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a b s t r a c t

Hosts (or nodes) in the Internet often face epidemic risks such as virus and worm
attack. Despite the awareness of these risks and the importance of network/system
security, investment in security protection is still scare, and hence epidemic risk is still
prevalent. Deciding whether to invest in security protection is an interdependent process:
security investment decision made by one node can affect the security risk of others, and
therefore affect their decisions also. The first contribution of this paper is to provide a
fundamental understanding on how ‘‘network externality’’ with ‘‘node heterogeneity’’ may
affect security adoption. Nodes make decisions on security investment by evaluating the
epidemic risk and the expected loss. We characterize it as a Bayesian network game in
which nodes only have the local information, e.g., the number of neighbors, and minimum
common information, e.g., degree distribution of the network. Our second goal is to study
a new form of risk management, called cyber-insurance. We investigate how the presence
of a competitive insurance market can affect the security adoption and show that if the
insurance provider can observe the protection level of nodes, the insurance market is a
positive incentive for security adoption if the protection quality is not very high. We also
find that cyber-insurance ismore likely to be a good incentive for nodeswith higher degree.
Conversely, if the insurance provider cannot observe theprotection level of nodes,we verify
that partial insurance can be a non-negative incentive, improving node’s utility though not
being an incentive.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Network security is a major problem in communication networks. One of its most common manifestations is in form
of virus, worms and botnet spreading, which we call the epidemic risk. In these epidemic risks, hosts (or nodes) which
are infected become the sources of new infections, and adversaries can use these compromised nodes to generate new
attacks. Epidemic risk is highly damaging, e.g., the Code Red worm [1] has infected thousands of computers and induced
huge financial loss. To counter this risk, there have been great efforts in both the research and industrial fronts to come
up with techniques and tools (i.e., anti-virus software, intrusion detection systems, firewalls, etc.) to detect virus/worms.
Despite the sophistication of these tools, only a small percentage of hosts adopt some form of security protection, making
epidemic risk still prevalent. In this paper, instead of discussing the technology side of security, we discuss the security
adoption in economic language. We argue that it may better explain the low adoption level of security products.

Note that a node’s decision of whether to adopt some security measures is not a simple individual and independent
process, but rather, depends on the decisions of many other nodes in the network. Nodes which decide not to invest
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in security protection, also put other nodes at security risk. This network externality effect caused by the spreading of
epidemic influences the degree of adoption of security measure. Our first contribution in this paper is to provide a theoretical
understanding on how network externality effect with node heterogeneity may influence security adoption in a network of
interconnected nodes (i.e., the Internet). The externality effectwith heterogeneity has significant implication for a policymaker
aiming to boost the security level in that by subsidizing early adopters, later adopters will naturally follow.

Modeling such decision and security problem requires the combination of epidemic theory and game theory. While
extensive studies in the traditional literature have been dedicated to epidemic theory [2,3], few works have addressed
the problems of strategic behavior of security investment. In a realistic situation, nodes which make decision in security
investment usually do not have complete information about the network topology or knowledge of other nodes. As a result,
it is difficult for them to accurately evaluate the epidemic risk and other nodes’ influence on itself. In this paper, we model
the security investment as a Bayesian network game where nodes only have the local information of their degree and the
minimum common information of network’s degree distribution. In contrast to graphical game [4], in which complete
topology is given and analysis is complicated, we show that using the Bayesian network game, one can elegantly tradeoff
using partial topology information while making analysis tractable.

By using the Bayesian network game, we show how heterogeneous nodes, characterized by their degree, can estimate their
epidemic risk and make decisions on security investment with incomplete information. We show that nodes with higher degree
are more likely to be infected by epidemic, making the secure measure less effective for nodes with higher degree in terms
of the reduction in infection probability. Moreover, nodes with higher degrees aremore sensitive to externality, i.e., they are
more likely to be affected by others’ decision. The final adoption fraction of nodes with different degrees depends on their
relative loss from epidemic.

While protection measures may limit the spread of virus/worms, another way to manage the epidemic risk is to transfer
the risk to a third-party, which is called cyber-insurance [5]: nodes pay certain premium to insurance companies in return for
compensation in the virus outbreaks. The twomain challenges in cyber-insurance are: adverse selection andmoral hazard [5,
6]. The problem of adverse selection arises when the insurance provider cannot distinguish between high and low risk
nodes. The combination of self-protection and insurance raises the problem of moral hazard, in which nodes covered by
insurance may take fewer secure measures, or even falsify their loss. Moral hazard happens when the insurance provider
cannot observe the protection level of nodes. In this paper, we address themoral hazard problemwhich is especially serious
in cyber-insurance.We investigate the effect of cyber-insurance on security adoption under a competitive insurancemarket.
Our second contribution is to show the conditions under which cyber-insurance is an incentive, with and without moral hazard.
We find that cyber-insurance without moral hazard is an incentive for security adoption if the initial secure condition is bad
and the quality of secure measure is not very high. Moreover, cyber-insurance is more likely to be an incentive for nodes
with high degree. We verify that partial insurance coverage can be a non-negative incentive for secure adoption with moral
hazard.

This paper is outlined as follows. In Section 2, we present the epidemic and security investment models. In Section 3,
we show how heterogeneous nodes can determine their infection probability and decide on proper security investment.
In Section 4, we investigate the effect of the insurance market, both with and without moral hazard, on security adoption.
Validations and performance evaluations are presented in Section 5. Section 6 gives related work. Finally, in Section 7, we
briefly summarize and discuss several ways in which our model could be improved.

2. Mathematical models

Let us first present the mathematical models on how nodes make decision on security investment. The model mainly
derives from that of [7,8] with some modification. Our models include: (a) epidemic model: to characterize the spread of
virus or malware in a network, (b) investment model: to characterize node’s decision in security investment, and (c) Bayesian
network game: given the epidemic and investment models, how nodes make decision under the incomplete information
setting. We summarize some of the notations in Table 1 for reference.
Epidemic model: the interaction relation of N nodes is denoted by the undirected graph G = (V , E) with the vertex set
V , |V | = N and the edge set E. For i, j ∈ V , if (i, j) ∈ E, then nodes i and j are neighbors and we use i ∼ j to denote this
relationship. Let S = {healthy, infected} represent the set of states each node can be in. If node i is infected (healthy), then
Si = 1 (Si = 0). Each infected node can contaminate its neighbors independently with probability q. Note that this is similar
to the bond percolation process [3] in which every edge is occupied with probability q. Each node has an initial state of being
infected or not. This can represent whether the node has been attacked by the adversary. Let us denote it by si where si = 1
if node i is initially infected and si = 0 otherwise. Hence, at the steady state, a node is infected either because it is initially
infected, or it contracts virus from its infected neighboring nodes. The final state of node i can be expressed in the following
recursive equation:

1− Si = (1− si)

∀j:j∼i

(1− θjiSj) ∀i ∈ V , (1)

where θji is a random variable indicating whether the edge (i, j) is occupied or not. According to previous discussion, θji is
a Bernoulli random variable with Pr(θji = 1) = q. Since an infected node will incur some financial loss, a node needs to
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Table 1
Notations.

