remaining folds and then the 

contents of the fold are used to test the classifier. The n results 

are then averaged to produce a single result. We follow Han et 

al.’s recommendation [9] and use 10 as the value for n as this 

produces relatively low bias and variance. The cross-

validation ensures that all sentences are used for training and 

each sentence is tested just once. For our evaluations, we 

utilized standard machine learning classifiers within Weka 

[20] suite in addition to the  -NN classifier and distance 

function presented in Section 4. To generate input data for the 

Weka classifiers, we exported the original sentences as text 

strings along with Boolean flags for each of the NFR 

categories. We converted all strings to word vectors through a 

Weka filter. As the Weka classifiers do not natively support 

multi-label classifications, we train a Weka classifier for each 

NFR category.  Each category is independently test for 

membership. 

VI. EVALUATION 

This section presents our evaluation of the research 

questions.  

RQ1: What document types contain NFRs in each of the 14 

different categories? 

With RQ1, we look to see which document types are better 

sources for each of the 14 NFRs categories. Table 1 presents 

the documents with their classification breakdown. (Column 

abbreviations are listed in Table 2.) Our breakdown for the 

PROMISE NFR Data Set [12] differs due to category changes 

and for classifying each sentence individually. 

All evaluated document contained NFRs.  RFPs had a wide 

variety of NFRs with the exception of look and feel NFRs.  

Due to their directed purpose, DUAs contained high 

frequencies of legal and privacy NFRs.  Access control and/or 

security NFRs appeared in all of the documents.  The low 

frequency of functional and NFRs with CFRs exemplifies why 

tool support is critical to efficiently extract requirements from 

those documents. 

RQ2: What characteristics, such as keywords or entities do 

sentences assigned to each NFR category have in common? 

To evaluate RQ2, we preformed two tasks.  First, we 

extracted the top 20 keywords for each category based upon 

their ability to predict whether a sentence belongs to a specific 

category.  Using Equation 1, we ranked the probability of 

every keyword for each NFR category. The first and second 

parts of the equation are the term frequency-inverse document 

frequency (TF-IDF) commonly used for information retrieval. 

The third term applies a selectivity factor to the probability to 

improve results where the term resides primarily in one 

classification versus multiple categories.      represents the 

number of sentences containing the keyword for a particular 

category.    is the total number of sentences in the category. 

  denotes the total number of sentences.    is the number of 

sentences containing the keyword.         equals the TF-

IDF for a particular category and term. We eliminated any 

results in which there were not at least three occurrences of a 

keyword within a class. 

     
    

  
      

 

  
  

       

∑           
 

Table 2 presents the top 20 keywords found for each 

category. The terms extracted for the maintenance category 

primarily represent specific standards healthcare system must 

implement. In future work, we will break these requirements 

into their own category, “data standards.” Also note that 

document specific words do appear in Table 2. This issue 
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could be resolved by adding an additional term to Equation 1 

to account for document specificity as Cleland-Huang et al. 

performed [11] or by adding more documents to the corpus. 

In the second task for RQ2, we looked at selected NFR 

categories to find commonality.  Within availability NFRs, we 

found that 30 sentences contained some form of the word 

“available”, 20 sentences contained a time period, nine 

expressed a percentage, six stated some form of a maintenance 

window, and five mentioned replication. Only four of the 57 

sentences did not contain one of these features. (Note: a 

sentence could express more than one of the features.)  

Depending upon the presence of those features in other 

requirements, they may be suitable candidates for use in 

classifiers for their ability to discern availability NFRs. 

Alternatively, a set of hand coded rules could be used to 

process availability NFRs as there appears to be a relatively 

small number of patterns for this NFR category. 

TABLE 1. CLASSIFIED DOCUMENTS BY REQUIREMENTS CATEGORY 

Document Document Type Size AC AU AV LG LF MT OP PR PS RC RL SC US OT FN NA 

CCHIT Ambulatory Requirements Requirement 306 12 27 1 2 0 10 0 0 1 5 2 28 4 8 228 6 

iTrust Requirement, Use Case 1165 439 44 0 2 2 18 2 9 0 9 9 55 2 0 734 376 

PromiseData Requirement 792 164 20 36 10 50 26 89 7 75 4 12 71 101 19 340 0 

Open EMR Install Manual Installation Manual 225 3 0 0 0 0 0 5 1 0 6 1 25 0 0 2 184 

Open EMR User Manual User Manual 473 169 0 0 0 14 0 0 0 0 0 0 8 4 0 286 95 

NC Public Health DUA DUA 62 1 0 0 20 0 0 0 4 0 0 0 1 0 0 0 41 

US Medicare/Medicaid DUA DUA 140 1 0 0 26 0 0 0 17 0 0 0 0 0 5 2 108 

California Correctional Health Care RFP 1893 94 120 9 85 0 133 94 52 13 16 13 193 14 38 987 409 

