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Abstract

We apply a new algebraic multigrid method for solving computer vision problems with
constraints. As particular examples we solve the “shape from photometric stereo” and “image
binarization” problems. A variational formulation is applied to the problem of shape recon-
struction from three or more images of an object with the sameviewing direction and different
lighting conditions, supplemented by some pointwise height constraints. In order to obtain
a smooth reconstruction, we use a weight-function that is singular at the constrained points,
resulting in an elliptic equation with singular coefficients, which is solved efficiently by the
algebraic multigrid algorithm. As a second example a similar technique is applied to construct
a threshold surface which interpolates between values at centers of edges. This surface is then
used for image binarization.

1 Introduction

Many techniques of image analysis require solving elliptic boundary-value problems, often emerg-
ing from the minimization of some functional. For constant-coefficient problems on rectangular
domains Fourier methods are very efficient, but for varying coefficients or more general domains
multigrid iterative methods are probably the most effective available solution technique (see de-
scription and references in Section 2 below.) Multigrid methods were proposed in the 1960’s and
established as efficient solvers for elliptic boundary-value problems in the 1970’s. They were first
applied to image analysis by Terzopoulos (e.g., [17]). More recent efficient applications using clas-
sical multigrid structures include [21], which applies a fairly standard multigrid algorithm for sev-
eral image processing applications; [14], where powerful fast-transform preconditioned conjugate
gradient smoothers are employed to handle difficult (and dense) differential-convolution equations
by multigrid algorithms; [11], where a linear coupled system of partial differential equations is
solved repeatedly within an iterative algorithm for digital image matching.�The second author was supported in part by the Center for Applied Scientific Computing of the Lawrence Liver-
more National Laboratory and the Israeli Ministry of Science and the Arts.
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It is well-known that classical (also called “geometric”) multigrid methods are not robust with
respect to discontinuous coefficients and singular boundaries (particularly small“holes” in the
domain.) Such problems usually require specialized robust multigrid methods. Such situations
appear in certain problems of image analysis and computer vision, particularly if the mathematical
model which yields the boundary-value problem is supplemented by pointwise constraints where
the (exact or approximate) solution and/or its derivatives are prescribed. In this paper we introduce
an efficient and robust multigrid method and apply it to two image analysis techniques of this sort
where such robustness is essential for obtaining fast asymptotic convergence rates.

A major part of computer vision deals with the problem of shape reconstruction from two
dimensional projections of the real world onto a camera. These projections, whichwe usually rec-
ognize as two dimensional images, serve as the key for the shape reconstruction, where the whole
family of shape reconstruction problems is known as ‘shape from stereo/sequence/shading/structured-
light/etc.’ One distinguished member of this shape reconstruction family is the‘shape from photo-
metric stereo’ problem which we use as our first example in this paper. In this problem the camera
location is fixed, and several images are obtained with different lighting conditions. A simple
model for the way the shape reflects the light is the Lambertian reflectance model, according to
which the gray level observed is proportional to the inner product of the light source direction and
the surface normal. The proportionality ratio depends on the object properties, known as albedo,
and the light source intensity, which can be normalized.

Given three imagesI1; I2; I3, of the same object taken with three different lighting directionsl1; l2; l3, the following relation holds for a Lambertian reflectance model,Ii = �hli; Ni;
where,i 2 f1; 2; 3g, � is the albedo, andN is the normal to the surface,z(x; y), given byN = (�zx;�zy; 1)p1 + z2x + z2y :
Using the Lambertian reflectance model, the approximate surface gradient,(p; q)T � rz, can be
extracted easily from the images. The question we deal with is how to integrate back the surfacez(x; y) from its approximate gradient vector field(p; q)T , keeping in mind that there are errors in
the model and in the measurements. A natural approach is to adopt a variational formulation, plug-
ging the given gradient values into a global measure for the reconstructed surfacez and searching
for the surface which minimizes the functionalZ
w(x; y)k(p; q)T �rzk2dxdy; (1)

