
User Identification Via Process Profiling

[Extended Abstract]
∗

Steve McKinney
Cyber Defense Laboratory

Department of Computer Science
N.C. State University, Raleigh, NC, USA

mjs at terabox.org

Douglas S. Reeves
Cyber Defense Laboratory

Department of Computer Science
N.C. State University, Raleigh, NC, USA

reeves at eos.ncsu.edu

ABSTRACT
Insiders are authorized persons who possess special privi-
leges of access; these privileges in some cases may be abused.
One way in which an insider attack may occur is when user X
makes use of user Y’s unattended (but logged in) computer,
and masquerades as user Y.

This paper presents a method of masquerade detection. A
light-weight monitor collected information about computer
usage by employees of a small organization for a period of
three weeks. A profile of each user was developed using a
Näıve Bayes classifier that analyzed handle counts of pro-
cesses as the input. Under conditions specified in the paper,
users were correctly identified using this technique approx-
imately 97% of the time, with a misidentification rate of
.4%.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized Access;
H.2.8 [Database Applications]: Data mining

General Terms
Security

Keywords
Data mining, Insider threat, Näıve Bayes

1. INTRODUCTION
Insiders (authorized members or participants in an orga-

nization) pose the greatest risk to an organization’s informa-
tion infrastructure. They have knowledge of and are given
access to protected assets, which gives them the opportunity
to engage in misconduct with serious consequences. Their

∗A full version of this paper is available as
User Identification Via Process Profiling at
www.lib.ncsu.edu/theses/available/etd-05092008-
154325/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSIIRW April 13-15, Oak Ridge, Tennessee, USA
Copyright 2009 ACM 978-1-60558-518-5 ...$5.00.

motivations for doing so may include revenge, greed, arro-
gance, or divided loyalties. Their actions can include steal-
ing or corrupting data, committing fraud, interference with
normal organizational operations, or exposure of the orga-
nization to unacceptable risk.

Most system defenses, such as intrusion detection systems
(IDS) and firewalls, are intended to detect and/or prevent
unauthorized access by outsiders. They do not, by and large,
protect against misbehavior by insiders. The primary pro-
tections against insider attacks are access control and audit
logs, but it is often relatively easy for insiders to manipulate
or bypass these mechanisms.

As an example, a trusted insider might masquerade as
another. This may occur because of insufficient protection
of passwords and other authentication tokens, or failure to
prevent unauthorized computer access (e.g., leaving a com-
puter unattended while still logged in). In such cases, access
control protections will make little difference.

The goal of this work is to create an insider identification
system which uses supervised learning techniques to warn of
changes in computer usage, and identify the masquerader re-
sponsible for the anomaly. To accomplish this goal, we mon-
itored (with permission) the computer systems of a small or-
ganization for a three week period. Data was collected about
processes running on the computers. We hypothesized that
such measurements would be successful in identifying users,
including masqueraders. This data was used as input to a
näıve Bayes classifier to create models of user behavior. The
models were then applied to data collected after construc-
tion of the models. The quality of the results (successful
identifications, and misidentifications) were tabulated and
compared to alternative methods. During this process, no
attacks or attempts at confounding occurred; only normal
employee activities were measured.

This approach has several advantages. The process data
was collected from computers being used to run many ap-
plications simultaneously in a modern windows-based en-
vironment (Microsoft Windows XP). The method not only
detects anomalies, but attempts to identify the user respon-
sible. The evaluation results are also encouraging. The rest
of this paper describes the method, results, and a compari-
son to related work.

2. METHOD
This work uses data mining algorithms known as super-

vised learners (classifiers) to detect anomalies. Supervised
learners use a set of labeled training data to create models
from which future predictions are based [14]. We primarily

used Näıve Bayes as the learning method, but also compared
it with Updateable Näıve Bayes.