Summary of notations

q : Infection probability of an edge
xi : Investment in security of node i
li : Loss of node i if get attacked
p(xi) : Initial infection probability with investment xi
pi , : Final infection probability of node i
p+ : Initial infection probability without security investment
p− : Initial infection probability with fixed amount of investment
{pk}KK : Degree distribution of graph G
Fk(l) : Loss distribution of nodes with degree k
{p̃k}KK : Neighbor degree distribution

{qk}K
′

K ′ : Excess degree distribution
φk : Infection probability of nodes with degree k
λk : Fraction of adopters for nodes with degree k
ui(wi) : Utility of nodes iwith wealth wi
U(π, X) : Utility of buying insurance amount X at price π

UN (π, X) : Utility of buying insurance amount X at price π when taking action N
US(π, X) : Utility of buying insurance amount X at price π when taking action S

Fig. 1. Risk-averse utility function.

decide whether to invest in self-protection to reduce the potential financial loss. Let us present the model to help a node in
making such a decision.
Investment model: the investmentmodel is mainly formulated using game theoretical terms; readers not familiar with game
theory can refer to [9]. Node ihas an initialwealthwi ∈ R+. A node’s utilityui(w) is a function ofwealthw ∈ R+.We consider
that nodes are risk averse, i.e., the utility function is strictly increasing and concave inw, i.e., u′i(w) > 0 and u′′i (w) < 0. Fig. 1
depicts a risk averse utility function. In this paper, we consider the constant relative risk averse utility function commonly
used in the economic literature [10]:

u(w) =
w1−σ

1− σ
, 0 < σ < 1, (2)

where σ is a parameter for the degree of risk aversion. The condition 0 < σ < 1 is added to ignore the case of σ = 1 and
also for tractability of analysis later on. For node i, the utility function is given by the above utility function with parameter
σi. If node i is infected, then it will incur a financial loss of li ∈ R+. For node i, the expected utility is as shown in Fig. 1. D is
the initial utility point; E is the utility point after getting infected. C is the expected utility. To reduce the potential financial
loss, a node can consider some self-protection measures or purchasing insurance. In the first part of this paper, we consider
the case of self-protection. In the second part of this paper, we consider both cases and study the influence of insurance
market on security protection.

A node’s investment in self-protection can reduce the probability of being infected initially. For the amount of investment
x, the probability of being infected initially is p(x), which is a continuous differentiable decreasing function of x. In particular,
we assume that the effort of security investment is separable with the wealth. Similar assumptions have been made in [11,
12]. If node i invests xi in secure protection, the expected utility is

piui(wi − li)+ (1− pi)ui(wi)− xi, (3)

where pi is the final probability that node iwill be infected. pi contains two parts: the probability of being infected initially,
given by p(xi), and the probability of getting infected from neighbor nodes. For simplicity of analysis, we assume that the
choice of node i regarding security self-protection is a binary decision: either the node invests unit amount with a cost of ci,
or it does not invest at all. We use the action set A = {S, N } to denote the behavior, where S denotes taking secure measure
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and N otherwise. If it decides to invest, the node can still be infected with probability p−. Otherwise, it will be infected with
probability p+. Obviously we have 0 < p− < p+ < 1. Let a = (a1, . . . , ai, . . . , aN) = (ai, a−i) be an action profile. Given the
action profile a−i of other nodes, node imakes the decision by maximizing its expected utility. If node i takes action N , the
expected utility is:

pi(N , a−i)ui(wi − li)+ (1− pi(N , a−i))ui(wi) (4)
where pi(N , a−i) is the final probability of node i being infected when it initially did not adopt security protection. On the
other hand, the expected utility of a node which initially subscribed to security protection (or action S) is:

pi(S, a−i)ui(wi − li)+ (1− pi(S, a−i))ui(wi)− ci (5)
where pi(S, a−i) is the final probability of a node being infected when it is initially subscribed to some self-protection
measures with cost of ci. Note that pi(S, a−i) and pi(N , a−i) are functions of p− and p+, the contagion probability q and
the graph G since it controls the infection process.

Each node needs to consider whether it should subscribe to some self-protection measures. The decision is based on the
cost of investing in security measure, as well as the risk loss of being infected. The decision is non-trivial because one has to
consider the network externality effect. In particular, node iwill choose to invest in security protection if and only if

ci < (pi(N , a−i)− pi(S, a−i))(ui(wi)− ui(wi − li)). (6)
Bayesian network game: according to Inequality (6), each node needs to have the complete information of the network
topologyG so as tomake the proper decision. However, it is almost impossible in practice for each node to have the complete
information of G. Instead, each node can only have some local information on G, i.e., a node may only know its neighbors,
and in some cases, only know the number of neighbors it is to interact with. Second, it is impossible to know the exact loss
of other nodes in a large network.

Here,we assume that nodes only have theminimumcommon information, that is, the knowledge of the degree distribution
of G, as well as the distribution of financial loss of nodes caused by virus. Assume that the degree distribution of the graph is
{pk}KK , where K is the maximum degree and K is the minimum degree. In this paper, we consider the asymptotic case that N ,

the number of nodes, tends to infinity and the degree distribution converges to the fixed probability distribution {pk}KK . For
nodes with degree k, the loss distribution is given by the CDF Fk(l). We assume that the cost of secure measure is the same
for all nodes which have the same degree and we denote this as ck. Furthermore, these nodes have the same utility function
uk and the same initial wealthwk. Nodes make decision on security investment based on the information of degree and loss.
According to the discussion in the investmentmodel, a node should know the probability of getting infected before deciding
on security investment. Since nodes do not have the complete information, they should estimate these probabilities based
on the limited common information. Next, we derive this infection probability with the partial topology information.

3. Analysis for strategic security adoption

Let us show that how nodes make decisions on security investment and how to determine the final security protection
level.

3.1. General case

Determining the final infection probability for a node is a difficult problem because of the complex network structure.
In this work, we assume that a node only knows the degree distribution and consider the network topology as a random
graph [3] with a given degree distribution {pk}KK . Thus, nodes do not need to know the full network topology G to determine
the final infection probability. Although real networks are not random graphs [3] and they have some characteristics,
e.g., high clustering coefficient, community structure, etc., that are not possed by a random graph, recent study [13] has
shown that random graph approximation is very often accurate for a real network. Thus, it is reasonable to assume that the
network topology is a random graph; especially here we consider an incomplete information case. With the assumption,
each node can compute its final infection probability using the following methodology.
Estimating the probability: a node can calculate its final infection probability by constructing a local mean field tree [14]. Fig. 2
illustrates the local tree structure of node i which has degree k. For ease of illustration, let us say that none of these nodes
take secure measure, i.e., the initial infection probability is p+ for all nodes in this subsection. We will show how to relax
this in the later section.

The children of node i in the local mean field tree are denoted as vc, c ∈ [1, k]. The triangle under each child node vc
denotes another tree structure. Based on the results in [3,14], for any node i, the local topology of a large random graph G
can be modeled as a tree rooted at node iwith high probability. In other words, we transform G to a tree rooted at node i (or
local mean field of node i). Node i can be independently influenced by each subtree rooted at vc . For every subtree rooted
at vc , it consists of its subtrees. Using this recursive structure, we derive the total infection probability that other nodes in G
can impose on node i.

