
Automated Extraction of Non-functional

Requirements in Available Documentation

John Slankas and Laurie Williams

Department of Computer Science

North Carolina State University

Raleigh, North Carolina, USA

[john.slankas,laurie_williams]@ncsu.edu

Abstract—While all systems have non-functional requirements

(NFRs), they may not be explicitly stated in a formal

requirements specification. Furthermore, NFRs may also be

externally imposed via government regulations or industry

standards. As some NFRs represent emergent system proprieties,

those NFRs require appropriate analysis and design efforts to

ensure they are met. When the specified NFRs are not met,

projects incur costly re-work to correct the issues. The goal of our

research is to aid analysts in more effectively extracting relevant

non-functional requirements in available unconstrained natural

language documents through automated natural language

processing. Specifically, we examine which document types (data

use agreements, install manuals, regulations, request for

proposals, requirements specifications, and user manuals)

contain NFRs categorized to 14 NFR categories (e.g. capacity,

reliability, and security). We measure how effectively we can

identify and classify NFR statements within these documents. In

each of the documents evaluated, we found NFRs present. Using

a word vector representation of the NFRs, a support vector

machine algorithm performed twice as effectively compared to

the same input to a multinomial naïve Bayes classifier. Our k-

nearest neighbor classifier with a unique distance metric had an

F1 measure of 0.54, outperforming in our experiments the

optimal naïve Bayes classifier which had a F1 measure of 0.32.

We also found that stop word lists beyond common determiners

had no minimal performance effect.

Keywords-non-functional requirements; natural language

processing; machine learning; classification; documentation

I. INTRODUCTION

Just as with functional requirements, a system’s success

depends greatly upon adherence to non-functional requirements

(NFRs). When NFRs are missed or ignored, significant, costly

issues can arise. A recently deployed U.S. Army intelligence

sharing application costing $2.7 billion has been labeled as

useless due to capacity, performance, and usability issues [1].

Electronic health record (EHR) systems have been severely

criticized for lack of usability, which has been one of the prime

reasons why some EHRs adoption have failed [2].

Given the need to analyze and implement NFRs from a

wide variety of available sources, system analysts need to

quickly identify and categorize NFRs. Business analysts need

to ensure completeness of their work. System architects need to

understand constraints such as availability, performance, and

recovery capabilities to appropriately design architectures to

meet those constraints. System integrators, those who deploy

large-scale software systems, need to be aware of NFRs in

order to place systems into appropriate environments where

NFRs such as capacity, security, and operational constraints are

appropriately satisfied. Customers need usable applications

they can immediately operate with minimal training and with

appropriate user interface designs to minimize errors.

Software documentation continues to be a neglected best

practice, despite persistent pleas from educators and

practitioners alike [3]. Open-source projects often lack formal

requirements with developers asserting new requirements

themselves. For many open-source projects, archived mailing

lists and message boards are the only available development

documentation [4]. However, open-source projects typically

contain administrative, install, and user manuals because the

contained information is necessary for others to utilize the

open-source system. Government and industry-based standards

contain critical NFRs for projects. Sifting through all of the

possible sources for NFRs, though, is a tedious, time-

consuming effort.

The goal of our research is to aid analysts in more

effectively extracting relevant non-functional requirements in

available unconstrained natural language documents through

automated natural language processing.

To meet this goal, we developed a tool-based approach,

which we call NFR Locator, to classify and extract sentences in

existing natural language texts into their appropriate NFR

categories. The classification is necessary to determine what

role a sentence has. From sentences marked as non-functional,

we would then extract critical information specific to each NFR

category. For example, access control NFRs would need

subjects, resources, and actions extracted to create relevant

access control policies. We categorized sentences into one of

these 14 NFR categories: (1) access control, (2) audit, (3)

availability, (4) capacity and performance, (5) legal, (6) look

and feel, (7) maintainability, (8) operational, (9) privacy, (10)

recoverability, (11) reliability, (12) security, (13) usability, and

(14) other. With NFR Locator, individuals would utilize pre-

defined classifiers to locate and extract NFRs from existing

natural language documents. If necessary, they can use the tool

in an interactive mode to train additional classifiers with new

domain or document types.

To evaluate our approach, we developed the following

research questions:

978-1-4673-6271-9/13 c© 2013 IEEE NaturaLiSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

9

 RQ1: What document types contain NFRs in each of the

14 different categories?

 RQ2: What characteristics, such as keywords or entities

(time period, percentages, etc.), do sentences assigned to

each NFR category have in common?

 RQ3: What machine learning classification algorithm

has the best performance to identify NFRs?

 RQ4: What sentence characteristics affect classifier

performance?

Our research has the following contributions:

 Process and tool to identify NFRs by categories within

available natural language documentation

 Distribution report containing the NFR categories and

frequencies by document type

 Empirical performance results for machine learning

classifiers on NFRs

 Sentence similarity algorithm to use with a k-nearest

neighbor classifier or a k-medoids clustering algorithm.