One of the key issues in model construction is determining
which data to use. There are many candidates: file accesses,
network traffic, login events, privileged operations, etc. We
focused on process resource usage due to its: ease of collec-
tion, modest performance impact, and compatibility with
user privacy concerns. The only publicly available dataset,
the Schonlau dataset [9], only contains command-line data,
and was therefore not suitable for our purposes.

We developed our own data collector for the Microsoft
Windows operating system. A logon monitor used the Mi-
crosoft System Event Notification Service (SENS) to record
when a user logged on, logged off, locked the screen, un-
locked the screen, started the screensaver, and stopped the
screensaver. A separate process monitor collected data on
all running processes. This service used Microsoft’s .NET
framework and collected data approximately every second.
The monitor recorded the names of processes, process’ han-
dle count, working set size, total user processor time, to-
tal privileged processor time, and then timestamped each
record. Data was collected on a total of 57 distinct appli-
cations, from vendors such as Adobe, Microsoft, Mozilla,
Apple, etc.

The Näıve Bayes learning algorithm was used for con-
structing models of user behavior. The reasons for preferring
this algorithm included:

• fast execution

• low storage requirements

• modest demands with respect to amount of training
data required

• ability to adapt dynamically as user behavior changes

The Näıve Bayes algorithm differs from Bayesian analysis
in that it assumes all attributes being considered are condi-
tionally independent. Because of this assumption, computa-
tions are considerably simplified (learning time, for instance,
has complexity linear to the size of the training dataset).
This assumption is clearly questionable for the dataset de-
scribed above, but it has been shown that in practice Näıve
Bayes performs well even on datasets containing dependen-
cies [15].

The Näıve Bayes probability can be obtained by the fol-
lowing [7]:

p(C = ck|A1, ..., An) =

p(C = ck)
∏

i

p(Ai|C = ck)

∑
j

p(C = cj)
∏

i

p(Ai|C = cj)

This states that the probability of class ck occurring given
the set of attributes A1 through An, is equivalent to the
prior probability of class ck occurring times the product of
the probabilities of each of the attributes occurring given
class ck, divided by the probability of the attributes occur-
ring. When used as a classifier, the denominator on the right
hand side of the equation can be omitted as it is not depen-
dent on the class, ck, and can be considered a constant. For
classification, Näıve Bayes computes the probability of each
class occurring and selects the class with the largest proba-
bility:

classify(A1, ..., An) = argmaxck
p(C = ck)

∏
i

p(Ai|C = ck)

In order to ensure that the prior probability of the classes
did not bias the classifier towards users with more records,
we used the same number of training examples for each user.

The Updateable Näıve Bayes algorithm allows the model
to change after the training phase. During the testing phase
this algorithm updates the model for a particular class when
a test instance is identified as belonging to that class. While
this offers the benefit of evolving the model as user behavior
changes, it risks the possibility of a sophisticated attacker
training the model to confound it.

We used the WEKA machine-learning software [14] to an-
alyze the data. It provides classifiers for both of the analysis
algorithms we chose and is widely used in the knowledge dis-
covery community. Since every process was recorded along
with four attributes (working set, handle count, privileged
processor usage, and user processor usage), dimensionality
reduction was critical in forming a subset of data that was
computationally feasible to analyze. We were not interested
in system processes for user identification purposes, so they
were removed from consideration. In addition, only records
collected when the user was logged on and actively using
the system (as indicated by screen locking and screen saver
activity) were used for identification purposes.

3. EXPERIMENTAL FINDINGS
A group of employees from an architectural firm in North

Carolina agreed to have their workstations monitored for
purposes of this research. The nine users whose machines
were monitoried consisted of two engineers (labelled in the
following E1 and E2), five documentation and plan archi-
tects (labelled D1-D5), and two elevation architects (labelled
L1 and L2). All used PCs running Windows XP Profes-
sional, and all systems had the same hardware configura-
tion. Monitoring ran any time the machines were turned
on. Monitoring was unobtrusive and required no action on
the part of the users. Three weeks of execution data was col-
lected for each user. The user with the least amount of data
had 300,000 records, which corresponded to a total active
monitoring time of about 33 hours per week. We used the
first 300,000 records of each user for the experiment. Half of
the records, per user, (i.e., 150,000) were used for training
the Näıve Bayes models, while the second half (the other
150,000) were used for detection / identification.

