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Abstract

We apply a new algebraic multigrid method for solving congoutision problems with
constraints. As particular examples we solve the “shapa fshotometric stereo” and “image
binarization” problems. A variational formulation is apgd to the problem of shape recon-
struction from three or more images of an object with the seiewing direction and different
lighting conditions, supplemented by some pointwise hieggimstraints. In order to obtain
a smooth reconstruction, we use a weight-function thatrigudar at the constrained points,
resulting in an elliptic equation with singular coefficisntvhich is solved efficiently by the
algebraic multigrid algorithm. As a second example a sintéahnique is applied to construct
a threshold surface which interpolates between valuesiseof edges. This surface is then
used for image binarization.

1 Introduction

Many techniques of image analysis require solving elliptic boundary-value probletes eoherg-
ing from the minimization of some functional. For constant-coefficient problem&ctamgular
domains Fourier methods are very efficient, but for varying coefficients or morergledomains
multigrid iterative methods are probably the most effective availabletisol technique (see de-
scription and references in Section 2 below.) Multigrid methods were prdpogbe 1960’s and
established as efficient solvers for elliptic boundary-value problems in the 19#@y were first
applied to image analysis by Terzopoulos (e.g., [17]). More recent efficientapphs using clas-
sical multigrid structures include [21], which applies a fairly standardtigwidl algorithm for sev-
eral image processing applications; [14], where powerful fast-transfoecopditioned conjugate
gradient smoothers are employed to handle difficult (and dense) differentiablotion equations
by multigrid algorithms; [11], where a linear coupled system of partial céiféial equations is
solved repeatedly within an iterative algorithm for digital image matghi
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It is well-known that classical (also called “geometric”) mult@ymethods are not robust with
respect to discontinuous coefficients and singular boundaries (particularly ‘$rokds” in the
domain.) Such problems usually require specialized robust multigrid method$ s8uations
appear in certain problems of image analysis and computer vision, partictdmyrmathematical
model which yields the boundary-value problem is supplemented by pointwise constraings whe
the (exact or approximate) solution and/or its derivatives are prescribdusIpaper we introduce
an efficient and robust multigrid method and apply it to two image analysmigges of this sort
where such robustness is essential for obtaining fast asymptotic convergese r

A major part of computer vision deals with the problem of shape reconstruction fram tw
dimensional projections of the real world onto a camera. These projections, whiagkually rec-
ognize as two dimensional images, serve as the key for the shape reconstructi@thghehole
family of shape reconstruction problems is known as ‘shape from stereo/seglating/structured-
light/etc.” One distinguished member of this shape reconstruction family isliape from photo-
metric stereo’ problem which we use as our first example in this paper. In tixgon the camera
location is fixed, and several images are obtained with different lightorglitions. A simple
model for the way the shape reflects the light is the Lambertian reflectancd,raoderding to
which the gray level observed is proportional to the inner product of the light sourcidirend
the surface normal. The proportionality ratio depends on the object properties, ks@hyedo,
and the light source intensity, which can be normalized.

Given three images$,, I, I5, of the same object taken with three different lighting directions
l1, 15,15, the following relation holds for a Lambertian reflectance model,

[i = ,0<l27 N>,
where,i € {1, 2,3}, pis the albedo, and/ is the normal to the surface(x, y), given by

(_Zl’v — Ry 1)
N

Using the Lambertian reflectance model, the approximate surface gragient, ~ V=, can be
extracted easily from the images. The question we deal with is how to aieegack the surface
z(x,y) from its approximate gradient vector field, ¢)”, keeping in mind that there are errors in
the model and in the measurements. A natural approach is to adopt a variatiomakfoon, plug-
ging the given gradient values into a global measure for the reconstructed sudadesearching
for the surface which minimizes the functional

N =

/Q w(e,y)|(p@)" — Vz|Pdady. 1)

wherew(x, y) is some positive weight function. The resulting Euler-Lagrange equation is