 Publically-available labeled corpus of identified NFRs1

The rest of this paper is organized as follows. Section II

reviews the background for this paper. Next, Section III

describes related work. Section IV presents our proposed

approach, NFR Locator. Then, Section V describes the research

methodology. Section VI presents the results of our study.

Section VII discusses limitations of the study. Section VIII

presents future work. Finally, Section IX concludes the paper.

II. BACKGROUND

A. Non-functional Requirements

While NFRs have existed since the early days of software

engineering, consensus does not exist for the name or the

definition of a NFR [5]. Many simply refer to them as the

“ilities,” the quality aspects of a system. Others have taken to

labeling NFRs as systemic requirements [6]. The IEEE

Recommended Practice for Software Requirements terms

NFRs as constraints [7]. Our concern resides with how NFRs

place different constraints on systems, how to quickly identify

such constraints, and then to extract relevant information for

the NFR. While the number of such constraint categories is

rather large (Lawrence Chung et al. identified 156 NFR

categories [8]), we choose to concentrate on 14 categories

frequently appearing in literature and practical use.

B. Machine Learning and Classification

As our process seeks to identify NFRs from unconstrained

natural language texts, we need flexible, yet effective

classification methods to handle different documents and

multiple ways of expressing similar concepts.. Machine

learning provides such a foundation for our work. While

techniques and algorithms vary widely in machine learning,

they can be generally divided into two primary categories:

supervised learning and unsupervised learning. In supervised

learning, people train classifiers with labeled data. People and

systems then use these classifiers to decide in which class a

1 https://github.com/RealsearchGroup/NFRLocator

previously unseen instance belongs. In contrast, unsupervised

learning algorithms search data for common patterns

(clusters). The data is not directly labeled, but rather groups of

common instances are created.

As part of this work, we utilized a k-nearest neighbor

classifier (k-NN), which is a supervised algorithm. k-NN

classifiers work by classifying a test item based upon which

items previously classified are closest to the current test item.

The classifier finds the k nearest “neighbors” and returns a

majority vote of those neighbors to classify the test item. A

distance metric determines the closeness between two items.

Euclidean distance often serves as a metric for numerical

attributes. For nominal values, the distance is binary - zero if

the values are the same or one if they differ. k-NN classifiers

may use custom distance functions specific to current

problem. Advantages of k-NN classifiers include ability to

incrementally learn as new items are classified, to classify

multiple types of data, and to handle large number of item

attributes. The primary drawback to k-NN classifiers is that if

they have n items stored, classification takes time.

We evaluated other machine learning algorithms including

naïve Bayes and Support Vector Machine (SVM). A naïve

Bayes classifier works by selecting a class with the highest

probability from a set of trained data sets given a specific

document. Fundamentally, it assumes that each feature of a

class exists independently of other features. Despite such an

oversimplification, the approach performs effectively in real-

world problems. Naïve Bayes classifiers typically require

fewer trained instances than other classifiers. SVM classifiers

work by finding the optimal separator between two classes.

C. Classification Evalutation

To compare the results, we used recall, precision, and the

F1 measure. To compute these values, we first need to

categorize the classifier’s predictions into three categories for

each classification value. True positives (TP) are correct

predictions. False positives (FP) are predictions in which the

sentence of another classification is classified as the one under

evaluation. False negatives (FN) are predictions in which a

sentence of the same classification under evaluation is placed

into another classification. From these values, we define

precision (P) as the proportion of corrected predicted

classifications against all predictions against the classification

under test: . We define recall as the

proportion of classifications found for the current classification

under test: R = TP/(TP+FN). The measure is the harmonic

mean of precision and recall, giving an equal weight to both

elements:

. From a NFR perspective, recall is

more important than precision in that we want to extract all

relevant NFRs from the available documents. However,

precision cannot be ignored in that producing large amounts of

false positives will frustrate users.

III. RELATED WORK

While text classification, especially with regards to term

frequency-inverse document frequency (TF-IDF), has been

10

studied for a relatively long period of time [10], NFR

classification first appeared in the literature in 2006 [11]. In

their work, Cleland-Hung et al. applied TF-IDF with an

additional parameter to specify the frequency of indicator

terms for a NFR category as compared to the appearance of

those terms in the requirement currently under test. To

evaluate their scheme, they collected 15 sample requirements

specifications from term projects in a Master’s level class at

DePaul University. They made this collection public through

the PROMISE Data Repository [12]. Their work performed

extremely well on the basis of a 0.8129 recall, meaning that

they successfully found 81% of the possible NFRs in the

dataset. However, their precision was a 0.1244 indicating a

large number of false positives. While they intentionally

choose to maximize recall, users would be frustrated with their

process due to the large numbers of false positives to examine

and discard.