For purposes of evaluating the algorithm, the true positive
rate (TPR) and false positive rate (FPR) are defined in the
following way:

TPR =
Number of correct classifications for the user

Total number of test records for the user

FPR =
of other users′ records misclassified as the user

Total # of test records for other users

In the results described below, accuracy is defined as the
true positive rate averaged over all users.

Initial experiments showed that handle count gave the
most accurate results. The handle count represents the num-
ber of system objects or resources that a process currently
has open. It is more a function of the application and how
it is being used, than of the system configuration or load. In
the data collected, the largest measured handle count was
6,784 (for Internet Explorer); for most processes, the handle
count was less than 400. Only results using the handle count
metric are indicated below.

Figure 1: Window Size versus Accuracy

Due to space limitations, we only show results from one
method of processing the recorded data. In this approach,
the handle counts of each of the users’ processes were aver-
aged over time windows of varying sizes, before being classi-
fied. The effect on accuracy of these varying sizes is shown
in Figure 1. We believe this apporach works well because it
represents process usage over time. Shorter windows yield
faster classifications, but (as the figure shows) at the expense
of a sacrifice in accuracy. Extending the window size beyond
a certain point does not improve accuracy, and reduces the
speed with which identification can occur.

Table 1: 45s Window/Avg Handle Count
E1 E2 D1 D2 D3 D4 D5 L1 L2 AVG

TPR 0.929 0.998 0.939 0.94 0.992 0.965 0.99 0.997 0.95 0.967
FPR 0.003 0 0 0.003 0.008 0.009 0.001 0.013 0.001 0.004

The TPR and FPR per user for a window size of 45 sec-
onds are shown in Table 1. The average true positive rate is
close to 97%, while the average false positive rate is around
.4%.

More detailed results are shown in Table 2. In this “Con-
fusion Matrix”, the row label represents the actual user who
generated a record, while the column label represents the
the classifier’s prediction. The Näıve Bayes algorithm, in
some cases, mis-classified E1 as D4, L2 as D3, and both D1
and D2 as L1. No other major misclassification occurred.
In the worst case, E1 was using only Internet Explorer and
was misclassified as D4. The two cases that led to L1’s high
false positive rate of 1.3% involved two separate, but small,
sets of processes in use by D1 and D2. In general, misclassi-
fications continued over relatively long intervals (30 minutes
or more) during which the same set of processes were in
use. The number of distinct intervals of misclassification
was therefore much smaller than the numbers in this table.

Table 2: Confusion Matrix: 45s Avg Handle Count
E1∗ E2∗ D1∗ D2∗ D3∗ D4∗ D5∗ L1∗ L2∗

E1 3096 0 0 0 4 205 0 28 0
E2 0 3328 0 0 3 0 0 2 0
D1 5 0 3129 42 16 3 0 138 0
D2 0 0 0 3133 18 0 0 182 0
D3 0 0 0 25 3306 0 0 1 1
D4 83 0 0 6 21 3218 0 0 5
D5 0 0 0 0 21 0 3301 0 11
L1 0 4 0 0 3 3 0 3323 0
L2 3 0 0 0 126 19 17 2 3166

Other methods of processing data before classification con-
sidered the ratio of handle counts among different processes,
both time averaged and non-averaged. Experimental results
(not shown) indicated this gave worse results than consider-
ation of the handle counts alone.