wherew(x; y) is some positive weight function. The resulting Euler-Lagrange equation isr � [w(x; y)(p� zx; q � zy)T ] = 0 ; (x; y) 2 
 ; (2)rz � n = (p; q) � n ; (x; y) 2 @
 ;
wheren is the outwards normal to the boundary of the image,@
.
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For the simple choice ofw � 1, we obtain the Poisson problem, which is easy to solve by stan-
dard numerical methods. But, since the model and measurements may contain significant errors,
we are particularly interested in the case where we can assume some additional knowledge about
the surface profile, such as the surface height at specific coordinates or along a curve. This intro-
duces additional constraints on the value ofz(x; y) at certain points or regions in
. This problem
was first studied by Horowitz and Kiryati [13] (henceforth HK). They assumed that the height
values were given at some coordinates, and found that these constraints resulted in an appreciable
improvement in the solution of the reconstruction problem, especially when the data were noisy.
HK suggest two approaches for dealing with the problem. One approach is to minimize(1) subject
to constraints onz at selected points. This requires using a weight function with singularities at the
constrained points. Suppose we have a constraint at the point(xi; yj). Letri;j = k(x; y)�(xi; yj)k2
denote the Euclidean distance from the constrained point. Then, in order to maintaink continuous
derivatives of the reconstructed shape at(xi; yj), we must havew(x; y) � r��i;j in a neighborhood
of (xi; yj), with � > k.

A second approach offered by HK is to split the problem into two parts, solving the uncon-
strained problem withw � 1, and then adding a smooth function obtained by interpolation be-
tween the constrained points, such that the sum will satisfy the constraints.The interpolation in
the second step is performed using radial basis functions. Thus, the computational complexity of
this step isO(cn), wherec is the number of constrained points andn is the number of variables.
This is unsatisfactory whenc is large, particularly when the height is constrained on a curve or a
surface, although it is quite efficient for smallc. Whenc might be large, we prefer to adopt the
first approach. Accordingly, we impose pointwise constraints onz and discretize (2) at all uncon-
strained points. Solving the resulting linear system of equations requires special methods to obtain
high computational efficiency. The difficulty stems from the singularities inw and the holes in
the domain at the constrained points, wherez is prescribed and (2) is not imposed. (This, in turn,
results from the minimization of (1) subject to the constraints.) Our goal is tosolve the problem to
the level of discretization errors inO(n) operations independently ofc.
2 The Algebraic Multigrid Approach

The computational problem of solving a linear system of equations arising from the discretization
of an elliptic partial differential equation is well-studied. Here, however, there are complications
due to the constraints and the singular form of the weight function,w. For a very small number
of constraints, suitably modified “standard” methods based on the Fast Fourier Transform (FFT)
algorithm or “classical” multigrid methods may be efficient. But the additionalwork required
for c constrained points will normally be at leastO(cn). This renders such methods inefficient if
there are more than just a few constrained points, and particularly if there are constrained curves
or surfaces. Furthermore, the so-called pyramidal method commonly used has a very slow n-
dependent asymptotic convergence rate even for the simple Poisson problem. We therefore adopt
an algebraic multigrid (AMG) approach, which achieves fast convergence independently of the
number of constraints. There is a computational overhead involved, but it too is independent of the
number of constraints and depends linearly onn.

The concept of exploiting several different grids for accelerating iterative solutions of dis-
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cretized partial differential equations (PDEs) was explored in the 1960’s, and the first practical al-
gorithms were formulated and implemented in the 1970’s (see [2] and the historical notes therein.)
A fine elementary introduction to multigrid computational methods, including a chapter on AMG,
is [5]. A comprehensive source for the practice and practical theory of multigrid methods, includ-
ing many applications and an excellent introduction to AMG (Stüben, Appendix A) is[20].