V-[w(:z;,y)(p—zmq—zy)T]:O, (l',y) S Qv (2)
Vzen=(p,q)n, (z,y) € 99,

wheren is the outwards normal to the boundary of the imagfe,
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For the simple choice af = 1, we obtain the Poisson problem, which is easy to solve by stan-
dard numerical methods. But, since the model and measurements may containasigeifiors,
we are particularly interested in the case where we can assume sortieraddinowledge about
the surface profile, such as the surface height at specific coordinates or alonvg aTus intro-
duces additional constraints on the value @f, y) at certain points or regions . This problem
was first studied by Horowitz and Kiryati [13] (henceforth HK). They assuitiat the height
values were given at some coordinates, and found that these constraintgiresait@ppreciable
improvement in the solution of the reconstruction problem, especially when thendse noisy.

HK suggest two approaches for dealing with the problem. One approach is to mifihsedject
to constraints on at selected points. This requires using a weight function with singularitteg a
constrained points. Suppose we have a constraint at the(peint). Letr, ; = ||(x, y)— (x4, y;)||2
denote the Euclidean distance from the constrained point. Then, in order to maictmtinuous
derivatives of the reconstructed shapgaty;), we must haveo(x,y) ~ r; 3" in a neighborhood
of (l‘i, y]‘), with o > k.

A second approach offered by HK is to split the problem into two parts, solving thenunc
strained problem withv = 1, and then adding a smooth function obtained by interpolation be-
tween the constrained points, such that the sum will satisfy the constrdimsinterpolation in
the second step is performed using radial basis functions. Thus, the computabiomddxity of
this step isO(cn ), wherec is the number of constrained points amds the number of variables.
This is unsatisfactory whenis large, particularly when the height is constrained on a curve or a
surface, although it is quite efficient for small Whenc might be large, we prefer to adopt the
first approach. Accordingly, we impose pointwise constraints and discretize (2) at all uncon-
strained points. Solving the resulting linear system of equations requiresispetieds to obtain
high computational efficiency. The difficulty stems from the singularities iand the holes in
the domain at the constrained points, wheiie prescribed and (2) is not imposed. (This, in turn,
results from the minimization of (1) subject to the constraints.) Our goalsshee the problem to
the level of discretization errors ifi(n) operations independently of

2 TheAlgebraic Multigrid Approach

The computational problem of solving a linear system of equations arising from thetdiation
of an elliptic partial differential equation is well-studied. Here, hoarethere are complications
due to the constraints and the singular form of the weight functionf-or a very small number
of constraints, suitably modified “standard” methods based on the Fast Foumsfdmra (FFT)
algorithm or “classical” multigrid methods may be efficient. But the additiomatk required
for ¢ constrained points will normally be at lea3tcn). This renders such methods inefficient if
there are more than just a few constrained points, and particularly if thereoastrained curves
or surfaces. Furthermore, the so-called pyramidal method commonly used hag slove -
dependent asymptotic convergence rate even for the simple Poisson problem. &faréhadopt
an algebraic multigrid (AMG) approach, which achieves fast convergencgendently of the
number of constraints. There is a computational overhead involved, but it toadapendent of the
number of constraints and depends linearly:on

The concept of exploiting several different grids for accelerating itexagmiutions of dis-



cretized partial differential equations (PDES) was explored in the 19Gtkstlee first practical al-
gorithms were formulated and implemented in the 1970’s (see [2] and the hadtooies therein.)
A fine elementary introduction to multigrid computational methods, including a chapteMG,
is [5]. A comprehensive source for the practice and practical theory of mualtigethods, includ-
ing many applications and an excellent introduction to AMG (Stiiben, Appendix[&D]s

