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Gestures à Go Go: Authoring Synthetic Human-like Stroke Gestures
Using the Kinematic Theory of Rapid Movements

LUIS A. LEIVA and DANIEL MARTÍN-ALBO, Universitat Politècnica de València
RÉJEAN PLAMONDON, École Polytechnique de Montréal

Training a high-quality gesture recognizer requires providing a large number of examples to enable good performance on
unseen, future data. However, recruiting participants, data collection and labeling, etc. necessary for achieving this goal are
usually time-consuming and expensive. Thus, it is important to investigate how to empower developers to quickly collect
gesture samples for improving UI usage and user experience. In response to this need, we introduce Gestures à Go Go (G3), a
web service plus an accompanying web application for bootstrapping stroke gesture samples based on the kinematic theory of
rapid human movements. The user only has to provide a gesture example once, and G3 will create a model of that gesture.
Then, by introducing local and global perturbations to the model parameters, G3 generates from tens to thousands of synthetic
human-like samples. Through a comprehensive evaluation, we show that synthesized gestures perform equally similar to
gestures generated by human users. Ultimately, this work informs our understanding of designing better user interfaces that
are driven by gestures.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces; I.5.2 [Pattern
Recognition]: Design Methodology; I.5.4 [Pattern Recognition]: Applications

General Terms: Algorithms, Design, Human Factors

Additional Key Words and Phrases: Gesture Synthesis; Bootstrapping; Gesture Recognition; Strokes; Marks; Symbols;
Unistrokes; Multistrokes; Multitouch; Kinematics; User Interfaces; Rapid Prototyping

1. INTRODUCTION
Gestures are increasingly becoming a predominant input modality in today’s user interfaces (UIs).
Gesture interaction is possibly one of the most researched areas in Human-Computer Interaction
(HCI), with a long history that started as early as 1960, with the Sketchpad project [Sutherland 1963]
and the RAND tablet [Davis and Ellis 1964]. Gestures can be mid-air (more prominent in gaming
applications) or stroke based (more prominent in mobile applications). We are particularly interested
in the latter type, motivated by the fact that stroke gestures are becoming more and more relevant to
mainstream products such as touchscreen-capable devices like smartphones and tablets.

Strokes gestures represent the movement trajectory of one or more contact points on a sensitive
surface. Stroke gestures are sometimes also called “pen gestures”, “hand drawn marks”, “hand drawn
gestures”, “hand markings”, or “markings” [Zhai et al. 2012]. Stroke gestures tend to give richer
perceptual cues to the user, to form an association between the shape of the gesture and the meaning
of the command [Appert and Zhai 2009]. Compared to traditional interactions, stroke gestures have
the potential to lower cognitive load and the need for visual attention [Zhai et al. 2012]. Stroke
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de Montréal. 6079, succursale Centre-Ville, Montréal, QC, Canada.
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gestures also may improve the usability of UIs, by replacing standard shortcuts by more accessible
triggers.

Stroke gestures have existed in the industry for decades. Early examples of commercial products
that successfully incorporated gestures are, e.g., PDAs like the Palm Pilot or the Apple Newton, and
the Windows Tablet. These devices featured the Graffiti and Unistroke shorthand writing systems,
which used a single stroke Roman letter-like gesture vocabulary. Today, stroke gestures are mostly
used in consumer devices for executing simple actions, such as pinching a picture to zoom in/out,
swiping to reveal an options menu, or panning to switch between apps. Nevertheless, stroke gestures
are increasingly being incorporated to facilitate random access to smartphone contents, such as
invoking a command hidden in an advanced settings menu or quickly searching for a friend’s email
in the contacts list. Therefore, it is expected that strokes gestures will make a notable impact in
consumers’ lives.

In general, any application that is driven by gestures must rely on some recognition-based tech-
niques. These techniques often require expert knowledge in pattern recognition or machine learning,
something that is typically beyond the reach of many developers and UI designers. Furthermore,
recruiting participants, data collection and labeling, etc. necessary for using these techniques are usu-
ally time-consuming and expensive. Thus, it is important to investigate how to empower developers
to quickly collect gesture samples for improving UI usage and, as a result, user experience (UX).

In this article, we introduce Gestures à Go Go (G3), a web service plus an accompanying web
tool for bootstrapping stroke gesture samples based on the kinematic theory of rapid human move-
ments [Plamondon 1995a; Plamondon 1995b]. The user only has to perform a gesture sample once,
and G3 will generate from tens to thousands of synthetic human-like samples. This aims for creating
better gesture recognizers, eliminating the overhead of recruiting and data collection, and reducing
the need for expert knowledge in machine learning. In addition, the user can get a gesture recognizer
together with the synthesized data. As such, the outcome of G3 can be directly incorporated into
production-ready applications. This work is framed within the so-called programming by example
paradigm [Halbert 1984], where an end-user teaches a computer new behaviors by providing exam-
ples instead of programming them through machine commands. Ultimately, this work informs our
understanding of designing better UIs that are driven by gestures.

This article offers the following contributions:

(1) A RESTful web service aimed at bootstrapping stroke gestures from just one given example.
(2) A web application that interfaces with our web service and allows users to design their own
gesture sets.

(3) Integration of popular gesture recognizers in our web application, aimed at building a working
prototype in few clicks.

(4) Extensive validation of this work through a number of experiments and an informal use case.

1.1. Organization
The remainder of this article is organized as follows. Section 2 discusses related work. Section 3
introduces the theoretical framework on which this work is based. Section 4 and Section 5 describe
G3 implementation details. Section 6 and Section 7 evaluate G3 from different perspectives. Sec-
tion 8 discusses the implications and limitations of this work. Finally, Section 9 gives a number of
concluding remarks and provides opportunities for future work.

A Note for Practitioners. We believe this article will be useful for both practitioners and researchers.
However, practitioners are likely to be mostly interested in a small portion of the article: the system
details (Section 4 and Section 5) and the general discussion (Section 8). We encourage practitioners
to read also Section 7 as that section provides insights on an informal use case of our system.

2. RELATED WORK
There is a huge body of research on gesture interaction. Over the past few years, new touchscreen-
based products have taken off rapidly, boosting the popularity of stroke gestures as commands and
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symbols. An excellent integrative review of the state-of-the-art research on stroke gestures is provided
by Zhai et al. [2012]. Below we comment on prior works that bear direct relevance to this article. We
comment on a later section the theoretical framework on which G3 is based.

2.1. Gesture Recognition
One of the first research studies on stroke gestures was conducted by Wolf and Morrel-Samuels
[1987], who reported that “the use of gestures is of particular interest in an interface which allows
the user to write directly on the surface of a display with a stylus.” Stroke gestures led to good
intra-subject consistency and there was consensus regarding gestures being perceived as easy to
use and remember. Later on, Goldberg and Richardson [1993] introduced the general philosophy of
simplifying gesture sets, motivated by the fact that simpler is faster to write, less prone to recognition
error, and can be entered in an “eyes-free” manner, which requires little space onscreen.

Gesture recognition has its own roots in sketching and handwriting recognition. Classification
methods include, among others: linear discriminant analysis [Rubine 1991], template matching [Con-
nell and Jain 2000], decision trees [Belaid and Haton 1984], neural networks [Marzinkewitsch 1991],
hidden Markov models [Koschinski et al. 1995], parsing grammars [Costagliola et al. 2004], support
vector machines [Bahlmann et al. 2001], principal component analysis [Deepu et al. 2004], or ad-hoc
recognizers [Leiva et al. 2014]. Typically, gesture recognition takes place after a “pointer up” event,
although it is possible to perform it continuously, in an incremental fashion [Bau and Mackay 2008].