The basic idea of multigrid methods is to employ a sequence of progressively coarser grids,
which geometrically include the fine-grid domain, to accelerate some basic iterative solver. The
latter is usually a classical relaxation method, such as damped Jacobi, Gauss-Seidel or SOR. In this
framework, the relaxation is required only tosmooth the error relative to the computational grid,
where the error is defined as the difference between the exact solution to the discrete equations
and the approximate solution at any stage of the algorithm, and “error smoothness” can be loosely
defined as the property which allows accurate approximation of the error on the next-coarser grid
employed. Hence, the relaxation operator is usually referred to as a “smoother”. Once the error is
smooth relative to the current grid, it is approximated on the next-coarser gridusing an appropriate
coarse-grid correction equation, and the resulting approximate correction is interpolated back to
the fine grid and used to correct the fine-grid approximation. The coarse-grid problemis solved
approximately by a similar process using a still coarser grid, and so on recursively. The efficiency
of recursion is due to the fact that an error which is smooth relative to a given grid is less smooth
relative to a coarser grid, so the smoother can be applied effectively onceagain. The process
described here is commonly called the (coarse-grid) correction scheme.

Most multigrid algorithms employ the same basic structure, and the differences are mainly in
the choice of the particular components, e.g., the smoother and the inter-grid transfer operators.
The latter are theprolongation (or interpolation), which is employed to transfer grid data to the
next-finer grid, and therestriction, which is used for fine-to-coarse grid transfer. For elliptic partial
differential operators with smoothly varying coefficients, simple methods such as linear interpola-
tion for the prolongation, and local-averaging or injection for the restriction, are most efficient. But
discontinuous coefficients and local constraints as in the present problem require special handling.
The problem of discontinuous coefficients in multigrid solvers was first studied in[1], and several
different approaches were later developed (e.g., [8, 9]). Further advancements which widened the
scope and robustness of multigrid methods were brought about by AMG methods, introduced in [4]
and developed in [15]. Subsequent developments have been numerous and branched off in many
directions (see, e.g., Stüben [20, Appendix A] and references therein). AMGmethods allow solu-
tion of problems discretized on unstructured grids, including non-PDE applications. Of course, a
significant computational overhead is required to obtain this extra flexibility. In the problems stud-
ied here we do not require such generality, and this allows us to avoid many of the complications
associated with unstructured meshes. Hence, also, we do not try to list or compare different AMG
approaches, most of which are aimed at handling more general settings than we consider here, and
are therefore understandably more costly.

2.1 The multigrid components

Here we present the details of the AMG algorithm. Let the linear system resulting from the finite-
difference discretization be A�z = �f ;
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whereA is a matrix of sizen�n, and�z and �f are, respectively, an unknown and a givenn-vector.
We discretize with the standard second-order finite difference discretization, first eliminating con-
strained variables. The resulting discretization stencil at point(xk; y`) is given by266664 � �w(xk; y` + h=2) ��w(xk � h=2; y`) �w �w(xk + h=2; y`)� �w(xk; y` � h=2) � 377775 ; (3)

where �w = w(xk; y` + h=2) + w(xk; y` � h=2) + w(xk + h=2; y`) + w(xk � h=2; y`) ;
andh is the meshsize. If a neighboring point is constrained, then the corresponding element is
eliminated from the stencil (and a corresponding term is subtracted from the right-hand side of the
equation.) Thus, if point(xk; y`+1) is constrained, then the elementw(xk; y` + h=2) is eliminated
from the stencil above, but the stencil is otherwise unaffected. In particular, the diagonal term
is unchanged. Sincew > 0, the equations at points adjacent to constraints are therefore strictly
diagonally dominant. At the constrained points themselves, it is convenient to retain variables
(with trivial diagonal equations) in order to maintain a regular rectangular grid. The resulting
discretization matrix,A = fAi;jg, is positive definite and diagonally dominant. In fact, for every
row i = 1; : : : ; n , we haveAi;i > 0; Ai;j � 0 for j 6= i; Ai;i � �Xj 6=i Ai;j ;
where the last inequality is strict at constrained points and their nearest neighbors. Furthermore,
the discretized operator is isotropic. For such matrices, simple Gauss-Seidel or damped Jacobi
relaxation are known to provide excellent smoothing.

