
Optimal Code Placement of Embedded Software for Instruction Caches

Hiroyuki Tomiyama Hiroto Yasuura
Department of Information Systems,

Interdisciplinary Graduate School of Engineering Sciences,
Kyushu University

6–1 Kasuga-koen, Kasuga-shi, Fukuoka 816 Japan

Abstract
This paper presents a new code placement method for

embedded software to maximize hit ratios of instruction
caches. We formulate the code placement problem as
an integer linear programming problem. One of the
advantages of our method is that code can be moved
beyond boundaries of functions, so that code placement is
optimized globally. Experimental results show our method
achieves 35% (max 45%) reduction of cache misses.

1 Introduction
In design of an embedded system, several design goals

such as high performance, low cost, and low power con-
sumption of the system must be achieved simultaneously.
But these design goals are often mutually exclusive. Con-
sider a system which consists of a processor core, main
memories and cache memories. The performance of the
system is expressed as the following formula:

Performance =

1
Execution time

=

F

IC � (CPI + (1� CHR)� CMP )

(1)

whereF , IC, CPI , CHR andCMP denotes the clock
frequency, the instruction count to be executed, clock
cycles per instruction, the cache hit ratio, and the cache
miss penalty respectively. To improve the performance,
several approaches can be considered. One is to raise the
clock frequency, but the power consumption is increased in
proportion to the clock frequency. Raising the parallelism
in the processor to make the CPI small is an attractive
approach, but it leads the increase of chip area. High speed
memories and buses with wide band width also require
chip area and power. Reducing the instruction count to
be executed is one of very effective approaches to make
the high performance compatible with the low cost and the
low power. Recently, a lot of code generation techniques
for embedded processors have been proposed to minimize
the number of executed instructions[4, 7]. Most of them
do not require extra hardware cost, and some techniques
target implementation of low power systems[11].

In this paper, we focus on another approach for per-
formance improvement, reduction of cache misses. Let’s
consider an ideal processor whose CPI is 1 and the cache
miss penalty is 10 cycles. If we can improve the cache hit

ratio from 93% to 96%1, the improvement produces over
20% enhancement of the performance of the system. It is
widely recognized that cache hit ratios affect the perfor-
mance gravely. Enlarging the cache size, increasing the
associativity of caches and employing a better replace algo-
rithm may reduce cache misses, but those approaches will
also make the system more expensive. In code generation
phase of embedded software design, code optimization for
improving the cache hit ratio is very effective as well as
reducing the instruction count and the power consumption.

In this paper, we propose a new optimization method for
code placement of embedded software which minimizes
the cache misses of instruction caches. Our approach
makes it possible to accomplish the high performance of
the system without extra hardware cost. It is also expected
that the power consumption will be decreased by reducing
cache misses.

In the following section, some related works are dis-
cussed. In section 3, we propose a new code placement
method, and we formulate the code placement problem as
an integer linear programming (ILP) problem in section
4. Experiments are presented in section 5, and we dis-
cuss some problems of the proposed method in section 6.
Section 7 presents conclusions and addresses our future
works.

2 Related Works
The code placement problem for instruction caches has

been studied by many researchers in a field of computer
architectures[6, 8, 9].

IMPACT-I C Compiler which was developed in Illinois
University uses four techniques to maximize cache hit
ratios[6]. (a) Function inline expansion: The function
calls with high execution count are replaced with the
function body if possible. (b)Trace selection: For each
function, basic blocks which tend to execute in sequence
are grouped into a trace. (c)Function layout: For each
function, the trace of the function entrance is placed first,
and then the most important descendent is selected to be
placed after it. (d)Global layout: The functions which
are executed close to each other in time are placed not to
conflict in caches.

McFarling proposed a function placement technique for
instruction caches in [8]. Dependencies among functions
in the program are analyzed firstly. If it is found that

1Readers will notice in section 5 that we can improve the hit ratio of
instruction cache from 93% to 96%.



