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Minimizing the Complexity of SRT Tables

Stuart F. Obermanylember, IEEE,and Michael J. Flynnlife Fellow, IEEE

Abstract—This paper presents an analysis of the complexity of and partial remainder precisions required for quotient-digit
quotient-digit selection tables in SRT division implementations. selection. Burgess and Williams [4] present in more detail
SRT dividers are widely used in VLSI systems to compute 45waple truncations for divisors and both carry-save and

floating-point quotients. These dividers use a fixed number of b tial ind H detailed
partial remainder and divisor bits to consult a table to select orrow-save partial remainders. However, a more detalle

the next quotient-digit in each iteration. This analysis derives the comparison of quotient-digit selection complexity between
allowable divisor and partial remainder truncations for radix 2  different designs requires more information than input preci-

through radix 32, and it quantifies the relationship between table gjon. This paper analyzes in detail the effects of algorithm
parameters and the complexity of the tables. Several techniques radix, redundancy, divisor and partial remainder precision,

are presented for further minimizing table complexity. By map- - . :
ping the tables to a library of standard-cells, delay and area and truncation error on the complexity of the resulting table.

values were measured and are presented for table configurations Complexity is measured by the number of product terms in
through radix 32. Several conclusions are drawn based on this the final logic equations, and the delay and area of standard-

data which impacts optimized SRT divider designs. cell implementations of the tables. These metrics are obtained
Index Terms—Computer arithmetic, floating point, perfor- by an automated design flow using the specifications for the
mance tradeoffs, quotient-digit selection, SRT division, table quotient-digit selection table as input, a Gray-coded PLA
complexity. as an intermediate representation, and an LS| Logic 500 K
standard-cell implementation as the output. This paper also

|. INTRODUCTION examines the effects of additional techniques such as table-

folding and longer external carry-assimilating adders on table

I N recent years computer applications have increased dgmpjexity. Using the methodology presented, it is possible

their computational complexity. High-speed floating-point, automatically generate optimized high radix quotient-digit
hardware is a requirement in many VLSI systems to meet the€§8qction tables.

inc_reasir!g _demand_s._ An important component of the floatindtne remainder of this paper is organized as follows:
point unit is the divider. There are many methods for desection || presents the theory of SRT division; Section Il
signing division hardware, including quadratlc_ally convergingiscusses the implementation of SRT tables; Section IV
algorithms, such as Newton-Raphson, and linear convergifidsents our methodology for implementing the quotient-

algorithms, the most common of which is SRT [15]. SRjigit selection tables: Section V presents the results; and
division computes a quotient one digit at a time, with aBqction VI is the conclusion.

iteration time independent of the operand length.

The theory of SRT division is discussed thoroughly in
Atkins [1], Ercegovac [7], Robertson [17], and Tan [20]. o o )
Several SRT implementations have been reported, including>R1 division belongs to the digit recurrence class of di-
radix 2 dividers by Knowles [11], Kuninobu [12], Vande-ViSion algorithms. Digit recurrence algorithms use subtrac-
meulebroecke [22], and Zuras [23], radix 4 by Birman [3] anH‘(e_ methods to calcglate quotients. one d_igit per iteration.
Fandrianto [8], radix 8 by Fandrianto [9] and Prabhu [16], andidit recurrence algorithms can be divided imestoringand
radix 16 by Carter [5] and Taylor [21]. SRT dividers with simnonrestoring division. Re_stor_ln_g_ division is §|m|_lar to the
plified quotient-digit selection using operand range restrictid@Miliar paper and pencil division. When dividing twe-
have been presented in Ercegovac [6], Montuschi [14], afiit numbers, the division can require up ta additions or
Srinivas [18]. Harris [10] discusses detailed algorithmic argpbtractions. Nonrestoring division algorithms eliminate the
circuit tradeoffs in SRT divider design. restoration cycles, and thus only require uprtcadditions.

There are many performance and area tradeoffs when d&is can be accomplished by allowing negative values of the
signing an SRT divider. One metric for comparison of differerffiuetient as well as positive values. In this way, small errors
designs is the minimum required truncations of the divisdf One iteration can be corrected in subsequent iterations.
and partial remainder for quotient-digit selection. Atkins [1
and Robertson [17] provide such analyzes of the divis6r Recurrence
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such that only power of two radices are considered. Assuming the same
guotient precision, the number of iterations of the algorithm
required to compute the quotient is reduced by a faétor
and when the radix is increased from to r*. For example, a
sign(remainder)}= sign(dividend) radix 4 algorithm retires 2 bits of quotient in every iteration.