In 2009, Casamayor et al. [13] repeated the experiment, but

with using a multinomial naïve Bayes classifier coupled with

an Expectation Maximization algorithm to boost the classifiers

performance by labeling untrained data with guesses based

upon the already trained data set. Unfortunately, we have not

been able to duplicate their results which had an overall

accuracy around 0.97. By training a naïve Bayes classifier

with their documented approach with all 625 instances in the

data set, we have only produced an accuracy result of 0.89 by

then testing all of the sentences. While not an appropriate

testing approach, the result approximates the maximum

theoretical performance on the data set with a given algorithm.

Zhang et al. [14] repeated the experiment again in 2011,

but utilized a SVM with a linear kernel as their classifier. They

reported significantly higher precision results, although lower

recall results than Cleland-Huang et al. but did not provide

details. Interestingly, they demonstrated that the performance

of individual words was higher than models with multi-words.

Our work builds upon the prior work in that we utilized the

same data set as part of our experiments, but we analyzed

significantly more examples with multiple document types.

We also examined the use of custom distances functions with

a k-NN classifier. We studied the effect of different sentence

characteristics on classification performance.

IV. NFR LOCATOR

We now present our two-step process, NFR Locator, to
extract NFR sentences within existing unconstrained natural
language documentation.

For input, the process takes any natural language document
related to a project. The process parses the natural language
into an internal representation and then based upon relevant
features, classifies sentences into specific NFR categories or
returns “not applicable” if the sentence does not specify a NFR.

A. Step 1: Parse Natural Language

The process begins by entering the text into the system,

parsing the text and converting the parsed representation into

NFR Locator’s sentence representation (SR). The SR

represents each sentence as directed graph where the vertices

are words and the edges are the relationships between words.

The tool parses text with the Stanford Natural Language

Parser (NLP) and, for each sentence, outputs a graph in the

Stanford Type Dependency Representation (STDR) [15]. We

choose the STDR as it incorporates the sentence’s structural

information in a concise and usable format.

From the STDR generated by the parser, we create our SR.

Fig. 1 shows the SR for the sentence “The system shall

terminate a remote session after 30 minutes of inactivity.”

Although, in general the SR can be considered a tree,

situations exist (primarily due to conjunctions) in which a

vertex has multiple parents. Vertexes correspond to words in

the sentence and contain the word, the word’s lemma and

collapsed part of speech. Edges correspond to the relationship

between two words (unchanged from the STDR). For

prepositions, edges also represent the corresponding word

(e.g., “of” and “after” by “prep_of” and “prep_after”).

Utilizing a pre-order traversal, the process creates the SR from

the Stanford graph. As each vertex is created, we make two

changes to the nodes. First, to avoid multiple versions of the

same word, we use the lemma2 of the original word. Second,

to avoid differences in the part of speech, we collapse the parts

of speeches for all nouns, verbs, and adjectives to their base

category. For example, we treat all plural nouns and proper

nouns as just nouns. Similarly, verbs with different tenses are

treated collectively as a single group. We also utilize a very

small stop word list to remove common determiners3 from the

SR as demonstrated in Figure 1 with the dashed lines.

B. Step 2: Classify Sentences

Once the tool completes the parsing and initial analysis of

a sentence, a -NN classification algorithm classifies each

sentence into one or more NFR categories. Sentences

classified besides “not applicable” appear on generated reports

from the tool for use outside of the system.

A -NN classifier predicts a classification by taking a

majority vote of the existing classifications of the nearest

neighbors to the item under test. Thus, in our situation, to

2 A lemma is the base word form for a set of words. For instance,

sang, sing, and sung all have the same lemma, “sing.” Lemmas are

more precise than stems as they take into account part of speech

and other factors.

3 a, an, the

terminate

system shall session minute

the

nsubj
prep_after

advmodaux

det

NN NN

VB

MD

DT
30

num

CD
inactivity

prep_of

NN

VB

a

det

DT
remote

amod

JJ
Figure 1. Sentence Representation

11

classify a sentence into one of the 14 categories, the classifier

needs to find which existing classified sentences are most

similar to the current sentence under test. -NN classifiers use

a distance metric to find the closest neighbors. This metric is

the sum of the differences among the attributes used to

determine the classification. Typically, Euclidean distance

serves as a metric for numerical attributes while for nominal

values, the distance is generally considered to be zero if both

attribute values are the same or one if they differ. Our situation

is more complex as we have a variable number of attributes to

consider for each sentence based upon the sentence length.

Additionally, certain words may be more closely related to one

another than other words. As such, we need to utilize a custom

distance metric to compute a value representing the difference

between two sentences.

Our distance metric is a modified version of Levenshtein

distance [16]. Rather than using the resulting number of edits

to transform one string into another as the value as the

Levenshtein distance does, our metric computes the number of

word transformations to change one sentence into another.

Rather than strictly using just zero or one as the difference

between words, the metric uses the function defined in Fig. 2.

