
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998 141

Minimizing the Complexity of SRT Tables
Stuart F. Oberman,Member, IEEE,and Michael J. Flynn,Life Fellow, IEEE

Abstract—This paper presents an analysis of the complexity of
quotient-digit selection tables in SRT division implementations.
SRT dividers are widely used in VLSI systems to compute
floating-point quotients. These dividers use a fixed number of
partial remainder and divisor bits to consult a table to select
the next quotient-digit in each iteration. This analysis derives the
allowable divisor and partial remainder truncations for radix 2
through radix 32, and it quantifies the relationship between table
parameters and the complexity of the tables. Several techniques
are presented for further minimizing table complexity. By map-
ping the tables to a library of standard-cells, delay and area
values were measured and are presented for table configurations
through radix 32. Several conclusions are drawn based on this
data which impacts optimized SRT divider designs.

Index Terms—Computer arithmetic, floating point, perfor-
mance tradeoffs, quotient-digit selection, SRT division, table
complexity.

I. INTRODUCTION

I N recent years computer applications have increased in
their computational complexity. High-speed floating-point

hardware is a requirement in many VLSI systems to meet these
increasing demands. An important component of the floating
point unit is the divider. There are many methods for de-
signing division hardware, including quadratically converging
algorithms, such as Newton–Raphson, and linear converging
algorithms, the most common of which is SRT [15]. SRT
division computes a quotient one digit at a time, with an
iteration time independent of the operand length.

The theory of SRT division is discussed thoroughly in
Atkins [1], Ercegovac [7], Robertson [17], and Tan [20].
Several SRT implementations have been reported, including
radix 2 dividers by Knowles [11], Kuninobu [12], Vande-
meulebroecke [22], and Zuras [23], radix 4 by Birman [3] and
Fandrianto [8], radix 8 by Fandrianto [9] and Prabhu [16], and
radix 16 by Carter [5] and Taylor [21]. SRT dividers with sim-
plified quotient-digit selection using operand range restriction
have been presented in Ercegovac [6], Montuschi [14], and
Srinivas [18]. Harris [10] discusses detailed algorithmic and
circuit tradeoffs in SRT divider design.

There are many performance and area tradeoffs when de-
signing an SRT divider. One metric for comparison of different
designs is the minimum required truncations of the divisor
and partial remainder for quotient-digit selection. Atkins [1]
and Robertson [17] provide such analyzes of the divisor

Manuscript received November 12, 1995; revised August 20, 1997. This
work was supported by the U.S. National Science Foundation under Grant
MIP93–13701.

The authors are with the Computer Systems Laboratory, Stanford Univer-
sity, Stanford, CA 94305 USA (e-mail: oberman@umunhum.stanford.edu and
flynn@umunhum.stanford.edu).

Publisher Item Identifier S 1063-8210(98)01320-1.

and partial remainder precisions required for quotient-digit
selection. Burgess and Williams [4] present in more detail
allowable truncations for divisors and both carry-save and
borrow-save partial remainders. However, a more detailed
comparison of quotient-digit selection complexity between
different designs requires more information than input preci-
sion. This paper analyzes in detail the effects of algorithm
radix, redundancy, divisor and partial remainder precision,
and truncation error on the complexity of the resulting table.
Complexity is measured by the number of product terms in
the final logic equations, and the delay and area of standard-
cell implementations of the tables. These metrics are obtained
by an automated design flow using the specifications for the
quotient-digit selection table as input, a Gray-coded PLA
as an intermediate representation, and an LSI Logic 500 K
standard-cell implementation as the output. This paper also
examines the effects of additional techniques such as table-
folding and longer external carry-assimilating adders on table
complexity. Using the methodology presented, it is possible
to automatically generate optimized high radix quotient-digit
selection tables.

The remainder of this paper is organized as follows:
Section II presents the theory of SRT division; Section III
discusses the implementation of SRT tables; Section IV
presents our methodology for implementing the quotient-
digit selection tables; Section V presents the results; and
Section VI is the conclusion.

II. THEORY OF SRT DIVISION

SRT division belongs to the digit recurrence class of di-
vision algorithms. Digit recurrence algorithms use subtrac-
tive methods to calculate quotients one digit per iteration.
Digit recurrence algorithms can be divided intorestoringand
nonrestoring division. Restoring division is similar to the
familiar paper and pencil division. When dividing two-
digit numbers, the division can require up to 2additions or
subtractions. Nonrestoring division algorithms eliminate the
restoration cycles, and thus only require up toadditions.
This can be accomplished by allowing negative values of the
quotient as well as positive values. In this way, small errors
in one iteration can be corrected in subsequent iterations.