) ) o o Increasing to a radix 16 algorithm will allow for retiring 4 bits
where the input operands are given dilyidendand divisor, i, every iteration, for a 2X reduction in latency. This reduction
and the results arg and remainder The precision of the goes not come for free. As the radix increases, the quotient-
quotient is defined by the unit in the last positiarp), where gt selection becomes more complex. Since the quotient-digit
for an integer quotient ulg= 1, and for a fractional quotient gg|ection is typically on the critical path of the algorithm, even
using a binary representation Wp2™", assuming am digit  though the number of cycles may have been reduced due to
quotient. The radix of the algorithm, typically chosen 10 ihe increased radix, the time per cycle may have increased. As
be a power of 2, determines how many quotient bitare 5 regyt, the total time required to compute saiit quotient
retired in each iteration, such that = 2". Accordingly, a may not be reduced by the factbr Accordingly, the radix-
radix r algorithm requires[»/b] iterations to compute an s 5 fundamental parameter in determining the complexity of

digit quotient. _ o the quotient-digit selection table.
The following recurrence is used at every iteration:

[remaindef < |divisor| x ulp

r Py = dividend 1) C. Choice of Quotient Digit Set

Pj+1 =7rP; — g;41divisor 2 A range of digits is decided upon for the allowed values of
the quotient in each iteration. The simplest case is where, for
where P; is the partial remainder, or residual, at iteratibn  radix r, there are exactly allowed values of the quotient.
In each iteration, one digit of the quotient is determined byjowever, it is often desirable to utilize edundant digit
the quotient-digit selection function setwhich simplifies the quotient-digit selection table, thereby
gj+1 = SEL(rP;, divisor). 3) increasing the performancg of the div.id.er. Such a _digifc set can
be composed of symmetric signed-digit consecutive integers,
In order for the next partial remaindé?;;; to be bounded, where the maximum digit ig. In particular
the value of the quotient-digit is chosen such that
q; EDa :{—CL, —CL+1, T _17 07 17 Ty a_lv CL}.
|Pj1] < divisor. (@) o .
The redundancy of a digit set is determined by the value of
The final quotient is the weighted sum of all of the quotienthe redundancy factas, which is defined as
digits selected throughout the iterations, such that:

a 1
n/b P=T P> 5 (6)
- Dl
@final = ; 4G X ©) For all partial remainders to be bounded when a redundant

quotient digit set is used, the value of the quotient-digit must
As can be noted from (1) and (2), each iteration of thge chosen such that

recurrence comprises the following steps:
1) determine next quotient-digit;+: by the quotient-digit
selection function;

| Pj41] < p x divisor. (7)

The calculation of the final quotient using a redundant

2) generate the produgf, x divisor; quotient-digit set involves either a full carry propagate addition
3) subtractg;, x divisor from r x P; to form the next 5 suptract the negative quotient-digits from the positive
partial remainder. quotient-digits at the completion of the iterations, or the use

Each of these components can contribute to the overall ceston-the-fly quotient conversion techniques [7].
and performance of the algorithm. To reduce the time for After the redundancy factop is chosen, it is possible to
partial remainder computation, intermediate partial remaindeférive the quotient-digit selection function. To guarantee that
are often stored in a redundant representation, either carry-sgug shifted partial remainder remains bounded for all valid
or signed digit form. Then, the partial remainder computatiauotient-digits and divisor, expressions for the quotient-digit
requires only a full adder delay, rather than a full width carryselection intervals must be computed. A selection interval is
propagate addition. The rest of this paper is concerned witfe region in which a particular quotient-digit can be safely

the quotient-digit selection component. chosen such that the shifted partial remainder will remain
bounded. The expressions for the selection intervals are given
B. Choice of Radix by
The fundamental method of decreasing the overall latency Up=(p+k)d Lp=(—p+k)d

(in machine cycles) of the SRT algorithm is to increase the

radix r of the algorithm. By choosing the radix to be a powewherel;, (L;) is the largest (smallest) value of’; such that
of two, the product of the radix and the partial remaindet is possible forg;+; = & to be chosen and still keep the next
can be formed by shifting. Accordingly, throughout this studyshifted partial remainder bounded. Tkentinuity condition
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BiD The ¢ bits in the truncated estimatef’j can be divided into
1 integer bits andf fractional bits, such that = ¢ + f.
The table can take as input the partial remainder estimate
directly in redundant form, or it can use the output of a short
carry-assimilating adder that converts the redundant partial
remainder estimate to a nonredundant representation. The use
of an external short adder reduces the complexity of the table
530 implementation, as the number of partial remainder input bits
are halved. However, the delay of the quotient-digit selection
function increases by the delay of the adder.
It is not possible to determine the optimal choices @nd
f analytically, as several factors are involved in making these
choices. However, it is possible to determine a lower bound