The basic idea of multigrid methods is to employ a sequence of progressively rcgadsg
which geometrically include the fine-grid domain, to accelerate some lasative solver. The
latter is usually a classical relaxation method, such as damped Jacabg-Gaidel or SOR. In this
framework, the relaxation is required only $soooth the error relative to the computational grid,
where the error is defined as the difference between the exact solution to ¢hetelisquations
and the approximate solution at any stage of the algorithm, and “error smoothneds® tsely
defined as the property which allows accurate approximation of the error on theoaser grid
employed. Hence, the relaxation operator is usually referred to as a “smbdlimee the error is
smooth relative to the current grid, it is approximated on the next-coarseugngd an appropriate
coarse-grid correction equation, and the resulting approximate correctioterpolated back to
the fine grid and used to correct the fine-grid approximation. The coarse-grid prabkstved
approximately by a similar process using a still coarser grid, and so on negyrd he efficiency
of recursion is due to the fact that an error which is smooth relative toengivd is less smooth
relative to a coarser grid, so the smoother can be applied effectivelyagea. The process
described here is commonly called the (coarse-grid) correction scheme.

Most multigrid algorithms employ the same basic structure, and the diffesereamainly in
the choice of the particular components, e.g., the smoother and the inter-griettrapsfators.
The latter are thgrolongation (or interpolation), which is employed to transfer grid data to the
next-finer grid, and theestriction, which is used for fine-to-coarse grid transfer. For elliptic partial
differential operators with smoothly varying coefficients, simple methodis aadinear interpola-
tion for the prolongation, and local-averaging or injection for the restrictiearst efficient. But
discontinuous coefficients and local constraints as in the present problem requisg spedling.
The problem of discontinuous coefficients in multigrid solvers was first studigd,ijand several
different approaches were later developed (e.g., [8, 9]). Further advantemleich widened the
scope and robustness of multigrid methods were brought about by AMG methods, introdudged in [4
and developed in [15]. Subsequent developments have been numerous and branched gff in man
directions (see, e.g., Stuben [20, Appendix A] and references therein). AklBods allow solu-
tion of problems discretized on unstructured grids, including non-PDE applicatidnoutse, a
significant computational overhead is required to obtain this extra flexiditthe problems stud-
ied here we do not require such generality, and this allows us to avoid mahg obmplications
associated with unstructured meshes. Hence, also, we do not try to l@nhpace different AMG
approaches, most of which are aimed at handling more general settings than vdercbast, and
are therefore understandably more costly.

2.1 Themultigrid components

Here we present the details of the AMG algorithm. Let the linear systemtiregélom the finite-
difference discretization be )
Az=F,
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whereA is a matrix of sizex x n, andz and f are, respectively, an unknown and a giverector.
We discretize with the standard second-order finite difference disdietizéirst eliminating con-
strained variables. The resulting discretization stencil at gainty,) is given by

—w(wk,ye + h/2)
_w(xk - h/27y€) Y _w(xk +h/27y€) ) (3)

—w(zg, ye —h/2)

where
Y = w(@g, ye + h/2) + wleg, ye — 7/2) +w(zg + 7/2,y0) + w(zr — h/2,30),

and/ is the meshsize. If a neighboring point is constrained, then the corresponding elesment i
eliminated from the stencil (and a corresponding term is subtracted frongtitehrand side of the
equation.) Thus, if pointzy, y.+1) is constrained, then the elementz,, y, + #/2) is eliminated

from the stencil above, but the stencil is otherwise unaffected. In patjclle diagonal term

is unchanged. Since > 0, the equations at points adjacent to constraints are therefore strictly
diagonally dominant. At the constrained points themselves, it is convenientaio kariables
(with trivial diagonal equations) in order to maintain a regular rectangulat. gfihe resulting
discretization matrixA = { A, ;}, is positive definite and diagonally dominant. In fact, for every
row:=1,...,n, we have

Ai;i >0, A ;<0 forg#1, A;>— ZAi,jv
i#i

where the last inequality is strict at constrained points and their neargéoes. Furthermore,
the discretized operator is isotropic. For such matrices, simple Gaidel®r damped Jacobi
relaxation are known to provide excellent smoothing.

For the discussion of the coarse-grid correction operators it suffices to cojustievo grids—
the “fine” grid, which is the set of variable#, i € {1,...,n'}, and the “coarse” gridss, j €
{1,...,n°}. The extension to eulti-grid algorithm is obtained by the usual recursion resulting in
a so-called V-cycle. The coarse-grid variables are chosen to coincidewubset of the fine-grid
points. Accordingly, we partition the set of fine-grid indices as follows:

{1,2,....n7} =CUF, (4)

whereC denotes the set of indices of fine-grid variables which coincide with coardesgiables,
andF N C = 0.