First we divide nodes into levels. The root node i is at the zero level. The neighbors of node i is at the first level and so on.
Let Yj be the final state of node j, j ≠ i, conditioned on its parent in the tree structure is not infected, and yj be the initial state
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Fig. 2. Local mean field tree for node iwith degree k.

of node j. For the root node i, we use Si to denote its final state and si to denote its initial state, and then we have

1− Si = (1− si)

∀j:j∼i

(1− θjiYj). (7)

The above equation indicates that the root node i is either initially infected, or it can be infected by its neighbors. The state
of its neighbors conditioned on that the root node i is not infected is also determined by the state of the children of the
neighbors in the tree structure, or one can express it recursively as:

1− Yj = (1− yj)

∀l:l→j

(1− θljYl) ∀j ≠ i, (8)

where l→ j denotes that l is a child of j in the tree structure. To solve Eq. (8), we need to know the degree distribution of a
child node, i.e., the neighbor degree distribution. This degree distribution can be expressed as:

p̃k =
kpk

K
k=K

kpk

=
kpk
d̄

,

where d̄ is the average degree of nodes in G. The number of edges of a child excluding the edge connecting to its parents is
called the excess degree [3]. Let K ′ = max{0, K − 1} and K

′
= max{0, K − 1}. The excess degree distribution of a child is

qk = p̃k+1 =
(k+ 1)pk+1

d̄
, k ∈ [K ′, K

′
]. (9)

As in [14], if nodes are at the same level of the tree structure, then their states are independent of each other. Let ρn, n ≥ 1
be the probability that a node at the nth level is infected conditioned on its parent is not infected. By Eq. (8), we have

1− ρn = (1− p+)
K ′

k=K ′
qk(1− qρn+1)

k.

ρ1 is the average probability that a child node of the root node iwill be infected conditioned on the root node is not infected.
Whenwe scale up the network (or let n→∞), define ρ , limn→∞ ρ1, and then ρ is determined by the solution of the fixed
point equation

1− ρ = (1− p+)
K ′

k=K ′
qk(1− qρ)k.

By Eq. (7), for a node with degree k, the infection probability is

φk = 1− (1− p+)(1− qρ)k. (10)

Security adoption: in the previous subsection, we show how a node can compute the infection probability with incomplete
information. The calculation is based on the assumption that none of the nodes take secure adoption, so that the initially
infection probability is p+. In here, we show how to use this infection probability for strategy selection. Let λk be the fraction
of nodes with degree kwhich take action S. Then by applying the method shown above, we have the following proposition.
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Proposition 1. If λk fraction of the nodes with degree k takes secure measure, ρ is given by the unique solution of the fixed point
equation in [0, 1]:

ρ = 1−
K ′

k=K ′
qk(1− p+ + λk+1(p+ − p−))(1− qρ)k. (11)

For a node with degree k, if it decides to take secure measure, then by Eq. (10), the infection probability is

φk(S, λK , . . . , λK ) = 1− (1− p−)(1− qρ)k. (12)

If it does not invest in protection measure, the probability for this node to get infected is

φk(N , λK , . . . , λK ) = 1− (1− p+)(1− qρ)k. (13)

The infection probability reduction for a node with degree k is

φk(N )− φk(S) = (p+ − p−)(1− qρ)k. (14)

Note that this infection probability reduction decreases as degree increases. This implies that higher degree nodes have less
incentive to invest in protection measure.

Corollary 1. ρ , given by the solution of fixed point Eq. (11), has a unique solution in [0, 1], and ρ(λK , . . . , λK ) is a decreasing
function of λk,∀k ∈


K , K


.

Proof. Let

g(ρ, λK , . . . , λK ) = 1−
K ′

k=K ′
qk(1− p+ + λk+1(p+ − p−))(1− qρ)k.

Obviously, g(ρ, λK , . . . , λK ) is an increasing function of ρ.

g(0, λK , . . . , λK ) = 1−
K ′

k=K ′
qk(1− p+ + λk+1(p+ − p−)) > 0,

g(1, λK , . . . , λK ) = 1−
K ′

k=K ′
qk(1− p+ + λk+1(p+ − p−))(1− q)k < 1.

We can see that the fixed point equation ρ = g(ρ) has at least one solution. Taking the second order derivative with respect
to ρ, we have

gρρ = −

K ′
k=K ′

qk(1− p+ + λk+1(p+ − p−))k(k− 1)(1− qρ)k−2q2 < 0.

g(ρ) is a concave function. Let ρ∗ be one of the solutions, i.e., ρ∗ = g(ρ∗). Then by concavity of g(ρ), gρ(ρ∗) < 1.
Otherwise, g(ρ∗) = g(0)+

 ρ∗

0 gρ(ρ)dρ > ρ∗. Then for 0 < ρ < ρ∗, g(ρ) > ρ, for ρ∗ < ρ < 1, g(ρ) < ρ. As a result, the
fixed point equation ρ = g(ρ, λK , . . . , λK ) has a unique solution in [0, 1].

Let λ1
k < λ2

k , and ρ1 = g(ρ1, λ
1
k) and ρ2 = g(ρ2, λ

2
k). Since g(ρ, λk) is a decreasing function of λk for all k ∈


K , K


and

λ1
k < λ2

k , we have g(ρ2, λ
1
k) > g(ρ2, λ

2
k) = ρ2. By the same argument in proving uniqueness, we can get ρ1 > ρ2. As a

result, the solution of ρ = g(ρ, λk) is a decreasing function of λk,∀k ∈

K , K


. �

Remark. Combining Corollary 1 with Eq. (14), we see that the reduction in infection probability by taking security measure
increases as other nodes adopt security measure. This shows the network externality effect, i.e., the value of security measure
increases as more nodes invest in self-protection.

This externality effect is first modeled in [15,16] and later verified in [7,8]. We complement their results by studying the
externality effect with heterogeneity characterized by node degree.
Sensitivity analysis: nodes with different degrees have different sensitivities to the externality effect. Defineφk = φk(N )−
φk(S) = (p+−p−)(1−qρ)k. Assume that ρ decreases by a small amount 1ρ, and then 1φk = (p+−p−)(1−qρ)k−1kq1ρ,
and the relative change is given by 1φkφk

=
kq1ρ

(1−qρ)
, which indicates that sensitivity to the network externality effect is

proportional to the degree.
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A nodewith degree kwill invest if and only if the utility with securemeasure is higher than that without securemeasure,
or

ck < (φk(N )− φk(S))(uk(wk)− uk(wk − l))
= (p+ − p−)(1− qρ)k(uk(wk)− uk(wk − l)).

Note that the loss distribution of nodes with degree k is Fk(l). Since the infection probability varies with the fraction of
security adopters, we consider the self-fulfilling expectations equilibrium [17] in analyzing the final adoption extent. Nodes
form a shared expectation that the fraction of the nodes has adopted security measure and if each of them makes decision
based on this expectation, then the final fraction is indeed the initial expectation.

Let l∗k be the minimum value that satisfies the above inequality in the equilibrium, and then λ∗k , the fraction of node of
degree k taking the secure measure, is given by the equation λ∗k = 1− Fk(l∗k). Summarizing the previous analysis, we have
the following proposition.

Proposition 2. Nodes with degree k take the secure measure if their loss is greater than l∗k . The final fraction of nodes with degree
k that invest in self-protection is λ∗k . l

∗

k and λ∗k are solutions of the following fixed point equations:

λ∗k = 1− Fk(l∗k), (15)

ck = (p+ − p−)(1− qρ∗)k(uk(wk)− uk(wk − l∗k)), (16)

where ρ∗ is given by the solution of the following equation

ρ∗ = 1−
K ′

k=K ′
qk(1− p+ + λ∗k+1(p

+
− p−))(1− qρ∗)k. (17)

We first propose an algorithm to compute the equilibrium point in Proposition 2, and then we prove the existence of
equilibrium points by showing that the algorithm will lead to a feasible answer.

Algorithm 1 Compute the equilibrium
1: Input: The error tolerance ϵ.
2: Output: The equilibrium point {λ∗k}

K
K .

