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RANDOM WALKS ON QUASI ONE DIMENSIONAL LATTICES AND
APPLICATIONS TO MOLECULAR MOTORS
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ABSTRACT. Several stochastic processes modeling molecular motors on a linear track, as
Markov random walks on quasi 1d lattices and random walks with non exponential wait-
ing times, share a common regenerative structure and their mathematical investigation
can be reduced to the study of a time changed sum of i.i.d. random vectors. Analyzing
this abstract common structure, we derive information on the asymptotic velocity (law of
large numbers), gaussian fluctuations (invariance principle) and large fluctuations (large
deviation principle) for the original stochastic process. Concerning large fluctuations,
we discuss Gallavottti-Cohen-type symmetries for the velocity, which are universal only
inside a suitable class of quasi 1d lattice.
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1. INTRODUCTION

Molecular motors are proteins working inside the cell as nanomachines [22]. They usu-
ally convert chemical energy coming from ATP to produce mechanical work fundamental
for cargo transport, cell division, genetic transcription, muscle contraction,... We con-
centrate here on the large family of molecular motors working in a non—cooperative way,
moving along cytoskeletal filaments, which are given by polarized homogeneous polymers.

Molecular motors have been and still are object of intensive study in biology and bio-
physics. Two fundamental paradigms have been proposed for their modelization. In the
so called Brownian ratchet model [23| B6, B7] the dynamics of the molecular motor is
given by a one-dimensional diffusion in a periodic but typically asymmetric potential,
which can switch to a different potential at random times (switching diffusion). The other
paradigm, on which we concentrate here, is given by continuous time random walks (also
with non exponential waiting times) on quasi linear graphs having a periodic structure
[177) 18] 251 26 27, 28]. We call these graphs quasi 1d lattices, they are obtained by gluing
together several copies of a fundamental cell in a linear fashion. The geometric complexity
of the fundamental cell reflects the possible conformational transformations of the molec-
ular motor in its mechanochemical cycle. The simplest example is given by a random walk
on 7Z with periodic jump rates (in this case the fundamental cell is given by an interval
with N sites, N being the periodicity), while random walks on other classes of quasi 1d
lattices (parallel-chains models and divided—chains models) have been studied motivated
by experimental evidence of a richer structure [8], @, 24].

Let us point out some selected results in the biophysical literature concerning random
walks on quasi 1d lattices. Still before the study of molecular motors, both the asymptotic
velocity and gaussian fluctuations for the random walk on Z with periodic jump rates have
been obtained from [I2] under a suitable Ansatz. Generalizing the same Ansatz, formu-
las have been given in [§], [0 24] for the asymptotic velocity and gaussian fluctuations of
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parallel—chains models and divided—chains models. In [4I] the authors have considered
a generic random walk on a quasi 1d lattice and, by first—passage time arguments, have
investigated the asymptotic velocity. Results concerning the large deviations of the molec-
ular motor position are rather limited. In [29, B0] the authors have derived such a LDP
for the random walk on Z with periodic jump rates with periodicity 2, showing in addi-
tion the presence of a Gallavotti-Cohen type symmetry. This kind of symmetry relations,
often called fluctuation theorems, have received in the last decade much attention inside
the non—equilibrium statistical physics of small systems and in particular for molecular
motors (cf. [I 6], B0, [40] and references therein).

Let us now describe our contribution and compare it with the previous results. We treat
random walks on quasi 1d lattices in full generality and show their analysis reduces to the
study of random time changes of sums of i.i.d. random variables. As a first consequence
we prove a law of large number and a central limit theorem, giving explicit formulas for the
asymptotic velocity and diffusion coefficient (cf. Theorem[). In a companion paper [15] we
apply the above results to derive the asymptotic velocity and diffusion coefficient in specific
classes of 1d quasi lattices. Remarkably, while applying Theorem [l to the periodic case we
confirm Derrida’s result [12], for the class of divided—chains and parallel-chains model we
show that the formulas derived in [8, @, 24] by extending Derrida’s Ansatz are not correct
(see [15]). We explain our results concerning large deviations. All relevant information
concerning the position of the random walk are encoded in an associated random walk on
7 with nearest neighbor jumps and typically non—exponential holding times, that we call
skeleton process. We derive for the latter the LDP for the first—passage times as well as
for the position (cf. Theorem [2]). We also obtain a detailed qualitative analysis of the rate
functions of the above LDPs (cf. Theorem [B] and Proposition [B.3]). The tools developed
in this part are fundamental to investigate the Gallavotti-Cohen symmetry (shortly, GC
symmetry) of the form I(¥) = I(—19)+ ¢, where [ is the LD rate function for the position
of the skeleton process, ¥ € R and ¢ is a suitable constant. The GC symmetry has been
derived in [29, B0] for random walks on Z with periodic rates of period 2. These random
walks and their large deviations have been analyzed in [29] by matrix methods, allowing
to study also an enriched process taking into account the ATP consumed by the molecular
motor. We restrict here to the molecular motor position (i.e. the skeleton process) and
show that the GC symmetry pointed out in [29] cannot hold for a generic random walk
on a quasi 1d lattice. Indeed, we show that there exists a class of quasi 1d lattices such
that the GC symmetry is verified for any choice of the rates, while outside that class the
GC symmetry is violated for Lebesgue any choice of the rates. This result implies that a
priori one cannot expect to observe this symmetry even if nanotechnology would allow the
observations of large deviations. On the other hand, an experimental evidence of the GC
symmetry would suggest that the mechanochemical cycle of the molecular motors is well
described by a random walk on a quasi 1d lattice in the above special class. In [15] we will
continue our analysis discussing more in detail the connection with the Gallavotti-Cohen
functional [31] and why the validity of the GC symmetry for the above class of quasi 1d
lattices is indeed a consequence of a universal symmetry for algebraic currents [16].