A further test investigated the predictive power that can
be achieved when only the same set of processes are consid-
ered. This could reflect the actions of an insider who was
careful to run only the same applications as the user they
were attempting to mimic. These tests were run only for
pairs of users in the same job category, since their behaviors
were likely to be the most similar. Handle counts averaged
over 45-second windows were used for classification; there
were 3,333 records in the test data set for each user. The
confusion matrix for this experiment is shown in Table 3;
for clarity, only the false positives are shown. Clearly, the
FPR is much higher under these conditions (with an aver-
age of 3.8%), which we consider to be a stringent test of the
method.

Table 3: Confusion Matrix: Common Test
E1∗ E2∗ D1∗ D2∗ D3∗ D4∗ D5∗ L1∗ L2∗

E1 142
E2 3
D1 73 246 26 796
D2 1 44 0 0
D3 0 1066 127 0
D4 15 21 57 0
D5 13 144 88 16
L1 14
L2 232

The same tests were conducted using the Updateable Näıve
Bayes algorithm. For the standard case (considering all pro-
cesses), it performed no better or slightly worse than the sim-
ple Näıve Bayes algorithm. For the restricted case in which
only common processes between similar employees were con-
sidered, the Updateable Näıve Bayes algorithm improved the
FPR to 2.1%.

The performance impact of our monitoring utilities was
found to be less than 1% of both CPU time and system
memory. No user indicated they felt impacted by the mon-
itoring process. Log sizes grew at a rate of approximately
3.7MB per week of monitoring (compressed). Training the
Näıve Bayes classifier took 182 seconds of CPU time for
all nine users; testing required 601 seconds of CPU time.
Testing and training times for the Updateable Näıve Bayes
classifier were similar. We also investigated the performance
of the WEKA software, and found that on a standard PC it
could classify more than 140 users, in real time, for each of
whom one record per second was being collected.

4. RELATED WORK
Intrusion detection systems were pioneered by Anderson [1].

Interestingly, the focus in this first report was on detection
of malicious insider activities. Since that time, intrusion
detection has become almost synonymous with detection of
external attacks.

The single greatest challenge to the field is the lack of
verifiable data. Due to concerns of privacy and security, few
organizations will release data that could be used for exper-
imental validation. We found in our investigation that less
than half of the papers in this field validated their ideas ex-

perimentally. Of those that have processed data, it usually
has focused on Linux systems and/or user input (command
line input, user keystrokes, mouse movements, etc.), not pro-
cess data on Windows systems, as described above.

Liu et al. [3] investigated the use of system calls to iden-
tify insider attacks, but found large numbers of false alarms.
Shavlik et al. [13, 12] created user profiles from Windows
2000 workstations and were able to produce less than one
false alarm per day per user. System performance and uti-
lization data, event logs, typing rates, running programs,
API invocations, and open file handles were all used. A
weighted majority machine learning algorithm was used (and
found in their experiments to produce better results than
Näıve Bayes). Detection rates ranged from 71% to 97.4%,
with false positive rates of around .3%. Note this work con-
ducted masquerade detection, not user identification.

User profiling has been done using command line data [8,
2] and user process data. Maxion has published several pa-
pers critiquing methodology in this field [4, 5, 6], and inves-
tigating the use of the Updateable Näıve Bayes algorithm for
this purpose. Some other works have attempted to use the
same dataset as Maxion. The best results seen so far have
come from Sharma and Paliwal in 2007 who were able to
achieve 92.2% true positives with 14.5% false positives [11],
and from Seo and Cha who obtained 97.4% true positives
with 23.77% false positives[10].

Other proposals for detecting insider attacks were not
evaluated experimentally, or have goals or metrics that are
orthogonal to ours (e.g., document analysis).

5. CONCLUSIONS
We have shown that is possible to accurately identify users

by the creation and use of process profiles. Näıve Bayes
and an updateable variant of it were used to achieve a true
positive rate of 96.7% with a false positive rate of 0.4% from
data collected over a three week period. Out of several tests
that were run on the data, we found the process handle
count, averaged over 45 seconds intervals, to be the most
effective in distinguishing users from one another.