3: for all k ∈ [K , K ] do
4: λ0

k ← 0
5: λ1

k ← 1
6: end for
7: Compute ρ0 by substituting λ0

k in Eq. (17).
8: t ← 0
9: repeat

10: t ← t + 1
11: Compute ltk by substituting ρt in Eq. (16).
12: Compute λt

k by substituting łtk in Eq. (15).
13: Compute ρt+1 by substituting λt

k in Eq. (17).
14: until maxk |λt−1

k − λt
k| < ϵ

15: return λ∗k = λt
k.

Corollary 2. Fixed point equation (15)–(17) have at least one solution.

Proof. In Algorithm 1, we start from λ0
k = 0 and do the iteration. Obviously λ1

k ≥ λ0
k = 0. If there does not exist k such that

λ1
k > λ0

k , then λ∗k = 0 is an equilibrium point. Otherwise, with Corollary 1, it is easy to prove that ρt+1
≤ ρt and λt+1

k ≥ λt
k

by induction. For the iteration process, λt
k is non-decreasing with t and is bounded with λt

k ≤ 1. So λt
k will converge to the

minimum equilibrium point, which is one of the solutions of the fixed point equations in Proposition 2. �

The above proof also shows the dynamics of the adoption process. Initially, λ0
k = 0, based on this belief nodes make

decisions. Then they update the belief and continue to update their decision. The above proof shows the convergence of this
dynamic process.

Corollary 3. The equilibrium points given by fixed point Eqs. (15)–(17) are monotone, i.e., if 3∗1 = (λ∗1K , . . . , λ∗1k , . . . , λ∗1
K

)

and 3∗2 = (λ∗2K , . . . , λ∗2k , . . . , λ∗2
K

) are two equilibrium points, then we have either 3∗1 ≥ 3∗2 or 3∗1 ≤ 3∗2 and there exists
at least one k ∈ [K , K ] such that λ∗1k ≠ λ∗2k .
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Fig. 3. Equilibrium in two types case.

Proof. We prove the above corollary by contradiction. Assume there exist k1 and k2 such that λ∗1k1 < λ∗2k1 and λ∗1k2 > λ∗2k2 .
Since λ∗1k1 < λ∗2k1 , by Eqs. (15) and (16), we have ρ∗1 > ρ∗2. Since ρ∗1 > ρ∗2, by similar analysis in Corollary 2, we can
conclude λ∗1k2 ≤ λ∗2k2 , which contradicts λ∗1k2 > λ∗2k2 . �

The above corollaries prove the existence and monotonicity of equilibrium points. In the following, we study the
multiplicity and monotonicity of the equilibrium points by considering a special case.

3.2. Analysis of node heterogeneity: two types case

To provide more insight on how different nodes can influence each other, let us consider a special case where there
are two types of nodes: nodes with low degree kL and nodes with high degree kH , kH > kL. We assume that the cost of
self-protection for low degree nodes is cL and the loss due to being infected is lL. On the other hand, if k = kH , the cost of
self-protection is cH and the loss is lH . Note that in Proposition 2, we did not explicitly impose any restriction on the CDF
Fk(l). So Proposition 2 still applies to the case when the loss is the same for all nodes with given degree.

Nodes will invest in self-protection if their utility with investment is greater than that without investment; hence

λL = Pr((φL(N )− φL(S))(uL(wL)− uL(wL − lL)) ≥ cL),
λH = Pr((φH(N )− φH(S))(uH(wH)− uH(wH − lH)) ≥ cH).

Note that the probabilities φL(S), φL(N ) and φH(S), φH(N ) are functions of λL and λH . We can compare the utilities to
determine the fraction of users that will invest in self-protection. Define 1uL(lL) , uL(wL) − uL(wL − lL) and fL(λL, λH) ,
(φL(N )− φL(S)) = (p+ − p−)(1− qρ)kL . For k = kL, the utility gap is

fL(λL, λH)1uL(lL)− cL,

where fL(λL, λH) is the reduction in probability for nodes being finally infected if they invest in self-protection. Similarly, for
k = kH , define 1uH(lH) , uH(wH) − uH(wH − lH) and fH(λL, λH) , (φH(N ) − φH(S)) = (p+ − p−)(1 − qρ)kH , the utility
gap is:

fH(λL, λH)1uH(lH)− cH .

By Corollary 1, fL(λL, λH) and fH(λL, λH) are increasing functions in λL and λH , which indicates that λL and λH degenerate to
indicator functions. In other words, either no nodes invest in self-protection, or all of them invest in self-protection.

Nodes can decide whether to make investment or not by comparing the expected profit of investment fL(λL, λH)1uL(lL)
(fH(λL, λH)1uH(lH)) with the cost cL (cH) for nodeswith low (high) degree. It is equivalent to compare fL(λL, λH) (fH(λL, λH))
with cL

1uL(lL)
(

cH
1uH (lH )

). The possible equilibrium points are shown in Fig. 3.
We divide them into four cases:

Case I: If cL/1uL(lL) < fL(0, 0), cH/1uH(lH) < fH(0, 0), then there is a unique equilibrium point (λ∗L , λ
∗

H) = (1, 1)
where all nodes invest in self-protection. Even if initially none of the nodes invest in self-protection, the profit of
investment exceeds the cost regardless of the degree of nodes and eventually, all nodeswill purchase self-protection
tools.

Case II: If cL/1uL(lL) < fL(0, 0), cH/1uH(lH) > fH(0, 0), then all nodes with degree k = kL will invest in self-protection
because the profit of investment for low degree nodes exceeds the cost, while the profit is smaller than the cost for
high degree nodes.
• If cH/1uH(lH) < fH(1, 0), then all nodes with degree kH will invest in self-protection. The profit of investment

for nodes with high degree increases since nodes with low degree invest in security protection. Hence, the
investment in security by nodes with degree kL will incentivize nodes with degree kH to invest also. There is
a unique equilibrium point (λ∗L , λ

∗

H) = (1, 1).
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• If fH(1, 0) < cH/1uH(lH) < fH(1, 1), there exists a tipping point λT
H , such that fH(1, λT

H) =
cH

1uH (lH )
. This implies

that if we can offer self-protection to λT
H fraction of nodes with degree kH for free, then this will incentivize all

nodes with high degree to invest. There are two equilibrium points (λ∗L , λ
∗

H) = (1, 0) and (λ∗L , λ
∗

H) = (1, 1).
• If cH/1uH(lH) > fH(1, 1), all nodeswith degree kH will not perform self-protection. There is only one equilibrium

point (λ∗L , λ
∗

H) = (1, 0).
Case III: If cL/1uL(lL) > fL(0, 0), cH/1uH(lH) < fH(0, 0), then all nodes with degree kH will take self-protection measure.

• If cL/1uL(lL) < fL(0, 1), then all nodes with degree kL will invest in self-protection. In this case, the investment in
security by nodes with degree kH will incentivize nodes with degree kL to invest in self-protection. There is only
one equilibrium point (λ∗L , λ

∗

H) = (1, 1).
• If fL(0, 1) < cL/1uL(lL) < fL(1, 1), there exists a tipping point λT

L , such that fL(λT
L , 1) = cL/1uL(lL). There are two

equilibrium points (λ∗L , λ
∗

H) = (0, 1) and (λ∗L , λ
∗

H) = (1, 1).
• If cL/1uL(lL) > fL(1, 1), all nodes with degree kL will not invest in self-protection. There is only one equilibrium

point (λ∗L , λ
∗

H) = (0, 1).
Case IV: If fL(0, 0) < cL/1uL(lL) < fL(1, 1), fH(0, 0) < cH/1uH(lH) < fH(1, 1), then there exists a tipping point λT

L and λT
H .