We conclude this introduction with some comments on technical aspects. The above
results, presented in Section2 do not restrict to random walks on quasi 1d lattices. Indeed
(see Section B]) they hold for stochastic processes on quasi 1d lattices with a suitable
regenerative structure and in general they hold for stochastic processes (Z;);cr, obtained
as follows. Consider a sequence (w;, 7;);>1 of i.i.d. 2d vectors with values in R x (0, +00).
Defining W, := > | w; and Ty, := 31" 7 for m > 0 integer, set Z; := Wiaxm>0: o<t} -
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Sums of i.i.d. random variables have many nice properties and random time changes are
not troublesome for what concerns the LLN and the invariance principles (indeed the proof
of Theorem [ is very short). On the other hand, the derivation of the LDP for (Z;);cr,
from the large deviation properties of (Wy,)m>0 and (7p,)m>0 is much more delicate. In
[13] a LDP is obtained under the condition that the 7;’s have finite logarithmic moment
generating function. This condition is not satisfied when considering random walks on
quasi 1d lattices, hence in our case the results of [I3], an the similar ones of [39], cannot be
applied. In the context of LDPs for processes under random time changes we also mention
the new progresses obtained in [32, 34]. Restricting to the case w; € {—1,1} (which
covers the applications to molecular motors), the process (Z;)icr, becomes a random
walk on Z with generic holding times (not necessarily exponential). Following the main
scheme presented in [I0] we derive the LDP for the process (Z;)icr, . We point out some
technical issues making our analysis different from [10]: we allow correlations between wj
and 7; (absent in [I0]), moreover the minimum in the support of the law of 7; can be
zero or positive (the first case is excluded in [10]). Hence, although we have no random
environment (thus of course simplifying the analysis) in our case there is a richer scenario
for the possible behavior of the rate functions of the process (Z;):cr, and of the associated
first—passage times, and this behavior has to be investigated and kept in consideration in
order to prove LDPs (see Section [£.2)).

The proof of Theorem [l (validity or almost everywhere breaking of the GC symmetry)
is obtained by complex analysis methods and by using that a GC symmetry holds for
(Zt)ter, if and only if w; and 7; are independent (see Theorem [).

2. RANDOM WALKS ON QUASI 1D LATTICES AND MAIN RESULTS

We start by defining quasi 1d lattices. Consider first a finite oriented graph G = (V, E),
V being the set of vertices and E being the set of oriented edges, £ C {(v,w) : v #
w in V}. We fix in V two vertices v,7. We assume that the oriented graph G is connected,
i.e. for any v, w € V there is an oriented path in G from v to w. Then the quasi 1d lattice
G associated to the triple (G, v, E) is the oriented graph obtained by gluing together
countable copies of G such that the point ¥ of one copy is identified with the point v of
the next copy. To give a formal definition, we define G as G = (V, ) with vertex set V
and edge set £ as follows (see Figure [2):
V= {v, = (v,n) € (V\{v}) xZ}
E=EUEUES,
where
& i ={(vp,wy) : (vyw) € E, neZ},
E9 1= Upez {(vn,ym_l) : (v,0) € E} ,
E3 = Upez, {(gnﬂ,vn) : (v,v) € E} .
To simplify notation we set
Ny 1=V, , nez.

On the graph G we define the shift 7 : V — V as T (v,) = vp41. Note that the graph
G is left invariant by the action of 7. We can now define the class of stochastic processes
on quasi 1d lattices we are interested in:

Definition 2.1. Given a quasi 1d lattice G associated to the triple (G,y, 6), we consider
a stochastic process (Xi)ier, with paths in the Skohorod space D(R;V) starting at any
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FIGURE 1. The graph G = (V, E) with vertices v,v (left) and the associ-
ated quasi 1d lattice G = (V,E) (right)

site ny (we denote by P,, the associated law on D(Ry;V)) and fulfilling the following
properties:

(i) for each n € Z, P, —a.s., jumps are possible only along the edges in &,
(ii) for eachn € Z, when (X;)ier, is sampled with law Py, then the law of (T (Xt))ier,
equals (..,
(iii) defining S as the random time

S:=inf{t>0: X, e {-1,,1.}}, (1)

it holds Eo, (5%) < co.
(iv) underPo,(-| Xs = £1.) the random path (Xsi1)ier, s independent from (Xi).e(o,s]
and has law Py, .

In the applications, typically (X;);er, is a continuous time random walk (with expo-
nential holding times):

Lemma 2.2. Let (Xt)t€R+ be a continuous time random walk with state space V and with
positive jump rates r(x,y), (x,y) € €, such that

r(x,y) =r(Tz, Ty). (2)

Then the above random walk is well defined for all times t (no explosion takes place),
fulfills the properties of Definition 21 and moreover g, (eM) < +oo for X\ > 0 small
enough.

The proof of the above lemma is simple and therefore omitted. The finite exponen-
tial moments for A small follow from the exponential decay of hitting probabilities for
irreducible Markov chains with finite state space.

We point out that in the applications another relevant example is given by a random
walk (X¢)ier, on the graph G with non exponential holding times (cf. [26]).

Note that the states n.’s behave as gates which have to be crossed by the stochastic
process X; in order to move from one fundamental cell to the neighboring ones in the
quasi 1d lattice G. In the applications to molecular motors, each site n, corresponds to
a spot in the n—monomer of the polymeric filament where the molecular motor can bind.
The other states v,, correspond to intermediate conformational states that the molecular
motor achieves in its mechanochemical transformations, which are described by jumps
along edges in £. In particular, states v, do not encode only a spatial position and jumps
do not necessarily correspond to spatial jumps.

We now introduce the fundamental object of our investigation:
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Definition 2.3. Given the stochastic process X as in Definition[21), the skeleton process
X* = (X{)er, is defined as X{ = ®(X,) where ®(n,) =n and

t:=sup{s € [0,t] : Xy = n, for somen € Z} .
X} has values in Z and records the last visited state of the form n, up to time t.

In the applications to molecular motors, the process (X;);er, contains all the relevant
information, indeed it allows to determine the position of the molecular motor up to an
error of the same order of the monomer size. Our main results concern the asymptotic
behavior of the skeleton process (law of large numbers, invariance principe and large
deviations principle) as well as the analysis of a Gallavotti-Cohen type symmetry.

2.1. Asymptotic behavior (LLN, invariance principle, LDP). Let S be the random
time defined in ().

Theorem 1. Consider the process (Xi)icr, starting at 0,. Then the skeleton process
(X¥)ter., satisfies the following properties:
(i) (Law of Large Numbers) Py, -a.s.
i Xt _ Po.(Xs =1,) — Py, (X5 = —1,)
im — =
t—oo EO* (S)

=:0. (3)

(i) (Invariance Principle) Given n € N define the rescaled process
1
NG
wit(h )paths in the Skohorod space D(R4;R). Then as n — oo the rescaled process
(B:")

Bgn) = {X;, —unt}

teR, weakly converges to a Brownian motion on R with diffusion constant

2. Var(Xg —vS)
' Eo. (5)

Theorem [I] is an immediate consequence of Lemma B.1] and Theorem [@ in Section Bl

2

(4)

2.2. Large deviations.

Theorem 2. Consider the process (Xi)ier, starting at 0.. Call T,, the first time the
skeleton process hits n € 7, i.e.