For the discussion of the coarse-grid correction operators it suffices to consider just two grids—
the “fine” grid, which is the set of variableszfi ; i 2 f1; : : : ; nfg, and the “coarse” grid,zcj ; j 2f1; : : : ; ncg. The extension to amulti-grid algorithm is obtained by the usual recursion resulting in
a so-called V-cycle. The coarse-grid variables are chosen to coincide with a subset of the fine-grid
points. Accordingly, we partition the set of fine-grid indices as follows:f1; 2; : : : ; nfg = C [ F ; (4)

whereC denotes the set of indices of fine-grid variables which coincide with coarse-grid variables,
andF \ C = ;.

Given the matrixAf associated with the fine-grid equations, and the partition (4), we need to
define the prolongation matrix,P , the restriction matrix,R, and the coarse-grid equation matrix,Ac. We adopt the standard choices for symmetric matrices:R = P T for the restriction, andAc = RAfP for the (Galerkin) coarse-grid matrix. A more general discussion on how to define
the partition (4) and how to treat nonsymmetric matrices will appear in a later paper; these issues
are outside the scope of the present application. It remains now to define the prolongation.
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2.1.1 Prolongation.

The prolongation approximates the error atF points, given (approximate) values of the error atC points. Matrix-dependent prolongations employed in multigrid methods are generally based on
some local approximate solution of the homogeneous fine-grid problem atF points, given fixed
values at nearbyC points. We do this by means of one or a few local sweeps ofF -relaxation. These
are simply relaxation sweeps in whichC points are skipped, and thereforeC-variables remain
unchanged (see also Stüben, [20, Appendix A]). If the coarse grid points are chosen properly,F
relaxation must converge very fast [3]. A “symmetric” relaxation should bepreferred to avoid
directional biases which might impair convergence. So Jacobi relaxation shouldbe preferred to
lexicographically ordered Gauss-Seidel, for example. In the structured-gridcase tested below, we
found Black-Red relaxation (see below) to be even more effective.

The operatorP is a matrix of sizenf by nc, wherePi;j is the weight corresponding to the
contribution of the coarse-grid variablezcj to the fine-grid variablezfi . For every coarse-grid pointj 2 f1; : : : ; ncg, let ij 2 C denote the fine-grid point which coincides with it. We prescribe a local
interpolatory set (prolongation stencil),�j � F [ fijg, which is the set of all points to which the
variablezcj contributes in the prolongation. In particular,ij 2 �j , that is, the coarse grid pointj
contributes to theC point which coincides with it but to no otherC point. We setPi;j = 0 fori =2 �j and construct the remainder of the matrixP by the following two-stage procedure (see
Fig. 1).

PROCEDURE 1

Tentative Prolongation Operator

Define a tentative prolongation matrix,P (tentative), of sizenf � nc.
SetP (tentative) := 0.

For eachj 2 f1; : : : ; ncgf � Define a localF -point subset,
j, with �j n fijg � 
j � F :� Define a vectorz(local) of sizenf .� Setz(local)i := � 1 i = ij0 otherwise :� Perform�(local) relaxation sweeps onz(local) in 
j .� SetP (tentative)i;j := z(local)i , i 2 �j .g
Normalization� Define a vectorz(global) of sizenf .� Setz(global)i := 1 ; i = 1; : : : ; nf :
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Figure 1:The first stage of Procedure 1 is illustrated. Large and small circles denoteC points andF points, respectively. The large black circle denotes theC point ij. �j is shown by the set of
black circles enclosed by the solid line.
j is depicted by the set of small circles (black and white)
enclosed by the dashed line. In the first stage of Procedure 1, all valuesz(local)i are set to zero,
exceptz(local)ij which is set to 1. Then,�(local) relaxation sweeps are performed in
j . P (tentative)i;j is