Los Angeles County EHR RFP 1268 58 37 8 3 2 28 19 3 11 8 13 108 21 10 639 380 

HIPAA Combined Rule CFR 2642 28 8 3 0 0 78 0 213 0 9 0 41 1 0 317 2018 

Meaningful Use Criteria CFR 1435 0 0 0 0 0 0 0 0 0 0 0 8 0 0 116 1311 

Health IT Standards CFR 1475 10 20 0 0 0 119 0 1 0 2 2 71 1 2 164 1146 

Total  11876 979 276 57 152 68 413 207 300 100 50 43 563 148 82 3568 6076 

                    

TABLE 2. TOP 20 KEYWORDS BY CATEGORY 

NFR Category Keywords 

Access Control (AC) 

choose, lhcp, hcp, visit, privilege, read, office, add, representative, sort, name, administrator, personal, 

dlhcp, view, status, accessor, edit, role, list 

Audit (AU) 

authorship, trail, arise, worksheet, auditable, exclusion, reduction, deletion, examine, editing, stamp, non-repudiation, 

inclusion, id, alteration, finalize, disable, summarize, attestation, log 

Availability (AV) 

achieve, 24, availability, 98, addition, available, 99, hour, day, online, schedule, confidentiality, resource, technical, 

year, transmit, integrity, maintenance, %, period 

Legal (LG) 

infeasible, custodian, hipaa, breach, dua, discovery, iihus, publication, iihi, recipient, delay, secretary, definition, harm, 

scope, jurisdictional, affect, derive, vocabulary, reuse 

Look & Feel (LF) 

appearance, scheme, tree, radio, appeal, color, look, navigation, sound, feel, ship, left, shot, menu, ccr, button, 

corporate, page, openemr, employer 

Maintenance (MT) 

4010, washington, ibr, x12n, asc, 2002, addenda, 837, september, 1999, 1.1, tele-communication, 5.1, astm, draft, 

february, january, 2010, context-aware, infobutton 

Operational (OP) 

mysql, microsoft, euhr, soms, letter, infrastructure, interoperability, connect, cchcs, machine, browser, platform, 

cardmember, central, cdcd, extraction, cchc, model, registry, interchange 

Privacy (PR) 

health, protected, entity, disclose, covered, use, disclosure, individual, such, purpose, law, permit, other, section, 

require, plan, person, paragraph, care, request 

Recoverability (RC) 

restore, credentials, backup, back, recovery, disaster, previous, emergency, establish, copy, state, need, implement, loss, 

plan, event, failure, organization, business, hour 

Performance & 

Scalability (PS) 

fast, simultaneous, 0, second, scale, capable, increase, peark, longer, average, acceptable, lead, handle, flow, response, 

capacity, 10, maximum, cycle, distribution 

Reliability (RL) 

reliable, dependent, validate, validation, input, query, accept, loss, failure, operate, alert, laboratory, prevent, database, 

product, appropriate, event, application, capability, ability 

Security (SC) 

cookie, encrypted, ephi, http, predetermined, strong, vulnerability, username, inactivity, portal, ssl, deficiency, uc3, 

authenticate, certificate, session, path, string, password, incentive 

Usability (US) 

easy, enterer, wrong, learn, word, community, drop, realtor, help, symbol, voice, collision, training, conference, easily, 

successfully, let, map, estimator, intuitive 
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RQ3: What machine learning classification algorithm has 

the best performance to identify NFRs? 

In addition to the  -NN classifier, we used the multinomial 

naïve Bayes and the sequential minimal optimization (SMO)10 

classifiers in Weka [20].  We also used two random methods, 

weighted and 50%. The weighted random model assumes that 

the classifier knows the population proportions within the 

training set and randomly returns answers proportionally to the 

existing classifications. The 50% model has no knowledge of 

the training set and randomly returns answers with equal 

likelihood between the two classifications values. As we allow 

for each sentence to have one or more classifications, we test 

each category individually for each classifier and produce the 

precision, recall, and    values. We then average the results of 

all of the categories for each classifier to produce the results 

displayed in Table 3. This “macro-averaging” allows for each 

category to be equally represented in the result. If we used 

“micro-averaging” and allowed the categories to be weighted 

in terms of their size, the “functional” category would have 

dominated the results11.   For each classifier, we repeat this 

process five times.  The average results for precision, recall, 

and the    measure are displayed in Table 3.  The standard 

deviation (SD) for the    measure is presented as well.  For 

the   -NN classifier, we report     as it had the best 

performance for    in our experirment. 

 

As the NFR Locator k-NN classifier did not perform as 

well as the SMO classifier, future work will utilize SMO as 

the primary classifier. We will continue to use the k-NN 

classifier to display closely related sentences.   Comparing our 

classifier to the initial work performed by Cleland-Huang et al. 

for just the 15 documents in the PROMISE NFR Data Set, our 

   measure was .382 and theirs was .239.  

RQ4: What sentence characteristics affect classifier 

performance? 