T, :=inf{t e Ry : X =n} €[0,+o0]. (5)
Then the following holds:

(i) Asn — +oo the random variables Ty, / |n| satisfy a LDP with speed |n| and convex
rate function

Je(u) :=sup{u—logpsr(N)}, ueR, (6)
AER
where
o1 (\) = Eq, (e)‘Tﬂ]l(Til < oo)) € (0,400, AER. (7)

The rate function Ji is goocEl if and only if Py, (Th < 00) # Py, (T-1 < 00).

1We use the same terminology of [IT]
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(ii) Ast — 400, the random variables X[/t satisfy a LDP with speed t and good and
convex rate function I given by

1) = {79J+(1/79) if  9>0,

P/ i 9 <0, 8)

and I(0) = limy_,o I(9).

Theorem 2] is an immediate consequence of Lemma Bl and Theorem [1 in Section [Bl
Since T,, can take value +oo, the meaning of the LDP for T,,/|n| as n — 400 is the
following: for each close subset C C R and each open subset O C R it holds

1 T,
limsup — log Py, (,—n’ € C> < - i%f Ji,
n

n—+oo ‘n‘

o1 T, .
liminf — logPy, | — € O ) > —inf J .
i T ) 5

We now collect information on the qualitative behavior of the rate function I, including
a Gallavotti-Cohen type symmetry. The qualitative behavior of the rate functions J_, J
is described in Proposition B3] in Section Bl Here we concentrate on the rate function I
since the large deviations of X/ /¢ are more relevant in the applications.

Definition 2.4. We define a+ as the minimum of the support of the law of Ty1.

We point out that ay is the minimum of the support of the Borel measure A — Py, (S €
A, Xg = =£1,) (see Prop. in Section [B]). Below 1/a4 is intended to be 400 if ag = 0.
Note that ar = 0 in the case of continuous time random walks (with exponential holding
times).

Theorem 3. The following holds:
(i) I is infinite outside [— a%, i}, I is finite and C* on (— a%,
smooth on (—1/a_,1/ay) \ {0}.
(ii) The following holds:

L), moreover it s
at

+ f Po, (11 = =0
ﬂ/a (a) < 0 otherwise.
f Po, (11 =a_)=0
lim 1) =4 ¥ Bo.(Ty = o) (10)
N I( — ot) < 0o otherwise.
(iii) The derivative of I satisfies lim I'(¥) = +oo and lim I'(J) = —oc.
9 /t PN
(iv) I is lower semicontinuous and conver on R, it is strictly conver on ( — ai, 0%)
-7 ag

v as a unique global minimum, which is given by 0 and is attained at v €

I h ' lobal mini hich is gi by 0 and is attained at
(—1/a_,1/ay), where v is the asymptotic velocity defined in Theorem[l. Moreover
I is strictly decreasing on (—1/a_,v) and is strictly increasing on (v,1/ay).

Theorem [ is an immediate consequence of Lemma B1] and Theorem [§ in Section [

Theorem 4. The following facts are equivalent:

(i) For some c € R the Gallavotti-Cohen type symmetrif] I(¥) = I(—=V)+cv holds for
all ¥ € R;

2Sum is thought in [0, 400
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(ii) The random variables Xs and S are independent.

]PO* (XS:_l*)

Moreover, when (i), (ii) hold it must be ¢ = log Pe. (Xs=T)

Theorem [ is an immediate consequence of Lemma B.1] and Theorem [ in Section Bl

2.3. Gallavotti—Cohen type symmetry for RWs on quasi 1d lattices. In this sec-
tion we continue our investigation of the Gallavotti-Cohen type symmetry (shortly, GC
symmetry) as in Theorem Fl We restrict to continuous time random walks (X;);er, on
quasi 1d lattices as defined in standard way, i.e. with exponential holding times. Recall
that we write r(x,y), (z,y) € &, for the positive jump rates of the random walk and
assume the periodicity (2] to hold.

We restrict our discussion to the case of fundamental graphs G = (V, E) such that

(z,y) € E if and only if (y,z) € E, (11)

which is the standard setting in the investigation of GC symmetry for Markov chains [31].

In what follows, given an edge (u,v) € E in the fundamental graph G = (V, E), we
define

r(u,v) = r(r(u), 7(v)), (12)

where 7 is the map V' — V defined as m(u) = ug if u # v and 7(v) = v;. Note that, fixed
positive numbers a(e), e € E, it is univocally determined a random walk on G whose rates
satisfy (2) and such that r(e) = a(e) for all e € E. We call it the random walk induced
by a(e), e € E.

We introduce a special class of graphs G which includes in particular trees. Recall that
G has connected support when disregarding the orientation of the edges.

Definition 2.5. We say that the graph G = (V,E) is (v,v)-minimal if it satisfies (LI
and moreover there is a unique path v, = (20,21, ..., 2n) such that (i) zg = v, (ii) 2, =7,
(iii) (zi,2ir1) € E and (iv) the points zg, ..., z, are all distinct.

Note that, given a generic fundamental graph G = (V, E), there exists at least one path
v = (20, 21, - - -, 2n) satisfying the above properties (i),...,(iv). Indeed, since G is connected,
there exists a path from v to ©. Take such a path and prune iteratively the loops. Since
each time a loop is pruned away the length of the path decreases, after a finite number of
prunes one gets a minimal path satisfying the above properties (i),...,(iv).

Now suppose that G = (V, E) is (v,7)-minimal and take two points z; # z; (the z’s
are as in the Def. [Z3]). Then it cannot exists a path from z; to z; whose intermediate
points are in V'\ {20, 21, ..., 2, }. In particular, the graph G must be as in Fig. (due to
property (1)) we only draw the support of G, disregarding orientation). More precisely,
the graph is given by the linear chain v, of Def. 1] to which one attaches some subgraphs,
in such a way that each attached subgraph has exactly one point in common with ~,.

Theorem 5. Suppose that G = (V, E) is a graph satisfying ). If G is (v,7)-minimal,
then the random variables S and X are independent, and in particular the large deviation
rate function I associated to the skeleton process X* satisfies the Gallavotti—Cohen type
symmetry

I(9)=1(-9)+ A9, V9 eR, (13)
where
(20, 20)r(21,22) - 7(2n-1, 2n)
r(z1,20)r(22,21) - (20, Zn-1)
and s = (20, 21,22y« -+ » Zn—1, 2n) 1S the path in Definition [Z7.