Most gesture recognizers for prototyping UIs are based on the template matching (or instance-
based) approach: a query gesture is geometrically compared against a number of stored templates,
using 1 nearest-neighbor for classification and either Euclidean distance or a Mean Square Error
(MSE) score as dissimilarity measures. Template matchers are a very viable and a relatively simple
solution for recognizing gestures, and can be adapted to personalized user gestures. Popular examples
of these recognizers among the HCI literature are part of the so-called “$ family”: $1 [Wobbrock
et al. 2007], $N [Anthony and Wobbrock 2010], and their newer versions Protractor [Li 2010] and
$N-Protractor [Anthony and Wobbrock 2012], respectively—the only difference with their previous
versions is a closed-form algorithm to match gesture templates that provides a significantly better
performance. More recently, Vatavu et al. [2012a] introduced $P, a sequential-agnostic recognizer
where strokes are treated as a cloud of 2D points, discarding thus stroke number, order, and direction.

2.2. Gesture Boostrapping
Training data is the key factor to build a competitive gesture recognizer. For instance, the Freehand
Formula Entry System (FFES) suggests 20–40 examples per symbol per user [Smithies et al. 2001].
Koch et al. [2010] studied gesture recognition using a Nintendo Bluetooth Wiimote controller as
input, and found that 120 training patterns of accelerometer-based data are a lower bound; below that
threshold the error rate increased dramatically. Another important factor worth mentioning toward the
adoption of one gesture recognizer over another is performance, typically represented by execution
time and memory usage. It is here where the above-mentioned template matchers usually excel, and
the main reason why we chose them to conduct our experiments (Section 6).

A number of approaches are aimed at simplifying the process of designing gesture sets. An
interesting example is Gesture Script [Lü et al. 2014], which allows developers to describe the
structure of a gesture and its parts. With this information, Gesture Script synthesizes new gesture
samples by changing the relative scale of each part and their rotation angles. Unfortunately, Gesture
Script can only deal with unistroke gestures that are performed in a unique way. Besides, having to
provide too detailed information for each gesture can be time-consuming for the user.

Gesture Marks [Ouyang and Li 2012] allows users to access applications and websites using
gestures without having to define them first, by means of crowdsourcing and the combination of
gesture and handwriting recognizers. Gestalt [Patel et al. 2010] supports the entire process of applying
machine learning: implementing a classification pipeline, analyzing data as it moves through that
pipeline, and easily transitioning between them. CrowdLearner [Amini and Li 2013] enables a
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developer to quickly acquire a usable recognizer for their specific application by spending a moderate
amount of money (about $10) in a short period of time (about 2 hours).

Notable systems aimed at building gesture recognizers tailored to developers and end-users include
MAGIC [Ashbrook and Starner 2010; Kohlsdorf and Starner 2013] and Gesture Follower [Caramiaux
et al. 2014]. Both systems provide the user with a means of generating synthetic gesture samples in
3D space. MAGIC performs local perturbations to the resampled points of a gesture, whereas Gesture
Follower introduce some variations to a gesture template using Viviani’s curve formulation. These
tools decrease the number of iterations needed to build a fast and stable gesture recognition interface,
however there is no evidence that they can produce human-like samples. Further, these artificially
generated samples usually perform poorly since they do not illustrate sufficient variation required for
high-quality training [Plamondon et al. 2014]. However, these prior projects demonstrate the ongoing
importance of and interest in improving gesture recognition by acquiring large data samples.

2.3. Gesture Design Tools
Gesture design tools are well studied in the HCI community [Hong and Landay 2000; Kin et al.
2012]. Example-based approaches like GRANDMA [Rubine 1991], Agate [Landay and Myers 1993],
GDT [Long et al. 1999], Gesture Coder [Lü and Li 2012], or Gesture Studio [Lü and Li 2013] allow
developers to create and test gestures by recording examples.

There are a number of similar systems tailoring end-users. For instance, EventHurdle [Kim
and Nam 2013] is a visual gesture-authoring tool to support designers’ explorative prototyping.
It supports remote gestures from a camera, handheld gestures with physical sensors, and touch
gestures by utilizing a touchscreen. Also, designers can visually define and modify gestures through
interaction workspace and graphical markup language with hurdles. A CAPpella [Dey et al. 2004]
is another programming by demonstration environment intended for end-users. It allows users to
“program” their desired behavior without writing any code, by demonstrating it to the system and by
annotating the relevant portions of the demonstration. GestIT [Spano et al. 2013] allows declarative
and compositional definition of gestures for different categories (e.g. multitouch and full-body
gestures).

Other tools like iGesture [Signer et al. 2007] and InkKit [Plimmer and Freeman 2007] offer
several algorithms through a high-level interface. However, they are more intended for recognition
benchmarking. In this line, Beuvens and Vanderdonckt [2012] devised a desktop application for
facilitating the integration of gestures in UIs by describing the roles of the gesture specialist and other
stakeholders involved in the development life cycle. G3 preserves these core interactions, though its
goal goes further. In short, our tool provides the user with an unprecedented capability in terms of
time savings, since only one example per gesture class has to be specified. Furthermore, because G3
is web-based, the user does not have to install additional software to start using our tool.

2.4. Gestures as A Service
To close this related work section, we should mention a number of previous works that offered
gesture development over the Web. First, van Seghbroeck et al. [2010] described WS-Gesture, a
framework that allows users to control different devices based on the DPWS (Devices Profile Web
Services) standard. Although an important piece of the framework, gesture recognition itself was not
the topic of their research.

Second, Vatavu et al. [2012b] developed Gesture Profile for Web Services (GPWS), an event-driven
architecture based on the service-oriented architecture (SOA) standard. GPWS focuses on delivering
gesture recognition services, for which a user must provide the data required to train a recognizer.
On the contrary, G3 bootstraps gesture generation from one gesture example provided by the user.
What is more, G3 uses the Representational State Transfer (REST) web service protocol to bootstrap
gestures. Among other advantages, REST is a stateless, cacheable, layered system architecture.
Further, REST has gained widespread acceptance across the Web as a simpler alternative to other
web service protocols such as WSDL.
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Third, MAGIC 2.0 [Kohlsdorf et al. 2011] is a web-based prototype that allows users to interface
with the MAGIC framework [Ashbrook and Starner 2010]. Users can design motion gesture datasets
while testing for and preventing false positives, which is important for sensor-based prototypes, as the
user may accidentally trigger unintended gestures.1 Thus MAGIC is related to gesture classification
systems, instead of gesture bootstrapping. G3 fills this gap and optionally allows for quickly creating a
ready-to-use, simple gesture recognizer that is suitable for use on prototypes in different programming
languages.

3. KINEMATIC THEORY OF RAPID HUMAN MOVEMENTS
Many models have been proposed to study human movement production; e.g., models relying on neu-
ral networks [Bullock and Grossberg 1988], equilibrium point models [Feldman 1966], behavioral
models [Thomassen et al. 1983], coupled oscillator models [Hollerbach 1981], kinematic mod-
els [Meyer et al. 1990; Plamondon 1995a], or models exploiting minimization principles [Neilson
1993; Flash and Hogan 1985]. Some models exploit the properties of various functions to reproduce
human movements; e.g., exponentials [Plamondon and Lamarche 1986], second order systems [De-
nier Van Der Gon and Thuring 1965], gaussians [Leclerc et al. 1992], beta functions [Alimi 2003],
splines [Morasso et al. 1983], Viviani’s curves [Viviani and Flash 1995], and trigonometrical func-
tions [Maarse 1987]. Among these, the kinematic theory [Plamondon 1995a; Plamondon 1995b]
and its associated Sigma-Lognormal model [Plamondon and Djioua 2006] provides the most solid
framework to date for the study of the production of human movements. This framework takes into
account different psychophysiological features, such as the neuromuscular response time, and has
been shown to outperform many other approaches [Plamondon et al. 1993]; see Section 8 for a
discussion. The Sigma-Lognormal is the latest instantiation of this framework, and very recently
has been used to explore gesture recognition, showing that synthesized gestures are beneficial in
many ways. For instance, using synthetic samples, a classifier resists better when introducing new
classes and it is able to re-estimate rapidly all its parameters and to improve rapidly the recognition
performance for the old and the new gestures [Almaksour et al. 2011; Plamondon et al. 2014].