Profile Information

Assembly Code

Specification of
Memory Organization

Trace Selection

Trace Placement

Assembly Code

Figure 1: Overview of the code placement method

functionF is called inF 0, the two functions are placed not
to conflict each other. McFarling also proposed a technique
determining which functions should be merged[9], but code
placement inside functions is not considered.

In the above approaches, mobility of code is restricted
by boundaries of functions. One of the advantages of our
method is that code can be moved beyond boundaries of
functions, so that code placement is optimized globally.
An optimal placement can be obtained by solving an ILP
problem. For a large program, an optimal placement can
not be obtained in a practical time. Still, our method gives a
great benefit, which means that in most cases, sub-optimal
solutions are much better than ones to which previous
methods lead. Furthermore, performance of the object
code is much more important than compilation time in
embedded software design because software programs will
rarely be modified after they are stored in ROM. As it takes
a longer time to solve the ILP problem, a better solution
can be obtained which will improve the performance of the
designed system.

3 Code Placement Method
3.1 Overview

In this section, our code placement techniques are pre-
sented.

We suppose direct mapped caches and set associative
caches which employ the least recently used (LRU) al-
gorithm for replacement. We also assume that the target
system has a Harvard architecture whose instruction caches
and data caches are separated physically as well as logi-
cally. Since our objective is maximization of hit ratios of
primary caches, behavior of secondary caches are not taken
into account.

We show the overview of our code placement method in
Fig.1. Inputs of our algorithm are assembly code, profile
information of the application program, and specification
of memory organization. The profile information is one
or more sequence(s) of basic blocks which are accessed
when typical input data is given to the program. For
example, let’s consider a program illustrated in Fig.2(a),
which consists of two functions,A andB. Each node in
the graph represents a basic block, and each directed edge
represents a control dependency between basic blocks. A
number associated with each edge denotes the ratio of
times the edge is passed when the program is executed
once. Here, we assume that functionB is called in basic
block b4 in function A. The profile information for the
program contains the following sequence,

(b0; b2; b3; b4; b6; b7; b8; b3; b4; b6; b8; b3; � � � ; b3; b5) (2)

Function A Function B

10

5

15

10

1

0.2

0.2

0.8

15

0.8

(a) Weighted control flow graph (b) Traces

b0

b1 b2

b3

b4

b6

b0 b1

b2 b3

b5

b5

b7

b6b4

b8

b7

b8

Figure 2: Weighted control flow graph and traces

which means that basic blockb0 is executed first, nextb2,
five basic blocksfb3; b4; b6; b7; b8g are executed iteratively,
and finally, b5 is executed. Specification of memory
organization consists of the line size, the number of sets
and ways of instruction caches, and the size of instruction
memories. Output is assembly code of the programs whose
cache hit ratio is maximized.

According to [5], cache miss factors are classified into
three C’s, first references (compulsory), capacity and con-
flicts. Concerning set associative caches with LRU replace-
ment algorithm, however, we can not clearly distinguish
cache misses caused by lack of the capacity and ones
by cache conflicts, because insufficient capacity of caches
causes cache conflicts. In this paper, we classify cache miss
factors into the two, first references and cache conflicts.

The proposed method consists of two phases,trace se-
lection and trace placement. The trace selection reduces
cache misses caused by first reference, and the trace place-
ment reduces cache conflicts. In section 3.2 and 3.3, we
explain basic ideas and techniques of trace selection and
trace placement respectively.

3.2 Trace Selection
Given assembly code of the program and profile infor-

mation, we construct an weighted control flow graph firstly
as shown in Fig.2(a). It is more probable that basic block
b2 will be executed afterb0 thanb1 will. In this case,b2
should be placed just afterb0 because it is highly possible
that the two basic blocks are on the same cache line. Due
to the same reason,b4 should be placed beforeb3, b5 after
b3, b7 after b6, andb8 after b7. As a result, the weighted
control flow graph (a) is partitioned into four paths (linear
subgraphs) shown in Fig.2(b). We call each path atrace.