A = log

(14)
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FIGURE 2. A (v,7)-minimal graph G = (V, E)

Vice versa, if G is not (v,D)-minimal then the vectors (r(e) : e € E) € (0,400)F for
which the induced random walk on G satisfies [IB)) for some constant A (depending on the
numbers r(e), e € E) has zero Lebesgue measure in (0, 4+o00)F.

The proof of the above theorem is given in Section

3. RANDOM TIME CHANGES OF CUMULATIVE PROCESSES

As already mentioned, the results presented in Sections 21l and hold in a more
general context that we now describe. Consider a sequence (wj, 7;);>1 of i.i.d. 2d vectors
with values in R x (0, +00). For each integer m > 1 we define

Wy = w1 +wa + -+ + Wy, (15)
Tmi=T1+T2+ -+ Tm. (16)

We set Wy = 79 = 0. Note that lim,, .o 7, = +00 a.s. As a consequence, we can
univocally define a.s. a random process {v(t)},cp, with values in {0,1,2,3,...} such that

Towy <t <Towy41,  t=>0. (17)
Note that v(t) = max{m € N: T,, < t}. Finally, we define the process Z : [0,00) — R as
Zt = Wu(t) . (18)

Note that Zy = 0. The resulting process Z = (Z;)er, is therefore obtained from the
cumulative process (W, )m>0 by a random time change, and generalizes the concept of
(time-homogeneous) random walk on R. For example, if w; and 7; are independent and 7;
is an exponential variable of parameter A, then the process Z is a continuous time random
walk with exponential holding times of parameter A and with jump probability given by
the law of w;. If 7; = 1 for all i, then Z; = W)y (|| denoting the integer part) and
(Zn)nen is a discrete time random walk on R with jump probability given by the law of
w;.

Due to Definitions 2.l and 23] the skeleton process X™* is indeed a special case of process
Z (recall the definition of the random time S given in ()):

Lemma 3.1. Consider a sequence (w;, 7;)i>1 of i.i.d. vectors, with the same law of the
random vector (X35, 5) € {—1,1} x (0, +00) when the random walk (X;)ier, starts at 0.
We define (Zy)ier.. as the stochastic process built from (w;, 7;)i>1 according to ({I8). Then
(Zt)icr, has the same law of (X{)iecr, with X5 = 0.
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The proof of the above lemma is very simple and therefore omitted.
We first state our main results for (Z;)ier, :

Theorem 6. The stochastic process (Zy)ier, satisfies:

(i) [LLN] Assume that E(r;) < co. Then almost surely limy_,oq 2t = v 1= :
(ii) [Invariance Principle] Assume that E(w?),E(7?) < co. Givenn € {1,2,...} define
the rescaled process

1
B™ .— —

t \/ﬁ {
in the Skohorod space D(R4;R). Then as n — oo the rescaled process B weakly
converges to a Brownian motion on R with diffusion constant

Znt — vnt}

o2 Var(w; — v7y)
E(r)

The proof of the above result is given in Section [l

(19)

Theorem 7. [LDP] Suppose that
(A1) w; € {-1,1} a.s.
(A2) P(w; = +1) >0 and P(w; = —1) > 0.
Set T,, == inf{t e Ry : Z; =n} € [0,+00]. Define Jr and @1 as in (@) and ([@). Then
the following holds:
(i) Asn — +oo the random variables Ty, / |n| satisfy a LDP with speed |n| and convex
rate function Jy. The rate function Jy is good if and only if P(T} < co) # P(T-1 <
00).
(ii) As)t — 400, the random variables Z;/t satisfy a LDP with speed t and good and
convex rate function I given by

19) = {79J+(1/79) if  9>0,

P/l i 9 <0, (20)

and I(0) = limy_,q I(9).

The proof of the above result is given in Sections Bl and [Gl
We introduce the functions fi on R as

fe(A) = E( M1 (wy = £1)) € (0, +00] . (21)

Note that fi(A) > 0 under Assumption (A2). We call ax the minimum value in the
support of the law of T.1.

Proposition 3.2. Under Assumptions (A1) and (A2) of the previous theorem the follow-
ing holds:
(1) The function i () satisfies
| T IR
ey STy (22)
for X < A¢, where A\. € [0,+00) is the unique value of A such that f_(\)f1(\) =
1/4, while p1(X) = +00 for X > A..
(ii) Consider the measure ps on [0,+00) such that pr(A) = P(r € A,wy = £1) for
any Borel A C R. Then a4 is the minimum value in the support of p+. Moreover
P(Ty = ay) =P(m = agx,w; = +1).
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The proof is given at the beginning of Subsection

The qualitative behavior of the rate function I(19) is described by the following theorem
(for the qualitative behavior of J1 see Proposition [5.3)):

Theorem 8. Theorem[3 remains valid in the present more general context, with v defined
as in Theorem [@.

We conclude with a result on the presence of a Gallavotti-Cohen type symmetry in the
rate function I:

Theorem 9. The following facts are equivalent:
(i) There exists a constant ¢ € R such that the Gallavotti-Cohen type symmetry
IW)=1(-9)+ v (23)
holds for all ¥ € R;

(ii) fized i, the random variables w;, T; are independent;
(iii) the functions ¢4 (X) and p_(X) are proportional where finite, that is:

0+r(A) =Cp_(A)  forall X< A..

Moreover, if we let p := P(w; = 1) and q := P(w; = —1) (with p,q > 0 by Assumption
(A2)), then C = p/q and c =log(q/p) = —log C.

The proof of this result is given in Section [7

4. PROOF OF THEOREM [l (LLN AND INVARIANCE PRINCIPLE)

4.1. Law of Large Numbers. The proof is rather standard, we give it for completeness
as short. Since limy, oo T = 00 a.s., we have limy_, v(t) = co a.s. Hence from the LLN
for (Wy,)n>1 and (7p)n>1 we deduce that lim;_,o % = E(w;) and limy_, % =E(n)
a.s. From the last limit and the bounds (recall (I7))

Ty ot _ Tuwsr v(H)+1

< < .

vit) —v(t) vt)+1  v(t)

we get limy o v(t)/t = 1/E(7;) a.s. Since Zy/t = [W, ) /v(t)] - [v(t)/t] we get the thesis.