The reader should note that the use of the word “rapid” in the kinematic theory name is due to
historical reasons, as the first model (Delta-lognormal) was aimed at studying truly rapid movements,
such as those involved in creating handwritten signatures. However, the Sigma-Lognormal model
generalizes to any type of movements [Plamondon and Djioua 2006] and has been used to analyze,
among others, handwriting learning in children, aging phenomenon in adults, neurodegenerative
disorders, or brain stroke risk factors [Plamondon et al. 2013].

3.1. Mathematical Formulation
At a high-level representation, the Sigma-Lognormal model assumes that a complex handwritten
trajectory (e.g. a character, a digit, a word, a signature, or a gesture) is composed of a series of
primitives2 (circular arcs) connecting a sequence of virtual targets. This series of primitives is known
as the “action plan” of the user, and it is fed through the neuromuscular network to produce a
trajectory that leaves a handwritten trace, as illustrated in Figure 1.

Mathematically, the magnitude of the velocity of the ith primitive is described by a lognormal
shaped function scaled in amplitude by a command parameter Di and time-shifted by the time
occurrence t0i of this command:

‖~vi(t)‖ = DiΛ(t; t0i , µi, σ
2
i ) =

Di

σi

√
2π(t− t0i)

exp

(
−[ln(t− t0i)− µi]

2

2σ2
i

)
(1)

where µi and σi define the variability of the neuromuscular execution of the ith motor command.

1This phenomenon is related to the well-known “Midas Touch problem” in eye-gaze interaction: the sensors cannot be
used directly as a pointer device, because the sensors are always “on.”

2In the gesture recognition literature, the term “stroke” denotes the trajectory between two consecutive pointer-down and
pointer-up events. In the kinematic theory, a “stroke” is what we call “primitive” in this article.
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Fig. 1. A gesture stroke (orange thick line) is described by the temporal overlap of a series of primitives (green dashed arcs)
connecting a sequence of virtual targets (1–4 black circles). Each primitive is described by a lognormal velocity profile.

Then, the trajectory that produces the human movement ~v(t) is computed as the temporal overlap
of each primitive’s velocity ~vi(t):

~v(t) =

N∑

i=1

~vi(t) =

N∑

i=1

[
cosφi(t)
sinφi(t)

]
DiΛ(t; t0i , µi, σ

2
i ) (2)

where the angular position φi(t) is obtained by:

φi(t) = θsi +
θei − θsi

2

[
1 + erf

(
ln(t− t0i)− µi

σi

√
2

)]
(3)

being θsi and θei the starting angle and the end angle of a given primitive, respectively.
Finally, the reconstruction of the original trajectory can be computed using the following compact

notation [O’Reilly and Plamondon 2009]:

[
x(t)
y(t)

]
=

N∑

i=1

Di

θei − θsi

[
sinφi(t) − sin θsi

− cosφi(t) + cos θsi

]
(4)

Previous works have demonstrated the connection between the distortion of the Sigma-Lognormal
parameters and the intra-variability found in complex human movements [Djioua and Plamondon
2009; Martı́n-Albo et al. 2014]. This results in the generation of realistic human-like synthetic
samples, which in turn improves an existing recognizer’s accuracy [Plamondon et al. 2014]. We have
developed a web service that implements this framework and we would like to make it available to
the research community via this article. Further, we have developed an open source web application
that interfaces with our web service. To date, this is the first tool of these characteristics that is
publicly available. In the next section we provide the implementation details of G3 components. Then
we describe the G3 interface through a practical usage example.

4. IMPLEMENTATION AND ALGORITHMS
In this section, we describe the current implementation of our gesture bootstrapping system. At its
core, we have incorporated the Sigma-Lognormal extractor proposed by O’Reilly and Plamondon
[2009] to identify primitives and compute their Sigma-Lognormal parameters. Then, we built a web
service that makes the system available to others as well as a web application that interfaces with the
web service.

4.1. Sigma-Lognormal Extractor
In the following, we describe the different steps performed to identify and extract the lognormals
from a given gesture example.
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4.1.1. Preprocessing. Initially we apply a preprocessing step focused on enhancing the quality
of a given gesture trajectory. To begin, the trajectory is interpolated using cubic splines and then
resampled at 200 Hz. As the parameter estimator used is velocity-based, instead of shape-based, it is
more prone to spatial deviation errors (drifting) as the input size gets larger; i.e., when the number of
strokes and/or number of points increase. Then, the final velocity is computed as the sum of each
primitive’s velocity. Therefore, some errors in the angle estimation could be propagated over the
reconstructed trajectory, leading to increased drifting for larger gestures [Fischer et al. 2014]. For
this reason, we used a more robust representation, where we split the original trajectory into smaller
pieces, considering each of them as an independent primitive. After that, zero crossing velocity
is enforced for each primitive, by keeping the original trajectory artificially at the start and end
positions.

4.1.2. Primitive Identification. As previously stated, to estimate the Sigma-Lognormal parameters, a
number of primitives must be identified in the gesture velocity profile. This results in five characteristic
points for each lognormal. Each characteristic point is located at a certain time t and has magnitude
‖~v(t)‖; see Figure 2.

p1

p2

p3

p4

p5

Time

‖V
el

oc
ity
‖

Fig. 2. The velocity profile of a gesture primitive follows a lognormal function. The red dots indicate, from left to right: the
beginning of the lognormal (p1), first inflexion point (p2), local maximum velocity (p3), second inflexion point (p3) and the
end of the lognormal (p5).

It is important to remark that the selection of these characteristic points must be robust, given that
noise and/or lognormal superpositions may drift their location, generating thus false point series.
Thus, their location is compensated taking into account the expected variability of the µ and σ
parameters. After that, two practical criteria are applied to retain the meaningful characteristic point
series. The first criterion states that the area under the curve delimited by p1 and p5 must be greater
than the mean minus one standard deviation of the area under the curve of all computed characteristic
point series. The second criterion states that the maximum value of a characteristic point series (that
is, ‖~v(t3)‖) must be at least 15 times smaller than the maximum value of ‖~v(t)‖.

4.1.3. Primitive Extraction. After primitive identification, a strategy to extract multiple lognormals
is adopted, which proceeds in two different modes. In the first one, all characteristic point series
are sequentially processed. For each set of characteristic points, Sigma-Lognormal parameters are
estimated using the Robust XZERO (RX0) algorithm [O’Reilly and Plamondon 2009]. This mode is
preferred, because it provides a better framework to isolate each lognormal, given that it minimizes
the superposition effect from direct neighboring lognormals. However, if the end of the gesture
trajectory is reached without having obtained a satisfactory estimation, the extractor toggles to a
secondary mode. Here, the characteristic point series are processed in descending order according to
their area under the curve, that is, according to the importance of their effect on the gesture velocity.
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Finally, the quality of the estimated primitives is measured using the signal to noise ratio (SNR)
with respect to the original velocity profile. SNR is computed as follows:

SNR = 10 log




∫ T

0
‖~v(t)‖2

∫ T

0
‖~v(t)− ~v ∗(t)‖2


 (5)

where ~v(t) is the original velocity, ~v ∗(t) is the reconstructed velocity and T is the duration of the
gesture. In practice, the Sigma-Lognormal parameters are considered to be well estimated when
SNR ≥ 15 dB; see Figure 4.

4.1.4. Velocity Estimation. As mentioned previously, the RX0 algorithm was used to estimate the
velocity-related parameters (σ, t0, D, µ) for every detected lognormal. This algorithm exploits time
and velocity constraints on three of the lognormal characteristic points, pj :3

tj = t′j
‖~v(tj)‖ = ‖~v ∗(t′j)‖

(6)

where j ∈ {2, 3, 4}. Left-side terms are observed values, obtained from the velocity profile and the
right-side terms are calculated analytically.