Two possible equilibrium points are (λ∗L , λ
∗

H) = (0, 0) and (λ∗L , λ
∗

H) = (1, 1). However, there are other possible
equilibrium points in this region. We omit the analysis to avoid getting too involved.

The tipping point induced by externality effect has significant implication for security provider and also for policy maker
aiming to promote the security adoption. For security providers, setting an initially low price will promote the security
adopters, when the fraction exceeds the tipping point, a large fraction of hosts will purchase the product. Policy makers can
increase the adoption fraction by subsiding the initial security adopter so as to boost the initial fraction above the tipping
point.

3.2.1. Impact of topology on the externality effect
Because the externality effect is caused by the virus transmission on the network, it is interesting to investigate the

effect of topology on the externality effect. We keep kL and pkL , pkH fixed and increase kH to see how it impacts the adoption
fraction. To write it our explicitly, ρ is determined by the fixed point equation

ρ = g(λL, λH , ρ) , 1− [q(kL−1)(1− p+ + λL(p+ − p−))(1− qρ)kL

+ q(kH−1)(1− p+ + λH(p+ − p−))(1− qρ)kH ],

where q(kL−1) =
qkL kL

qkL kL+qkH kH
and q(kH−1) =

qkH kH
qkL kL+qkH kH

. Since q(kL−1) + q(kH−1) = 1, g(λL, λH , ρ) increases as kH increases
∀λL, λH , ρ. As a result, ρ determined by the fixed point equation increases as kH becomes greater. Note that fL(λL, λH) =
(p+ − p−)(1− qρ)kL , fH(λL, λH) = (p+ − p−)(1− qρ)kH are decreasing functions of ρ. Thus fL(λL, λH) and fH(λL, λH) both
decreases as kH increases, making both low degree and high degree nodes less likely to adopt the secure measure.

3.2.2. Contagion probability dependent on secure decisions
Previously we consider the contagion probability q is independent of nodes’ decision, which is a limitation of the model.

It will make the analysis much harder. Moreover, equilibrium may not exist in this situation. Assume that a node takes
measure S, the contagion probability becomes q−; otherwise if it takes measure N , the contagion probability is q+. Then
we have

φk(S) = 1− (1− p−)(1− q−ρ)k,

φk(N ) = 1− (1− p+)(1− q+ρ)k,

and

φk(N )− φk(S) = (1− p−)(1− q−ρ)k − (1− p+)(1− q+ρ)k,

which is no longer a monotone function of ρ. It depends on q+ and q− and this makes the equilibrium analysis complicated.
Similar to that of [7], we analyze a special case when q− = 0, which is called ‘‘strong protection’’. Then

φk(N )− φk(S) = 1− p− − (1− p+)(1− q+ρ)k,

is a decreasing function of ρ, which indicates that a node’s incentive to adopt secure measure decreases as other nodes
adopt secure measures. This is exactly a free-rider problem and it coincides with the result of [7]. Next, we show that the
equilibrium may not exist. Now fL(λL, λH) and fH(λL, λH) are decreasing functions of λL and λH . Consider cL/1uL(lL) >
fL(0, 0) and fH(0, 1) < cH/1uH(lH) < fH(0, 0); then equilibrium do not exist. We see that nodes with low degree will
not adopt secure measures since cL/1uL(lL) > fL(0, 0); thus the only possible equilibrium are (0, 1) and (0, 0). We can
exclude (0, 0) since cH/1uH(lH) < fH(0, 0). However, if nodes with high degree decide to adopt secure measures, the
benefit of adopting secure measures declines to such an extent that they have no incentive to adopt secure measure again.
This can be easily justified by the condition fH(0, 1) < cH/1uH(lH). Hence nodes will vacillate between the two points and
no equilibrium exist.
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4. Analysis for the cyber-insurance market

In here, we consider cyber-insurance and analyze its impact on security adoption.

4.1. Supply of insurance

The presentation of insurance model in this subsection tailors that in the economic literature [6] to adapt to the model
in our paper.

Let us say the insurance provider offers insurance at the price of π < 1. Nodes which buy insurance at the premium of
πX from the insurance provider will be compensated X for the loss incurred if they are infected. Given the price π , node will
choose to buy the amount of insurance that maximizes its utility. Define φk(S)(φk(N )) as the probability that a node with
degree kwill be infected if it subscribes (does not subscribe) to a securemeasure. In this paper, we consider cyber-insurance
without adverse selection, in which the insurance provider can observe the degree of a node, hence the risk type of a node
(high degree indicates the high risk level). Thus, in the following, we drop the subscript k where the meaning is clear for
general presentation. A node will choose the amount of insurance that maximizes

U(π, X) = φu(w − l+ (1− π)X)+ (1− φ)u(w − πX)− x, (18)

where x is the wealth spent on security protection.When a node choosesN , φ becomes φ(N ), x = 0.When a node chooses
S, φ becomes φ(S), x = c . Assume the insurance provider is risk neutral, so they only care about the expected wealth. If a
node buys X amount of insurance, then the profit of the insurance is (π − φ)X . In here, we consider a competitive market
so the insurance provider has to offer the insurance at the price π = φ, or the actuarially fair price [18].

Lemma 1. When the insurance is offered at the actuarially fair price, the optimal insurance coverage is a full insurance coverage,
i.e., a node will buy insurance amount l, which is equal to the loss. Themaximal expected utility ismaxX U(φ, X) = u(w−φl)−x,
i.e., when a node chooses N , the maximal expected utility is u(w− φ(N )l), when a node chooses S, the maximal expected utility
is u(w − φ(S)l)− c.

Proof. A node will optimize

U(φ, X) = φu(w − l+ (1− φ)X)+ (1− φ)u(w − φX)− x. (19)

Taking the derivative of U(φ, X) with respect to X , we have

U ′(φ, X) = φ(1− φ)

u′(w − l+ (1− φ)X)− u′(w − φX)


.

Since u(w) is an increasing and concave function, u′(w) is a decreasing and positive function. When X < l,U ′(φ, X) > 0;
when X > l,U ′(φ, X) < 0. The expected utility is maximized at X = l, and the optimal expected utility is u(w−φl)−x. �

In Fig. 1, the expected utilitywithout the insurancemarket is point C , i.e., nodes feel that they losemore than the expected
wealth loss because of the risk aversion. With the insurance market, the expected utility improves from point C to point B.

Lemma 2. When the insurance is offered at price π > φ, the optimal insurance coverage is partial insurance coverage, i.e., a
node will buy insurance coverage less than l. The maximal expected utility is u(w − φl− δ(φ, π))− x., where δ(φ, π) > 0.

Proof. Similar to the proof of Lemma 1, a node optimizes

U(π, X) = φu(w − l+ (1− π)X)+ (1− φ)u(w − πX)− x.

The first order differentiation of U(π, X) is

U ′(π, X) = φ(1− π)u′(w − l+ (1− π)X)− (1− φ)πu′(w − πX).

It is easy to verify that U ′(π, l) < 0 since π > φ. The second order derivative is

U ′′(π, X) = φ(1− π)2u′′(w − l+ (1− π)X)+ (1− φ)π2u′′(w − πX).