4.2. Invariance Principle. For each n > 1 and t € R+ let

n 1 n
Ag ) % {thtj - E(wi)nt} , D( {TLMJ Tl-)nt} .
Then, since v = E(w;)/E(7;), the following identity holds:
(n) _ 1 v
B \/— {Wu(nt )I/(’I’Lt)} + % {E(wl)y(nt) - vﬁ/(nt)} + % {%(nt) - ’I’Lt}
) (n) v
- Au(nt)/n B vDV(nt)/n + % {7;(”15) B ’I’Lt} ’

(24)

Lemma 4.1. Given € > 0 and s > 0 we have

lim P < sup % {Tonty — nt}‘ > s> =0. (25)

n—o0 OStSS
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Proof. As proven in the previous subsection limy_, o, v(t)/t = 6 := 1/E(7;) a.s. Hence,
fixed § > 0, it holds P(ES) < ¢ for n large enough as we assume, where E,, is the event
{v(ns) < 20ns}. Trivially the event E,, implies that v(nt) < 20ns for each ¢ € [0, s]. Now
we observe that, due to (I), 7, ) < nt < Tyne)41, hence 0 < nt — Ty ) < Ty(ne)+1- Due
to the above considerations, calling F), the event in (25]) we conclude that

< P(EC -
P(F,) <P(ES)+P (19‘212%31{34—1 T > &/ﬁ) (26)

Since P(ES) < § eventually, by the arbitrariness of § we only need to show that the last
probability in (26) goes to zero as n — oo. This is a general fact. Let (X;);>1 be i.i.d.
positive random variables with E(X?2) < co (in our case X; = 7;). Then, given a > 0,

M&@%&SWVNpﬁ%agaﬁwN:u—Pu¢>mﬁmN
_ eNln[lfIP(X1>a\/N)} N efNIP(X1>a\/N).

Note that the last equivalence holds since limpy_, oo P(X; > av' N ) = 0. At this point, in
order to prove that max;<j<n X;/ V/N weakly converges to zero we only need to show that
limy oo NP(X1 > av/N) = 0, or equivalently that lim; ., t>P(X; > t) = 0. This follows
form the fact that E(X?) < oo (see Exercise 3.5, page 15 of [14]). O

Due to Lemma [I]] we can disregard the last addendum in (24)) in order to prove the
invariance principle for B™. Let us now consider the random path '™ in DR4;RxRx

Ry) defined as

PW%R+BP+Q$%dmwmﬂm>GRXRXR+

Lemma 4.2. The random path T'™ weakly converges to the random path

( (Bl (t)v By (t)v et) )teR+

where ((Bi1(t), B2(t)) )ier, is a bidimensional Brownian motion such that

Var (31 (t)) = Var(wy),
Var (Bg(t)) = Var (),
Cov(Bl(t),Bz(t)) = Cov (w1, 71).

Proof. We first show that the random path (u(nt) / n) teR, weakly converges to the deter-

ministic path (0t)cr, . To this aim it is enough to show the convergence in probability

w.r.t. the uniform distance on finite intervals (this implies the convergence in the Skohorod

topology). In particular, we claim that for any s,6 > 0 it holds

v(nt)
n

lim P < sup

n—oo OStSS

—04>5>:0. (27)

By monotonicity v(nu) < v(nt) < v(nv) if u < ¢ < v, thus implying that

‘M—«%‘ Smax{‘@—@u‘—l—@!u—t\, ‘@—GU“FG‘U—’”}-

n

At this point the convergence (27)) follows easily from the convergence in probability for
fixed times, i.e. from the fact that v(nr)/n — 0r a.s. for each fixed r.
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Since by the invariance principle for sums of independent vectors it holds
(4, D) = ((Bi(t), Ba(1)) ) e,

and since we have just proved that (y(mt)/n)te]R+ = (6?t)t€]R+
deterministic path), the thesis follows from Theorem 3.9 of [4].

teRL

(where the r.h.s. is a

O

We can now conclude the proof of the invariance principle. Since the map Ry > ¢ —

A(V?th)/n € R if simply the composition f o g(t) where f(u) = A and g(t) = v(nt)/n,
(n)

and similarly for Ry 3¢t — D € R, we can simply combine the above lemma with

v(nt)/n
the Lemma in [4][page 151] to derive the weak convergence
m 0 —
(A% /m = vDw )teﬂ§+ — (Bi(6r) — vB(01) )teR+ . (28)

Since the last process is a Brownian motion with diffusion constant (I9]), combining the
above convergence with (Z4)) and Lemma 1] we get the invariance principle for B(),

5. PROOF OF THEOREM [7}-(I) AND THEOREM [§]

In this section we prove Item (i) of Theorem[fland we study the behavior of the functions
I, J+ defined in Theorem [7l In particular, we prove Theorem [8 at the end of this section.

5.1. Proof of Item (i) in Theorem [7l. For n > 1 the random variable T,, has the same
law of >, 7, where 7,,’s are i.i.d. random variables taking value in (0, +oc], distributed
as T1. The thesis can then be obtained from Cramér Theorem. We give the proof in
the case n — oo. Call a := P(T7 < o0) and note that P(7,, < oo) = a". Then for
each subset A C R we can write P(7,,/n € A) = o"P(T,,/n € A|T,, < o0). Now we
observe that, conditioning on the event 7, < oo, T}, can be represented as »_,_, 7}, where
the real random variables 7], are i.i.d. and distributed as T} conditioned to be finite. In
conclusion P(T,,/n € A|T,, < co) = P(L 3}, %) € A). At this point one only need to
apply Cramér Theorem for i.i.d. real random variables (cf. [II][Th. 2.2.3]) observing that
the moment generating function of 7}, is ¢4 /a. The fact that Ji is good if and only if
P(T} < 00) # P(T_1 < 00) is proved in the next Subsection (see Remark [5.4] below).

5.2. Qualitative study of the functions Ji(9), I(9). In this subsection we first prove
some properties of the function 7(9) defined in Theorem [7l by ([20) and the identity I(0) =
limy_,o I(¢). In the next subsection we will indeed prove that I(9) is the rate function of
the LDP for Z,/t.