L IR

Ehifird Pori Bemaninaler

2 on ¢ using the continuity condition and the fact that the next
partial remainder must remain bounded
2p—1
-5
b 27 < a—p ©)
2p—1
5> [— log, =2 W (10)
i a—p
¥ vivar Because the divisor is IEEE normalized with a leading one,

only the leadingy = § — 1 fractional bits are required as input
to the table. The next quotient-digit can then be selected by
using these estimates to index int@% entry lookup table,
requires that for all valid values ofP;, it must be possible implemented either as a PLA or random logic.
to select at least one quotient digit [7]. This is expressed Assuming a nonredundant two's complement partial remain-
mathematically as der, the estimates have nonnegative truncation eep@nd
for the divisor and shi rtial remainder im
Unr > Ly — 1" (8) ¢, fO t e divisor and shifted partial remainder estimates,
respectively, where

Fig. 1. P-D diagram for radix 4.

Because P; is represented by a maximum ofbits, the term g <270 — 9Tt ny9b (11)
r~" is the resolution of the partial remainder. e <o f_ogmtl o f (12)
The P-D diagramis a useful visual tool when designing P = ~ )
a quotient-digit selection function. It has as axes the shiftqghys, the maximum truncation error for both the divisor and
partial remainder and the divisor. The selection interval boungie nonredundant shifted partial remainder estimates is strictly
Uy and L, are drawn as lines starting at the origin with slopgsss than 1 ulp.
p+k and—p+ k, respectively. A P-D diagram is shown in For a redundant two’s complement partial remainder, the
Fig. 1 with» = 4 anda = 2. The shaded regions are theruncation error depends upon the representation. For a carry-
overlap regions where more than one quotient-digit may Beve representation, the sum and carry estimates each has

selected. nonnegative truncation erreg,, assuming that both the sum
and carry estimates are represented bydtmeost significant
lll. 1 MPLEMENTING SRT TABLES bits of their true values. The resulting estimatg;.,, has
truncation error
A. Divisor and Partial Remainder Estimates Eplen) < 2% (2—f _ 2—n+1) a9 FHL (13)

To reduce the size and complexity of the quotient-digit ) . )
selection table for a given choice efand a, it is desirable 'NUS, the maximum truncation error for an estimate of a

to use as input to the table estimates of the divisor afg'y—save shifted partial remainder is strictly less than 2 ulps.

shifted partial remainder which have fewer bits than the true 7O this discussion, the number of integer hits r;

values. Assuming IEEE floating-point compliance, the inp " be determined analytically. Using the general recurrence
operands are in the range < D < 2. Therefore,n bit for SRT division, the maximum shifted partial remainder is

operands normalized to this range have an wip2—"+!, given by

Further, a leading integer one can be assumed for all divisors, 7P} ) = 70 Ao (14)

and the table only requires fractional divisor bits to make a

quotient-digit selection. The shifted partial remainder, thoughor IEEE operands

requires both integer and fractional bits as inputs to the d — 9 _9-n+l (15)
table. The shifted partial remainde; and divisord can e '

be approximated by estimateﬂ% and d using thec most As previously stated, for a carry—save two’s complement
significant bits ofrF; and theé most significant bits ofd. representation of the partial remainder, the truncation error
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is always nonnegative, and therefore the maximum estimate
of the partial remainder is ;
> —n+41
TPjmaxy = |7 % p x (2= 27" ) x 2f | /27
The minimum estimate of the partial remainder is

ij(min) = IV_(T X p X (2 - 2—n+1) - 6p(cs)) X 2f-| /2f

Accordingly, ¢« can be determined from

iy Fomig! fensinder
s

ij(max) - ij(min) S ZZ (16) ""-'I"I"":':"'-" Hx Dol
i > |log, [rP; — 7P mim] |- 17 :
= 22 j(max) 7 (min) |

Yaid imoenuinty mgion:
B. Uncertainty Regions

By using a redundant quotient-digit set, it is possible to
correctly choose the next quotient-digit even when using the
truncated estimatesP; andd. Due to the truncation error in
the estimates, each entry in the quotient-digit selection table
has an uncertainty region associated with it. For each entry, IWvinar
it is necessary for all combinations of all possible valu
represented by the estimate®; and d to lie in the same
selection interval. For a carry-save representation of the shifted
partial remainder, this involves calculating the maximum andlid values ofb and f for a givenr anda, it is necessary to
minimum ratios of the shifted partial remainder and divisogalculate the uncertainty regions for afft“+/ entries in the
and ensuring that these ratios both lie in the same selectfa@hle. If all uncertainty regions are valid for given choices of

el—slg. 2. Uncertainty regions due to divisor and partial remainder estimates.