Classifiers use any number of sentence characteristics 

(features) to make decisions. Sentence features include 

number of words, the words themselves, words represented as 

distance vectors, stems, lemmas, parts of speech, and known 

semantic entities. From a classification perspective, we need to 

utilize the features most useful and ignore other features 

providing little or no value. In Table 4, we present the results 

of using different word forms and stop words with the naïve 

Bayes and SMO classifiers. The “original” word form 

                                                           
10 SMO is a Support Vector Machine classifier 

11  Excluding the random classifiers, all classifiers had    values 

above .8 for the “functional” category. 

represents the word as it appeared in the sentence. “Lemma” is 

the lemma of the original word as produced by the Stanford 

NLP. “Porter” is stem of the word produced by the Porter 

stemming algorithm [21]. “Casamayor” signifies the pre-

processing steps Casamayor et al. performed [13]. Stop words 

are lists of words to exclude from use in the classifiers due to 

the commonality of the words. “Determiners” are “a,” “an,” 

and “the.” “Frakes” [22] contains 400 words and “Glasgow” 

contains 319 words 12 . By just eliminating the determiners, 

Naïve Bayes’ F1 measure increased by 0.027  than with just 

the original sentence. Using additional stop words, lemmas, or 

stems had no more than 0.01 change in effectiveness. With 

SMO, effectiveness decreased by 0.019 using lemmas. Longer 

stop word lists appeared to have no effect for SMO.  Each test 

was repeated five times with the average    measure reported 

along with the standard deviation. 

 

We examined the use of named entities (dates, durations, 

numbers, person, time, etc.) as sentence features. By 

representing the presence of a named entities as binary flags, 

we slightly increased the    measure of the SMO classifier for 

the availability and reliability categories by 3.5%.   

VII. LIMITATIONS 

Several limitations exist for our work. As NFR Locator 

works on textual sentences, the process cannot extract 

information contained in images and tables. Within text 

documents, the process loses document structural information 

contained within the original Microsoft Word and Adobe PDF 

files. In several cases, there were lists of items that when 

examined as a whole would have been classified into a 

particular NFR category. To mitigate this limitation, we can 

directly parse document files in their native formats or utilize 

document structural analysis to discover titles, sections, lists 

and other document elements. Another limitation exists in that 

we do not know how our process and tool will generalize to 

other systems and domains.   

VIII. FUTURE WORK 

Two primary directions exist to extend this work. The first 

direction is to expand the corpus both within the healthcare 

domain, but also to expand it into other domains. By using 

other domains, we can see how those domains compare to 

healthcare in terms of the distribution of the NFRs across 

                                                           
12 http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words 

TABLE 3. STRATRIFIED 10-FOLD CROSS VALIDATION 

Classifier Precision Recall       SD 

Weighted Random .047 .060 .053 .0042 

50% Random .044 .502 .081 .0016 

Naïve Bayes .227 .347 .274 .0043 

SMO .728 .544 .623 .0132 

NFR Locator k-NN .691 .456 .549 .0047 

TABLE 4. WORD TYPE AND STOP WORDS 

Model Word Form Stop Words       SD 

Naïve Bayes Original Determiners .291 .0022 

Naïve Bayes Porter Determiners .287 .0021 

Naïve Bayes Lemma Determiners .292 .0032 

Naïve Bayes Lemma Frakes .297 .0021 

Naïve Bayes Casamayor  Glasgow .327 .0018 

SMO Original Determiners .603 .0044 

SMO Lemma Determiners .584 .0039 

SMO Lemma Frakes .586 .0042 
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different document types. We can also evaluate how classifiers 

trained within one domain perform in other domains. We 

surmise that for certain NFR categories in which little domain 

specific text exists, the performance should be relatively the 

same as staying within the same domain. However, for other 

NFR categories such as access control with more domain or 

problem specific texts, the classifier may not perform as well. 

The other direction of work we plan to pursue is to use 

information extraction techniques to derive specific data 

elements from the classified NFR sentences. As is the case in 

this current work, we will incorporate machine learning 

algorithms so the process can learn and apply new patterns as 

more and more natural language text has been evaluated 

IX. CONCLUSION 

In this paper, we presented a new process, NFR Locator, 

and a tool to assist analysts in effectively extracting relevant 

NFRs from a wide variety of documents. To evaluate the tool, 

we collected and made available a series of system-related 

documents in the healthcare domain to identify and extract 

NFRs. We demonstrated that NFRs exist in a wide variety of 

documents. In analyzing specific NFR categories, we found 

specific features unique to those categories that could be used 

by programs to identify other NFRs in the same category.  We 

evaluated multiple classifiers to identify NFRs in specific 

categories and found SMO had the highest effectiveness. Our 

k-nearest neighbor classifier with a unique distance metric had 

a    Measure of 0.54, outperforming in our experiments the 

optimal naïve Bayes classifier which had a    Measure of 0.32.  

We also found that stop word lists beyond common 

determiners had no little performance effect.  
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