given the values ofz(local)i thus obtained fori 2 �j. In particular,Pij ;j = 1, sinceij is not included
in 
j (being aC point), so it is not relaxed.
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� Perform�(global) globalF relaxation sweeps.� SetPi;j := z(global)i P (tentative)i;jP1�k�nc ���P (tentative)i;k ��� ; i = 1; : : : ; nf ; j = 1; : : : ; nc.
The first stage of Procedure 1 is an approximate computation of the local influence of values de-
fined at coarse-grid points, using homogeneous Dirichlet boundary conditions on@
j. This choice
is cheap and simple, but it tends to underestimate the proper prolongation coefficients because the
effects of all but a few nearby coarse-grid points are ignored, and also partlydue to the fact that
the local problem is solved only approximately by a few relaxation sweeps. In particular, if the
row-sum of theith row of A is zero, then the row-sum of theith row of P should be one in or-
der to obtain proper interpolation of the constant function. This is not generally achieved in the
first stage, but the second stage (which is motivated by the discussion of prolongation strategies
by Stüben in [20, Appendix A]) normalizes the prolongation such that a constant is interpolated
correctly. In particular, note that if the sum of theith row ofAf is zero, then the sum of theith row
of P is one, provided thatP (tentative)i;j are all nonnegative.

Amongst existing AMG algorithms, our approach is closest to the “element free AMGe”
method of [12]. The main difference (in addition to some structural variations and the fact that
we apply only a very small number of relaxation sweeps in
j rather than attempt to solve the
problem exactly) is that we do not try to determine appropriate local boundary conditions for the
first stage of the procedure. Instead, we use homogeneous Dirichlet conditions and compensate for
this with the normalization stage. This results in a cheap and simple procedure, as indicated below.
This approach assumes (as do the classical AMG procedures) that the constant function needs to
be interpolated well. Of course, other functions can be chosen as well if they are known to be
important. We believe that the vectors that need to be interpolated (nearly) exactly must be given
or determined by a separate (non-local) process. An approach for performing this task is currently
being developed.

2.1.2 Application to the Structured Problem.

Procedure 1 describes a general approach which can be applied to unstructured problems. In the
present problem our domain is a rectangular array of meshpoints, corresponding to the pixels of
an image. Of course, we wish to take advantage of this structured mesh. Hence, we employ the
“standard” coarsening for our partition (4). That is, the vector�z is considered as a two-dimensional
array, �z = fzi;jg; (i; j) 2 [0; 1; 2; : : : ; nx � 1]� [0; 1; 2; : : : ; ny � 1] ;
with a similar arrangement on all the grids. Point(i; j) is designated as aC point if both i andj are even, hencenc=nf � 1=4. Thus, the eight nearest neighbors of eachC point, j, areF
points (with the possible exception of points near the boundary). We choose
j to be these eightF
points, and�j = fijg[
j . The rationale behind this choice that the PDE is a second-order elliptic
equation, and therefore a second-order prolongation (e.g., bilinear interpolation in the constant-
coefficient case) is a good choice. Using only nearest neighbors would not be appropriate because,
due to the five-point fine-grid stencil, about 1/4 of the fine-grid points have no coarse-grid nearest
neighbors. On the other hand, including all neighbors of neighbors would lead to unnecessarily
large prolongation stencils, resulting in correspondingly large coarse-grid operators.
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Based on numerical tests, some of which are described in the next subsection, we employ
Black-Red relaxation in both stages of the algorithm, with�(local) = �(global) = 1. This relaxation
is composed of a “Black” step, whereby a Jacobi relaxation sweep is carriedout at all meshpoints(i; j) with i+ j odd, followed by a “Red” relaxation step at the even-indexed points.

Let us estimate the computational cost of constructing the prolongation. Note that the four
nearest neighbors ofC points are “Black”, while the four diagonal near neighbors are “Red”. We
assume here nine-point stencils. The local relaxation at the Black points requires only a single
arithmetic operation per point (because the values at all the neighboring points are zero, except
the C point where the value is one), and the subsequent relaxation of the Red points requires
five operations per point. This adds up to 24 operations perC point, or about6nf operations. In
comparison, we estimate that an exact solve can be performed with about 80 operations perC point
(due to the special nearly-tridiagonal form of the local matrices), or about20nf operations. The
single Black-Red globalF relaxation in the second stage of the algorithm requires 8 operations for
the Black points (of which there arenf=2), and 12 for the Red points (of which there arenf=4),
for a total of7nf operations. The normalization in the final step of Procedure 1 costs about3nf
arithmetic operations, excluding computation of absolute values. This adds up to16nf operations,
which is less than the cost of a single ordinary full Red-Black fine-grid relaxation sweep. (This
needs to be repeated for each of the coarse grids as well during the recursion, so the total number
of operations comes to about20nf .) Of course, this work can easily be carried out in parallel. The
procedure is thus only a small part of the work required for defining the multigrid components,
most of which is spent on the sparse-matrix multiplications required for computing the Galerkin
coarse-grid operators, which is standard for robust multigrid methods.