Since u(w) is concave, u′′(w) < 0, it follows that U ′′(π, X) < 0. U(π, X) is a concave function of X . Also, U ′(π, l) < 0,
so the optimal solution is smaller than l. As a result, the optimal insurance converge is partial coverage. Let the optimal
expected utility be u(w− φl− δ(φ, π))− x. Since U(φ, X) > U(π, X), u(w− φl)− x = maxX U(φ, X) > maxX U(π, X) =
u(w − φl− δ(φ, π))− x, we can get δ(φ, π) > 0. �

Remark. Lemma1 shows that the expected utilitywith the insurancemarket is u(w−φl)−x > φu(w−l)+(1−φ)u(w)−x.
The utility of a node is improved by the insurancemarket with the fair price. But if the contract is at an unfair price, the utility
improvement is smaller according to Lemma 2.

One problemwith the combination of insurance and self-protection ismoral hazard, which happens when the insurance
provider cannot observe the protection level of a node. Insurance coverage may discourage the node to take self-protection
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measure to prevent the losses from happening, or even to encourage nodes to cause the loss and make insurance claims.
Here, we examine the effect of the insurance market on the self-protection level. We consider the two cases, one is without
moral hazard, where the insurance provider can observe the protection level of a node, and the other is with moral hazard,
where the insurance provider does not have any information about the protection level of a node.Without themoral hazard,
the insurance provider can discriminate against the nodes with protection measure and those without protection measure.
We investigate whether the insurancemarket will help to incentivize nodes to take securemeasure. For the case withmoral
hazard, we investigate whether the insurance provider can design contracts so that the insurance market is not a negative
incentive.

4.2. Cyber-insurance without moral hazard

Security adoption with the cyber-insurancemarket: because the insurance provider can observe the protection level of a node,
the insurance provider will offer insurance price of φ(S) (or φ(N )) for those nodes with (or without) security protection.
According to Lemma 1, nodes will buy the full insurance regardless of its protection level. As a result, the expected utility
for nodes without protection is u(w− φ(N )l) and the expected utility for nodes with protection is u(w− φ(S)l)− c. Thus,
with the insurance market, a node will invest in security protection if and only if

c < g(l, ρ) , u(w − φ(S)l)− u(w − φ(N )l).

Note that g(l, ρ) is a function of ρ because φ(S) and φ(N ) can be expressed in ρ.

Lemma 3. The function g(l, ρ) , u(w − φ(S)l)− u(w − φ(N )l) increases with respect to the loss l.

Proof. Substituting u(w) with w1−σ

1−σ
, we can get the first order derivative of g(l, ρ):

gl = −
φ(S)

(w − φ(S)l)σ
+

φ(N )

(w − φ(N )l)σ
. (20)

It is easy to verify that gl > 0 since φ(N ) > φ(S). �

Lemma 4. The function g(l, ρ) , u(w − φ(S)l)− u(w − φ(N )l) = u(w − (1− (1− p−)(1− qρ)k)l)− u(w − (1− (1−
p+)(1− qρ)k)l) is decreasing with respect to ρ .

Proof. Similarly, taking the first order derivative we can get:

gρ = lkq(1− qρ)k−1[(1− p+)(w − l+ (1− p+)(1− qρ)kl)−σ
− (1− p−)(w − l+ (1− p−)(1− qρ)kl)−σ

].

It is easy to verify that function h(p) , (1 − p)(w − l + (1 − p)(1 − qρ)kl)−σ decreases with p. Thus, h(p+) < h(p−) and
gρ < 0. �

Lemma 3 indicates that nodes with higher loss aremore likely to invest in security. From Lemma 4we know that positive
network externality still exists even in the presence of the insurancemarket. Similar to the analysis in Section 3,we can arrive
in the following proposition regarding the adoption fraction with the insurance market:

Proposition 3. With the insurance market, nodes with degree k will take the secure measure if their loss is greater than l∗Ik . The
final fraction of nodes with degree k that will invest in self-protection is λ∗Ik . l∗Ik and λ∗Ik are solutions of the following fixed point
equations:

λ∗Ik = 1− Fk(l∗Ik ), (21)

ck = uk(wk − φ(S)l∗Ik )− uk(wk − φ(N )l∗Ik ), (22)

where ρ∗I is given by the solution of the following equation

ρ∗I = 1−
K ′

k=K ′
qk(1− p+ + λ∗Ik+1(p

+
− p−))(1− qρ∗I)k. (23)

Previous corollaries following Proposition 2 on the existence and monotonicity of equilibrium points also hold here.
Comparing Proposition 3with Proposition 2, we can recognize the only difference lies in Eqs. (22) and (16). Buying insurance
improves node’s utility, and hence changes their decision on security protection as well. In the following, we examine the
effect of the insurancemarket on security adoption. An overall and detailed analysis needs calculating out all the equilibrium
points and comparing the equilibrium points specified by the two propositions, which is quite complicated. Instead, we
examine the effect from the local point of view, but still provide enough insight.
Incentive analysis: according to the previous analysis, a node will take secure measure if

c < cNI , (φ(N )− φ(S))(u(w)− u(w − l)), (24)
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(a) Insurance is not an incentive. (b) Insurance is an incentive.

Fig. 4. Thresholds of φ(S).

where cNI is the threshold without the insurance market. With the insurance market, nodes will take secure measure if and
only if

c < cI , u(w − φ(S)l)− u(w − φ(N )l), (25)

where cI denotes the threshold with the insurance market.
In order for the insurance market to be a good incentive for self-protection, we should have cNI < cI , i.e.,

cI − cNI = u(w − φ(S)l)+ φ(S)(u(w)− u(w − l))− [u(w − φ(N )l)+ φ(N )(u(w)− u(w − l))] > 0.

Define r(p) , u(w − pl) + p(u(w) − u(w − l)), and then the above condition becomes r(φ(S)) > r(φ(N )). Next we
investigate under what condition the above inequality will hold. Consider the function r(p), we have the following lemma.

Lemma 5. r(p) is a concave function of p, there exists a unique p∗ that maximizes r(p).

Proof. Substituting u(w) with w1−σ

1−σ
, we can derive the second order derivative of r(p):

r ′′(p) = −σ l2(w − pl)−σ−1.

Since r ′′(p) < 0, r(p) is a concave function with respect to p. Because r(0) = r(1) = u(w), there exists a unique optimal
point p∗ ∈ (0, 1) that maximizes r(p). �

Proposition 4. If the initial infection probability φ(N ) is greater than p∗ and the quality of self-protection is not too high, i.e.,
φ(N )− φ(S) is low enough, insurance will be a good incentive for self-protection.

Proof. We want r(φ(S)) > r(φ(N )) conditioned on φ(N ) > φ(S). Let φ∗ be the minimum value such that r(φ∗) =
r(φ(N )). If φ(N ) is smaller than the optimal value p∗, as shown in Fig. 4(a), then φ∗ = φ(N ). In this case, it is impossible
for insurance to be an incentive for self-protection. Otherwise if φ(N ) is bigger than the optimal value p∗, then φ∗ < φ(N ).
In this case, if φ∗ < φ(S) < φ(N ), then the insurance market will be a good incentive for self-protection. The feasible
region of φ(S) is shown in Fig. 4(b). �

Fig. 4(a) shows the casewhereφ(N ) is smaller than the optimal value p∗ thatmaximizes r(p). In this case, it is impossible
for insurance to be an incentive. In Fig. 4(b), φ(N ) is greater than p∗. If φ(S) is within the region [φ∗, φ(N )], then insurance
is a good incentive for security adoption. From Fig. 4(b), we can see that insurancewill bemore likely to be an incentive with
large φ(N ) and small φ(N )−φ(S). Hence, if the initial secure situation is bad and the protection quality of secure measure
is not too high, then the insurance market is a positive incentive for self-protection; otherwise, the insurance market is a
negative incentive, i.e., if a node adopts secure measure without insurance, it may decide not to adopt secure measure with
the insurance market.