The function first checks the structure of graph around each

vertex to ensure it corresponds to other vertex. Next, the

functions checks to see if the two vertices are the same

(lemmas are equal). In line 7, we check if both words are

numbers. Next line 8 checks to see if both words are the same

type of named entity such as a person or an organization. Then

in line 9, the process checks to see if the two words are related

through sets of cognitive synonyms (synsets) within WordNet4

via semantic relationships (hypernym or hyponym). If a

relationship value is found, then a value between 0.1 and 0.4 is

returned based upon the number of relationships traversed.

Finally, a default value of 1 is returned if none of the other

conditions are met.

Once the classification is complete, the user may review

the predicted classifications and related sentences. If

necessary, they can correct the classifications within the tool.

As the user completes each classification, those classifications

would be used within the -NN classifier as additional

sentences are processed.

4 http://wordnet.princeton.edu/

V. RESEARCH METHOD

This section describes the context regarding our problem

and NFR categories. We also discussed how we collected

relevant documents and prepared those documents for use

within our evaluations.

A. Context

We chose the EHR domain to initially evaluate our

research questions. A wide variety of open and closed source

EHRs, various industry standards (HL7 5 , CCHIT 6),

governmental regulations, and other document sources exist to

elicit documentation. While not directly to healthcare, we

included the PROMISE NFR Data Set [12] in our evaluations

to provide comparisons to prior research.

The nine initial NFR categories were chosen based upon

existing NFR classification work [11,13,14] with the

PROMISE NFR Data Set. From industry experience, we

added reliability and recoverability. We also combined

performance and scalability into a single category as the two

concepts are considered together in system architecture and

design activities. To meet future research needs, we separated

access control and audit from security. As there were specific

NFRs that did not readily fall into any other existing

categories, we added “other” to categorize these NFRs. By

using the “other” category, we avoid placing NFRs into

categories in which they do not belong. If the “other” NFRs

were placed into existing categories, machine learning

algorithms would perform less effectively due to irrelevant

terms and sentences within a specific category.

B. Study Procedure

To perform this study, we first collected a series of 11

documents related to EHRs. The specific source locations are

listed within our available labeled corpus7. For requirement

specifications, we utilized the CCHIT Ambulatory

Requirements, iTrust [17], and the PROMISE NFR Data Set.

To represent documents from an open-source project without a

formal requirements document, we utilized the OpenEMR 8

Install Manual and User Manual. We analyzed two data use

agreements (DUAs) from the Centers for Medicare &

Medicaid Services 9 and the North Carolina Department of

Public Health. DUAs are legal contracts among two or more

parties that specify what data is shared, who can access the

data (authorizations), and for what purpose the data may be

used (purposes) [18]. We also used two request for proposals

(RFPs) from organizations within the state of California for

EHR systems. Many organizations use RFPs to solicit vendor

bids for software systems. The RFPs often contain detailed

lists of requirements for vendors to provide a response as to

their capabilities in meeting a particular requirement. To

5 http://hl7.org

6 http://cchit.org

7 https://github.com/RealsearchGroup/NFRLocator

8 http://www.open-emr.org/

9 http://www.cms.gov/

computeVertexDistance(Vertex a, Vertex b)

 1: if a = NULL or b = NULL return 1

 2: if a.partOfSpeech <> b.partOfSpeech return 1

 3: if a.parentCount <> b.parentCount return 1

 4: for each parent in a.parents

 5: if not b.parents.contains(parent) return 1

 6: if a.lemma = b.lemma return 0

 7: if a and b are numbers, return 0

 8: if ner classes match, return 0

 9: wnValue = wordNetSynonyms(a.lemma,b.lemma)

10: if wnValue > 0 return wnValue

11: return 1

Figure 2. Compute Vertex Distance Logic

12

represent governmental regulations, we utilized three sections

of the United States Code of Federal Regulations (CFRs)

related to healthcare.

We then converted those 11 documents into a text-only

format using the “save as” feature in the relevant document

application. The only changes made to the resulting text files

were to account for misplaced line breaks and to remove table-

based information that the natural language processor cannot

process. Next, we imported each document into NFR Locator.

First, we performed cluster analysis on the imported document

to look for common sentences and detect patterns among those

sentences. Each sentence (or line) in the file was then

manually classified into (1) one or more NFR categories; (2)

functional (FT); or (3) not-applicable (NA). We allowed a

sentence to be placed into multiple categories with the

exception of “not-applicable.” For example, we categorize

“The system has capability to electronically provide patient

reports on demand following and allow for hiding private

information to comply with HIPAA Privacy and Security

requirements” into functional and into two NFR categories

(legal and privacy) due to the different sentence elements.