A detailed discussion of how the parameters, in particular�j and
j , should be chosen in
general unstructured settings is outside the scope of this paper and will be discussedseparately.
Here we only point out several observations. Obviously, these choices depend on the strategy for
selectingC points. Clearly,�j must include nearest neighbors of theC point ij, and also, everyF
point must belong to at least one�j. This would suffice ifC points are chosen as in classical AMG,
but we would like to allow a sparserC set. We might therefore also include neighbors of neighbors,
but we should then “prune” the prolongation stencil by eliminating small values in order to avoid
an unnecessary and costly increase in the size of the stencil. As for
j, using
j = �j nfijg seems
sufficient, at least for compact stencils.

2.2 Numerical Test of Robustness

To test the reliability and efficiency of the solver, we discretize (2) bythe five-point finite-difference
discretization, impose constraints at certain points, and solve the resulting system with multigridV -cycles, employing on each grid but the coarsest one relaxation sweep before transferring to the
next-coarser grid and one sweep after obtaining the coarse-grid correction—a so-calledV (1; 1)
cycle. We employ Red-Black relaxation, applying a Jacobi relaxation sweep atall points (i; j)
with i + j even, followed by a similar sweep over the remaining points. Of course, these are full
sweeps, notF sweeps; the latter are employed only in the construction of the prolongation.

The solution is constrained atc random points, withc = 1; 10; 100; 1000, imposing random
values. These constraints represent holes in the domain, where the solution is imposed and the dif-
ferential equation is not satisfied. The weight function is given byw(x; y) = r�2min, wherermin is the
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c 1 10 100 1000642 0.171–0.214 0.137–0.187 0.097–0.139 0.048–0.0791282 0.111–0.220 0.161–0.189 0.134–0.163 0.096–0.1372562 0.124–0.216 0.166–0.214 0.157–0.176 0.119–0.129

Table 1: Asymptotic residual reduction factors per cycle, averaged over the last five cycles, are
tabulated for resolutions 64 by 64, 128 by 128 and 256 by 256.c denotes the number of constrained
points. V (1; 1) cycles with Red-Black relaxation are employed. The best and the worst values
obtained in ten test runs for each case are given.