Given the matrix4/ associated with the fine-grid equations, and the partition (4), we need to
define the prolongation matrix;, the restriction matrix/2, and the coarse-grid equation matrix,
A°. We adopt the standard choices for symmetric matrideés:= P for the restriction, and
A = RAJ P for the (Galerkin) coarse-grid matrix. A more general discussion on how to define
the partition (4) and how to treat nonsymmetric matrices will appear itea pmper; these issues
are outside the scope of the present application. It remains now to define the prolongation.
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2.1.1 Prolongation.

The prolongation approximates the errorfapoints, given (approximate) values of the error at
C' points. Matrix-dependent prolongations employed in multigrid methods are generalty drase
some local approximate solution of the homogeneous fine-grid probldmpatints, given fixed
values at nearby’ points. We do this by means of one or a few local sweeps-oflaxation. These
are simply relaxation sweeps in which points are skipped, and thereforévariables remain
unchanged (see also Stuben, [20, Appendix A)). If the coarse grid points are chopen\gr’
relaxation must converge very fast [3]. A “symmetric” relaxation shouldleferred to avoid
directional biases which might impair convergence. So Jacobi relaxation sheudeferred to
lexicographically ordered Gauss-Seidel, for example. In the structured-@galtested below, we
found Black-Red relaxation (see below) to be even more effective.

The operatorP is a matrix of sizen’ by n°, where P, ; is the weight corresponding to the
contribution of the coarse-grid variabi¢ to the fine-grid variable/. For every coarse-grid point
J€{1,...,n}, leti; € C denote the fine-grid point which coincides with it. We prescribe a local
interpolatory set (prolongation stencil); C ' U {;}, which is the set of all points to which the
variablez¢ contributes in the prolongation. In particulay,€ T';, that is, the coarse grid poirt
contributes to th&' point which coincides with it but to no oth&r point. We setF; ; = 0 for
¢ ¢ I'; and construct the remainder of the matfixby the following two-stage procedure (see
Fig. 1).

PROCEDURE 1

Tentative Prolongation Operator
Define a tentative prolongation matriR(‘**2tv¢) of sizen’ x n°.
SetP(tentative) = (.
Foreachy € {1,...,n°}

{
¢ Define a localF’-point subset};, with I'; \ {:;} C Q; C F.
e Define a vector(“e*) of sizen/.
(local) | 1 = Z]
o Setz; '_{ 0 otherwise.
o Performy;,..; relaxation sweeps orf'>*!) in ;.
o SetP};entative) - Zl(local)’ i c F]
}

Normalization

¢ Define a vector(¢tsd) of sizen/.

° Setzz(gl()bal) =1, 1=1,...,n'.



Figure 1: The first stage of Procedure 1 is illustrated. Large and small circles dénptents and

F points, respectively. The large black circle denotes(thpoint:;. 1'; is shown by the set of
black circles enclosed by the solid lirfe; is depicted by the set of small circles (black and white)
enclosed by the dashed line. In the first stage of Procedure 1, all wﬂﬁé’é are set to zero,
except:\'""" which is set to 1. Then,..;, relaxation sweeps are performedip. P\ js

J

given the values of!'***" thus obtained for € ;. In particular,P;, ; = 1, sincei, is not included
inQ; (being aC' point), so it is not relaxed.



o Performy ...y global /' relaxation sweeps.