The estimation of σ, µ, t0 and D can be carried out using different combinations of the lognormal
characteristic points and the Equations (7) to (10) that are derived from the previous constraints:

σ2 =





−2− 2 ln rαβ − 1

2 ln rαβ
, if α = 2, β = 3

−2 + 2
√

1 + ln2 rβα, if α = 2, β = 4

−2− 2 ln rβα − 1

2 ln rβα
, if α = 3, β = 4

(7)

with rij = ‖~v(ti)‖/‖~v(tj)‖. Then,

µ = ln

(
tα − tβ

e−aα − e−aβ

)
(8)

t0 = tα − eµ−aα (9)

D = ‖~v(tα)‖σ
√
2π exp

(
µ+

a2α
2σ2

− aα

)
(10)

where α, β ∈ {2, 3, 4}, α < β and

aj =





3
2σ

2 + σ
√

σ2

4 + 1, if j = 2

σ2, if j = 3

3
2σ

2 − σ
√

σ2

4 + 1, if j = 4

(11)

The parameters are computed using all of the possible combinations of p2, p3, and p4, in order to
provide more robustness to such estimation. Once these estimates are available, the best solution is
the one that minimizes the least-square error with respect to the original velocity profile.

3Although constraints are also met for p1 and p5, they are not very robust in practice and therefore we do not recommend
to take them into account.
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4.1.5. Angle Estimation. At this point, the velocity parameters θs and θe remain still unknown.
Nevertheless, given that each lognormal primitive occurs along a pivot, it can be proved that the
angular variation is proportional to the traveled distance along the trajectory [Plamondon 1995a].
This property is exploited to perform a linear interpolation that computes the angular parameters θs
and θe using Equations (3) and (14):

θs = φ(t3)−∆φ ·
[
d(t3)− d(t1)

]

θe = φ(t3)−∆φ ·
[
d(t5)− d(t3)

] (12)

where

∆φ =
φ(t4)− φ(t2)

d(t4)− d(t2)
(13)

d(tj) =





0, if j = 1

D
2

[
1 + erf

(−aj

σ
√
2

)]
, if j = 2, 3, 4

D, if j = 5

(14)

4.2. Artificial Sample Generation
In the past, the artificial generation of human movements has been approached by applying deforma-
tions at the coordinate level. However, this produces unrealistic results in many cases [Plamondon
1995b; Plamondon et al. 2014]. In contrast, as discussed earlier, previous works have demonstrated
the connection between the distortion of the Sigma-Lognormal parameters and the intra-variability
found in human handwriting [Djioua and Plamondon 2009; Martı́n-Albo et al. 2014], which results
in the generation of realistic human-like synthetic samples. Therefore, once the gesture primitives
have been extracted and a model of the original (human) gesture sample is available, we introduce
uniformly-distributed perturbations to the following parameters:

l∗i = li (1 + ξ · uli)

g∗i = gi (1 + ξ · k) (15)

where li = {µi, σi} denote local perturbations in the peripheral parameters µ and σ, with uli =
U(−nl, nl) being the (local) noise level applied to each primitive; gi = {D, θs, θe} denote global
perturbations in the control parameters D and θ, with k = U(−ng, ng) being the constant (global)
noise level applied to each primitive; ξ ∈ [0, 1] is a user-modifiable parameter of the G3 interface (to
be described in the next section); and nµ = 0.15, nσ = 0.35, nD = 0.25, nθ = nθs = nθe = 0.3
denote the different noise values. These values have been empirically tunned in previous work [Martı́n-
Albo et al. 2014]. The remaining Sigma-Lognormal parameter t0i is left untouched, as suggested by
others, because it is very sensitive to small perturbations [Fischer et al. 2014].

4.3. G3 Web Service
Our web service was designed with simplicity and ease of use in mind. Therefore, a single URL is
made available as endpoint, accepting: the number of desired synthetic samples (10 by default), the
degree of gesture variability (ξ, 1.0 by default) and an example gesture.

For instance, the following HTTP request will return 15 synthetic samples having a relatively high
variability degree:

POST /synthesize HTTP/1.1
Host: http://g3.service.url
Content-Type: application/json

{ "gesture": "{· · ·}", "num_samples": 15, "variability": 0.75 }
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where "gesture" points to a JSON-formatted string representing a stroke sequence:
{ "id1":[[x1,y1,t1]· · ·[xM,yM,tM]], · · ·, "idN":[· · ·] }

Each stroke is a tuple of 2D coordinates plus timestamp, and has an ID in order to make the format
compatible with multitouch gestures.

We should mention that the ξ parameter is just meant for fine-tuning while operating the G3
interface: while 1.0 is a reasonable choice (it provides more diverse gesture exemplars), setting it
to 0.0 is useful for research (e.g. inspect sample reconstruction, test and compare different noise
generation techniques) or user adaptation purposes (replicating the same sample is equivalent to
weighing its importance in a dataset). As can be seen in Figure 3, ξ can be controlled by a slider and,
according to Equation 15, the noise levels range between 0.0 and their empirically tuned values.

On the other hand, if no timestamps are available, the web service accepts an optional third
parameter to set a sampling frequency (200 Hz by default). For instance, assuming that in the
previous example the coordinates do not have associated timestamps but we know they were acquired
at 100 Hz, we can specify such sampling rate as follows:
POST /synthesize HTTP/1.1
Host: http://g3.service.url
Content-Type: application/json

{ "gesture": "{· · ·}", "num_samples": 15, "variability": 0.75, "rate": 100 }

The web service returns a JSON-encoded string:
HTTP/1.1 200 OK
Connection: close

{ "success": true, "error_code": null, "samples": [gesture01, · · ·, gesture15] }

The success property informs about the bootstrapping result: true if success, false otherwise.
Each synthesized gesture sample has the same number of strokes as the original gesture, and is
resampled according to the user’s articulation speed4 Finally, JSONP requests are possible, in order
to enable cross-domain communication.

4.4. G3 Web Application
Our web service alone might not be of practical use for novice developers or UI designers, as they
may not be familiar with machine learning techniques or gesture recognition algorithms. For that
reason, we release a web-based application interfacing with our web service that allows users to
make the most of its potential. A detailed overview is given in the next section.

The web application incorporates a number of template-matching recognizers (see next section),
so that it is possible to build a working prototype together with the synthesized data. Further, being
open source, our application allows anyone interested to contribute to improving it. For instance,
an envisioned task is that of including a particular gesture recognizer in a particular programming
language. To do so, currently a developer must put a the source code of said recognizer in a
special folder inside the application’s working directory together with a g3manifest.json file.
The following is an example:
{

"name": "NN-DTW",
"description": "Nearest Neighbor classifier with Dynamic Time Warping",
"author": "mlpy",
"version": "3.4.0",
"website": "http://example.com/dtw/",
"language": "Python",
"capabilities": ["unistrokes"],
"preprocessor": "/path/to/file"

}

4Estimated either from the timestamps or the optional rate parameter.
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Gestures à Go Go 0:11

Here, the interesting part is the file indicated in the preprocessor property. This file takes as
input a gesture set in JSON format and outputs a working gesture recognizer in a ZIP file. The
preprocessor instructs our tool how to build the recognizer, e.g. feeding a template library with the
new samples provided or even training a sophisticated classifier. Thus, our tool abstracts away the
recognizer’s implementation. The capabilities option provides additional information about the
recognizer; e.g. whether it can deal with multistroke gestures or if it only targets unistroke gestures.
This is used to inform the user prior selecting a combination of recognizer plus programming
language (see Figure 3).

5. INTERACTING WITH G3

A

D

C

B

E

GF

Fig. 3. G3 user interface. A: Drawing area. The dot indicates the starting point of each gesture stroke. B: Options area.
Besides the number of gestures to generate, advanced options allow the user to indicate e.g. a desired variability degree. C:
Collection area. Each gesture is presented as an ordered list, with the possibility of adding or removing gesture examples. D:
Export area. The user can optionally export a gesture recognizer available in different programming languages. E: Import area.
A JSON file comprising a collection of gesture examples can be submitted. F: Reconstruction area. A reconstruction of the
user gesture is used for later synthesis. G: Synthetic gestures area. Generated samples appear here.