We validated the classifications through several

approaches. First, we computed clusters for all of the different

sentences within a document and then compared the assigned

labels and sentence content. We also generated listings by

classification of the sentences to check for mislabeled

sentences. As we labeled documents, we used already

classified sentences in the k-NN classifier to examine

similarities among the current sentence being labeled and

those already classified. Any discrepancies in the predicted

categories could easily be traced back to the source sentences

and appropriate changes made. An internal validity threat may

exist as the first author performed all of the initial sentence

classifications. To check if this was a significant issue or not,

we had six software developers classify a representative

sample of 30 sentences. Utilizing Randolph’s Online Kappa

Calculator [19], we had a free-marginal kappa of 0.714,

indicating adequate inter-rater agreement, by comparing the

first authors selections against the majority vote of the other

raters.

Once documents are completely labeled, we performed

various experiments on the labeled data through the use of

different classification algorithms and sentence features. To

evaluate classifiers, we tested each classifier with a stratified

n-fold cross-validation and computed the precision, recall, and

 measure. With the n-fold cross-validation, data is randomly

partitioned into n folds based upon each fold of approximately

equal size and equal response classification. For each fold, the

classifiers are trained on the remaining folds and then the

contents of the fold are used to test the classifier. The n results

are then averaged to produce a single result. We follow Han et

al.’s recommendation [9] and use 10 as the value for n as this

produces relatively low bias and variance. The cross-

validation ensures that all sentences are used for training and

each sentence is tested just once. For our evaluations, we

utilized standard machine learning classifiers within Weka

[20] suite in addition to the -NN classifier and distance

function presented in Section 4. To generate input data for the

Weka classifiers, we exported the original sentences as text

strings along with Boolean flags for each of the NFR

categories. We converted all strings to word vectors through a

Weka filter. As the Weka classifiers do not natively support

multi-label classifications, we train a Weka classifier for each

NFR category. Each category is independently test for

membership.

VI. EVALUATION

This section presents our evaluation of the research

questions.

RQ1: What document types contain NFRs in each of the 14

different categories?

With RQ1, we look to see which document types are better

sources for each of the 14 NFRs categories. Table 1 presents

the documents with their classification breakdown. (Column

abbreviations are listed in Table 2.) Our breakdown for the

PROMISE NFR Data Set [12] differs due to category changes

and for classifying each sentence individually.

All evaluated document contained NFRs. RFPs had a wide

variety of NFRs with the exception of look and feel NFRs.

Due to their directed purpose, DUAs contained high

frequencies of legal and privacy NFRs. Access control and/or

security NFRs appeared in all of the documents. The low

frequency of functional and NFRs with CFRs exemplifies why

tool support is critical to efficiently extract requirements from

those documents.

RQ2: What characteristics, such as keywords or entities do

sentences assigned to each NFR category have in common?

To evaluate RQ2, we preformed two tasks. First, we

extracted the top 20 keywords for each category based upon

their ability to predict whether a sentence belongs to a specific

category. Using Equation 1, we ranked the probability of

every keyword for each NFR category. The first and second

parts of the equation are the term frequency-inverse document

frequency (TF-IDF) commonly used for information retrieval.

The third term applies a selectivity factor to the probability to

improve results where the term resides primarily in one

classification versus multiple categories. represents the

number of sentences containing the keyword for a particular

category. is the total number of sentences in the category.

 denotes the total number of sentences. is the number of

sentences containing the keyword. equals the TF-

IDF for a particular category and term. We eliminated any

results in which there were not at least three occurrences of a

keyword within a class.

∑

Table 2 presents the top 20 keywords found for each

category. The terms extracted for the maintenance category

primarily represent specific standards healthcare system must

implement. In future work, we will break these requirements

into their own category, “data standards.” Also note that

document specific words do appear in Table 2. This issue

13

could be resolved by adding an additional term to Equation 1

to account for document specificity as Cleland-Huang et al.

performed [11] or by adding more documents to the corpus.

In the second task for RQ2, we looked at selected NFR

categories to find commonality. Within availability NFRs, we

found that 30 sentences contained some form of the word

“available”, 20 sentences contained a time period, nine

expressed a percentage, six stated some form of a maintenance

window, and five mentioned replication. Only four of the 57

sentences did not contain one of these features. (Note: a

sentence could express more than one of the features.)

Depending upon the presence of those features in other

requirements, they may be suitable candidates for use in

classifiers for their ability to discern availability NFRs.

Alternatively, a set of hand coded rules could be used to

process availability NFRs as there appears to be a relatively

small number of patterns for this NFR category.