To our knowledge, this work is the first to consider profil-
ing user processes in an environment where it is common for
many user processes to be running simultaneously. Though
we cannot directly compare to related work in other environ-
ments, our work has yielded higher true positives and lower
false positives than any of the previous work. We also con-
sidered a simulated masquerade attack where the processes
used were limited to those common among the users. This
work goes beyond previous work in masquerade detection as
it not only detects masqueraders, but also identifies them.

More extensive experiments for longer periods of time and
more users are needed to validate this initial work. Perfor-
mance under attack by an intelligent, informed adversary,
and protection of the monitor and log data, perhaps through
the use of virtualization, also remain to be investigated.

6. ACKNOWLEDGMENTS
This research was performed under an appointment to

the Department of Homeland Security (DHS) Scholarship
and Fellowship Program under DOE contract number DE-
AC05-06OR23100. All opinions expressed in this paper are
the author’s and do not necessarily reflect the policies and
views of DHS, DOE, or ORAU/ORISE.

The authors would like to thank Oak Ridge National Lab-
oratory’s Cyber Security and Information Intelligence Re-
search Group who gave advice and direction for this work.
In particular, Dr. Erik Ferragut, Dude Neergaard, and Dr.
Frederick Sheldon.

7. REFERENCES
[1] J. Anderson. Computer security threat monitoring

and surveillance, 1980.

[2] B. Davison and H. Hirsh. Predicting sequences of user
actions. In Predicting the Future: AI Approaches to
Time-Series Problems, pages 5–12, Madison, WI, July
1998. AAAI Press. Proceedings of AAAI-98/ICML-98
Workshop, published as Technical Report WS-98-07.

[3] A. Liu, C. Martin, T. Hetherington, and S. Matzner.
A comparison of system call feature representations
for insider threat detection. In Proceedings from the
Sixth Annual IEEE SMC, pages 340–347, 2005.

[4] R. Maxion and T. Townsend. Masquerade detection
using truncated command lines. In DSN ’02:
Proceedings of the 2002 International Conference on
Dependable Systems and Networks, pages 219–228,
Washington, DC, USA, 2002. IEEE Computer Society.

[5] R. A. Maxion. Masquerade detection using enriched
command lines. In DSN, pages 5–14. IEEE Computer
Society, 2003.

[6] R. A. Maxion and T. N. Townsend. Masquerade
detection augmented with error analysis. IEEE
Transactions on Reliability, 53(1):124–147, 2004.

[7] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[8] J. Ryan, M. Lin, and R. Miikkulainen. Intrusion
detection with neural networks. In NIPS ’97:
Proceedings of the 1997 conference on Advances in
neural information processing systems 10, pages
943–949, Cambridge, MA, USA, 1998. MIT Press.

[9] M. Schonlau, W. DuMouchel, W. Ju, A. Karr,
M. Theus, and Y. Vardi. Computer intrusion:
Detecting masquerades, 2001. Statistical Science
(submitted).

[10] J. Seo and S. Cha. Masquerade detection based on
SVM and sequence-based user commands profile. In
ASIACCS ’07: Proceedings of the 2nd ACM
symposium on Information, computer and
communications security, pages 398–400, New York,
NY, USA, 2007. ACM.

[11] A. Sharma and K. Paliwal. Detecting masquerades
using a combination of Näıve Bayes and weighted
RBF approach. Journal in Computer Virology,
3(3):237–245, 2007.

[12] J. Shavlik and M. Shavlik. Selection, combination, and
evaluation of effective software sensors for detecting
abnormal computer usage. In KDD, pages 276–285,
2004.

[13] J. Shavlik, M. Shavlik, and M. Fahland. Evaluating
software sensors for actively profiling Windows 2000
computer users. In Fourth International Symposium
on Recent Advances in Intrusion Detection, 2001.

[14] I. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, 2nd edition, 2005.

[15] H. Zhang. The optimality of Naive Bayes. In FLAIRS
Conference, 2004.