P‘(tentative)
° SGtPZd = Z(glObal) nd

; ,i=1,....nt, 5=1,... n°

P‘(tentative)
1,k

Elgkgnc

The first stage of Procedure 1 is an approximate computation of the local influendeied de-
fined at coarse-grid points, using homogeneous Dirichlet boundary conditi@{$,0ifhis choice
is cheap and simple, but it tends to underestimate the proper prolongation cotsfimeause the
effects of all but a few nearby coarse-grid points are ignored, and also paslyo the fact that
the local problem is solved only approximately by a few relaxation sweeps. trcyar, if the
row-sum of theith row of A is zero, then the row-sum of théh row of P should be one in or-
der to obtain proper interpolation of the constant function. This is not generally achieuhe
first stage, but the second stage (which is motivated by the discussion of pradongaategies
by Stuben in [20, Appendix A]) normalizes the prolongation such that a constant ipatated
correctly. In particular, note that if the sum of titl row of A/ is zero, then the sum of thi¢h row
of P is one, provided thab!'""*"" are all nonnegative.

Amongst existing AMG algorithms, our approach is closest to the “element fM&&
method of [12]. The main difference (in addition to some structural vanatiand the fact that
we apply only a very small number of relaxation sweep$)jnrather than attempt to solve the
problem exactly) is that we do not try to determine appropriate local boundary conditiotief
first stage of the procedure. Instead, we use homogeneous Dirichlet conditions and coefpensa
this with the normalization stage. This results in a cheap and simple pregedundicated below.
This approach assumes (as do the classical AMG procedures) that the constaon foeeds to
be interpolated well. Of course, other functions can be chosen as well if teeynawn to be
important. We believe that the vectors that need to be interpolated (nesalst)yemust be given
or determined by a separate (non-local) process. An approach for performinaskis turrently
being developed.

2.1.2 Application tothe Structured Problem.

Procedure 1 describes a general approach which can be applied to unstructureshgrdoblthe
present problem our domain is a rectangular array of meshpoints, corresponding toelseopix
an image. Of course, we wish to take advantage of this structured mesh., keneeploy the
“standard” coarsening for our partition (4). That s, the veetm considered as a two-dimensional
array,

z=Az;}, (1,7) €10,1,2,...,n, — 1] x [0,1,2,...,n, — 1],

with a similar arrangement on all the grids. Point;j) is designated as @ point if both: and

j are even, hence¢/n/ ~ 1/4. Thus, the eight nearest neighbors of edtlpoint, ;, are I’

points (with the possible exception of points near the boundary). We clipdsebe these eight’

points, and’; = {¢;} U;. The rationale behind this choice that the PDE is a second-order elliptic
equation, and therefore a second-order prolongation (e.g., bilinear interpolatioa constant-
coefficient case) is a good choice. Using only nearest neighbors would not be appromaated)e

due to the five-point fine-grid stencil, about 1/4 of the fine-grid points have no coadseegirest
neighbors. On the other hand, including all neighbors of neighbors would lead to unnecessarily
large prolongation stencils, resulting in correspondingly large coarse-gridtopera
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Based on numerical tests, some of which are described in the next subsecti@mploy
Black-Red relaxation in both stages of the algorithm, with..;) = v(yi.5.1y = 1. This relaxation
is composed of a “Black” step, whereby a Jacobi relaxation sweep is catrteat all meshpoints
(7,7) with 7 4+ j odd, followed by a “Red” relaxation step at the even-indexed points.

Let us estimate the computational cost of constructing the prolongation. Note thatuthe f
nearest neighbors @f points are “Black”, while the four diagonal near neighbors are “Red”. We
assume here nine-point stencils. The local relaxation at the Black pointseeaquily a single
arithmetic operation per point (because the values at all the neighboring pointsrareexcept
the C' point where the value is one), and the subsequent relaxation of the Red points requires
five operations per point. This adds up to 24 operations’ppoint, or aboutn’/ operations. In
comparison, we estimate that an exact solve can be performed with about 8arzguarC’ point
(due to the special nearly-tridiagonal form of the local matrices), or ab@ut operations. The
single Black-Red globat’ relaxation in the second stage of the algorithm requires 8 operations for
the Black points (of which there ar€’ /2), and 12 for the Red points (of which there arg/4),
for a total of 7/ operations. The normalization in the final step of Procedure 1 costs ahb6ut
arithmetic operations, excluding computation of absolute values. This addd 6ip/toperations,
which is less than the cost of a single ordinary full Red-Black fine-grid rélaxaweep. (This
needs to be repeated for each of the coarse grids as well during the recursioa fa@it number
of operations comes to abaein’.) Of course, this work can easily be carried out in parallel. The
procedure is thus only a small part of the work required for defining the multigrid compgnent
most of which is spent on the sparse-matrix multiplications required for congptite Galerkin
coarse-grid operators, which is standard for robust multigrid methods.