The term trace is introduced in [2] which targets
global microcode compaction, and the idea is extended
in IMPACT-I C Compiler[6] to maximize cache hit ratios.

The trace selection problem is defined as follows for-
mally:
“For a given weighted control flow graph of the program,
partition the graph into traces such that the sum of weights
of all edges in the traces is maximized.”
Since the trace selection problem is NP-complete unfor-
tunately, in this paper, we use a greedy algorithm for the
problem to obtain a quasi-optimal solution.



Note that the last instruction of each trace is an uncon-
ditional jump operation or an exit of the function. This
property enables traces to be placed in arbitrary order. A
trace is an atomic unit of machine instructions which can
be placed without insertion of jump operations.

3.3 Trace Placement
After trace selection, we must determine in which or-

der traces should be placed in a main memory space to
minimize cache misses caused by cache conflicts.

We introduce a new concept,pseudo-memory, which
is a virtual main memory. First, traces are placed in
the pseudo-memory in arbitrary order, but we pose the
restriction that different traces must be placed in different
pseudo-memory blocks. Here, a memory block is a block
in a main memory which are mapped onto one cache
line, and a pseudo-memory block is a block in a pseudo-
memory. We show an example of trace placement on
a pseudo-memory in Fig.3(a). After that, a sequence of
pseudo-memory blocks which are accessed in execution of
the program is determined uniquely. Then, trace placement
problem is defined as a matching problem between pseudo-
memory blocks and real memory blocks. In the following
section, we formulate the trace placement problem as an
ILP problem. Here, we explain the effect of trace placement
using the example shown in Fig.2 and Fig.3

According to Fig.3(a), the sequence of basic blocks (2)
is translated into a sequence of pseudo-memory blocks as
described below.

(p0; p1; p3; p5; p6; p7; p3; p5; p7; p3; � � � ; p3; p4) (3)

In this paper, we call the sequence of pseudo-memory
blocks to be accessed in execution of the program given
a data(an input data to the program), theaccess sequence
of pseudo-memory blocks, or simply theaccess sequence.
The above access sequence tells that four pseudo-memory
blocks fp3; p5; p6; p7g are accessed iteratively. Assume
a direct mapped cache whose number of cache line is 4.
If we place traces in main memory in the same order as
pseudo-memory, cache misses occur frequently due to the
cache conflicts betweenp3 andp7. We show an optimal
trace placement in Fig.3(b) where no cache conflicts can
be seen.

Because of the restriction that different traces must
be placed in different pseudo-memory blocks, our method
generates many redundant spaces in the instruction memory
where no instructions reside. These redundant spaces
are never used in execution of the program, and cause
expansion of code size. We discuss the problem in section
6.2.

4 ILP Formulation of Trace Placement Prob-
lem

4.1 Preliminaries
In the rest of this paper, the following definitions and

notations are used:

N

set

The number of sets of an instruction cache
N

way

The number of ways of an instruction cache
N

mem

The number of blocks of an instruction memory
N

p

The number of blocks of a pseudo-memory

b1

b3

b4

b5

b8

b7

b6

b2

b0

p1

p2

p3

p4

p5

p6

p7

p0

(a) Pseudo-memory (b) Main memory

(p5)

(p6)

(p0)

(p1)

(p2)

(p3)

(p4)