Like prior example-based systems, our web application allows developers to quickly create a
gesture set. However, within G3 interface the developer simply demonstrates one example of each
gesture. The web application currently supports unistroke, multistroke, and multitouch gestures
drawn on a 2D canvas. Below we introduce our tool by following a developer as she creates a set
of customized gestures. The developer, Alice, needs to build a recognizer that handles 5 different
gestures in her application.

5.1. Example-based Demonstration of Gestures
For each gesture, Alice records just one example by drawing on the web canvas. We are not aware
of any other tool that requires such a small user intervention at this time. Next, G3 verifies that the
gesture data is of enough quality for later synthesis. It is considered so when SNR ≥ 15 dB (this
applies to all of the strokes in a multistroke or multitouch gesture). When the SNR of the provided
gesture example is below that threshold, G3 informs Alice so that she can draw the gesture again.
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The reasons why a gesture might not achieve a high-quality SNR include: too fast-paced execution
(low number of captured points),5 under-resourced hardware (e.g. an old smartphone), or simply a
symptom of possible problems in the user’s motor control system [Plamondon et al. 2013].

5.2. Synthesizing Additional Examples
Once a gesture has been drawn, Alice chooses the desired number of samples that will be synthesized
as well as the degree of variability for such synthetic samples. Low variability values will return
synthetic samples that are mostly close to the gesture drawn by the user, whereas high variability
values will make room for generating more diverse samples. Next, she clicks on the ‘submit’ button
and G3 displays a list with the synthetic gesture samples.

5.3. Iterative Refinement
Alice does not like 2 of the synthesized gestures, so she clicks on the unwanted gestures to remove
them from the current set and requests 2 additional samples. When she is happy with the result, she
clicks on the ‘store’ button and the samples of the current gesture are saved. The original hand-made
gesture is also stored together with the synthetic samples.

5.4. Exporting Gesture Data
After gesture synthesis, Alice immediately has a gesture set of an arbitrary size (e.g., 20 samples for
each of the 5 gestures provided, 100 samples overall). By clicking on the ‘export’ button, the data are
exported as a JSON file. G3 will remember the generated gesture set, in case Alice wants to modify
some of the gestures later.

Alice also decides to try a number of the recognizers provided by the G3 interface, so she selects
the desired combination of recognizer plus programming language and clicks on the ‘export’ button.
As a result, Alice gets a recognizer together with the synthesized gesture set. G3 currently features the
“$ family” and Dynamic Time Warping in different programming languages (JavaScript, ActionScript,
Python, C#, Java, C++, PHP), which are well-suited for experimentation by developers and UI
designers. Excepting JavaScript, not all combinations of recognizer plus programming language are
available at this time, but it is our hope that these will be available in the future.

5.5. Incorporating a Recognizer
In case a recognizer is created within G3, incorporating it in the developer’s application is analogous
to prior works [Amini and Li 2013; Lü and Li 2012; Lü et al. 2014]. Alice will add the recognition
module containing the implemented algorithms and the gesture files as created and exported from
G3. We have decided not to incorporate recognizers that require extensive training because such
approaches do not fit our desire of quickly providing users with a simple and ready-to-use gesture
recognizer.

5.6. Importing Gesture Data
Alice remembers that some time ago she downloaded a small dataset consisting of 2 examples per
gesture, 16 different gestures in total. Now she wants to generate a bigger dataset to train a custom
recognizer, so she prepares a JSON file according to the following specification:

{
"a gesture label": [gesture01, · · ·, gestureN],
. . .,
"another gesture label": [gesture01, · · ·, gestureN]

}

where each gesture follows the format described in Section 4.3. She then clicks on the ‘upload’ button
and the collection module gets updated (Figure 3, D). Next, she goes through each imported gesture
and requests the desired number of samples. As previously commented, if some of the uploaded

5As discussed in Section 4.1.2, at least 5 characteristic points per stroke are needed for reconstruction.
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samples were reconstructed with SNR < 15 dB, G3 interface will inform Alice. Finally, she clicks on
the ‘export’ button and she gets delivered the synthesized dataset, and optionally an accompanying
gesture recognizer.

6. EVALUATION
We conducted a rigorous experimentation over 3 public datasets, in order to illustrate the value of our
bootstrapping service as a means to building or replicating human-generated datasets. We compared
the performance of the synthetic gesture samples with that of human samples in terms of: articulation
speed, size of gesture vocabulary, input device, and gesture variability. Further, in the next section
we provide anecdotal evidence on the usage of G3 interface.

6.1. Recognizers
We tested all recognizers currently implemented in G3 interface: the $ family ($1, $N, $P) and
Dynamic Time Warping (DTW). $1 (actually Protractor) is an instance-based unistrokes recognizer
using 1 nearest-neighbor classification with Euclidean distance; see Related Work. $N (actually
$N-Protractor) is an extension of $1 to handle multistrokes. $P uses an optimization of the Hungarian
algorithm for classification. DTW performs elastic matching between two gestures, by computing a
warping matrix of point-wise Euclidean distances. Contrary to the recognizers in the $ family, our
DTW implementation does not perform any preprocessing on gesture samples (e.g., resampling,
rotating, or scaling). All of these recognizers are publicly available in JavaScript, so we used node.js
to conduct the experiments. We used the default configuration of each recognizer excepting gesture
resampling, which was set to 32 points in order to speed up recognition time without sacrificing
accuracy [Vatavu 2011].

6.2. Datasets
We generated synthetic samples for the following public datasets via our web service.

$1-GDS: Available at https://depts.washington.edu/aimgroup/proj/dollar/xml.zip. This
is a reference dataset in HCI to test unistroke-based recognizers. The dataset comprises 16 unistroke
gesture classes, 5,280 samples in total. 10 users (plus 1 pilot user) provided 10 samples per class
at 3 articulation speeds (slow, medium, fast) using an iPAQ Pocket PC (stylus as input device). For
slow speed, users were asked to “be as accurate as possible;” for medium speed, users were asked to
“balance speed and accuracy;” for fast speed, users were asked to “go as fast as you can” [Wobbrock
et al. 2007].

MMG: Available at https://depts.washington.edu/aimgroup/proj/dollar/mmg.zip. This is
a reference dataset in HCI to test multistroke-based recognizers. The dataset comprises 16 multistroke
gesture classes, 9,600 samples in total. 20 users provided 10 samples per class at 3 articulation speeds
(slow, medium, fast) using either finger (half of the users) or stylus as input devices on Tablet PCs.
Speed definitions are the same as in the $1-GDS dataset.

chars74k: Available at http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/EnglishHnd.
tgz. The dataset comprises 62 handwritten classes (0-9, A-Z, a-z), unistrokes and multistrokes,
3,410 samples in total. 55 users provided 1 sample per class using a Tablet PC at a constant sampling
rate of 100 Hz. This dataset is interesting to us for three reasons. First, previous works have found
that letters are commonly used by end-users as gestures [Ouyang and Li 2012; Poppinga et al. 2014].
Second, this dataset is more complex and has a large number of classes in comparison to the other
datasets. Third, unlike $1-GDS and MMG datasets, no timestamps are available in the chars74k
dataset, so handwriting velocity must be estimated for reconstruction from the given sampling rate.

6.3. Method
All gesture samples in each dataset were reconstructed according to Section 4.1. We picked the worst
and best sample of each gesture in terms of SNR (Equation 5), and generated as many synthetic
samples as human samples were in each dataset, using ξ = 1.0. As shown in Figure 4, SNR ≥ 15 dB
is an acceptable lower bound to work with. Thus, each gesture’s worst reconstructed sample had
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Fig. 4. Histograms of all reconstructed human gesture samples.

at least 15 dB, whereas each gesture’s best reconstructed sample had the highest SNR among all
available samples of such gesture, typically around 30 dB. Samples with SNR below 15 dB were not
considered as worst case examples. In total, 36,580 samples were used for reconstruction.

Figure 5 provides an overview of the $1-GDS and MMG datasets, together with some examples
of the synthesized gestures that G3 generates. The chars74k dataset is not shown for the sake of
brevity—all samples are just digits and uppercase and lowercase English letters.