interval b, i, and f, then they are valid choices.
( nf’ + €p(cs .
JTP() if P; >0 C. Reducing Table Complexity
ratiOnax = P (18) The size of the table implementation can be reduced nearly
7 if ;<0 in half by folding the table entries as suggested in Fandrianto
) d . [8]. Folding involves the conversion of the two’s complement
b if P;>0 representgtion ofP; to signed-magnitgfje, allowing th_e same
fion. — d+ eq 19 table entries to be used for both positive and negative values
rallOnin = rP 4 ¢ (o) (19) of rP;. This reduction does not come for free. First, it
Jd% if P; <. requires additional logic outside of the table, such as a row
\ €d

of XOR gates, to perform the representation conversion,
If an uncertainty region is too large, the maximum anddding external delay to the quotient digit selection process.
minimum ratios may span more than one selection interv&gecond, it may place further restrictions on the table design
requiring one table entry to return more than one quotiemrocess. When a carry-save representation is used-fpr
digit. This would signify that the estimate of the divisor and/oand a truncated estimabe{f’j is used to consult the table,
the shifted partial remainder has too much truncation errdhe truncation error is always nonnegative, resulting in an
Fig. 2 shows several uncertainty regions in a radix 4 P-&symmetrical table. To guarantee the symmetry required for
plot. Each uncertainty region is represented by a rectandtdding, additional terms must be added to the table, resulting
whose height and width is a function of the divisor anth a less than optimal implementation.

partial remainder truncation errors. The value of ratio A complexity-reducing technique proposed in this study
corresponds to the upper left corner of the rectangle, whike to minimize ¢,. As presented previously, when using an
ratio,,;, corresponds to the lower right corner. In this figuregxternal carry-assimilating adder for a truncated two’s com-
the four valid uncertainty regions include a portion of aplement carry-save partial remainder estimate, the maximum
overlap region. Further, the lower right uncertainty regioarror ¢, is approximately2—/+1. This error can be fur-

is fully contained within an overlap region, allowing thether reduced by using fractional bits of redundant partial
entry corresponding to that uncertainty region to take on themainder as input to the external adder, wherg f, but
guotient-digits of either zero or one. The other three valiohly using the most significant fractional output bits of the
uncertainty regions may take on only a single quotient-digidder as input to the table. The maximum error in the output
The upper left uncertainty region spans more than an entokthe adder is

overlap region, signifying that the corresponding table entry,

and as a result the entire table, is not valid. To determine the Ep(adder) = 279 +279 — 2—ntl, (20)
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Table Spec PLA Entries —— Logic Equations — = Standard Cell Netlist

TableGen Espresso Synopsys

Fig. 3. Design flow.

IV. EXPERIMENTAL METHODOLOGY

Pjg Pjc D The focus of this paper is to quantitatively measure the
tradeoffs between the parametersa, b, ¢, f, g, and the

complexity of the logic equations, measured by the number
of product terms, as well as the complexity of the resulting

g g random logic implementations of the tables, as measured by
implementation delay and area. The design flow of Fig. 3 was
CPA used to automatically generate quotient-digit selection tables
in random logic.
i+f In this study, a carry-save two’s complement representation
is used for the partial remainder in all tables.
CONVERTER
(optional) A. TableGen
r TQ The programTableGenperforms the analytical aspects of
b the quotient-digit selection table design. This program takes
the table parameters as input, and it produces the unminimized
TABLE PLA entries necessary to implement the table. First, all of the
uncertainty regions for all entries in the table are computed.
TableGen determines whether or not the choice of input
MUX parameters results in a valid table design. If the table is valid,
it then computes the allowable quotient-digits for each entry
q in the table, based upon the size of the uncertainty region. The
1 allowable quotient-digits are then written in PLA form for alll