We start by proving Proposition
Proof of Proposition [32. Let us prove Point (i). Recall the definition of the positive func-
tions fi given in (2I]). Distinguishing on the value of w; we can write
Ty :]l(w1 :1)7'1—1—]1(11)1 :—1)(T1+T1,+T1”) (29)

where T7, T} are independent random variables, independent from wi, 7 and distributed
as T1 (roughly, T7 is the time for Z to go from —1 to 0 and 77 is the time for Z to go
from 0 to 1). The above identity implies that

P (N) = [+ (0) + - (Ve (V)2 (30)
From this we deduce that ¢4 (\) < 400 if and only if fi (A)f-(A) < 1/4, and moreover in
this case (22)) holds. By symmetry, one obtains that the same condition implies ¢_(\) <
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+oo. Trivially fy isincreasing, limy_, o f+(A) = 0and limy_, o f+(A) = +o00. Moreover,
f+(A) is smooth and strictly increasing on the open set {fi < +00}. As a consequence
there exists a unique value A, € R such that fi(\)f_(\) = 1/4 and therefore f (A)f-(A) <
1/4 for A < A.. Since trivially ¢4 (\) < 400 for A < 0 it must be A\, > 0. This completes
the proof of Point (i).

We now move to Point (ii). To see that P(1; < a4,w; = 1) = 0 observe that by (29)
{wy =1} C {71 = 71} and therefore P(1; < ap,w; =1) =P(T1 < ay,w; =1) <P(T1 <
at) = 0. To get the thesis it remains to show that Ve > 0 P(7y € [ay, a4 +¢),wp =1) > 0.
Assume the contrary. Then there exists € > 0 such that P(1; € [aq, a4 +€),w; = 1) = 0.
By definition of a4, on the other hand, we have P(T} € [a4,ay +£€)) > 0. Combining this
with the decomposition in (29), we find

0< P(Tl < a4 +é) :P(’Tl < a4 +é,w1 = 1) —|—P(’7’1 —}—Tll —}—Tll/ < oy +é,w1 = —1)
<P(m < ap +éw = —1)P(T] < ay + &)
< P(’U)l = —1)P(T1 < ay+ 5)2 .
Dividing both sides by the positive quantity P(77; < a4 + €) and recalling that by (A2)
P(w; = —1) < 1, we get the contradiction and this concludes the proof. O

We now focus on the behavior log ¢ . Recall the definition of ., a1 given in Proposition
5.2

Lemma 5.1. The following holds:

(i) log g is strictly increasing and continuous on (—oo, Ac], conver and smooth on
(=00, Ae) and moreover limy_, o log o1 (\) = —o0;

(ii) the second derivative (log )" is strictly positive on (—oo, \) (in particular (log @4 (\))
is strictly increasing on (—oo, \c) ) and

lim (log p+(N)" = o, (31)
A——00

. I
)\h/n&lc(log 0+ (N) = +oo. (32)

Proof. The proof of Point (i) is rather standard (see Lemma 2.2.5 in [I1], the fact that
log ¢4 is strictly increasing on (—oo, A;] and convex follows also from Point (ii)).

We prove Point (ii) restricting to ¢4 without loss of generality. Note that, for A < A,

E (T2 (T < )  E (T1e?1(T) < )’
lo \) = ! — = Varg(11),
( gSDJr( )) E(e)‘TI]l(Tl < OO)) E(eATl]l(Tl < OO))2 Q( 1)

where Q it the probability defined as Q(A4) = E (L(A)e* ' 1(T} < o0)) /E (M 1(T} < o0)).
Since T} is non constant Q-a.s. by Assumption (A1), we conclude that (log ¢4 (A))” >0
for A < A, hence (log ¢4 (N)) on (—o0, A.) is strictly increasing.

We first derive BI) in the case ey = 0. It is convenient to prove the thesis for a
generic nonnegative random variable 77, non necessarily defined as in Theorem [ Sup-
pose first that P(77 = 0) > 0. Since ¢ (\) > P(T7 = 0), while limy,_ ¢'(\) =
limy ;oo E(T1eM11 (T} < o0)) = 0 by the monotone convergence theorem, we get (BI).

We now consider the case P(T7 = 0) = 0, thus implying P(7} € (0,¢)) > 0 for all € > 0.
We fix any ¢ > 0 and take A < —1/c. By this choice it holds sup,~, e = ce*®. Moreover
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we fix ¢1,c2 : 0 < ¢1 < ¢ < ¢ such that P(c; < T < ¢z) > 0. Define:

e1(A) == E(TleATl]l(c <T) <))< ce
62()\) = E(TleATl]l(Tl < C)) > CleACQP(Cl << Cz),
es(\) = E(eM1(c < T < 0)) < e,

es(N) := E(N (T < ¢)) > ?P(T) < ¢/2) > 0.

By the previous bounds we have limy_, o e1(A)/e2(A) = 0 and limy_, o, e3(A)/eq(N) = 0.
In conclusion

LA A)(I+er(A A
A——0c0 A——00 (p+()\) A——o00 64()\) (1 + 63()\)/64()\))
AT
~ lim ea(N) ~ im E(TieM1(T) < ¢)) <
A——00 64()\) A——00 E(eATl]l(Tl < C))
Since ¢ > 0 is arbitrary we get (31)).

To complete the proof of ([BI)) it remains to discuss the case ay > 0. To this aim note
that 0 is the minimum in the support of the law of T7 := 77 — ay. Hence, by what just
proven, it holds limy_,_s(log ¢, (\))’ = 0, where ¢4 (\) := E(eM11(T7 < o0)). Since
p+(N) = @1 (N), we get B).

To conclude the proof of Point (ii) we need to justify (32]). Since by Point (i) log ¢y is
smooth and convex on (—o0, \.), the derivative (log@ (M) = ¢, (A)/p+(A) is increasing
and therefore the limit in ([B2) exists. Moreover, since )\li/n; 0+ (A) = p1(Ae) < o0, we

only need to show that )\li/‘H)\l ¢'.(\) = 4+oc0. To this aim recall B0). Differentiating such
identity for A < A. (note that everything is finite and smooth) we get

(1 =2/~ (Ve (N)@ (V) = FLO) + L (Ve (V) (33)
By the monotone convergence theorem we get that f_(\), ¢4 (\) and the derivative f/ (\) =
E(r1e* 1 (wy = 1)) converge to f— (), ¢4 (Ae) and fi(A.) respectively as A 7 A.. Ob-

serving that
1

(P-i-()‘c) 2f—()\c)
due to ([22) and the identity fi(\.)f-(Ae) = 1/4, we get that 1 —2f_(N\)p(N) converges
to zero as A " A.. On the other hand, as A A, the r.h.s. of [B3) converges to its
value at A., which is nonzero. The limit (32]) is therefore the only possibility as A 7 A; in

@3). O

Recall the definition of the asymptotic velocity v given in Theorem

(34)