$1-GDS dataset examples

1 1 1

MMG dataset examples

1 1 1

Fig. 5. Human and synthetic gesture datasets, all samples picked at random. Can you guess which datasets are human
generated and which ones were synthesized? See the answer at the end of this article.

6.4. Impact of Synthetic Samples on Articulation Speed
These experiments were conducted over the $1-GDS and MMG datasets, as they were the ones that
provided up to 3 articulation speeds: slow, medium, and fast. We decided to test the $1-GDS dataset
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with $1 and DTW, whereas MMG dataset would be tested with $N and $P. Multistroke recognizers
could also have been tested on the $1-GDS dataset, and even DTW could have been adapted to
handle multistroke gestures. However, the evaluation goal is comparing the performance of synthetic
gesture samples to that of human samples. Thus, we sought a balance on recognizer plus dataset
combinations.

6.4.1. User-dependent Tests. To begin, we conducted a number of user-dependent tests in the
same vein as previous works have tested the $ family of recognizers [Anthony and Wobbrock 2012;
Li 2010; Vatavu et al. 2012a; Wobbrock et al. 2007]. For each user, the recognizer is trained using a
number of the user’s gesture examples, and one example is used for testing. This is repeated for all
users, and results are aggregated. Each user provided 10 examples of each gesture, so we increased
the number of templates from 1 to 9. In total, 265,848 recognition tests were performed. The results
are shown in Figure 6.
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Fig. 6. Impact of synthetic samples on articulation speed. User-dependent tests. Error bars denote 95% confidence intervals.
Synth− and Synth+ denote synthesized samples using the worst and best reconstructed human sample of each gesture,
respectively.

Synthetic samples were found to achieve very similar performance to that of human samples.
This observation was consistent for all articulation speeds and number of templates, using either the
best and worst reconstructed human samples. Differences between human and synthetic samples
(either worst and best case examples) were not statistically significant (two-tailed paired t-tests with
Bonferroni correction, p > 0.05/6). It is interesting to note that $1 and $P perform quite well with
just one loaded template; these recognizers are about as twice accurate as DTW and $N, respectively.
Then, when the number of templates increases, differences fall away. With all user’s templates loaded,
all recognizers are +99% accurate.

ACM Transactions on Intelligent Systems and Technology, Vol. 0, No. 0, Article 0, Publication date: 0000.

This is a preprint for personal use only. The published paper may be subject to some form of copyright.



0:16 L. A. Leiva et al.

6.4.2. User-independent Tests. We also conducted user-independent tests, as it is a regular proce-
dure in machine learning experiments. We used a k-fold leaving-one-out procedure: for each user,
the recognizer is trained using the rest of the users and one user is left out for testing. This is repeated
for all users, and results are aggregated. Each user provided 10 examples of each gesture, so we
increased the number of templates from 1 to 10. In total, 4,479,420 recognition tests were performed.
The results are shown in Figure 7.
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Fig. 7. Impact of synthetic samples on articulation speed. User-independent tests. 95% confidence intervals are below
0.1%. Synth− and Synth+ denote synthesized samples using the worst and best reconstructed human sample of each gesture,
respectively.

As in the previous experiments, we noticed that synthetic samples provide similar performance
to that of human samples. This was also consistent for all articulation speeds and number of
templates, using either the best and worst reconstructed human samples. Differences between human
and synthetic samples were not found to be statistically significant (two-tailed paired t-tests with
Bonferroni correction, p > 0.05/6). Again, $1 and $P performed better than DTW and $N with just
one loaded template. With all user’s templates loaded, all recognizers provide similarly competitive
advantage.

6.5. Experiments on a Large Gesture Vocabulary
Usually, when the number of gesture classes in a dataset increases, the accuracy of a recognizer tends
to decrease. This is so because of potential collisions introduced by perceptually similar classes. To
test this hypothesis, we used the chars74k dataset. Some examples of such potential collisions occur
in this dataset with i and j; o, O, and 0; c and C, etc.

In the chars74k dataset 55 users provided 1 sample per gesture class, so we can follow a procedure
akin user-dependent tests; see previous section. Given that this dataset includes multistroke samples,
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we tested $N and $P. In total, 613,800 recognition tests were performed. The results are shown in
Figure 8.
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Fig. 8. Impact of synthetic samples on a large gesture vocabulary (chars74k dataset, 62 classes). 95% confidence intervals
are below 1%. Synth− and Synth+ denote synthesized samples using the worst and best reconstructed human sample of each
gesture, respectively.

While differences between human and synthetic samples were not statistically significant (two-
tailed paired t-tests with Bonferroni correction, p > 0.05/2), the recognizers performed worse in
comparison to the results they achieved on the MMG dataset, as predicted; see Figure 6. Overall,
it was found that synthetic samples achieved better results. This is true for samples synthesized
from the best reconstructed samples as well as for samples synthesized from the worst reconstructed
samples. For instance, with one loaded template, error rates surpassed 50% in case of human samples,
while $N achieved 34.1% and 19.7% for the worst and best cases, whereas $P achieved 19.0% and
12.8%, respectively.

As usual, increasing the number of templates improved recognition accuracy. However, this time
the best improvements were achieved by far by the synthetic samples. Both $N and $P stabilized
around 30% error using up to 9 human samples as gesture templates, while achieving competitive
results with synthetic samples, the error ranging between 8.0% ($N, worst case) and 1.9% ($P, best
case). These results are encouraging and of potential interest for the design of gesture sets that use a
large number of classes as part of their gesture vocabulary.

6.6. Impact of Synthetic Samples on Input Device
We wondered if there was any difference when users draw gestures with different input devices.
Luckily, the MMG dataset allows us to test two conditions: finger and stylus. We conducted both user-
dependent and user-independent tests. The 3 articulation speeds were averaged for these experiments.

6.6.1. User-dependent Tests. We followed the same procedure as in the previous experiments. In
total, 172,788 recognition tests were performed. The results are shown in Figure 9.

This time, human samples performed better that their synthetic counterparts for 1 loaded template.
This was found to be statistically significant for finger (two-tailed paired t-tests with Bonferroni
correction, p < 0.05/4) but not for stylus with best case examples. Then, as soon as the number
of templates increased, all conditions performed equally and statistically similar. With 9 templates
loaded, all recognizers achieved around 99% of accuracy for both devices, using either human or
synthetic samples.

6.6.2. User-independent Tests. We followed the same procedure as in the previous experiments.
In total, 3,455,760 recognition tests were performed. The results are shown in Figure 10.

We observed the same pattern as in the previous user-dependent experiments. With 1 loaded
template, human samples achieved better accuracy. This was found to be statistically significant for
both devices (two-tailed paired t-tests with Bonferroni correction, p < 0.05/4). With 5 templates per
gesture, the best case samples performed equally similar to the original dataset samples. Then, with
9 templates loaded, all conditions performed equally and statistically similar. Further, all recognizers
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Fig. 9. Impact of synthetic samples on input device. User-dependent tests. Error bars denote 95% confidence intervals.
Synth− and Synth+ denote synthesized samples using the worst and best reconstructed human sample of each gesture,
respectively.
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Fig. 10. Impact of synthetic samples on input device. User-independent tests. 95% confidence intervals are below 1%.
Synth− and Synth+ denote synthesized samples using the worst and best reconstructed human sample of each gesture,
respectively.

achieved more than 99% of accuracy for both devices, using 10 samples either of human or synthetic
nature.

6.7. Impact of Synthetic Samples on Gesture Variability
Usually, a gesture recognizer would not perform well on unseen data if gesture samples do not
exhibit sufficient variation. We investigated this topic with our datasets, by comparing the variability
of the synthesized samples against their original human samples, using different values of the
user-configurable parameter ξ that is available in G3 interface.
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Samples were synthesized in batches of N ∈ {10, 100, 1000} samples each with ξ ∈
{0.0, 0.5, 1.0}; 0.0 denoting no variability.6 Then, we computed the mean squared error (MSE)
of each synthetic sample with respect to the human sample from which it was generated. MSE
values close to zero indicate that synthetic samples and their human counterparts look very similar.
Conversely, higher MSE values indicate that synthetic samples diverge in shape from their human
counterparts. Strokes were resampled in such a way that a human sample and its synthesized samples
had the same length. MSE was averaged for each batch, variability level, and dataset. No difference
was found regarding the use of worst and best case examples. Table I shows the results.