A detailed discussion of how the parameters, in particlilaand2;, should be chosen in
general unstructured settings is outside the scope of this paper and will be dissepaeately.
Here we only point out several observations. Obviously, these choices depend aatigysor
selecting’” points. Clearly]'; must include nearest neighbors of tigoint:;, and also, every”
point must belong to at least ofie. This would suffice iiC’ points are chosen as in classical AMG,
but we would like to allow a sparsér set. We might therefore also include neighbors of neighbors,
but we should then “prune” the prolongation stencil by eliminating small valuesdier@o avoid
an unnecessary and costly increase in the size of the stencil. As,fosing}; = I'; \ {:;} seems
sufficient, at least for compact stencils.

2.2 Numerical Test of Robustness

To test the reliability and efficiency of the solver, we discretize (2heyfive-point finite-difference
discretization, impose constraints at certain points, and solve the nessjtstem with multigrid
V-cycles, employing on each grid but the coarsest one relaxation sweep bafsetring to the
next-coarser grid and one sweep after obtaining the coarse-grid correctioneadlexsb¥’ (1, 1)
cycle. We employ Red-Black relaxation, applying a Jacobi relaxation sweailb @aints (¢, ;)
with ¢ 4+ 5 even, followed by a similar sweep over the remaining points. Of coursse thie full
sweeps, not’ sweeps; the latter are employed only in the construction of the prolongation.
The solution is constrained atrandom points, withe = 1,10, 100, 1000, imposing random
values. These constraints represent holes in the domain, where the solutiposedand the dif-
ferential equation is not satisfied. The weight function is givemby, y) = > , wherer,;, is the

min’



c

1

10

100

1000

642

0.171-0.214

0.137-0.187

0.097-0.139

0.048-0.079

1282

0.111-0.220

0.161-0.189

0.134-0.163

0.096-0.137

2562

0.124-0.216

0.166-0.214

0.157-0.176

0.119-0.129

Table 1: Asymptotic residual reduction factors per cycle, averaged over the lastynles, are
tabulated for resolutions 64 by 64, 128 by 128 and 256 by 28@notes the number of constrained
points. V(1,1) cycles with Red-Black relaxation are employed. The best and the worst values
obtained in ten test runs for each case are given.

distance to the nearest constrained point. (Noteithatonly required midway between gridpoints,
so itis finite everywhere we need to define it.) A first approximation to thetiewl is obtained by a
full-multigrid (FMG) algorithm (see, e.g., [5, 20]), which is essenyial pyramidal outer loop with
inner multigridV' cycles. Then, we apply te¥i(1, 1) cycles and compute the residual-norm re-
duction factor per cycle, geometrically averaged over the last five gyCGlee values of andq are
obtained from a random image, but tests witlk ¢ = 0 (i.e., Laplace equation) give very similar
results. In fact, the asymptotic convergence factor is essentially indepeof these data. More
generally, an iterative process applied to a linear nonsingular profitem £, with initial guess
:z;él), displays the same convergence history (up to roundoff errors) as the same jaooléess to
the problemAxz = f® with a different initial guessy? = 2\ + A=1(f® — f()), because the
initial residuals (and errors) are the same. Thus, the data do not affeciytimgpttic convergence
rate, because this rate is generally independent of the initial guess (sincedles that converge
most slowly “creep in” via roundoff effects even if they are somehow excludigdlly.) How-
ever, the convergence behavior obviously does depend on the location and number of censtraint
because these affedt Hence, each test is run ten times—for ten different random locations of the
constrained points—and the best (smallest) and worst (largest) residudioadactors per cycle
are shown in Table 2.2. The tests are carried out at resolutions 64 by 64, 128 by 128 dnd 256
256. We find that the method is robust for this set of problems. The convergence behtwadlyac
improves when the number of constraints is increased, and it is not sensiineeremdom location
of the constrained points. In the worst case, the error is still reduced bya &denore than 4 per
cycle, so two cycles should easily suffice to obtain accuracy that is canlpan the discretization
error if the FMG algorithm is employed [263.2.2]. Thus, the goal of solution iti(») operations
is met for this set of problems. There is no significant deterioration as tbuteEs is increased.
(The slight advantage of the lower-resolution results whenlarge is due, at least partly, to the
larger¢/n ratio, which results in a greater “average” diagonal dominance; indeed, wheis
appreciable, the relaxation process itself is found to have good convergencetipgopéile also
performed a similar set of tests to determine the optimal valuefek.;). We foundy ;.54 = 1
to be best (i.e., achieve the best convergence rat) our tests. Similar tests using Jacobi local
and globalF' relaxation instead of Black-Red in the prolongation construction showed cobigara
behavior Withl/(local) = V(global) = 2.