2i++f possible shifted partial remainder and divisor pairs.
To allow for the greatest reduction in the complexity of
the table implementations, it is proposed in this study to use
\ L a Gray code to encode an entry’s allowable quotient-digits.
In a Gray encoding, neighboring values only differ in one
bit position [2]. This allows for the efficient representation
Fig. 4. Components of an SRT divider. of multiple allowable quotient-digits in the PLA output, while
still only requiring[log, 7] bits. The Gray-coding of the digits
is recommended to ensure that given a choice between two
Then, by usingf bits of the adder output, the maximum erroplloyvable quotient-digit_s in an ove.rlap region., the optimal
for the input to the table is choice can be aut'omatlcalily determined that will result in the
least complex logic equations.
Accordingly, there ardlog, »| outputs of the table which
€p(es) =2~/ _9 94 €p(adder) are the bits of the encoded quotient-digit. Table entries where
—9~f 499 _9ntl nyo—f 4 99, (21) ratio,;, and ratiQ,.,. are both greater thamx » are unreach-
able entries. Thus, their outputs are setdwmn’t care An
example of Gray-coding for = 4 anda = 3 is shown in
For the casgy = f, the error remains approximately /+1. Table I. In this example, a value af implies adon't care
However, by increasing, the errore, ., is reduced, con- Because the table stores digits in encoded form, all tables
verging toward the error for a nonredundant partial remaindier this study require an explicit decoder to recover the true
which is approximately2~/. Reducing the truncation errorquotient-digit and select the appropriate divisor multiple. This
¢p(cs) decreases the height of the uncertainty region in tmesults in the addition of a decoder delay into the critical path.
PD diagram. This has the effect of allowing more of thélowever, since all tables in this study use the same encoding,
entries’ uncertainty regions to fully fit within overlap regionsthis is a constant delay that only grows as the log of the
increasing the flexibility in the logic minimization processradix. Alternatively, the quotient-digits could be stored in an
and ultimately reducing the complexity of the final table. Ainencoded form, removing the need for the decoder. Optimal
block diagram illustrating the various components of an SR®gic minimization becomes a much more difficult problem
divider is shown in Fig. 4. for unencoded digits.

CSA

P
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TABLE | TABLE Il
GRAY ENCODING FOR MAXIMALLY REDUNDANT RADIX 4 RADIX 2
Allowable Digits | Encoding a|b|i]f]|gl| Terms | Relative [ Relative
0 00 Delay Area
1 01 TJoJ4JoJo] 3 0.35 0.07
Oorl 0x
2
1 TABLE IV
lor2 x1 RADIX 8
3 10
2o0r3 1x alb]i]f]g Terms Relative Delay | Relative Area
475447 137,59,114,292 1.85 10.2
TABLE I 75145 111,48,94,240 1.76 8.80
RADIX 4 TRADEOFFS 6555 110,50,94,240 1.70 8.85
5|5|6]6| 1045085221 1.67 8.21
Description albli|f]| g Terms | Relative Delay | Relative Area 515 5133 42,19,69,122 1.45 521
Baseline 21314(3] 3 19,8,2:'3 1.00 1.09 415144 35,14,57,103 1.47 4.05
2|34\ 3) 4 17823 0.88 0.93 615|522 26353002 146 183
2|34 3] 3 1nsas 084 091 al5|3|3| 24333888 1.46 4.46
213|4)2]|52 14,6,18 0.77 0.77 ethoy * -
Folded 2343 4 || 13517 | 079(i30) | 0.65 (0.85) 315[5]5}) 27293378 1.36 4.03
TFolded T 7616 1|1 16,23,43,76 1.46 3.90
t-bit cony 213|4|3| 4 12416 | 0.71(1.58) 0.57 (0.83) 31622 15,21,35,64 1.41 3.53
Line Encode 2131413] 4 17,7,23 0.84 0.86
Choose Highest | 2 1314 13| 4 | 22,13,33 1.05 1.23
Max Red 312|511 6,9,14 0.80 0.54 TABLE V
3]2|5(|1]52 3,6,9 0.63 0.30 RaDIX 16
a|bl|i|f]g Terms Relative Delay | Relative Area
Espresso is used to perform logic minimization on the® 181 g g Z 1 } 1
output PLA. This produces a minimized PLA and the logic | ; (¢ |5 |3s t i i
equations representing the PLA in sum of products form. The | 7 [6 | 4 [ 4 || 198,98,176,481,871 2.56 32.9
number of product terms in these expressions is one metrli(gz g ‘6" ; g 3872;»;3‘11»;13872‘112 ;;5;[7] 322
for the complexity of the tables. To verify the correctness” | ¢ | g | 4 | 4 || 105,57,191,240530 2.32 914
of the tables, an SRT divider was simulated using a DEC | 5 |6 |5 |5 | 96,49,183,227,497 2.24 21.1
Alpha 3000/500 with the minimized logic equations agl | 6 |63 |3 | 8044,159,258.484 221 211
th tent-digit selection functi Aft h tabl 5 16|44 6839,142,208418 2.10 18.9
€ quotient-digit selection function. Alter each (able Wagy 7§72 [ 2 || 79,138,144,228,481 217 250
generated, the equations were incorporated into the simulator.| 6 |6 | 3| 3 || 66,112,119,172,373 2.09 19.1
Several thousand random and directed IEEE double precisih| 6 } 622 | 60,105,105,207,393 2.4 20.4
d as inout to the simulat dth L 51633 62,10499,186,344 2,07 18.5
vectqrs were used as input to the simulator, and the computgd— 45 2 [ 48,107,136,169,353 2.14 20.2
quotients for each table were compared with the computed | 4 | 6|6 |6 | 54,92,110,139,310 2.06 16.5
results from the Alpha’s internal FPU. 1519 71114 47,76,135,193,383 2.16 19.2
51712 (2| 39,69,99,136,281 2.03 15.4
4 (7313 42,61,93,125261 1.94 14.8