(p7)

m1

m2

m3

m4

m5

m6

m7

m0

b2

b0

b8

b7

b1

b6

b3

b4

b5

Figure 3: Trace placement

p

i

A pseudo-memory block (i = 0; � � � ; N
p

� 1)
P A set of pseudo-memory blocks

P =

S

i

fp

i

g

x

i

The memory block wherep
i

is placed
X A vector ofx

i

X = (x0; x1; � � � ; xN
P

)

t

j

An ordered set of pseudo-memory blocks
which constructjth trace
t

j

2 P � P � � � �

T A set oft
j

T =

S

j

ft

j

g

In the example illustrated in Fig.3(a), trace(b0; b2) is
placed in pseudo-memory blocks(p0; p1), (b1) is in (p2),
(b4; b3; b5) is in (p3; p4), and(b6; b7; b8) is in (p5; p6; p7).
Then,T of this example is defined as follows:

t0 = (p0; p1); t1 = (p2); t2 = (p3; p4); t3 = (p5; p6; p7)

T = ft0; t1; t2; t3g (4)

In the rest of this subsection, we defineA
i

which denotes
profile information of pseudo-memory blockp

i

.
First, for eachp

i

, we define sets of pseudo-memory
blocksc

i;l

’s,

c

i;l

= f p

j

j p

j

(i 6= j) appears between thel th

appearance and(l + 1)th appearance ofp
i

in the access sequence of pseudo-memory
blocks.g (5)

In the access sequence, the samec

i;l

may appear more
than twice. We define a setC

i

= fc

i;l

g and denote
content ofC

i

, a
i;k

(k = 0; 1; � � � ; jC
i

j � 1). Note that



a

i;k

6= a

i;k

0 if k 6= k

0. For example, we show how
to definea3;k’s. According to the access sequence of
pseudo-memory blocks (3) described in section 3.3, there
are two cases in the intervals between accesses top3.
One is the case when three pseudo-blocksfp5; p6; p7g are
accessed, and another is when two pseudo-blocksfp5; p7g

are accessed. Thena3;k’s are defined as follows:

a3;0 = fp5; p6; p7g; a3;1 = fp5; p7g

Next, we definee
i;k

for each a
i;k

as the times of
appearance ofa

i;k

in the access sequence of pseudo-
memory blocks. In the above example,e3;k ’s are defined
as follows:

e3;0 = 10; e3;1 = 5

Assume an-way set associative cache. If more than(n�1)
pseudo-memory blocks ina

i;k

are mapped onto the same
cache set asp

i

, cache misses occur at leaste

i;k

times.
We represent a tuple ofa

i;k

and e

i;k

as A

i;k

, i.e.
A

i;k

= (a

i;k

; e

i;k

), and define a set ofA
i;k

asA
i

.

A

i

=

[

k

fA

i;k

g (6)

A

i

’s for all pseudo-memory blocks can be calculated
from profile information of basic blocks described in sec-
tion 3.1.

4.2 Problem Definition
Trace placement problem is defined as follows:
“For givenN

set

,N
way

,N
mem

, P , T , andA
i

for all p
i

,
findX which minimizes the cache miss hit count.”

This problem can be formulated as an integer linear
programming problem. The objective function of the ILP
problem is defined as formula (7). The value ofM(X)

represents the number of cache misses when the programs
are executed once.

M(X) =

X

p

i

2P

X

(e

i;k

;a

i;k

)2A

i

e

i;k

� replaced(a

i;k

)

+ Constant (7)

Here,Constant is the number of cache misses caused
by first references. Constant is determined by trace
selection independent of trace placement. The value of
function replaced(a

i;k

) is 1 if the number of pseudo-
memory blocks which are ina

i;k

and are mapped onto the
same cache set asp

i

is greater than or equal toN
way

, that
is the case where the pseudo-memory blockp

i

on the cache
is displaced by other pseudo-memory block beforep

i

is
executed again. Functionreplaced(a

i;k

) is formulated as
follows:

replaced(a

i;k

)

=

8

<

:

1 if

X

p

i

0

2a

i;k

conflict(x

i

; x

i

0

) � N

way

0 otherwise

(8)

The value ofconflict(x
i

; x

i

0

) is 1 if the two pseudo-
memory blocksp

i

andp
i

0 are mapped onto the same cache

line, otherwise 0. Functionconflict(x
i

; x

i

0

) is defined as
follows formula:

conflict(x

i

; x

i

0

)

=

�

1 if (x

i

modN

set

) = (x

i

0

modN

set

)

0 otherwise

(9)

Constraints are expressed by the following three formu-
las.