Remark 5.2. Taking the expectation in [29) and in the analogous expression for T_q,

one concludes that E(Tv1) < +oo implies that E(Ty1) E(wy) = £E(71). Since E(ry) # 0,

we conclude that if E(Ty1) < oo then E(wi) # 0 and E(Ty1) = £E(11)/E(w;) = £1/v.
From Lemma [5.J] we deduce the qualitative behavior of the rate function Ji(v) :=

super{ AU — log o= (A)}:

Proposition 5.3. The following holds:

(1) Jx is lower semicontinuous, conver and takes values in [0, +0o0].
(ii) Jx is finite on (ax,+00) and infinite on (—oo, at).
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(iii) Ju is smooth on (a,+00) and the derivative J'. satisfies ﬂhr_{l JL(9) = Ae. In
—+00

particular, 191iri1 J+ (V) = +oo if A\ > 0.
—+00
(iv) If \e = 0 then Jy is strictly decreasing on (a+,+00). If Ao > 0 then there exist
VF € (ax, +00) such that Jx is strictly decreasing on (ax,9F), strictly increasing
on (9F,400). Moreover:
e v =0 if and only if \. =0,
e ifv>0 then 9} =1/v and J4(9) =0
e ifv<0thend, =—1/v and J_(¥;) =0.
(v) The value Jy(ax) admits the following characterization

+00 Zf]P’(T:H = Oéj:) = 0

(35)
< 0o otherwise.

Ji(ar) = lim Jy (v
(ax) = Jim Jo(9) = {
Remark 5.4. Due to the above result, Ji is a good rate function (i.e. {Jr < u} is
compact for all u € R) if and only if A\, > 0.

Proof. Without loss of generality we prove the above statements only for J, .

The proof of Point (i) is standard (cf. [11][Ch.2]) and we omit it. We now prove Point
(ii). The fact that J4(¥) = oo for ¥ < 0 follows from Lemma [5.1] Item (i). We now show
that if oy > 0 then J; () = oo also for ¥ € (0, a4). For such ¥, by [B1]) in Lemma B.T]it
e B (log 0./ (Y

. logpi (A ) log o4+ )"(A o
N ¥t L N A
and therefore

Jo@) > tim aw1— 8o Lo
e O

Take now ¥ > . Since by Lemma 51l (log ¢4 ) () is a strictly increasing function which
takes values in (o, +00), there exists a unique A4 () such that

9 = (log p1)' (A4 (9)). (36)
Then J4 () = 92, (9) — log ¢4 (A4 (1)) which is finite. This concludes the proof of (ii).

We now move to Point (iii). Observe that, by ([B6) and Lemma (.1} Ay is the inverse
function of (log ¢+ ). By Lemma 5.1 (log @) is smooth on (—oo, Ac) and (log p+)” > 0
on (—oo,A.). Hence, by the implicit function theorem, the function Ay is smooth on
(ay,+00) and tending to A. as ¥ — +oo (see (B2)). Hence J4 is smooth on (a4, +00)
and

T (0) = 9N (9) + s (9) = (log 1) s (D)X} (9) = A1 (9), (37)
thus implying that limy_, o J% () = Ac. This concludes the proof of Item (iii).

We now prove Point (iv). By Lemma B A, is strictly increasing on (a4, +00),
limg o, 5\+(79) = —o0 and limy_se )\+(79) = Xe. If \p = 0, then )\+ must be negative
and from (B7) we conclude that J is strictly decreasing on (aq,+00). If Ac > 0, then
there exists a unique 9} such that )\+(19+) = 0, \, is negative on the left of 9} and is

positive on the right of JF. Hence, by [B7) we see that J, has a unique minimum at
¥ =97, In this case, from ([B6]) we have

¢} (0) _ E(ML(T) < 0))
©+(0) P(Th < o0)

08 = (log p4)'(0) =
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If v > 0, then by the LLN in Theorem [f we get that 71 < oo a.s. and 9 = E(T1) = 1/v
(cf. Remark [£.2). Hence, recalling that Ay (9)) =0,

Jnf J4(9) = JL(05) = A (05)9F —log oy (A (7)) = —log P(T}y < 00) = 0.
S

The case v < 0 can be treated similarly. We conclude the proof by showing that v =0 <
Ae = 0. Trivially, v = 0 & P(wy = +1) = £ & P(w; = 1)P(w; = —1) = 1. The last
identity can be rewritten as f(0)f_(0) = %, where the function f,, f_ are defined as in
I). Due to the characterization of A\, given after ([B4]), we conclude that the last identity
is equivalent to A\, = 0.

To derive Point (v) we note that by Point (iv) the limit in ([B3]) exists. We first assume
P(Th = ay) = 0. Taking 6 > 0 and A < 0 we can bound

01 (N) < HP(T) < ay +6) + NPT > oy +6),
thus implying
Ji(ay) > Aay —log gy (N) > —log[P(T) < ay +6) + e P(T1 > ay +6)] .

To get that Ji (o) = +00 it is enough to take first the limit A - —oo and afterwards the
limit & — 0. Since J is also Ls.c. one has limy\ o, J4(9) > Jy(ay) and therefore one
gets (B3)).

Assume, on the other hand, that P(77; = ) > 0. The fact that J; (ay) < oo follows
by the LDP for T}, (cf. Subsection[5.]) and the characterization of vy given in Proposition
[3.21-(ii). Indeed we can bound

1 T, 1
—Ji(ay) > limsup — log P (—n = a+> = limsup — logP(1; = oy, wyp = 1)

n—oo N n n—soo N
=logP(r = ap,wy =1) =logP(Th = ay) > —.
To see that J is right—continuous at a4 observe that by lower semicontinuity J4 (o) <
limg\ o, J4 (). We claim that Jy(ay) > limga, J4(9). Indeed, fixed ag > oy, by
convexity it holds

1 A
1_)\J+((1 —>\)Oé+—|—)\040) - 1 _)\J+(O[0).

The claim then follows from the monotonicity of J; on the right of a;. Combining the
last observations we get limg\ o, J4(¥) = Jy(ay) < oo and this concludes the proof of
Point (v). O

Ji(ay) =

We now move to the study of the function I(¢}) defined on R\ {0} as

L (9) == sup{A = dlog o1 (\)}, ¥ >0,
AER

1Y) = 38
@) I_(0) :=sup{A +Jlogp_(\)}, ¥ <O0. (38)
AeR
Lemma 5.5. It holds
i 1-0) =l £9) = A (39)
. / S K !/
li 179 = Jim (0. (40)