B. Table Synthesis

To quantify the performance and area of random logic The results are presented in Tables 1I-VI. The complexity
implementations of the tables, each table was synthesizsfdthe tables is measured by the number of product terms,
using a standard-cell library. The Synopsys Design Compilgfe relative delay, and the relative area for each configuration.
[19] was used to map the logic equations describing each tafflge terms result contains both the number of product terms for
to an LSI Logic 500 K 0.5:m standard-cell library [13]. In each output of the table, as well as the total number of terms in
the mapping stage, low flattening and medium mapping effare table. For a given radix, there are exactly,,;, = log, =
options were used. However, area was always sacrificedoi@puts of the table. Accordingly, this column first lists the
reduce the latency. In order to minimize the true critical patjumber of terms in each of the,,; outputs. Because there
of the tables, the input constraints included the late arriviel usually some internal sharing of product terms, the last
time of all partial remainder inputs due to an external carryrumber, which is the total number of unique terms required to
assimilating adder. implement the table, is typically less than the sum of the terms

Area and delay estimates were obtained from a Desigsr the individual outputs. The reported delay is the worst-case
Compiler prelayout report. Each delay includes intrinsic gatelay of any of then.,; outputs, typically corresponding to

delay, estimated interconnect wire delay, and the input loadk output which has the highest number of product terms.
subsequent gates. All delays were measured using nominal

conditions. Each area measurement includes both cell and V. RESULTS

estimated routing area. The delay and area are reported relative .

to those for a base radix 4 table, which is Gray-coded wiffy S@me Radix Tradeoffs

1 =3, f = 3,9 =3, andd = 3. The base table requires 43 Table Il shows the results for various radix 4 configurations.
cells and has a delay of 1.47 ns. The parameters varied in this table are 1) the numberhifs
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TABLE VI and OR gate delays is less than 29% of the base table delay,
Rapix 32 table folding can result in a net decrease in delay.
a g Torms Relative Delay | Relative Arca The parenthesized values for these two entries represent

T i T
i i}

! the delay and area of table when the required external gates
t T 1
;

are included in the calculation. When the XOR gates are

18

! ; ’Tr implemented in this standard cell technology, they account
19 351,208,357,045 16333110 156 T4 for about 66% of the unfolded table delay. This is in part due
309,191,308,860,1445,2767 418 79.1 to the more complex functionality of the XOR gate relative
20 312,164,660,891,1527,3218 169 144 L . .
957.156,531,727.1215.2502 494 106 to the other utilized gates. It is also due to the high fanout of
21 237,128,507 649,1274,2499 413 73.2 the sign of the partial remainder which must drive the select
206,118,424,541,1060,2099 4.06 94.8 . .
180,108,366,466,912, 1826 3.91 80.5 signals of 5 XOR gates. The total delay of the folded table with
22 1?3;;3322%3%221327 ig; ;g; the row of XOR gates is 49% greater than the unfolded table,
53 158j85j365:;07j946j1865 i1 G35 but the area is reduced by 8%. When the “t-bit converter” is
- 2(1)4;04332;223;%31223 izg ;8-6 implemented through the addition of a row of OR gates driven
1408,421,678,1073, : 2.5 . .
147.327,314,491,780, 1675 163 86.8 by the MSB of the ones-complemented partial remainder, the
142,286,277,458,699,1497 361 73.3 total delay increases by 80% over the unfolded table, but the
25 185,330,318,543,085,1078 136 99.6 . o . .
144,252,958 425,747 1534 370 76.3 area is reduced by 10%. Thus, in this technology, the use of