A. Recurrence

In SRT division, the quotient can be computed as follows:

dividend
divisor

This expression can be rewritten as

dividend divisor remainder

1063–8210/98$10.00 1998 IEEE

142 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

such that

remainder divisor ulp

and

sign(remainder) sign(dividend)

where the input operands are given bydividendand divisor,
and the results are and remainder. The precision of the
quotient is defined by the unit in the last position (ulp), where
for an integer quotient ulp 1, and for a fractional quotient
using a binary representation ulp2 , assuming an digit
quotient. The radix of the algorithm, typically chosen to
be a power of 2, determines how many quotient bitsare
retired in each iteration, such that 2 . Accordingly, a
radix algorithm requires iterations to compute an
digit quotient.

The following recurrence is used at every iteration:

dividend (1)

divisor (2)

where is the partial remainder, or residual, at iteration.
In each iteration, one digit of the quotient is determined by

the quotient-digit selection function

SEL divisor (3)

In order for the next partial remainder to be bounded,
the value of the quotient-digit is chosen such that

divisor (4)

The final quotient is the weighted sum of all of the quotient-
digits selected throughout the iterations, such that:

final (5)

As can be noted from (1) and (2), each iteration of the
recurrence comprises the following steps:

1) determine next quotient-digit by the quotient-digit
selection function;

2) generate the product ;
3) subtract from to form the next

partial remainder.

Each of these components can contribute to the overall cost
and performance of the algorithm. To reduce the time for
partial remainder computation, intermediate partial remainders
are often stored in a redundant representation, either carry-save
or signed digit form. Then, the partial remainder computation
requires only a full adder delay, rather than a full width carry-
propagate addition. The rest of this paper is concerned with
the quotient-digit selection component.

B. Choice of Radix

The fundamental method of decreasing the overall latency
(in machine cycles) of the SRT algorithm is to increase the
radix of the algorithm. By choosing the radix to be a power
of two, the product of the radix and the partial remainder
can be formed by shifting. Accordingly, throughout this study,

only power of two radices are considered. Assuming the same
quotient precision, the number of iterations of the algorithm
required to compute the quotient is reduced by a factor
when the radix is increased from to . For example, a
radix 4 algorithm retires 2 bits of quotient in every iteration.
Increasing to a radix 16 algorithm will allow for retiring 4 bits
in every iteration, for a 2X reduction in latency. This reduction
does not come for free. As the radix increases, the quotient-
digit selection becomes more complex. Since the quotient-digit
selection is typically on the critical path of the algorithm, even
though the number of cycles may have been reduced due to
the increased radix, the time per cycle may have increased. As
a result, the total time required to compute anbit quotient
may not be reduced by the factor. Accordingly, the radix
is a fundamental parameter in determining the complexity of
the quotient-digit selection table.

C. Choice of Quotient Digit Set

A range of digits is decided upon for the allowed values of
the quotient in each iteration. The simplest case is where, for
radix , there are exactly allowed values of the quotient.
However, it is often desirable to utilize aredundant digit
setwhich simplifies the quotient-digit selection table, thereby
increasing the performance of the divider. Such a digit set can
be composed of symmetric signed-digit consecutive integers,
where the maximum digit is . In particular

The redundancy of a digit set is determined by the value of
the redundancy factor, which is defined as

(6)

For all partial remainders to be bounded when a redundant
quotient digit set is used, the value of the quotient-digit must
be chosen such that

divisor (7)

The calculation of the final quotient using a redundant
quotient-digit set involves either a full carry propagate addition
to subtract the negative quotient-digits from the positive
quotient-digits at the completion of the iterations, or the use
of on-the-fly quotient conversion techniques [7].

After the redundancy factor is chosen, it is possible to
derive the quotient-digit selection function. To guarantee that
the shifted partial remainder remains bounded for all valid
quotient-digits and divisor, expressions for the quotient-digit
selection intervals must be computed. A selection interval is
the region in which a particular quotient-digit can be safely
chosen such that the shifted partial remainder will remain
bounded. The expressions for the selection intervals are given
by

where () is the largest (smallest) value of such that
it is possible for to be chosen and still keep the next
shifted partial remainder bounded. Thecontinuity condition

OBERMAN AND FLYNN: MINIMIZING THE COMPLEXITY OF SRT TABLES 143

Fig. 1. P–D diagram for radix 4.

requires that for all valid values of , it must be possible
to select at least one quotient digit [7]. This is expressed
mathematically as

(8)

Because is represented by a maximum ofbits, the term
is the resolution of the partial remainder.