Table I. Gesture variability (mean squared error) for different number of synthesized samples
and different values of the user-configurable parameter ξ.

N ξ $1-GDS MMG chars74k

Mean SD SE Mean SD SE Mean SD SE

0.0 554.9 715.9 56.6 169.7 175.7 9.5 75.2 101.3 3.6
10 0.5 579.4 774.4 61.2 250.1 271.7 14.7 359.8 407.6 14.7

1.0 593.6 731.1 57.8 490.4 704.9 38.2 1181.5 1449.3 52.5

0.0 554.9 713.9 17.8 169.7 175.7 3.0 75.2 101.3 1.1
100 0.5 576.8 754.7 18.8 256.1 273.4 4.6 377.2 408.3 4.6

1.0 622.1 823.1 20.5 493.4 628.2 10.7 1298.9 1448.9 16.6

0.0 554.9 713.6 5.6 169.7 175.7 0.9 75.2 101.3 0.3
1000 0.5 572.5 741.3 5.8 261.8 280.3 1.5 386.4 426.8 1.5

1.0 621.4 813.3 6.4 498.7 646.0 3.5 1316.2 1452.7 5.2

As expected, it was found that synthetic samples are more variable as ξ increases. Figure 11
illustrates the visual effect of this parameter on gesture variability. In general, we observed that
requesting a small number of synthetic samples (10 samples per gesture) provides slightly less
variable samples. Interestingly, for a given value of ξ, variability was found to increase as the number
of requested synthetic samples increases, though we suspect it is because the MSE is underestimated
for small batch sizes. Indeed, the standard error (SE) gets smaller as the number of samples gets
larger, because the mean of a large sample is likely to be closer to the true population mean.

We also examined the intra-class variability of human gestures, distance-wise; i.e., how variable
is a human gesture sample as compared to the rest of the human samples that belong to the same
gesture class. No difference was found regarding the use of worst and best case examples, neither
regarding the number of requested synthetic samples. The Pearson’s correlation coefficient was found
to be greater than 0.94 in all datasets, which indicates, for the human datasets, a large agreement
regarding how users articulated gestures. Then, comparing synthetic gestures with their human
counterparts resulted in Pearson’s correlation coefficients decreasing as ξ increased; see Table II.
This was unsurprising, and indicates that samples synthesized with a low variability degree look
much more similar to the human samples from which they were generated.

Table II. Correlation for different values of the
user-configurable parameter ξ. Batch size did
not make any difference in this study.

Dataset Pearson’s ρ

ξ = 0.0 ξ = 0.5 ξ = 1.0

$1-GDS 0.94 0.94 0.93
MMG 0.94 0.93 0.89
chars74k 1.00 0.99 0.97

6In this case, G3 returns N copies of the same reconstruction of each human gesture sample.
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(a) ξ = 0.2 (b) ξ = 0.5

(c) ξ = 0.7 (d) ξ = 1.0

Fig. 11. Visualizing the effect of the ξ parameter on gesture variability while requesting 8 synthetic samples. In these
subfigures, the first sample (top-left) is the original user’s gesture, whereas the second sample (top second to the left) is the
reconstruction of the original gesture. With ξ = 0.0, G3 simply returns 8 copies of the reconstructed user’s gesture.

7. INFORMAL USER TESTS
We informally evaluated our web application with 2 participants. Both were professional developers
but have never programmed gestures. To conduct the tests, we used a Nexus 4 smartphone running
Android 4.4.4 (KitKat). The smartphone’s touchscreen was placed in landscape mode. Participants
browsed the web application using Firefox mobile.

Participants were asked to recreate a mobile shortcut gestures dataset (Figure 12) that is not
publicly available at the moment [Poppinga et al. 2014, personal communication]. The dataset
comprises 20 unistroke gesture classes for the top-20 most used commands on smartphones, and was
compiled with the Gestify app, available at the Android Market. In the original (in-lab) study, 18
users provided 1 sample of each gesture [Poppinga et al. 2014].

facebook phonebook playstore camera whatsapp

gallery browser settings sms youtube

mail clock calculator maps music

calendar launcher flashlight togglewifi favcontact

Fig. 12. Mobile shortcut gestures dataset. All samples were synthesized by picking at random one human sample of each
gesture.
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Participants were given a brief description of the G3 interface, after which they could play with it
for 5 minutes at most. Then, they were given a paper-based cheatsheet with the gestures they had to
draw. Participants were told to use the default options: request 10 synthesized samples, variability
slider at the middle position, no built-in recognizer. This way the data would be collected under the
same settings. Participants were instructed to perform as fast and accurate as possible, so they operate
at their own speed-accuracy tradeoff point.

Eventually, participants spent 10.3 and 12.1 minutes each while creating their datasets. Each
dataset comprised 220 gesture samples (10 synthesized samples per gesture plus the originally
drawn sample), so we eventually collected 440 samples for analysis. On average, each gesture took
2.6 seconds to draw for the user and 9.4 seconds to synthesize for the system. 18 out of the 20
gestures were successfully drawn at first try; i.e., participants were happy with how they executed
each gesture. The Maps and Clock gestures were the ones that took a few tries to draw, though they
were reconstructed with high-quality SNR (M=24.8, SD=2.0). This reveals that our web application
achieves adequate sampling performance for data gathering on a mobile device. In addition, no
synthesized sample was re-generated within the interface, indicating that participants were happy
with G3 results.

Participants commented that G3 interface was simple and intuitive to use, and expressed a desire to
use it in case they would need to create a gesture-driven application. All in all, enabling a developer
who has never programmed gestures to generate a high-quality dataset (and optionally a gesture
recognizer) in about ten minutes is promising and of potential interest both for practitioners and
researchers.

No recognition tests were performed by the original dataset authors [Poppinga et al. 2014], who
shipped Gestify with $1 and assumed that it would achieve 97% accuracy with one loaded template.
Therefore we also wondered how $1 would actually perform on this dataset, and whether another
template-matching recognizer could perform better. To achieve this, we ran user-dependent tests
with the collected data, using all recognizers currently implemented in G3 interface. As in previous
experiments, we increased the number of training templates from 1 to 9, and left 1 for testing.
Templates were picked at random, so we repeated this procedure up to 10 times to reduce the effects
of chance, since we had a relatively small number of samples. In total, 50,400 recognition tests were
performed. The results are shown in Figure 13.
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$N
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Fig. 13. Results on the mobile shortcut gestures dataset. Error bars denote 95% confidence intervals.

We verified that $1 can indeed achieve 97% of accuracy with just one loaded template. However,
under the same conditions DTW and $P achieved 99.9% and 99.6% accuracy rates, respectively.
Then, when the number of templates increases all recognizers provide similar competitive accuracy,
as expected. Therefore, we would recommend the Gestify application to ship either $P or DTW
in future releases, as they will perform better with less number of loaded templates. Further, both
recognizers will allow users to create multistroke gestures.
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8. GENERAL DISCUSSION
This article focuses on a web service to bootstrap gesture generation and the web application that
makes the service available to others. Our experiments have proved impact on the design of gesture
datasets, allowing the user to select the best recognizer for each use case. This way, it is really easy to
quickly collect gesture samples and build a competitive recognizer for gesture-driven UI prototypes.

The fundamental advantage of G3 over other approaches is that the user just needs to draw one
example of each gesture. Then, samples are synthesized using lognormal-based deformations on
velocity profiles, which produces human-like results and ultimately helps a recognizer to perform
well on unseen data. In fact, our results confirm previous works that have reported improved accuracy
when training with a dataset that is extended with synthetic data [Galbally et al. 2012; Fischer et al.
2014; Martı́n-Albo et al. 2014; Plamondon et al. 2014]; e.g., from words or signatures collected from
various writers sitting in front of a digitizer tablet, to sentences written on a whiteboard using full
arm movements while standing up.