The numerical tests were repeated, for resoluties?, using an exact solve instead:gf,..;) =
1. The asymptotic convergence rates in these tests were better (3niadlerthe ones shown
above, typically by just two or three percent. The worst behavior in this regpesexhibited for
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¢ = 1, where the average deterioration (over ten runs) was by 4.4%. This imipdiethe expected
residual reduction by 100 cycles using...;y = 1 is better than that of 95 cycles using exact solves.
Since only one or two cycles actually need to be used in practice, this differs negligible. The
computational savings due to the approximate solution are implementation and problemietgpe
In general, for each coarse-grid point one needs to construct a linear system efuations and
variables, and the difference is between solving this system exactly arpeng just a small
number of relaxation sweeps. In the particular case examined here, watestibove that the
exact solve is about 3.3 times as expensive as a single relaxation, using timedestentation. Of
course the overall savings are less significant than this, because thisiparsof the prolongation
construction. In more general settings, the cost of obtaining an exact solution ggiioktg with
1€2;], so if the number of required relaxation sweeps remains small, significaimgsamay be
obtained. The reason why the required number of relaxation sweeps should remhiis $hea
strong diagonal dominance of the local systems (due to the fact that coefficienfslymgdtC'-
points have been eliminated).

3 Experimental Results

3.1 Shape from photometric stereo

In our first example we compute shape from photometric stereo with and withoutaotst(Ac-
tually, the unconstrained problem does require a single arbitrary constraintjdeettee solution
is otherwise only determined up to a freely chosen translation due to the MeWwwoandary con-
ditions.) Fig. 2 is a set of five input images from which we reconstruct the surfafe use five
images with averaging, rather than only three, to compensate somewhat foattesand spec-
ularity effects.) We test our method with and without a small number of cansdraTo obtain

4 sl |

J

Figure 2: The input images for the shape from stereo reconstruction process. Same pasitaa
and head object with different lighting directions.

the constraints, the relative height values at eight points were manuallgtextiay matching cor-
responding points in the two views of the object shown in Fig. 3 (Top). Next, the reaotish

algorithm was applied to the images with and without the constraints. As showigi 4, the
reconstruction with the given data points better captures the 3D structure ofirflaees while
gracefully interpolating between the eight given points without generating difigiat disconti-

nuities.
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Figure 3: Top: side and frontal views from which height values at a small number of points were
extracted to improve the reconstruction. Bottom: three-dimensional mekkaerght-map, ob-
tained with a Cyberware Laser Scanner.

Figure 4: Side and perspective views of the reconstructed surface, with the froxtiai¢enapped
onto it. Left frames: with no constraint. Right frames: with eight (ma)keonstrained points.
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3.2 TheYanowitz-Bruckstein binarization method

The Yanowitz-Bruckstein method [22] is a technique for image binarizationiwhandles non-
uniformly illuminated images. See [18, 19] for a comparison and an overview ofibati@n
methods for text analysis. The algorithm is based on the simple observation tiogea fhreshold
surface (defined below) may be defined by the surface interpolating image poiatsdat the
centers of edges, where edges are defined at the locations where, for exampiagédas high
gradient magnitude.