TABLE 1. CLASSIFIED DOCUMENTS BY REQUIREMENTS CATEGORY

Document Document Type Size AC AU AV LG LF MT OP PR PS RC RL SC US OT FN NA

CCHIT Ambulatory Requirements Requirement 306 12 27 1 2 0 10 0 0 1 5 2 28 4 8 228 6

iTrust Requirement, Use Case 1165 439 44 0 2 2 18 2 9 0 9 9 55 2 0 734 376

PromiseData Requirement 792 164 20 36 10 50 26 89 7 75 4 12 71 101 19 340 0

Open EMR Install Manual Installation Manual 225 3 0 0 0 0 0 5 1 0 6 1 25 0 0 2 184

Open EMR User Manual User Manual 473 169 0 0 0 14 0 0 0 0 0 0 8 4 0 286 95

NC Public Health DUA DUA 62 1 0 0 20 0 0 0 4 0 0 0 1 0 0 0 41

US Medicare/Medicaid DUA DUA 140 1 0 0 26 0 0 0 17 0 0 0 0 0 5 2 108

California Correctional Health Care RFP 1893 94 120 9 85 0 133 94 52 13 16 13 193 14 38 987 409

Los Angeles County EHR RFP 1268 58 37 8 3 2 28 19 3 11 8 13 108 21 10 639 380

HIPAA Combined Rule CFR 2642 28 8 3 0 0 78 0 213 0 9 0 41 1 0 317 2018

Meaningful Use Criteria CFR 1435 0 0 0 0 0 0 0 0 0 0 0 8 0 0 116 1311

Health IT Standards CFR 1475 10 20 0 0 0 119 0 1 0 2 2 71 1 2 164 1146

Total 11876 979 276 57 152 68 413 207 300 100 50 43 563 148 82 3568 6076

TABLE 2. TOP 20 KEYWORDS BY CATEGORY

NFR Category Keywords

Access Control (AC)

choose, lhcp, hcp, visit, privilege, read, office, add, representative, sort, name, administrator, personal,

dlhcp, view, status, accessor, edit, role, list

Audit (AU)

authorship, trail, arise, worksheet, auditable, exclusion, reduction, deletion, examine, editing, stamp, non-repudiation,

inclusion, id, alteration, finalize, disable, summarize, attestation, log

Availability (AV)

achieve, 24, availability, 98, addition, available, 99, hour, day, online, schedule, confidentiality, resource, technical,

year, transmit, integrity, maintenance, %, period

Legal (LG)

infeasible, custodian, hipaa, breach, dua, discovery, iihus, publication, iihi, recipient, delay, secretary, definition, harm,

scope, jurisdictional, affect, derive, vocabulary, reuse

Look & Feel (LF)

appearance, scheme, tree, radio, appeal, color, look, navigation, sound, feel, ship, left, shot, menu, ccr, button,

corporate, page, openemr, employer

Maintenance (MT)

4010, washington, ibr, x12n, asc, 2002, addenda, 837, september, 1999, 1.1, tele-communication, 5.1, astm, draft,

february, january, 2010, context-aware, infobutton

Operational (OP)

mysql, microsoft, euhr, soms, letter, infrastructure, interoperability, connect, cchcs, machine, browser, platform,

cardmember, central, cdcd, extraction, cchc, model, registry, interchange

Privacy (PR)

health, protected, entity, disclose, covered, use, disclosure, individual, such, purpose, law, permit, other, section,

require, plan, person, paragraph, care, request

Recoverability (RC)

restore, credentials, backup, back, recovery, disaster, previous, emergency, establish, copy, state, need, implement, loss,

plan, event, failure, organization, business, hour

Performance &

Scalability (PS)

fast, simultaneous, 0, second, scale, capable, increase, peark, longer, average, acceptable, lead, handle, flow, response,

capacity, 10, maximum, cycle, distribution

Reliability (RL)

reliable, dependent, validate, validation, input, query, accept, loss, failure, operate, alert, laboratory, prevent, database,

product, appropriate, event, application, capability, ability

Security (SC)

cookie, encrypted, ephi, http, predetermined, strong, vulnerability, username, inactivity, portal, ssl, deficiency, uc3,

authenticate, certificate, session, path, string, password, incentive

Usability (US)

easy, enterer, wrong, learn, word, community, drop, realtor, help, symbol, voice, collision, training, conference, easily,

successfully, let, map, estimator, intuitive

14

RQ3: What machine learning classification algorithm has

the best performance to identify NFRs?

In addition to the -NN classifier, we used the multinomial

naïve Bayes and the sequential minimal optimization (SMO)10

classifiers in Weka [20]. We also used two random methods,

weighted and 50%. The weighted random model assumes that

the classifier knows the population proportions within the

training set and randomly returns answers proportionally to the

existing classifications. The 50% model has no knowledge of

the training set and randomly returns answers with equal

likelihood between the two classifications values. As we allow

for each sentence to have one or more classifications, we test

each category individually for each classifier and produce the

precision, recall, and values. We then average the results of

all of the categories for each classifier to produce the results

displayed in Table 3. This “macro-averaging” allows for each

category to be equally represented in the result. If we used

“micro-averaging” and allowed the categories to be weighted

in terms of their size, the “functional” category would have

dominated the results11. For each classifier, we repeat this

process five times. The average results for precision, recall,

and the measure are displayed in Table 3. The standard

deviation (SD) for the measure is presented as well. For

the -NN classifier, we report as it had the best

performance for in our experirment.