distance to the nearest constrained point. (Note thatw is only required midway between gridpoints,
so it is finite everywhere we need to define it.) A first approximation to the solution is obtained by a
full-multigrid (FMG) algorithm (see, e.g., [5, 20]), which is essentially a pyramidal outer loop with
inner multigridV cycles. Then, we apply tenV (1; 1) cycles and compute the residual-norm re-
duction factor per cycle, geometrically averaged over the last five cycles. The values ofp andq are
obtained from a random image, but tests withp = q = 0 (i.e., Laplace equation) give very similar
results. In fact, the asymptotic convergence factor is essentially independent of these data. More
generally, an iterative process applied to a linear nonsingular problemAx = f (1), with initial guessx(1)0 , displays the same convergence history (up to roundoff errors) as the same processapplied to
the problemAx = f (2) with a different initial guess,x(2)0 = x(1)0 + A�1(f (2) � f (1)), because the
initial residuals (and errors) are the same. Thus, the data do not affect the asymptotic convergence
rate, because this rate is generally independent of the initial guess (since the modes that converge
most slowly “creep in” via roundoff effects even if they are somehow excludedinitially.) How-
ever, the convergence behavior obviously does depend on the location and number of constraints,
because these affectA. Hence, each test is run ten times—for ten different random locations of the
constrained points—and the best (smallest) and worst (largest) residual reduction factors per cycle
are shown in Table 2.2. The tests are carried out at resolutions 64 by 64, 128 by 128 and 256by
256. We find that the method is robust for this set of problems. The convergence behavior actually
improves when the number of constraints is increased, and it is not sensitive tothe random location
of the constrained points. In the worst case, the error is still reduced by a factor of more than 4 per
cycle, so two cycles should easily suffice to obtain accuracy that is comparable to the discretization
error if the FMG algorithm is employed [20,x3.2.2]. Thus, the goal of solution inO(n) operations
is met for this set of problems. There is no significant deterioration as the resolution is increased.
(The slight advantage of the lower-resolution results whenc is large is due, at least partly, to the
largerc=n ratio, which results in a greater “average” diagonal dominance; indeed, whenc=n is
appreciable, the relaxation process itself is found to have good convergence properties.) We also
performed a similar set of tests to determine the optimal value for�(global). We found�(global) = 1
to be best (i.e., achieve the best convergence rate) inall our tests. Similar tests using Jacobi local
and globalF relaxation instead of Black-Red in the prolongation construction showed comparable
behavior with�(local) = �(global) = 2.

The numerical tests were repeated, for resolution1282, using an exact solve instead of�(local) =1. The asymptotic convergence rates in these tests were better (smaller) than the ones shown
above, typically by just two or three percent. The worst behavior in this respectwas exhibited for
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c = 1, where the average deterioration (over ten runs) was by 4.4%. This implies that the expected
residual reduction by 100 cycles using�(local) = 1 is better than that of 95 cycles using exact solves.
Since only one or two cycles actually need to be used in practice, this difference is negligible. The
computational savings due to the approximate solution are implementation and problem dependent.
In general, for each coarse-grid point one needs to construct a linear system ofj
jj equations and
variables, and the difference is between solving this system exactly or performing just a small
number of relaxation sweeps. In the particular case examined here, we estimate above that the
exact solve is about 3.3 times as expensive as a single relaxation, using the best implementation. Of
course the overall savings are less significant than this, because this is justa part of the prolongation
construction. In more general settings, the cost of obtaining an exact solution quicklygrows withj
jj, so if the number of required relaxation sweeps remains small, significant savings may be
obtained. The reason why the required number of relaxation sweeps should remain small is the
strong diagonal dominance of the local systems (due to the fact that coefficients multiplying C-
points have been eliminated).

3 Experimental Results

3.1 Shape from photometric stereo

In our first example we compute shape from photometric stereo with and without constraints. (Ac-
tually, the unconstrained problem does require a single arbitrary constraint, because the solution
is otherwise only determined up to a freely chosen translation due to the Neumann boundary con-
ditions.) Fig. 2 is a set of five input images from which we reconstruct the surface. (We use five
images with averaging, rather than only three, to compensate somewhat for the shadow and spec-
ularity effects.) We test our method with and without a small number of constraints. To obtain

Figure 2:The input images for the shape from stereo reconstruction process. Same cameraposition
and head object with different lighting directions.

the constraints, the relative height values at eight points were manually extracted by matching cor-
responding points in the two views of the object shown in Fig. 3 (Top). Next, the reconstruction
algorithm was applied to the images with and without the constraints. As shown in Fig. 4, the
reconstruction with the given data points better captures the 3D structure of the surface, while
gracefully interpolating between the eight given points without generating any artificial disconti-
nuities.
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Figure 3:Top: side and frontal views from which height values at a small number of points were
extracted to improve the reconstruction. Bottom: three-dimensional measured height-map, ob-
tained with a Cyberware Laser Scanner.

Figure 4:Side and perspective views of the reconstructed surface, with the frontal texture mapped
onto it. Left frames: with no constraint. Right frames: with eight (marked) constrained points.
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3.2 The Yanowitz-Bruckstein binarization method

The Yanowitz-Bruckstein method [22] is a technique for image binarization which handles non-
uniformly illuminated images. See [18, 19] for a comparison and an overview of binarization
methods for text analysis. The algorithm is based on the simple observation that a proper threshold
surface (defined below) may be defined by the surface interpolating image points located at the
centers of edges, where edges are defined at the locations where, for example, the image has high
gradient magnitude.