We can study the effect of cyber-insurance on nodes with different degrees based on above analysis. For k1 < k2, we have
φk1(S) < φk2(S), φk1(N ) < φk2(N ) and φk1(N ) − φk1(S) < φk2(N ) − φk2(S). In other words, nodes with higher degree
have higher initial infection probability and the protection measure will be less effective to nodes with higher degree. As a
result, the insurance market will be more likely to be an incentive for nodes with higher degree. (A quantitative conclusion
needs to examine the influence of wealth and loss difference for nodes with different degrees.)

Whether insurance will be an incentive greatly depends on the parameters. Generally speaking, cyber-insurance can be
a positive incentive for all nodes, a negative incentive for all nodes and a negative incentive for low degree nodes, but a
positive incentive for high degree nodes. We provide extensive numerical results in Section 5 to demonstrate the above
cases.

4.3. Cyber-insurance with moral hazard

With moral hazard, the insurance provider cannot observe the protection level of the nodes. As a result, the insurance
contract cannot be differentiated for nodes with a different protection level. Instead, with the insurance contracts given,
nodes will choose the behavior that maximizes their expected utility. It is possible that nodes will choose not to invest in
self-protection if the insurance can cover part of the loss. In this case, insurance is a negative incentive for self-protection.
Here, we investigate whether it is possible to design a contract that is not a negative incentive for self-protection.
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In a competitive insurance market, the only possible equilibrium is that the insurance provider offers the contracts at
the price φ(S) (φ(N )) and the nodes choose (not) to invest in self-protection. If the price is at φ(S), but nodes choose not
to invest in self-protection, then the expected profit of the provider (φ(S)− φ(N ))X < 0. The provider will not offer such
insurance since it will lead to a loss. On the other hand, if the insurance provider sells the contracts at the price of φ(N ), but
nodes choose to invest in self-protection, then the expected profit is (φ(N )−φ(S))X > 0. Since the market is competitive,
the positive profit will lead to competition and the insurance provider who offers contracts at price φ(S) will survive.

We first consider the case when the insurance provider can offer the full insurance coverage. Nodes can choose the
optimal amount of insurance coverage. We show that in this case S-equilibrium, contracts are sold at the price of φ(S)
and nodes choose S, is impossible. If nodes choose N , the optimal expected utility is maxX UN (φ(S), X) ≥ UN (φ(S), l) =
u(w−φ(S)l), wherewe useUN (φ(S), X) to denote the utility of node choosing S and X amount of insurance. If nodes choose
S, by Lemma 1, the optimal expected utility is u(w − φ(S)l)− c < u(w − φ(S)l). So nodes will choose N if full insurance
coverage can be offered. In other words, S-equilibrium does not exist under full insurance coverage. Full coverage insurance
is never an incentive for security adoption with moral hazard. The reason why full coverage insurance is not an incentive is
that if nodes get infected, loss will be covered fully regardless whether they take secure measure or not by paying the same
premium. As a result, the investment on security protection is not necessary.

One solution to the moral hazard problem is partial coverage against loss [19]. Partial insurance can incentivize nodes to
invest in self-protection by exposing them to certain risk loss. Consider the S-equilibrium, the insurance provider offers the
contract at price φ(S) and the maximal insurance coverage isW . We already showedW < l. In a partial insurance contract,
a node cannot decide the amount of coverage by maximizing its utility. If a node chooses N , its maximal expected utility is

UN (φ(S),W ) = φ(N )u(w − l+ (1− φ(S))W )+ (1− φ(N ))u(w − φ(S)W ). (26)

If a node chooses S, its maximal expected utility is

US(φ(S),W ) = φ(S)u(w − l+ (1− φ(S))W )+ (1− φ(S))u(w − φ(S)W )− c. (27)

The S-equilibrium exists if and only if

∆(W ) = US(φ(S),W )− UN (φ(S),W )

= (φ(N )− φ(S))(u(w − l+ (1− φ(S))W )− u(w − φ(S)W ))− c ≥ 0. (28)

It is easy to find out that ∆(W ) is a strictly decreasing function of W . We want to find out whether there exist W such that
W ∈ [0, l] and ∆(W ) ≥ 0. From previous analysis, we know ∆(l) < 0, i.e., when full insurance is offered, nodes will choose
N . If W = 0, it indicates that no insurance is provided. ∆(0) is the expected utility gap when no insurance is provided. If
∆(0) < 0, i.e., nodes will not invest in self-protection without insurance market, it is impossible to find out W such that
∆(W ) > 0 due to the monotonicity of ∆(W ). Thus, cyber-insurance can never be a positive incentive for self-protection.
However, if ∆(0) > 0, i.e., nodes will invest in self-protection without insurance market, we can always find such W such
that∆(W ) = 0 since∆(W ) is a continuous function ofW . As a result, themaximal insurance coverage which can be offered
by the insurance provider so that S-equilibrium is possible is:

Wmax = arg{∆(W ) = 0}. (29)

Here we show that cyber-insurance with moral hazard can never be positive incentive for security adoption. Though
cyber-insurance cannot be positive incentive, we demonstrate it can be non-negative, which still has practical meaning. The
cyber-insurance with moral hazard can improve hosts’ welfare while not impeding them from investing in security.

In the competitive insurance market without moral hazard, the expected utility of nodes who choose S with insurance
market is u(w−φ(S)l)− c . Withmoral hazard, themaximal insurance coverage isWmax. Then themaximal expected utility
for nodes choosing S is US(φ(S),Wmax). Since Wmax < l, we have US(φ(S),Wmax) < u(w − φ(S)l) − c. In other words,
nodes’ welfare is hurt by themoral hazard. If the insurance provider offers full insurance, nodes will, on the contrary, choose
N . Partial insurance with the maximal contractWmax will make it worthwhile for nodes to invest in self-protection.

5. Simulation and numerical results

We present simulation and numerical results to investigate the influence of various parameters in this section.
Validating final infection probability:we consider a large graphwithpower-lawdegree distribution [20].Wewant to verify the
accuracy of using the mean field on these power law graphs. We use the popular Generalized Linear Preference (GLP)method
to generate power law graphs [21]. Parameters were selected so that the power law exponent γ = −3. We generate graphs
with 10,000 nodes and approximately 30,000 edges. The minimum degree is 3 and the maximum degree is approximately
200. First, we verify the case when all the nodes have the same probability of being infected initially. The result is shown
in Fig. 5(a). Initially, every node is infected with the same probability ℘ and every edge is occupied with probability q. We
calculate the probability that nodeswith certain degree is infected. Fig. 5(a) shows that the simulation verifies the theoretical
results. One can also observe that the infection probability is an increasing function of node’s degree.When℘ and q increases,
the infection probability also increases.

Next, Fig. 5(b) shows the infection probability of nodeswith different degrees under different initial infection probability.
For both curves, q is set to be 0.1. For the curve above, we set the initial probability for nodes with degree k to be
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(a) Homogeneous infection prob. (b) Heterogeneous infection prob.

Fig. 5. Determine final infection prob. via local mean field.

(a) q = 0.05. (b) q = 0.10.

(c) q = 0.15.

Fig. 6. Externality effect on nodes with different degrees.

℘(k) = 0.4/k
1
3 . The probability decreases with degree. For the curve below, we set the initial infection probability to be

℘(k) = 0.2k
1
3 . The probability increases with degree. From the figure, we see that the local mean field technique is very

accurate and the theoretical results accurately match with simulation results.