The P–D diagram is a useful visual tool when designing
a quotient-digit selection function. It has as axes the shifted
partial remainder and the divisor. The selection interval bounds

and are drawn as lines starting at the origin with slope
and , respectively. A P–D diagram is shown in

Fig. 1 with 4 and 2. The shaded regions are the
overlap regions where more than one quotient-digit may be
selected.

III. I MPLEMENTING SRT TABLES

A. Divisor and Partial Remainder Estimates

To reduce the size and complexity of the quotient-digit
selection table for a given choice ofand , it is desirable
to use as input to the table estimates of the divisor and
shifted partial remainder which have fewer bits than the true
values. Assuming IEEE floating-point compliance, the input
operands are in the range . Therefore, bit
operands normalized to this range have an ulp2 .
Further, a leading integer one can be assumed for all divisors,
and the table only requires fractional divisor bits to make a
quotient-digit selection. The shifted partial remainder, though,
requires both integer and fractional bits as inputs to the
table. The shifted partial remainder and divisor can
be approximated by estimates and using the most
significant bits of and the most significant bits of .

The bits in the truncated estimate can be divided into
integer bits and fractional bits, such that .

The table can take as input the partial remainder estimate
directly in redundant form, or it can use the output of a short
carry-assimilating adder that converts the redundant partial
remainder estimate to a nonredundant representation. The use
of an external short adder reduces the complexity of the table
implementation, as the number of partial remainder input bits
are halved. However, the delay of the quotient-digit selection
function increases by the delay of the adder.

It is not possible to determine the optimal choices ofand
analytically, as several factors are involved in making these

choices. However, it is possible to determine a lower bound
on using the continuity condition and the fact that the next
partial remainder must remain bounded

(9)

(10)

Because the divisor is IEEE normalized with a leading one,
only the leading fractional bits are required as input
to the table. The next quotient-digit can then be selected by
using these estimates to index into a entry lookup table,
implemented either as a PLA or random logic.

Assuming a nonredundant two’s complement partial remain-
der, the estimates have nonnegative truncation errorsand

for the divisor and shifted partial remainder estimates,
respectively, where

(11)

(12)

Thus, the maximum truncation error for both the divisor and
the nonredundant shifted partial remainder estimates is strictly
less than 1 ulp.

For a redundant two’s complement partial remainder, the
truncation error depends upon the representation. For a carry-
save representation, the sum and carry estimates each has
nonnegative truncation error , assuming that both the sum
and carry estimates are represented by themost significant
bits of their true values. The resulting estimate has
truncation error

(13)

Thus, the maximum truncation error for an estimate of a
carry–save shifted partial remainder is strictly less than 2 ulps.

From this discussion, the number of integer bitsin
can be determined analytically. Using the general recurrence
for SRT division, the maximum shifted partial remainder is
given by

(14)

For IEEE operands

(15)

As previously stated, for a carry–save two’s complement
representation of the partial remainder, the truncation error

144 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

is always nonnegative, and therefore the maximum estimate
of the partial remainder is

The minimum estimate of the partial remainder is

Accordingly, can be determined from

(16)

(17)

B. Uncertainty Regions

By using a redundant quotient-digit set, it is possible to
correctly choose the next quotient-digit even when using the
truncated estimates and . Due to the truncation error in
the estimates, each entry in the quotient-digit selection table
has an uncertainty region associated with it. For each entry,
it is necessary for all combinations of all possible values
represented by the estimates and to lie in the same
selection interval. For a carry-save representation of the shifted
partial remainder, this involves calculating the maximum and
minimum ratios of the shifted partial remainder and divisor,
and ensuring that these ratios both lie in the same selection
interval

ratio
if

if

(18)

ratio

if

if .

(19)

If an uncertainty region is too large, the maximum and
minimum ratios may span more than one selection interval,
requiring one table entry to return more than one quotient-
digit. This would signify that the estimate of the divisor and/or
the shifted partial remainder has too much truncation error.
Fig. 2 shows several uncertainty regions in a radix 4 P–D
plot. Each uncertainty region is represented by a rectangle
whose height and width is a function of the divisor and
partial remainder truncation errors. The value of ratio
corresponds to the upper left corner of the rectangle, while
ratio corresponds to the lower right corner. In this figure,
the four valid uncertainty regions include a portion of an
overlap region. Further, the lower right uncertainty region
is fully contained within an overlap region, allowing the
entry corresponding to that uncertainty region to take on the
quotient-digits of either zero or one. The other three valid
uncertainty regions may take on only a single quotient-digit.
The upper left uncertainty region spans more than an entire
overlap region, signifying that the corresponding table entry,
and as a result the entire table, is not valid. To determine the

Fig. 2. Uncertainty regions due to divisor and partial remainder estimates.

valid values of and for a given and , it is necessary to
calculate the uncertainty regions for all entries in the
table. If all uncertainty regions are valid for given choices of
, , and , then they are valid choices.