In the Yanowitz-Bruckstein binarization method, first the locations of the edgéers are
detected. The image values at these points serve as constraints for a Legplat®n whose
solution serves as a threshold surface. The binary image is then obtained &lyottineg the
original image. That is, given a gray level image:, y), the binary image gets a value 1 if the
image gray level at a point is higher than the value of the computed threshold suffage, and
gets a zero value otherwise.

The main difficulty with the Yanowitz-Bruckstein method is that classiBOR relaxation
methods for solving the Laplace equation with sparse constraints at the edgerieaaiuire
many iterations to converge, especially if the constrained points arfeofarone another. The
AMG solver again provides an excellent remedy for this problem.

More formally, given the imagé(z,y) : @ — R, the algorithm for computing the threshold
surfaceu(z, y) proceeds as follows:

e Isolate the locations of edge centers, for example by the set of peiats,(x,y) : [VI| >
T}, for some given threshold.

e Use the valueg(z, y) as constraints at the set of poifits y) € e to solve for the threshold
surfaceAu = 0in Q \ ¢, subject tou(x,y) = I(z,y),¥(z,y) € e.

The surface: is the minimizer off |Vu|*dxzdy that is constrained to pass through the poiifts y)

for (z,y) € e. Again, one may smooth the interpolation surface near the edge points by adding a
weighting functiono(x, y) that gets higher values near the points.ifhe minimization functional

is slightly simpler than in the previous example and refds Vu|*dzdy. We can use our shape
from photometric stereo algorithm by settingindq to zero.

We show two examples of 6 x 256 map image, to which we first add a tilted intensity plane
defined by the gray level imag€ «,y) = = + y, and then the same image added to the intensity
imagen(z,y) = 2* + y?, centered in the middle of the image. See Fig. 5 for the input images, and
Fig. 6 for the binarization results.

4 Conclusions

A new algebraic multigrid numerical method was applied to two classicddlpms of image anal-
ysis. The Horowitz-Kiryati problem [13] of shape from photometric stereo wahstraints was
solved efficiently and robustly by the AMG algorithm. The reconstructed seratisfies a vari-
ational principle without compromising the physical model, while also satisfyidig@ntinuous
set of constraints by passing smoothly through given points and curves on the sunfdeséc-
ond example the AMG method was applied to the image binarization problem, asithstegain
the Yanowitz-Bruckstein binarization procedure.
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Figure 5: Left: Original map image. Middle: Adding a tilted intensity plane. Right: Adya
x? + y? intensity surface.
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Figure 6: Left: Input image with edge locations marked red. Middle: Naive thresholdedybinar
imagel — max([)/2. Right: Yanowitz-Bruckstein adaptive thresholded binary imageu.

14



The AMG algorithm was tested on a set of problems with randomly distributedvaisaton-
straints and singular weight functions, and was found to perform robustly andeeffici The
proposed prolongation construction is computationally inexpensive, and the setup pt@se-is
spondingly efficient. We conclude that the proposed multigrid method performs efigenpia
timally for these problems. Simpler methods may be faster in such spécialiens where the
number of constraints is very small (e.g., classical multigrid with Bvydubspace acceleration)
or very large (simple relaxation), but the AMG approach is robust for the fatjezof problems,
and it is therefore the method of choice. Generalization of the method to unsedgroblems is
under way and will be reported elsewhere.

The shape from photometric stereo and the binarization method are just two esamyhich
elliptic boundary-value problems with irregular constraints are encounteredage processing
and computer vision. Further examples are shape from shading, lightness, and opti¢al 16,
17], all of which can be coupled efficiently with irregular constraints usingntiodtigrid solver.
Another example is efficient image reconstruction from data around the edgesatesb'second
generation’ geometric based image coding [6, 10].
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