As the NFR Locator k-NN classifier did not perform as

well as the SMO classifier, future work will utilize SMO as

the primary classifier. We will continue to use the k-NN

classifier to display closely related sentences. Comparing our

classifier to the initial work performed by Cleland-Huang et al.

for just the 15 documents in the PROMISE NFR Data Set, our

 measure was .382 and theirs was .239.

RQ4: What sentence characteristics affect classifier

performance?

Classifiers use any number of sentence characteristics

(features) to make decisions. Sentence features include

number of words, the words themselves, words represented as

distance vectors, stems, lemmas, parts of speech, and known

semantic entities. From a classification perspective, we need to

utilize the features most useful and ignore other features

providing little or no value. In Table 4, we present the results

of using different word forms and stop words with the naïve

Bayes and SMO classifiers. The “original” word form

10 SMO is a Support Vector Machine classifier

11 Excluding the random classifiers, all classifiers had values

above .8 for the “functional” category.

represents the word as it appeared in the sentence. “Lemma” is

the lemma of the original word as produced by the Stanford

NLP. “Porter” is stem of the word produced by the Porter

stemming algorithm [21]. “Casamayor” signifies the pre-

processing steps Casamayor et al. performed [13]. Stop words

are lists of words to exclude from use in the classifiers due to

the commonality of the words. “Determiners” are “a,” “an,”

and “the.” “Frakes” [22] contains 400 words and “Glasgow”

contains 319 words 12 . By just eliminating the determiners,

Naïve Bayes’ F1 measure increased by 0.027 than with just

the original sentence. Using additional stop words, lemmas, or

stems had no more than 0.01 change in effectiveness. With

SMO, effectiveness decreased by 0.019 using lemmas. Longer

stop word lists appeared to have no effect for SMO. Each test

was repeated five times with the average measure reported

along with the standard deviation.

We examined the use of named entities (dates, durations,

numbers, person, time, etc.) as sentence features. By

representing the presence of a named entities as binary flags,

we slightly increased the measure of the SMO classifier for

the availability and reliability categories by 3.5%.

VII. LIMITATIONS

Several limitations exist for our work. As NFR Locator

works on textual sentences, the process cannot extract

information contained in images and tables. Within text

documents, the process loses document structural information

contained within the original Microsoft Word and Adobe PDF

files. In several cases, there were lists of items that when

examined as a whole would have been classified into a

particular NFR category. To mitigate this limitation, we can

directly parse document files in their native formats or utilize

document structural analysis to discover titles, sections, lists

and other document elements. Another limitation exists in that

we do not know how our process and tool will generalize to

other systems and domains.

VIII. FUTURE WORK

Two primary directions exist to extend this work. The first

direction is to expand the corpus both within the healthcare

domain, but also to expand it into other domains. By using

other domains, we can see how those domains compare to

healthcare in terms of the distribution of the NFRs across

12 http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words

TABLE 3. STRATRIFIED 10-FOLD CROSS VALIDATION

Classifier Precision Recall SD

Weighted Random .047 .060 .053 .0042

50% Random .044 .502 .081 .0016

Naïve Bayes .227 .347 .274 .0043

SMO .728 .544 .623 .0132

NFR Locator k-NN .691 .456 .549 .0047

TABLE 4. WORD TYPE AND STOP WORDS

Model Word Form Stop Words SD

Naïve Bayes Original Determiners .291 .0022

Naïve Bayes Porter Determiners .287 .0021

Naïve Bayes Lemma Determiners .292 .0032

Naïve Bayes Lemma Frakes .297 .0021

Naïve Bayes Casamayor Glasgow .327 .0018

SMO Original Determiners .603 .0044

SMO Lemma Determiners .584 .0039

SMO Lemma Frakes .586 .0042

15

different document types. We can also evaluate how classifiers

trained within one domain perform in other domains. We

surmise that for certain NFR categories in which little domain

specific text exists, the performance should be relatively the

same as staying within the same domain. However, for other

NFR categories such as access control with more domain or

problem specific texts, the classifier may not perform as well.

The other direction of work we plan to pursue is to use

information extraction techniques to derive specific data

elements from the classified NFR sentences. As is the case in

this current work, we will incorporate machine learning

algorithms so the process can learn and apply new patterns as

more and more natural language text has been evaluated

IX. CONCLUSION

In this paper, we presented a new process, NFR Locator,

and a tool to assist analysts in effectively extracting relevant

NFRs from a wide variety of documents. To evaluate the tool,

we collected and made available a series of system-related

documents in the healthcare domain to identify and extract

NFRs. We demonstrated that NFRs exist in a wide variety of

documents. In analyzing specific NFR categories, we found

specific features unique to those categories that could be used

by programs to identify other NFRs in the same category. We

evaluated multiple classifiers to identify NFRs in specific

categories and found SMO had the highest effectiveness. Our

k-nearest neighbor classifier with a unique distance metric had

a Measure of 0.54, outperforming in our experiments the

optimal naïve Bayes classifier which had a Measure of 0.32.