Security adoption: let us investigate how parameters can influence the fraction of nodes with different degrees in adopting
secure measures. We consider a graph G with power law distribution with γ = −3; minimum and maximum degrees are
3 and 13, respectively. Here the maximum degree is set small for the convenience of selecting other parameters. With very
large maximum degree, even a small q will make the infection probability φk(N ) or φk(S) very big because of the power
relationship. However, our results still apply when the maximum degree is large.

We set the degree of risk of aversion of the utility function σ = 0.5, the same for all node. The initial wealth of nodes
with degree k is wk = 10 ∗ k + 50. The loss follows uniform distribution from 0 to half of the initial wealth. The cost of
securemeasure of all nodes is c = 0.3. Initially, all nodes without (with) securemeasure are infected initial with probability
p+ = 0.3 (p− = 0.2). Having fixed the above parameters, we choose to change q to calculate the fraction of adopters with
different degrees because nodes with different degrees are mainly differentiated via the term (1− qρ)k, in which q plays an
important role. We want to examine the effect of heterogeneity by setting different q.

We show the initial fraction and final fraction of adoption in Fig. 6. Here the initial fractionmeans that every node assumes
that other nodeswill not adopt securemeasure andmakes its decision based on this assumption. The final fractionmeans the
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(a) Negative incentive. (b) Positive incentive.

(c) Negative and positive incentive.

Fig. 7. Effect of cyber-insurance on security adoption.

fraction given by the minimum equilibrium point in Proposition 2. Due to the positive externality effect, the final fraction is
greater than the initial fraction.We plot them to examine the externality effect. From Fig. 6(a) to (c), we set q to be 0.05, 0.10
and 0.15 respectively. The figures show that the adoption fraction of nodes with every degree decreases as q increases. This
indicates that the spreading effectiveness can inhibit adoption of securemeasure. In Fig. 6(a), the adoption fraction increases
with degree, and in Fig. 6(b), the adoption fraction initially increases with degree, and then decreases with degree, while in
Fig. 6(c), the adoption fraction decreases with degree. Comparing these three figures, we see that there is no general rule
regarding the fraction of adopters as a function of the degree. It greatly depends on the parameters. However, we can see in
all figures that the gap between the final adoption fraction and the initial adopt fraction increases with degree, indicating
nodes with higher degree will be incentivized better than nodes with lower degree. This agrees with our previous result
that higher degree nodes are more sensitive to the externality effect.
Influence of cyber-insurance: we claim in the previous section that insurance can be a negative incentive for all nodes, a
positive incentive for all nodes and a negative incentive for low degree nodes but a positive incentive for high degree nodes.
We demonstrate these cases through numerical results. In Fig. 7(a), we set the parameters p+ = 0.3, p− = 0.2 and q = 0.02.
We see that the fraction of nodes which adopt the secure measure without the insurance market is greater than that with
insurancemarket. This is because the infection probability without securemeasure is low. In Fig. 7(b), we set the parameters
p+ = 0.8, p− = 0.7 and q = 0.02. As the figure shows, the insurance market is a positive incentive. In this case, the
infection probability without secure measure is high and the protection quality is low. In Fig. 7(c), we set the parameters
p+ = 0.8, p− = 0.7 and q = 0.15. In contrast to Fig. 7(a), q is greater, making the infection probability for low degree nodes
small while for high degree nodes big. Thus insurance is a negative incentive for low degree nodes, but a positive incentive
for high degree nodes.

6. Related work

Recently there has been growing research in the economics of information security [22,23]. Several models are proposed
to study the strategic behavior of security investment. [15,16] are the earliest work to consider strategic security investment
and to find externality effect. [24] assumes that security investment is continuous and considers the cases when the security
of one agent depends on others by the summation, weakest, best of the investment effort of all agents. They find the overall
security investment is highly relevant with how the security condition depends on each other. All these papers do not
incorporate the effect of network topology. Others assume that the graph topology is given. The authors in [25] combine the
N-intertwined epidemic model with game theory and model nodes’ strategic behavior. The model is based on the complete
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information of topology. In [26,27], the level of security is determined by weights assigned to a topology and no infection
process is modeled. [28] generalized the work of [24] to consider topology and also assume that the network topology
information is incomplete for agents. Our model contrasts [28] is that the security investment is discrete and security
dependence is caused by epidemic spreading. [29–31] are extension of [24] by considering some parameters of [24] such as
loss or attack probability is incomplete information andmodel it as a Bayesian security game. [7,8] are the closely related to
our work. The network topology is modeled as a homogeneous random graph while real networks are with the power law
degree distribution. Also, they do not consider the interaction among those nodes. In contrast, we consider the interaction
of nodes by studying a Bayesian network game. Our modeling result provides significant insight on the influence of node
heterogeneity on the adoption extent, sensitivity to network externality and cyber-insurance as an incentive. [32] also
models the externality effect by assuming that the loss is different among the nodes and finds multiple equilibrium. There
is a coordination problem in reaching better equilibrium. Our work can be seen as a step further in including heterogeneous
factors of nodes. We consider that nodes know their degree in estimating the infection probability, which makes the model
more practical and reasonable. [33] is our previous extended abstract in considering network heterogeneity,which is defined
by setting degree thresholds to divide the nodes into classes. This work generalizes the previous work and also considers
the effect of cyber-insurance.

Insurance was studied in the economic literature long time ago [18,19]. But these literatures lack to consider many
characteristics specific to a computer network, such as the interdependence of security, heterogeneity considered in this
work. Cyber-insurance was proposed to manage the security risk [34] but is only modeled recently [5,35,11]. A key concern
is whether cyber-insurance is an incentive for security adoption. [35] concludes that competitive and monopoly insurance
markets are not incentive with moral hazard and competitive insurance market is an incentive without moral hazard. In
contrast, we find competitive the insurance market is an incentive conditioned that the protection quality is not high. The
authors do not consider the heterogeneity in modeling cyber-insurance. We consider heterogeneity and show that cyber-
insurance is more likely to be an incentive for node with higher degree. [11] assumes the effort on security protection is
continuous and find that the competitive cyber-insurance market, if exist, cannot be incentive for security investment with
moral hazard. In [36], the authors consider there are two types of negatively correlated failures, security related and non-
security related. They propose a new type of cyber-insurance in which loss is partially covered. When cyber-insurance is
mandatory, this type of new insurance will be preferred than traditional cyber-insurance in which all loss is covered. These
papers on cyber-insurance, including ours, all show that moral hazard is the obstacle for cyber-insurance to be incentive for
security investment.

7. Discussion

Modeling strategic behavior in security adoption helps us to understand what are the factors that could result in under
investment. In this paper, we show, via a Bayesian network game formulation, how ‘‘network externality’’ with ‘‘node
heterogeneity’’ can affect security adoption in a large communication network. We also investigate the effect of cyber-
insurance on the protection level. We establish the conditions under which cyber-insurance is a positive incentive without
moral hazard. Under the situation of moral hazard, we verify that partial insurance can be a non-negative incentive.

There are several ways to extend the result of our work. The first is to follow the paper to continue to analyze cyber-
insurance with both moral hazard and adverse selection (the insurance provider cannot distinguish between high and low
risk(degree) nodes). The second is to consider that the effort on security investment is continuous, which is more practical.
The third direction is to incorporate the strategic behavior of adversaries, which can overcome the weakness of our paper
by assuming that all the nodes have the same probability of being attacked. It is interesting to see how the behavior of
adversaries may impact adoption of security measures. We also hope to get the real data on the parameters defined in our
paper to verify the model, which we artificially set in the simulation.
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