C. Reducing Table Complexity

The size of the table implementation can be reduced nearly
in half by folding the table entries as suggested in Fandrianto
[8]. Folding involves the conversion of the two’s complement
representation of to signed-magnitude, allowing the same
table entries to be used for both positive and negative values
of . This reduction does not come for free. First, it
requires additional logic outside of the table, such as a row
of XOR gates, to perform the representation conversion,
adding external delay to the quotient digit selection process.
Second, it may place further restrictions on the table design
process. When a carry-save representation is used for
and a truncated estimate is used to consult the table,
the truncation error is always nonnegative, resulting in an
asymmetrical table. To guarantee the symmetry required for
folding, additional terms must be added to the table, resulting
in a less than optimal implementation.

A complexity-reducing technique proposed in this study
is to minimize . As presented previously, when using an
external carry-assimilating adder for a truncated two’s com-
plement carry-save partial remainder estimate, the maximum
error is approximately . This error can be fur-
ther reduced by using fractional bits of redundant partial
remainder as input to the external adder, where , but
only using the most significant fractional output bits of the
adder as input to the table. The maximum error in the output
of the adder is

(20)

OBERMAN AND FLYNN: MINIMIZING THE COMPLEXITY OF SRT TABLES 145

Fig. 3. Design flow.

Fig. 4. Components of an SRT divider.

Then, by using bits of the adder output, the maximum error
for the input to the table is

(21)

For the case , the error remains approximately .
However, by increasing , the error is reduced, con-
verging toward the error for a nonredundant partial remainder
which is approximately . Reducing the truncation error

decreases the height of the uncertainty region in the
PD diagram. This has the effect of allowing more of the
entries’ uncertainty regions to fully fit within overlap regions,
increasing the flexibility in the logic minimization process,
and ultimately reducing the complexity of the final table. A
block diagram illustrating the various components of an SRT
divider is shown in Fig. 4.

IV. EXPERIMENTAL METHODOLOGY

The focus of this paper is to quantitatively measure the
tradeoffs between the parameters, , , , , , and the
complexity of the logic equations, measured by the number
of product terms, as well as the complexity of the resulting
random logic implementations of the tables, as measured by
implementation delay and area. The design flow of Fig. 3 was
used to automatically generate quotient-digit selection tables
in random logic.

In this study, a carry-save two’s complement representation
is used for the partial remainder in all tables.

A. TableGen

The programTableGenperforms the analytical aspects of
the quotient-digit selection table design. This program takes
the table parameters as input, and it produces the unminimized
PLA entries necessary to implement the table. First, all of the
uncertainty regions for all entries in the table are computed.
TableGen determines whether or not the choice of input
parameters results in a valid table design. If the table is valid,
it then computes the allowable quotient-digits for each entry
in the table, based upon the size of the uncertainty region. The
allowable quotient-digits are then written in PLA form for all

possible shifted partial remainder and divisor pairs.
To allow for the greatest reduction in the complexity of

the table implementations, it is proposed in this study to use
a Gray code to encode an entry’s allowable quotient-digits.
In a Gray encoding, neighboring values only differ in one
bit position [2]. This allows for the efficient representation
of multiple allowable quotient-digits in the PLA output, while
still only requiring bits. The Gray-coding of the digits
is recommended to ensure that given a choice between two
allowable quotient-digits in an overlap region, the optimal
choice can be automatically determined that will result in the
least complex logic equations.

Accordingly, there are outputs of the table which
are the bits of the encoded quotient-digit. Table entries where
ratio and ratio are both greater than are unreach-
able entries. Thus, their outputs are set todon’t care. An
example of Gray-coding for 4 and 3 is shown in
Table I. In this example, a value of implies a don’t care.
Because the table stores digits in encoded form, all tables
in this study require an explicit decoder to recover the true
quotient-digit and select the appropriate divisor multiple. This
results in the addition of a decoder delay into the critical path.
However, since all tables in this study use the same encoding,
this is a constant delay that only grows as the log of the
radix. Alternatively, the quotient-digits could be stored in an
unencoded form, removing the need for the decoder. Optimal
logic minimization becomes a much more difficult problem
for unencoded digits.