26 154,291,299,607,838,1783 3.95 91.6

either table-folding technique results in higher overall delay,
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123,249,235,505,687,1475 3.73 75.1 .
w 141 963266 535 7081620 573 861 as the added delay from the external gates is greater than
126,221,227,439,661,1377 363 73.7 the corresponding reduction in table delay. However, these
28 146,233,359,494,717,1578 3.86 82.0 : : H
134.218,322,413.599,1397 376 744 techniques do allow for a small reduction in total area.
29 226,233,342 431,607,1480 375 82.1 Different encodings of the quotient-digits can change the
116,188,259,349,573,1241 3.73 69.8 lexi f th bl The | b df del d
3 T45.550-318 461656 1133 111 6.0 complexity of the tables. The lower bound for delay an
- 165,184,252,351,505,1143 3.78 61.0 area of the table is achieved when each boundary between
897170’241;99’55511158 b 6;‘_3 two consecutive quotient-digits is individually encoded. The
86,152,219,333,486,1021 3.52 57.2

recovery of the unencoded quotient-digit may require a large

external decoder. When using such a “line” encoding scheme,
again with f = 3 and g = 4, the delay and area are

0, I i -
versusy bits, 2) folding, 3) method of choosing values in théeduced by 5 and 8%, respectively, relative to the base Gray
4. However, the

. .coded table, also withf = 3 andg =
overlap regions, and 4) the amoqnt O.f redundancy. The flfesiternal decoder delay grows linearly with increasingdor
entries examine the effects of usimgbits of the redundant

: . : . |ine encoding, while only growing as the log affor Gray-
partial r_emamd_er into the short CPA out5|d¢ of the table, whi ding. Another common encoding scheme always uses the
only using f bits of the adder output as input to the tabl

qﬁighest digit whenever a choice is available between two

Simply extending the CPA bY one bit reduces the_ delay t%nsecutive quotient-digits. This is represented in the table
12% and area by 7%. Extending the CPA by two bits reducg§ «choose highest” encoding. While simplifying the table

the delay by 16% and area by 9%. In the limit where= n  generating process, this method increases the resulting table
and a full-mantissa carry propagate addition is required, tg@lay by 19% and area by 32% over the bage= 3
delay and area are both reduced by 23%. This demonstrages__ 4 table. Thus, this study shows that Gray-coding of
that increasing the width of the CPA by as little as one or Wg,e quotient-digits achieves delays and areas approaching the
bits can reduce the complexity of the table. lower bound of line encoding, while requiring less complex
The next two entries demonstrate the effects of using foldggdiernal decoders.
tables. For both tables, it is assumed tifiat 3 andg = 4, The redundancy of the digit set has an impact on table
which matches the format of the table suggested in Fandriagigmplexity. The final entries in the table are for maximally
[8]. The use of only a two’s complement to sign-magnitudgsqundant radix 4 tables, witlh = 3. For an implementation
converter yields the first folded table, which achieves ajith f = ¢ = 1, the delay and area are reduced by 20 and
additional delay reduction of 10% and an additional areso, respectively. Whep increases to, = 52, requiring a
reduction of 30% over th¢ = 3 g = 4 table without folding. full mantissa-width CPA, the delay is further reduced by 21%
This introduces a serial delay of an XOR gate external thd the area by 44%. These results show that if the hardware
the delay of the table. When the sign-magnitude converterigsavailable to generate thex3divisor multiple, the iteration
combined with a “t-bit converter”, which further constrains théime can be reduced by over 20%, due to the reduction in table
range of input values to the table, the delay is reduced relatiy@mplexity and length of the external short CPA.
to the simple folded table by an additional 10%, and the areaTable Ill shows the complexity of a basic radix 2 table.
is reduced by an additional 12%. This converter introduc&sis table can be implemented by a single three-input gate,
the serial delay of an OR gate external to the table. Theag it only has 3 PLA terms, which can be contrasted with the
results show that folding can reduce the size and delay of & terms in the baseline radix 4 table. The resulting delay is
table. However, the delay of the required external gates mé&% less than the base radix 4 table, while 93% less area is
be considered for the overall design. If the sum of the XORquired. Accordingly, the radix 2 table is 2.86 times faster
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than the base radix 4 table, and 2.40 times faster thae=& it is desirable for the delay of the look-up table to increase at

radix 4 table. no more than the rate of increase of the number of bits retired
per cycle.
B. Higher Radix For radix 8, the delay is on the average about 1.5 times

that of the base radix 4 table. However, it can require up to

. Tables IV_VI. show the complexity for_tables that directly 0 times as much area. While radix 16 tables have about two
implement radix 8, 16, and 32, respectively. The allowable