0� x

i

� N

mem

� 1; 0� i � N

p

� 1 (10)

i 6= i

0

) x

i

6= x

i

0 (11)
(� � � ; p

i

; p

i

0

; � � �) 2 T ) x

i

= x

i

0

� 1 (12)

Formula (10) ensures that all the pseudo-memory blocks
must be mapped to physical memory blocks. Formula
(11) ensures that different pseudo-memory blocks must be
placed in different memory blocks. Formula (12) ensures
that a sequence of pseudo-memory blocks which construct
a trace must be placed in sequence.
4.3 Linearization

Replaced(a

i;k

) andconflict(x
i

; x

i

0

) defined above are
not linear functions. In this subsection, we explain how to
linearize the two functions.

First, we prepare new variablesy
i;i

0 ’s andz
i;i

0 ’s whose
ranges are

y

i;i

0

2 f0;1g; z

i;i

0

2 Z (13)

whereZ is a set of integers. Intuitively,y
i;i

0 holds the
value of conflict(x

i

; x

i

0

), and z
i;i

0 holds the value of
(x

i

� x

i

0

) � N

set

. Then, formula (9) is replaced by
formulas (13), (14), (15) and (16).

0� (x

i

� x

i

0

)�N

set

� z

i;i

0

< N

set

(14)

(x

i

� x

i

0

)�N

set

� z

i;i

0

+ y

i;i

0

� U 6= 0 (15)

(x

i

� x

i

0

)�N

set

� z

i;i

0

� (1� y

i;i

0

) � U � 0 (16)

Here, U is a large integer. Next, we prepare variables
w

i;k

’s whose ranges are

w

i;k

2 f0; 1g (17)

Intuitively, w
i;k

holds the value ofreplaced(a
i;k

). Then,
formula (8) is replaced by the three formulas (17), (18) and
(19).

X

p

i

0

2a

i;k

y

i;i

0

+ (1� w

i;k

) � U � N

way

(18)

X

p

i

0

2a

i;k

y

i;i

0

� w

i;k

� U < N

way

(19)

The objective functionM(X) is re-defined as following
formula:

M(X) =

X

p

i

2P

X

(e

i;k

;a

i;k

)2A

i

e

i;k

� w

i;k

+ Constant (20)

As a result, the code placement problem has been
linearized, whose objective function is formula (20) and
constraints are formulas (10)–(19).



Table 1: Benchmark programs
GNU grep 2.0 GNU sed 2.05

#Sizey 12436 lines 13544 lines
#Trace 1067 traces 1041 traces

#MemoryBlock 2673 blocks 2436 blocks
Description print lines matching

a pattern
stream editor

y Number of lines of the C program including comments

5 Experiments
In this section, effectiveness of our method is evaluated.

We compare four code placement methods in terms of
cache miss count and cache hit ratio when changing the
organization of instruction caches.
Default: Benchmark programs are compiled with SunPro

SPARCompiler C 3.0. No code placement techniques
for instruction caches are applied.

Trace: After translating benchmark programs into assem-
bly code, trace selection is performed. A greedy
algorithm is used for trace selection.

Func: After trace selection, functions are sorted according
to their execution counts. This technique is helpful
to avoid cache conflicts among functions which are
frequently executed.

Ours: The method proposed in this paper is applied. We
use a local search algorithm for the ILP problem.

We use SPARC instruction set as a target architecture,
and use GNU grep 2.0 and GNU sed 2.05 as benchmark
programs(See Table 1). For simplification, we assume that
no C library functions are called in the programs.