We also found that stop word lists beyond common

determiners had no little performance effect.

ACKNOWLEDGMENT

This work was supported by the U.S. Army Research

Office (ARO) under grant W911NF-08-1-0105 managed by

NCSU Secure Open Systems Initiative (SOSI). We would like

to thank the North Carolina State University Realsearch group

for their helpful comments on the paper.

 REFERENCES

[1] C. Hoskinson, “Army’s Faulty Computer System Hurts

Operations,” Politico, 2011. [Online]. Available:

http://www.politico.com/news/stories/0611/58051.html.

[2] J. Bertman and N. Skolnik, “EHRs Get a Failing Grade on

Usability,” Internal Medicine News, vol. 43, no. 11, p. 50, Jun.

2010.

[3] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A

Study of Documentation Essential to Software Maintenance,”

in Proceedings of the 23rd annual international conference on

Design of communication documenting & designing for

pervasive information - SIGDOC ’05, 2005, pp. 68–75.

[4] J. Noll and W.-M. Liu, “Requirements elicitation in open

source software development,” in Proceedings of the 3rd

International Workshop on Emerging Trends in

Free/Libre/Open Source Software Research and Development -

FLOSS ’10, 2010, pp. 35–40.

[5] M. Glinz, “On Non-Functional Requirements,” in 15th IEEE

International Requirements Engineering Conference (RE

2007), 2007, pp. 21–26.

[6] J. Browne, “Systemic Requirements,” 2008. [Online].

Available:

http://www.julianbrowne.com/article/viewer/systemic-

requirements. [Accessed: 01-Oct-2013].

[7] IEEE Recommended Practice for Software Requirements

Specifications - IEEE Std 830-1998, vol. 1998, no. October.

1998.

[8] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-

functional Requirements in Software Engineering. Norwell,

MA, USA: Kluwer Academic Publishers Group, 2000, p. 439.

[9] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and

Techniques, 3rd ed. Morgan Kaufmann, 2011, p. 744.

[10] G. Salton and M. J. McGill, Introduction to Modern

Information Retrieval. New York, NY, USA: McGraw-Hill,

Inc., 1986.

[11] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated

Classification of Non-functional Requirements,” Requirements

Engineering, vol. 12, no. 2, pp. 103–120, Mar. 2007.

[12] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters,

and B. Turhan, “The PROMISE Repository of Empirical

Software Engineering Data,” West Virginia University,

Department of Computer Science, 2012. [Online]. Available:

http://promisedata.googlecode.com/.

[13] A. Casamayor, D. Godoy, and M. Campo, “Identification of

non-functional requirements in textual specifications: A semi-

supervised learning approach,” Information and Software

Technology, vol. 52, no. 4, pp. 436–445, Apr. 2010.

[14] W. Zhang, Y. Yang, Q. Wang, and F. Shu, “An Empirical

Study on Classification of Non-Functional Requirements,” in

The Twenty-Third International Conference on Software

Engineering and Knowledge Engineering (SEKE 2011), 2011,

pp. 190–195.

[15] M.-C. de Marneffe, B. MacCartney, and C. Manning,

“Generating Typed Dependency Parses from Phrase Structure

Parses,” Proceedings of Language Resources and Evaluation,

pp. 449–454, 2006.

[16] V. I. Levenshtein, “Binary Codes Capable of Correcting

Deletions, Insertions, and Reversals,” Soviet Physics Doklady,

vol. 10, no. 8, pp. 707–710, 1966.

[17] A. Meneely, B. Smith, and L. Williams, “iTrust Electronic

Health Care System: A Case Study,” in Software System

Traceability, 2011.

[18] J. Y. Schmidt, A. I. Antón, L. Williams, and P. N. Otto, “The

Role of Data Use Agreements in Specifying Legally Compliant

Software Requirements,” in Fourth International Workshop on

Requirements Engineering and Law, 2011, no. Relaw, pp. 15–

18.

[19] J. J. Randolph, “Online Kappa Calculator,” 2008. [Online].

Available: http://justusrandolph.net/kappa/. [Accessed: 02-Apr-

2013].

[20] M. Hall, H. National, E. Frank, G. Holmes, B. Pfahringer, P.

Reutemann, and I. H. Witten, “The WEKA Data Mining

Software : An Update,” SIGKDD Explorations, vol. 11, no. 1,

pp. 10–18, 2009.

[21] M. Porter, “An algorithm for suffix stripping,” Program, vol.

14, no. 3, pp. 130–137, 1980.

[22] W. B. Frakes, “Information retrieval,” W. B. Frakes and R.

Baeza-Yates, Eds. Upper Saddle River, NJ, USA: Prentice-

Hall, Inc., 1992, pp. 1–12.

16