146 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

TABLE I
GRAY ENCODING FOR MAXIMALLY REDUNDANT RADIX 4

TABLE II
RADIX 4 TRADEOFFS

Espresso is used to perform logic minimization on the
output PLA. This produces a minimized PLA and the logic
equations representing the PLA in sum of products form. The
number of product terms in these expressions is one metric
for the complexity of the tables. To verify the correctness
of the tables, an SRT divider was simulated using a DEC
Alpha 3000/500 with the minimized logic equations as
the quotient-digit selection function. After each table was
generated, the equations were incorporated into the simulator.
Several thousand random and directed IEEE double precision
vectors were used as input to the simulator, and the computed
quotients for each table were compared with the computed
results from the Alpha’s internal FPU.

B. Table Synthesis

To quantify the performance and area of random logic
implementations of the tables, each table was synthesized
using a standard-cell library. The Synopsys Design Compiler
[19] was used to map the logic equations describing each table
to an LSI Logic 500 K 0.5 m standard-cell library [13]. In
the mapping stage, low flattening and medium mapping effort
options were used. However, area was always sacrificed to
reduce the latency. In order to minimize the true critical path
of the tables, the input constraints included the late arrival
time of all partial remainder inputs due to an external carry-
assimilating adder.

Area and delay estimates were obtained from a Design
Compiler prelayout report. Each delay includes intrinsic gate
delay, estimated interconnect wire delay, and the input load of
subsequent gates. All delays were measured using nominal
conditions. Each area measurement includes both cell and
estimated routing area. The delay and area are reported relative
to those for a base radix 4 table, which is Gray-coded with

3, 3, 3, and 3. The base table requires 43
cells and has a delay of 1.47 ns.

TABLE III
RADIX 2

TABLE IV
RADIX 8

TABLE V
RADIX 16

The results are presented in Tables II–VI. The complexity
of the tables is measured by the number of product terms,
the relative delay, and the relative area for each configuration.
The terms result contains both the number of product terms for
each output of the table, as well as the total number of terms in
the table. For a given radix, there are exactly
outputs of the table. Accordingly, this column first lists the
number of terms in each of the outputs. Because there
is usually some internal sharing of product terms, the last
number, which is the total number of unique terms required to
implement the table, is typically less than the sum of the terms
for the individual outputs. The reported delay is the worst-case
delay of any of the outputs, typically corresponding to
the output which has the highest number of product terms.

V. RESULTS

A. Same Radix Tradeoffs

Table II shows the results for various radix 4 configurations.
The parameters varied in this table are 1) the number ofbits

OBERMAN AND FLYNN: MINIMIZING THE COMPLEXITY OF SRT TABLES 147

TABLE VI
RADIX 32

versus bits, 2) folding, 3) method of choosing values in the
overlap regions, and 4) the amount of redundancy. The first
entries examine the effects of usingbits of the redundant
partial remainder into the short CPA outside of the table, while
only using bits of the adder output as input to the table.
Simply extending the CPA by one bit reduces the delay by
12% and area by 7%. Extending the CPA by two bits reduces
the delay by 16% and area by 9%. In the limit where
and a full-mantissa carry propagate addition is required, the
delay and area are both reduced by 23%. This demonstrates
that increasing the width of the CPA by as little as one or two
bits can reduce the complexity of the table.

The next two entries demonstrate the effects of using folded
tables. For both tables, it is assumed that 3 and 4,
which matches the format of the table suggested in Fandrianto
[8]. The use of only a two’s complement to sign-magnitude
converter yields the first folded table, which achieves an
additional delay reduction of 10% and an additional area
reduction of 30% over the 3 4 table without folding.
This introduces a serial delay of an XOR gate external to
the delay of the table. When the sign-magnitude converter is
combined with a “t-bit converter”, which further constrains the
range of input values to the table, the delay is reduced relative
to the simple folded table by an additional 10%, and the area
is reduced by an additional 12%. This converter introduces
the serial delay of an OR gate external to the table. These
results show that folding can reduce the size and delay of the
table. However, the delay of the required external gates must
be considered for the overall design. If the sum of the XOR

and OR gate delays is less than 29% of the base table delay,
table folding can result in a net decrease in delay.