From a fundamental perspective, it has been proved that lognormal-based models are the most
accurate descriptors of human movements and that other models can be considered as successive
approximations [Djioua and Plamondon 2009]. In fact, Plamondon et al. [1993] compared 23 different
models to describe human movements and found that the lognormal approach outperfomed all of
the other approaches. And even though these lognormal-based models have been mainly applied to
handwriting analysis, many studies have shown that they can be successfully applied to other types
of movements. For example: reproducing wrist movement and eye saccades [Plamondon 1995b], 2D
and 3D arm movements [Leduc and Plamondon 2001], and more recently, stroke gestures [Almaksour
et al. 2011]. In other words, while in practice there might be inherent differences between handwriting
and stroke gesture input, it has been shown that Sigma-Lognormal synthesized gestures are actually
reflective of how users produce stroke gestures.

The previous instantiation of the Kinematic Theory (the Delta-Lognormal model) assumed that the
production of a stroke requires the synergetic activation of two neuromuscular systems, one agonist
and the other antagonist to the direction of the movement. These synchronous commands propagate
in parallel across the two neuromuscular systems, each of which is described by a lognormal impulse
response and has its own timing properties. On the contrary, the Sigma-Lognormal model does not
assume that the two neuromuscular systems are working in precisely opposite directions. The output
velocity is thus described by a vectorial summation of the contribution of each neuromuscular system
involved in the production of a stroke. This model is actually very general, and is not limited to a
single stroke description [Plamondon and Djioua 2006; O’Reilly and Plamondon 2009]. Our work
builds upon this fundamental notion, however we are the first to use the Sigma-Lognormal model
to study finger writing behavior. This corroborates the prediction of the Kinematic Theory, where
it is theorized that every human movement has a lognormal impulse response that results from the
limiting behavior of a large number of interdependent neuromuscular networks.

According to the Kinematic Theory, the actual variability in handwriting articulation might come
from two sources: the “action plan” of the user (dashed lines in Figure 1) and the actual execution
process. This is reflected by fluctuations in the control parameters (t0, D, θ) and in the peripheral
parameters (µ, σ). In our implementation, we introduce noise in µ, σ, D and θ. The µ and σ variations
mimic peripheral noise, like a writer who instantiates the same gesture intention and executes it with
an upper limb slightly different from one trial to another. The D and θ variations refer to central
fluctuations that might occur in the position of the virtual targets of the action plan from one trial to
another, reflecting for example attention changes. Combining both types of variations, the central
and peripheral noise values being empirically tuned, reflects real-life situations like performing the
same movement under different psychophysiological conditions.

With G3, the user can request more or less diverse samples, according to the ξ parameter. However,
we should mention that such parameter is just for fine-tuning. This is so because it has been shown
that generally people tend to perform gestures consistently and it is hard to manually introduce
variation [Lü et al. 2014]. That said, we believe that practitioners would use ξ = 1.0 most of the time,
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as it provides more diverse gesture exemplars, whereas researchers might want to experiment with
other values.

In most interactive applications, a gesture is generally submitted as a stream of asynchronous
timestamped events. Interestingly, because G3 has access to a model of the original human gesture,
it can return reconstructed samples in a variety of ways, e.g., unevenly or uniformly distributed
coordinates either in space or time. Right now G3 transforms the original stream into constant
frequency; i.e., the resulting synthesized coordinates are uniformly distributed in time. This allows
to “fix” downsampled strokes that were acquired with under-resourced hardware; see e.g. the last
2 examples of human-made gestures in the MMG dataset (Figure 5). Ultimately, this approach
may have a significant impact on the design of template-based gesture recognizers, since some
preprocessing steps prior to recognition (e.g. resampling) could be omitted.

We should point out that a synthesized gesture has the same number of strokes as the original
gesture after reconstruction, because G3 uses only 1 example for bootstrapping, aimed at unburdening
the user. While this is not a limitation for synthesizing unistroke gestures (for obvious reasons), one
might want synthesized multistroke gestures to have a different number of strokes than their human
counterparts. If so, the user can simply provide another example of the same gesture executed with a
different number of strokes.

An actual limitation of our current implementation is related to temporal performance. While G3
actually does not mind generating either ten or thousand gesture samples from one given example,
the payload resides in the reconstruction process, which is proportional to the number of points
(stroke-wise) and the number of strokes. For instance, generating 1,000 samples of each gesture in
the $1-GDS dataset took on average 68.7% of the processing time (SD=13.1%) in reconstructing
each human sample. The same procedure took a bit more time in the MMG dataset (M=82.1%,
SD=16.5%) since there are multi-stroke samples. Results with the chars74k dataset stayed in between
(M=76.1% SD=15.5%) since there are less multi-stroke samples than unistrokes.

In addition to the experiments conducted in this article with template-matching recognizers, which
typically achieve competitive accuracy with few training examples per gesture class, previous works
have also proved the suitability of using synthetic samples generated by the Sigma-Lognormal model
in recognizers that require a large number of training samples. For example, by doubling the training
set in this way, Fischer et al. [2014] reported an increase in accuracy while recognizing handwritten
texts with a neural network. Similarly, by generating thousands of these synthetic samples, Martı́n-
Albo et al. [2014] have successfully performed writer adaptation with hidden Markov models.

Finally, we should mention that Plamondon et al. have conducted several studies regarding human
perception toward synthetic samples; e.g. Galbally et al. [2012] showed that users cannot tell
real and synthetic signatures apart. Our evaluation stands out from previous studies by providing
the most comprehensive analysis (performance-wise) to date on stroke gestures bootstrapping. It
is our hope that G3 will allow UI researchers and practitioners to easily incorporate gestures in
their prototypes. Looking forward, we believe our work suggests future research opportunities for
researchers, practitioners, and developers that wish to design better user interfaces that are driven by
gestures.

9. CONCLUSION AND FUTURE WORK
We have presented G3, a tool for bootstrapping human-like stroke gesture samples based on the
kinematic theory of rapid movements and its associated Sigma-Lognormal model. Within an intuitive
web application, our tool offers active design exploration by prototyping gesture datasets. As in other
design tools, it enhances example-based learning preserving the low threshold of example-based
gesture tools while raising the ceiling of the recognizers created in such tools [Myers 1988].

Although not the focus of this article, we should point out that the Sigma-Lognormal model can
be used directly as the basis for a recognition algorithm. In this article, we have used the model as a
generative application, but it could be used e.g. for logistic regression in a wealth of domains. For
example, others have used the model to make predictions about user’s age and detect brain stroke
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risk [Plamondon et al. 2013]. There are thus many interesting research avenues worth pursuing in
future work.

At the moment, G3 can only process 2D trajectories. Thus, in future work we would like to extend
it for processing 3D gestures, derived from e.g. accelerometers, Kinects, Wii controllers, and similar
devices. Actually, this kind of data can be reconstructed using lognormals provided that the torsion
is taken into account [Leduc and Plamondon 2001], which just requires introducing an additional
parameter to the Sigma-Lognormal model. Also, to make this possible in practice, we would need to
rewrite some parts of our web application, especially those related to device input; e.g. switching to
WebGL instead of using a web canvas.

END NOTES
More than half a million gestures were synthesized while preparing this manuscript. We will release
the data so that others can build upon our work.

Our web application can be publicly accessed at http://personales.upv.es/luileito/g3/.
Due to legal restrictions, the core software for gesture synthesis cannot be made publicly available as
a standalone software. The interested people must sign an agreement with the École Polytechnique
de Montréal through a collaborative project to get a license.

Solution to Figure 5
In each subfigure, the first dataset at the left is human generated, the dataset in the middle was
synthesized using the worst reconstructed human sample of each gesture, and the dataset at the right
was synthesized using the best reconstructed human sample.
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