First, we change the associativity of instruction cache
from 1 to 4 and calculate cache miss counts and cache hit
ratios for each of the four methods. The cache size and the
line size are fixed to 1K bytes and 32 bytes respectively.
The experimental result is shown in Table 2. Next, we
change the cache size from 512 bytes to 2K bytes and also
calculate cache miss counts and cache hit ratios. Here, we
assume direct mapped caches whose associativity is 1, and
the cache line size is fixed to 32 bytes. We show the result
in Table 3.

These results show that the proposed method (Ours)
obtains the highest cache hit ratio in any condition.Ours
achieves 35% reduction of cache misses on average (max
45%) as compared withDefault. Table 3 indicates that if
system designers want to improve the performance, they
should apply our method before doubling the cache size.
Trace achieves 16% reduction of cache misses, which
confirms the effectiveness of trace selection. ButOurs is
much better owing to trace placement without limitation
on function boundaries.

6 Discussions
6.1 Computation Time

While our method achieves drastic reduction of cache
misses, it requires a long computation time to solve the ILP
problem. It is impossible to obtain optimal solutions for
large programs in a practical time. We have implemented

Table 2: Cache miss counts and cache hit ratios when
changing associativity

GNU grep 2.0
1-way 2-way 4-way

Misses Ratio Misses Ratio Misses Ratio
Default 1071 .9319 1025 .9348 1039 .9339
Trace 895 .9435 859 .9458 847 .9465
Func 848 .9465 786 .9504 790 .9501
Ours 584 .9631 636 .9598 631 .9601

GNU sed 2.05
1-way 2-way 4-way

Misses Ratio Misses Ratio Misses Ratio
Default 2999 .9288 2922 .9306 2887 .9315
Trace 2395 .9432 2365 .9439 2367 .9439
Func 2488 .9410 2430 .9424 2383 .9435
Ours 2021 .9521 2124 .9497 2172 .9485

Table 3: Cache miss counts and cache hit ratios when
changing cache size

GNU grep 2.0
512 bytes 1024 bytes 2048 bytes

Misses Ratio Misses Ratio Misses Ratio
Default 1355 .9138 1071 .9319 693 .9559
Trace 1136 .9283 895 .9435 740 .9533
Func 1113 .9297 848 .9465 644 .9593
Ours 865 .9454 584 .9631 438 .9723

GNU sed 2.05
512 bytes 1024 bytes 2048 bytes

Misses Ratio Misses Ratio Misses Ratio
Default 3386 .9196 2999 .9288 2563 .9392
Trace 2801 .9336 2395 .9432 1996 .9527
Func 2819 .9332 2488 .9410 1991 .9528
Ours 2414 .9428 2021 .9521 1493 .9646

a solver of the ILP problem which employs a local search
algorithm. The solver required 3–6 hours for GNU grep
and 10–38 hours for GNU sed to generate a locally optimal
solution on Sparc Station 5 (microSPARC-II, 85MHz,
32MB, Solaris 2.4).

We illustrate the relation between computation time and
cache miss count in Fig.4. Cache miss count using the best
solution at the time is plotted. Our experiments show that
70–93% of cache miss reduction are gained at the first 1
hour of the computation time for GNU grep, and 63–78%
of reduction for GNU sed.

There is a tradeoff between the above computation time
and the cache miss count. Embedded software designers
had better optimize code placement as long as the design
time permits. It is highly possible that better algorithms
and implementations for the ILP problem can give better
solutions in a shorter time.
6.2 Code Size

As mentioned in section 3.3, our method generates a
lot of redundant spaces in instruction memories, which



2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

0 5 10 15 20 25

1-way

2-way

4-way

1-way

2-way

4-way

Computation time [hours]

C
ac

he
 m

is
s 

co
un

t

Figure 4: Computation time versus cache miss count:
Benchmark program is GNU sed 2.05. Cache size is 1K
bytes.