The parenthesized values for these two entries represent
the delay and area of table when the required external gates
are included in the calculation. When the XOR gates are
implemented in this standard cell technology, they account
for about 66% of the unfolded table delay. This is in part due
to the more complex functionality of the XOR gate relative
to the other utilized gates. It is also due to the high fanout of
the sign of the partial remainder which must drive the select
signals of 5 XOR gates. The total delay of the folded table with
the row of XOR gates is 49% greater than the unfolded table,
but the area is reduced by 8%. When the “t-bit converter” is
implemented through the addition of a row of OR gates driven
by the MSB of the ones-complemented partial remainder, the
total delay increases by 80% over the unfolded table, but the
area is reduced by 10%. Thus, in this technology, the use of
either table-folding technique results in higher overall delay,
as the added delay from the external gates is greater than
the corresponding reduction in table delay. However, these
techniques do allow for a small reduction in total area.

Different encodings of the quotient-digits can change the
complexity of the tables. The lower bound for delay and
area of the table is achieved when each boundary between
two consecutive quotient-digits is individually encoded. The
recovery of the unencoded quotient-digit may require a large
external decoder. When using such a “line” encoding scheme,
again with and , the delay and area are
reduced by 5 and 8%, respectively, relative to the base Gray-
coded table, also with and . However, the
external decoder delay grows linearly with increasingfor
line encoding, while only growing as the log offor Gray-
coding. Another common encoding scheme always uses the
highest digit whenever a choice is available between two
consecutive quotient-digits. This is represented in the table
as “choose highest” encoding. While simplifying the table
generating process, this method increases the resulting table
delay by 19% and area by 32% over the base

table. Thus, this study shows that Gray-coding of
the quotient-digits achieves delays and areas approaching the
lower bound of line encoding, while requiring less complex
external decoders.

The redundancy of the digit set has an impact on table
complexity. The final entries in the table are for maximally
redundant radix 4 tables, with . For an implementation
with , the delay and area are reduced by 20 and
46%, respectively. When increases to , requiring a
full mantissa-width CPA, the delay is further reduced by 21%
and the area by 44%. These results show that if the hardware
is available to generate the 3divisor multiple, the iteration
time can be reduced by over 20%, due to the reduction in table
complexity and length of the external short CPA.

Table III shows the complexity of a basic radix 2 table.
This table can be implemented by a single three-input gate,
as it only has 3 PLA terms, which can be contrasted with the
25 terms in the baseline radix 4 table. The resulting delay is
65% less than the base radix 4 table, while 93% less area is
required. Accordingly, the radix 2 table is 2.86 times faster

148 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 6, NO. 1, MARCH 1998

than the base radix 4 table, and 2.40 times faster than a
radix 4 table.

B. Higher Radix

Tables IV–VI show the complexity for tables that directly
implement radix 8, 16, and 32, respectively. The allowable
choices of , , and determined in this study correspond with
the results presented in [4] for radix 8 and 16. In our study,
we extend the allowed operand truncations to radix 32. For
radix 16 and radix 32, the minimally redundant configurations
required 20 or more inputs to the table. Due to computational
constraints, table optimization was limited to configurations
containing fewer than 20 inputs. Those configurations where
optimization was infeasible are denoted with a dagger in the
tables.

For a given choice of radix and redundancy, there exists
more than one possible table design. As discussed previously,
a minimum number of divisor estimate bits is required as input
for a given configuration. This corresponds to a maximum
number of partial remainder bits that need be used. However,
it is possible to trade an increase in divisor bits for a reduction
in the number of partial remainder bits. This might initially
seem desirable, as the partial remainder bits must first be
assimilated in an external adder, adding to the overall iteration
time. By using a fewer number of partial remainder bits in
the table, the external adder can be smaller, reducing the
external delay. However, for carry-save partial remainders, the
maximum partial remainder truncation error is greater
than the maximum divisor truncation error. By trading-
off fewer partial remainder bits for more divisor bits, the
height of the uncertainty region increases at approximately
twice the rate at which the width of the region decreases.
As a result, the overall uncertainty region area increases as
fewer partial remainder bits are used. This result can be seen
quantitatively in Tables IV–VI. For any given choice of radix
and redundancy, the use of the maximum number of divisor
bits and minimum number of partial remainder bits results
in the largest number of total product terms, and typically
the largest delay and area. As the number of divisor bits is
reduced and the number of partial remainder bits increased,
the number of product terms, the delay, and the area are all
typically reduced.