: . . o . times the base delay, they can require up to 32 times the area.
choices of, b, andf det_ermmed n th's study correspond Wm‘\n the case of radixy32 itywas nottq even F:)ossible to achieve a
the results presented in [4] for radix 8 and 16. In our StUdMEIay of 2.5 times the base delay, the maximum desired delay,

we extend the allowed operand truncations to radix 32. F\(I)VIith actual delays between 3.5 and 4.7. The area required

radix 16 and radix 32, the minimally redundant configuratioq%r radix 32 ranges from 57 to 141 times the base area. These

required 20 or more inputs to the table. Due to computational . . . .
. T S ' . results show that radix 16 and 32 are clearly impractical design
constraints, table optimization was limited to configurationsg . . : oo i T
L ! : . choices, even ignoring practical implementation limitations
containing fewer than 20 inputs. Those configurations where ; o . .
dch as generating all divisor multiples. This study shows that

optimization was infeasible are denoted with a dagger in ﬂi-sleis possible to design radix 8 tables with reasonable delay

tables. . . . . z%nd area; a minimally redundant radix 8 table is demonstrated
For a given choice of radix and redundancy, there exists . . .
be a practical design choice.

more than one possible table design. As discussed previous?y,
a minimum number of divisor estimate bits is required as input

for a given configuration. This corresponds to a maximum VI. CONCLUSION
number of partial remainder bits that need be used. However

- - . : . Thi h monstr methodol for generat-
it is possible to trade an increase in divisor bits for a reducti S study has demonstrated a methodology for generat

. ) ; ) L o (?Hg guotient-digit selection tables from a table specification
in the number of partial remainder bits. This might 'n't'a"yhrough an automated design flow. Using this process, perfor-

e o e e and aea radeofts o qotient olecton ales i SET
: . ' 9 . -TAlBNiders have been presented for several table configurations.
time. By using a fewer number of partial remainder bits i

the table. the external adder can be smaller. reducin he use of Gray-coding is shown to be a simple yet effective
¢ Ici | HX ; tial ' 'udl g i Bthod that allows automatically determining optimal choices

external delay. HOWever, for carry-save partial remainders, Fquotient—digits which reduce table complexity.

maximum partial remainder truncation errgy., is greater

than the maximum divisor truncation err By tradin Short external carry-assimilating adders are necessary to
a € maximu /ISor truncation erreg. By rading- ., et redundant partial remainders to a nonredundant form.
off fewer partial remainder bits for more divisor bits, th

. i L i extending the length of these adders by as little as one
height of the uncertainty region increases at approximate 9 9 y

wwice th te at which th idth of th ion d two bits, it is shown that table complexity can be further
wice the rate at whic € widih of the Tegion decreastyy ced. The conventional wisdom for SRT table specification
As a result, the overall uncertainty region area increases 38

f tial inder bit d. Thi it b S been whenever possible, the length of the partial remainder
ewe;_tpatl_r 'al r_emTalgl er IVI Sv?r?: used. This reshu X canf eds.eeesr?imate should be reduced at the expense of increasing the
quantiiatively in fables IV—Vl. For any given choice ot ra I)ﬁength of the divisor estimate in order to reduce the width,

a_nd redund_ancy, the use of the maximum _number_ of d'v'sgﬁd thus the delay, of the external adder. However, this study
bits and minimum number of partial remainder bits resul@

in the | i b f total duct t d tvpical uantitatively demonstrates that such a choice also increases
In the fargest number of total product terms, and ypicaliy,, ;o 4nq delay of the table, mitigating the performance
the largest delay and area. As the number of divisor bits |

reduced and the number of partial remainder bits increas% in provided by the narrower adder. Accordingly, the over-

'iteration time is not necessarily reduced through such a
the number of product terms, the delay, and the area are all y 9

typically reduced. tradeoff.

This stud i that th dix | th As the radix increases, it is shown that the table delay
IS study confirms that as the radix Increases, e COle o qaq linearly. However, the area increases quadratically

plexity of the tables also increases. Fitting the average area increasing radix. This fact, combined with the difficulty

a given radix FO a CUrve across the varlqus'rad|ces' determ"ﬂs?sgenerating all of the required divisor multiples for radix 8
that the area increases geometrically with increasing radix:

and higher, limits practical table implementations to radix 2
Area= 0.1R? (22) and radix 4.
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