make the code size large. Experiments show that code
size including empty words becomes 25–29% larger than
before optimization(See Table 4). Since, in usual, the
memory size varies discretely e.g. 512K bytes, 1M bytes,
2M bytes, and so on, a small amount of code size expansion
may be absorbed by quantumization of the memory size.
But in most cases of embedded system design, code size
expansion is a serious problem especially for on-chip
memory. Designers want to save the memory size to
reduce the cost of designed systems. We take account of
the main memory size as a constraint of the optimization in
formula (10). In the experiments in the previous section,
we assume that the main memory and pseudo-memory have
the same capacity. If the main memory size is larger than
the pseudo-memory size, higher cache hit ratio is expected.
Otherwise, no solutions of the ILP problem exist. In this
case, we need some techniques to eliminate the memory
space redundancy.

One technique to reduce the redundancy of memory
spaces is with extra hardware. Since there is no need to
implement the redundant spaces physically, redundancies
can be removed by re-customizing the address decoder of
instruction memory at a little expense of hardware cost.
This approach may be effective for a system with large
production volumes and the program is completely fixed.

Another technique is to merge a couple of traces into
one trace so that the size of the merged trace becomes a
multiple of the cache line size. While this technique can
reduce the redundancy without modification of hardware,
the quality of solutions of the ILP problem may become
worse. This is because decrease of the number of traces
causes increase of the constraints (12) for the ILP problem.

7 Conclusions
In this paper, a new code placement technique for em-

bedded software to maximize cache hit ratios has been

Table 4: Comparison of code size
GNU grep 2.0 GNU sed 2.05

Default 68.2K bytes 60.2K bytes
Ours 85.5K bytes 78.0K bytes

presented. We have formulated the code placement prob-
lem as an integer linear programming problem. Although
our formulation is very simple, experiments prove the ef-
fectiveness of our approach. We have implemented local
search algorithm for ILP problem, but it takes a long com-
putation time. Efficient algorithms and implementations to
solve the ILP problem is required for practical applications.

In embedded system design, determining the organiza-
tion of memory system such as cache size, cache line size,
associativity, bandwidth between main memory and cache
memory, is one of the most important tasks. Incorporating
our method with memory system design will achieve a
great success in the embedded system design. Optimiza-
tion of memory system organization is one of our future
works.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Princi-

ples, Techniques, and Tools. Addition-Wesley, 1986.
[2] J. A. Fisher. “Trace Scheduling: A Technique for Global

Microcode Compaction”. IEEE Trans. Computers, C–
30(7):478–490, July 1981.

[3] M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, 1979.

[4] G. Goossens, J. Rabaey, J. Vandewalle, and H. De Man.
“An Efficient Microcode Compiler for Application Specific
DSP Processors”.IEEE Trans. CAD/ICAS, 9(9):925–937,
September 1990.

[5] J. L. Hennessy and D. A. Patterson.Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers,
Inc., 1990.

[6] W. W. Hwu and P. P. Chang. “Achieving High Instruction
Cache Performance with an Optimizing Compiler”. In
Proc. of 16th Int’l Symp. on Computer Architecture, pages
242–251, 1989.

[7] C. Liem, T. May, and P. Paulin. “Instruction-Set Matching
and Selection for DSP and ASIP Code Generation”. InProc.
of ED&TC94, pages 31–37, 1994.

[8] S. McFarling. “Program Optimization for Instruction
Caches”. InProc. of 3rd Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems, pages
183–191, 1989.

[9] S. McFarling. “Procedure Merging with Instruction
Caches”. InProc. of Programming Language Design and
Implementation, pages 71–79, 1991.

[10] SPARC International, Inc.The SPARC Architecture Manual
Version 8, 1992.

[11] V. Tiwari, S. Malik, and A. Wolfe. “Power Analysis of
Embedded Software: A First Step towards Software Power
Minimization”. In Proc. of ICCAD-94, pages 384–390,
1994.