This study confirms that as the radix increases, the com-
plexity of the tables also increases. Fitting the average area at
a given radix to a curve across the various radices determines
that the area increases geometrically with increasing radix:

Area (22)

for radix , where this area is the table area relative to that
of the base radix 4 divider. Similar analysis of average delay
demonstrates that table delay increases only linearly with an
increase in the number of bits retired per cycle. Increasing the
radix of the algorithm reduces the total number of iterations
required to compute the quotient. However, to realize an
overall reduction in the total latency as measured in time, the
delay per iteration must not increase at the same rate. Thus, to
realize the performance advantage of a higher radix divider,

it is desirable for the delay of the look-up table to increase at
no more than the rate of increase of the number of bits retired
per cycle.

For radix 8, the delay is on the average about 1.5 times
that of the base radix 4 table. However, it can require up to
10 times as much area. While radix 16 tables have about two
times the base delay, they can require up to 32 times the area.
In the case of radix 32, it was not even possible to achieve a
delay of 2.5 times the base delay, the maximum desired delay,
with actual delays between 3.5 and 4.7. The area required
for radix 32 ranges from 57 to 141 times the base area. These
results show that radix 16 and 32 are clearly impractical design
choices, even ignoring practical implementation limitations
such as generating all divisor multiples. This study shows that
it is possible to design radix 8 tables with reasonable delay
and area; a minimally redundant radix 8 table is demonstrated
to be a practical design choice.

VI. CONCLUSION

This study has demonstrated a methodology for generat-
ing quotient-digit selection tables from a table specification
through an automated design flow. Using this process, perfor-
mance and area tradeoffs of quotient selection tables in SRT
dividers have been presented for several table configurations.
The use of Gray-coding is shown to be a simple yet effective
method that allows automatically determining optimal choices
of quotient-digits which reduce table complexity.

Short external carry-assimilating adders are necessary to
convert redundant partial remainders to a nonredundant form.
By extending the length of these adders by as little as one
or two bits, it is shown that table complexity can be further
reduced. The conventional wisdom for SRT table specification
has been whenever possible, the length of the partial remainder
estimate should be reduced at the expense of increasing the
length of the divisor estimate in order to reduce the width,
and thus the delay, of the external adder. However, this study
quantitatively demonstrates that such a choice also increases
the size and delay of the table, mitigating the performance
gain provided by the narrower adder. Accordingly, the over-
all iteration time is not necessarily reduced through such a
tradeoff.

As the radix increases, it is shown that the table delay
increases linearly. However, the area increases quadratically
with increasing radix. This fact, combined with the difficulty
in generating all of the required divisor multiples for radix 8
and higher, limits practical table implementations to radix 2
and radix 4.

REFERENCES

[1] D. E. Atkins, “Higher-radix division using estimates of the divisor and
partial remainders,”IEEE Trans. Comput.,, vol. C-17, Oct. 1968.

[2] A. Barna and D. Porat,Integrated Circuits in Digital Electronics. New
York: Wiley, 1973.

[3] M. Birman, A. Samuels, G. Chu, T. Chuk, L. Hu, J. McLeod, and
J. Barnes, “Developing the WTL 3170/3171 Sparc floating-point co-
processors,”IEEE Micro, vol. 10, no. 1, pp. 55–63, Feb. 1990.

[4] N. Burgess and T. Williams, “Choices of operand truncation in the SRT
division algorithm,” IEEE Trans. Comput.,vol. 44, pp. 933–937, July
1995.

OBERMAN AND FLYNN: MINIMIZING THE COMPLEXITY OF SRT TABLES 149

[5] T. Carter and J. Robertson, “Radix-16 signed-digit division,”IEEE
Trans. Comput,vol. 39, pp. 1243–1433, Dec. 1990.

[6] M. D. Ercegovac and T. Lang, “Simple radix-4 division with operands
scaling,” IEEE Trans. Comput.,vol. 39, pp. 1204–1207, Sept. 1990.

[7] M. D. Ercegovac and T. Lang,Division and Square Root: Digit-
Recurrence Algorithms and Implementations.New York: Kluwer Aca-
demic, 1994.

[8] J. Fandrianto, “Algorithm for high-speed shared radix 4 division and
radix 4 square root,” inProc. IEEE 8th Symp. Comput. Arithmetic,May
1987, pp. 73–79.

[9] J. Fandrianto, “Algorithm for high-speed shared radix 8 division and
radix 8 square root,” inProc. 9th IEEE Symp. Computer Arithmetic,
July 1989, pp. 68–75.

[10] D. L. Harris, S. F. Oberman, and M. A. Horowitz, “SRT division
architectures and implementations,” inProc. 13th IEEE Symp. Comput.
Arithmetic, July 1997, pp. 18–25.