In the Yanowitz-Bruckstein binarization method, first the locations of the edge centers are
detected. The image values at these points serve as constraints for a Laplaceequation whose
solution serves as a threshold surface. The binary image is then obtained by thresholding the
original image. That is, given a gray level imageI(x; y), the binary image gets a value 1 if the
image gray level at a point is higher than the value of the computed threshold surfaceu(x; y), and
gets a zero value otherwise.

The main difficulty with the Yanowitz-Bruckstein method is that classical SOR relaxation
methods for solving the Laplace equation with sparse constraints at the edge locations require
many iterations to converge, especially if the constrained points are farfrom one another. The
AMG solver again provides an excellent remedy for this problem.

More formally, given the imageI(x; y) : 
 ! IR+, the algorithm for computing the threshold
surfaceu(x; y) proceeds as follows:� Isolate the locations of edge centers, for example by the set of points,e = f(x; y) : jrIj >Tg, for some given thresholdT .� Use the valuesI(x; y) as constraints at the set of points(x; y) 2 e to solve for the threshold

surface�u = 0 in 
 n e, subject tou(x; y) = I(x; y);8(x; y) 2 e.
The surfaceu is the minimizer of

R jruj2dxdy that is constrained to pass through the pointsI(x; y)
for (x; y) 2 e. Again, one may smooth the interpolation surface near the edge points by adding a
weighting functionw(x; y) that gets higher values near the points ine. The minimization functional
is slightly simpler than in the previous example and reads

R wjruj2dxdy. We can use our shape
from photometric stereo algorithm by settingp andq to zero.

We show two examples of a256�256 map image, to which we first add a tilted intensity plane
defined by the gray level imagen(x; y) = x + y, and then the same image added to the intensity
imagen(x; y) = x2+ y2, centered in the middle of the image. See Fig. 5 for the input images, and
Fig. 6 for the binarization results.

4 Conclusions

A new algebraic multigrid numerical method was applied to two classical problems of image anal-
ysis. The Horowitz-Kiryati problem [13] of shape from photometric stereo withconstraints was
solved efficiently and robustly by the AMG algorithm. The reconstructed surface satisfies a vari-
ational principle without compromising the physical model, while also satisfying adiscontinuous
set of constraints by passing smoothly through given points and curves on the surface. In the sec-
ond example the AMG method was applied to the image binarization problem, as the main step in
the Yanowitz-Bruckstein binarization procedure.

13



Figure 5: Left: Original map image. Middle: Adding a tilted intensity plane. Right: Adding ax2 + y2 intensity surface.

Figure 6: Left: Input image with edge locations marked red. Middle: Naive thresholded binary
imageI �max(I)=2. Right: Yanowitz-Bruckstein adaptive thresholded binary imageI � u.
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The AMG algorithm was tested on a set of problems with randomly distributed pointwise con-
straints and singular weight functions, and was found to perform robustly and efficiently. The
proposed prolongation construction is computationally inexpensive, and the setup phase iscorre-
spondingly efficient. We conclude that the proposed multigrid method performs essentially op-
timally for these problems. Simpler methods may be faster in such special situations where the
number of constraints is very small (e.g., classical multigrid with Krylov subspace acceleration)
or very large (simple relaxation), but the AMG approach is robust for the full range of problems,
and it is therefore the method of choice. Generalization of the method to unstructured problems is
under way and will be reported elsewhere.

The shape from photometric stereo and the binarization method are just two examples in which
elliptic boundary-value problems with irregular constraints are encountered in image processing
and computer vision. Further examples are shape from shading, lightness, and optical flow [7, 16,
17], all of which can be coupled efficiently with irregular constraints using themultigrid solver.
Another example is efficient image reconstruction from data around the edges in so called ‘second
generation’ geometric based image coding [6, 10].
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