[11] S. Knowles, “Arithmetic processor design for the T9000 transputer,”
ASPAAI-2,1991.

[12] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Tanaguchi, and N. Takagi,
“Design of high speed MOS multiplier and divider using redundant
binary representation,” inProc. 8th IEEE Symp. Comput. Arithmetic,
May 1987, pp. 80–86.

[13] LSI Logic lcb500k standard-cell library, 1994.
[14] P. Montuschi and L. Ciminiera, “Over-redundant digit sets and the

design of digit-by-digit division units,”IEEE Trans. Computers,vol.
43, pp. 269–277, Mar. 1994.

[15] S. F. Oberman and M. J. Flynn, “Division algorithms and implementa-
tions,” IEEE Trans. Comput.,vol. 46, pp. 833–854, Aug. 1997.

[16] J. A. Prabhu and G. B. Zyner, “167 MHz Radix-8 floating point divide
and square root using overlapped radix-2 stages,” inProc. 12th IEEE
Symp. Comput. Arithmetic,July 1995, pp. 155–162.

[17] J. E. Robertson, “A new class of digital division methods,”IRE Trans.
Electron. Comput.,vol. EC-7, pp. 218–222, Sept. 1958.

[18] H. Srinivas and K. Parhi, “A fast radix-4 division algorithm and its
architecture,”IEEE Trans. Comput.,vol. 44, pp. 826–831, June 1995.

[19] Synopsys Design Compiler version v3.2b, 1995.
[20] K. G. Tan, “The theory and implementation of high-radix division,” in

Proc. 4th IEEE Symp. Comput. Arithmetic,June 1978, pp. 154–163.
[21] G. S. Taylor, “Radix 16 SRT dividers with overlapped quotient selection

stages,” inProc. 7th IEEE Symp. Comput. Arithmetic,June 1985, pp.
64–71.

[22] A. Vandemeulebroecke, E. Vanzieleghem, T. Denayer, and P. G. A.
Jespers, “A new carry-free division algorithm and its application to a
single-chip 1024-b RSA processor,”IEEE J. Solid-State Circuits,vol.
25, pp. 748–756, June 1990.

[23] D. Zuras and W. McAllister, “Balanced delay trees and combinatorial
division,” IEEE J. Solid-State Circuits,vol. SC-21, pp. 814–819, Oct.
1986.

Stuart F. Oberman (S’88–M’97) received the B.S.
degree in electrical engineering from the University
of Iowa, Iowa City, in 1992. He received the M.S.
and Ph.D. degrees in electrical engineering in 1994
and 1997, respectively, from Stanford University,
Stanford, CA.

From 1993 to 1996, he participated in the design
of several commercial microprocessors and float-
ing point units. He is currently a Member of the
Technical Staff at Advanced Micro Devices (AMD),
Milpitas, CA, and he is also a Consulting Assistant

Professor in the Computer Systems Laboratory at Stanford University. At
AMD, he was a designer on the K6 microprocessor. He was a co-architect
of the AMD-3D single-precission vector floating point instruction set, and he
performed the algorithm and logic design for the K6-3D implementation of
the instructions. He is currently the floating point unit architect for the K7
microprocessor. His research interests include computer arithmetic, computer
architecture, and VLSI design.

Dr. Oberman is a Tau Beta Pi Fellowship recipient and a member of Tau
Beta Pi, Eta Kappa Nu, Sigma Xi, ACM, and the IEEE Computer Society.

Michael J. Flynn (S’56–SM’79–F’80–LF’97) is
a Professor of electrical engineering at Stanford
University. His experience includes ten years at
IBM Corporation working in computer organization
and design. He was also a faculty member at North-
western University, Evanston, IL, and The Johns
Hopkins University, Baltimore, MD, and the Di-
rector of Stanford’s Computer Systems Laboratory
from 1977 to 1983. He is the author of three books
and more than 200 technical papers. His current
research projects include programs on ultrahigh-

speed arithmetic performance, rapid evaluation of computer architectures, and
parallel machines.

Dr. Flynn is a fellow of the ACM and has served as Vice President of the
Computer Society and was founding Chairman of CS’s Technical Committee
on Computer Architecture, as well as ACM’s Special Interest Group on Com-
puter Architecture. He has served two terms on the IEEE Board of Governors.
He was the 1992 recipient of the ACM/IEEE Eckert–Mauchly Award for his
contributions to processor classification and computer arithmetic. He was the
1995 recipient of the IEEE-CS Harry Goode Memorial Award in recognition
of his outstanding contribution to the design and classification of computer
architecture.