In particular, the definition of I(V9) in Theorem [7 is well posed and I(0) = .. Moreover,
I is finite and C on (—=1/a_,1/ay), and it is smooth on (—1/a_,1/ay )\ {0}.
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Proof. For any ¥ > 0 we have I(J) = supy<, {A — Jlog i (A)} since o (A) = +oo if
A > A.. Moreover, always by Lemma 1] for 0 < 9 < 1/ay the above supremum is
attained at the unique value A\;(¢) < A. such that

(log o) (A(9)) = 1/9, (41)

thus implying that A (¢) is a strictly decreasing function and limg\ g Ay (9) = Ac (due
to Lemma [E.1)). In particular, I(¢) = A4 () — 9log ¢ (A4 (9)) is finite on (0,1/c) and
moreover

lim I(9) = li ) — 91 )} = Ac

L I(9) = lim {A4-(9) = Plog o1 (A4 (9))} = A
since limy =, log ¢ (A) = log ¢ (A:) which is finite due to (B4]). This concludes the proof
of B9) for I;. By similar arguments one gets that, given ¢ € (—1/a_,0) there is a unique
value A_ () solving the equation

(log oY (A-(9)) = ~1/9. (42)

The function A_ is strictly increasing on (—1/a_,0) where it holds I(¥) = A_(9) +
vlogp_(A_(¥)). As above one gets that limy ~o I () = A, hence ([B9). Note that (39)
implies that I is well defined in Theorem [7] and that I(0) = A\.. By the previous results
we conclude also that [ is finite on (—1/a_,1/ay).

Let us now prove (@) and that I is C' on (—1/a_,1/a;)\{0}. By the implicit function
theorem and Lemma [5.1] the function (0,1/a1) 3 9 — AL (9) € (—o0, Ac) is smooth. In
particular, using ([T, I+ is smooth on (0,1/a4 ) where it holds

I'(9) = %(A+(0) —9log 4 (A+(V)))
= N (9) — log o (A (9)) =9 - (log o) (A4 (9)) - N (9) (43)
= —log o1 (A+(9)).

Hence, limg o I, () = —log ¢4 (Ac). By similar arguments and definitions we get that I_
is smooth on (—1/a_,0) where it holds

d
lim I’ = lim — (A\_ 1 (A= =1 _ .
lim I”(9) = lim =5 (A=~ (9) + Dlog o (A (1)) = log p—(Ac)
To conclude the proof of ([@0) it remains to show that log ¢_(A:) = —log ¢4 (A.). To this
aim we observe that

1
) =0
4f+()‘c)f— ()‘c) >
due to (B34), its analogous version for ¢_(A.) and since, by definition, A, is the unique
solution of 4f_(A)f4(A) = 1 This concludes the proof of ([@0) and that I is smooth on
(=1/a—,1/a4) \ {0}. Due to ({@0) one easily gets that I is differentiable at 0 and I’(0)
equals the limits in (@0). This implies that I is C! on (=1/a_,1/ay). O

log o (Ac) +log pi(Ae) = log[p1(Ae)p—(Ac)] = log (

Combining Lemmas 511 and Proposition we are finally able to prove Theorem
and therefore also Theorem Bl due to Lemma B11

Proof of Theorem [8 Below the labelling of items is as in Theorem [l
The fact that I is finite and C' on (— -, -1) and infinite outside [—-, i] follows

a_ oy

from (20)) and Proposition This proves Item (i).
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To prove Item (ii) note that if P(77 = a4) > 0 then a4 > 0. Hence, by ([B3]) we get

lim 1(9) = Tim 0., (%) _ Jxlor)
9 A=

19/& 9 oy

and the last term equals I(1/a ) by definition of I. If, on the other hand, P(T} = a4 ) =0,
then by (B0 we get

< o0

o

lim I(¥) = lim I+ () =+00.
ﬁ/i uN\atr U

The correspondent statements for ¢ N\, —1/a_ are obtained in the same way, and this
concludes the proof of Item (ii).

To see (iii) recall that I'(9¥) = —log @4 (A4 (9)) for A € (0,1/ay) (see [ @3J)). Observe
now that limﬂ/‘i At (¥) = —oo (due to Lemma [5.IH(ii) and (41])). This implies that

ﬁlfirri(—log P+ (A+(9))) = —logpi(—00) = +o0.
ay

Similarly one sees that

lim I'(W) = lim logy_(A_(¥)) =logy (—o0) = —o0.
MN—o NG

We now consider Item (iv). We observe that I,/ are ls.c. because they can be
expressed as pointwise suprema of continuous functions, and by ([B9) they attach in 0 in
a continuous fashion. We now prove that [ is convex. Being suprema of families of linear
functions, I and I_ are convex. Therefore I is convex on (0, 4+00) and (—o0, 0) separately.
To prove the convexity on all R it remains to show that [ is also convex in 9 = (0. Since the
left and right branches of I are differentiable, it suffices to show that the left derivative
at ¥ = 0 is non greater than the right derivative. In fact, they are equal due to (@0).
Let us now prove that I is strictly convex on the closure of (—1/a_,1/a;). We know
that I'(9) = log p_(A_(9)) on (—1/a_,0] and I'(¥) = —log o4+ (A+(¥)) on [0,1/a) (see
the proof of Lemma ). By Lemma [ETH(ii) log ¢ is strictly increasing with positive
derivative, while we know that A4 is a strictly decreasing function on (0,1/cy) and A_ is
a strictly increasing on (—1/a_,0). Using also that I’ is continuous at 0 we conclude that
I’ is strictly increasing on (—1/a_,1/ay ), hence I is strictly convex on (—1/a_,1/ay).

We conclude with Item (v). We know that I’ is strictly increasing on (—1/a_,1/ay).
Due to Item (iii) it simple to conclude that there exists a unique minimum point 9, €
(=1/a—,1/ay) such that I is strictly decreasing on (—1/a—,9,) and strictly increasing
on (¥4, 1/ay). It remains to prove that 9, = v.

If v > 0 then by Prop. BE3}-(iv) v = 1/9} and so I(v) = vJy(1/v) = (1/95)JL(9}) = 0.
If v < 0 then v = —1/9; and so I(v) = —vJ_( —1/v) = (1/9;)J_(I;) = 0. If, finally,
v = 0 then again by Prop. E3(iv) we have 0 = A\, = I(0) = I(v). In all cases I(v) =0
and since [ is non—negative we conclude that v = 9,. O

6. PROOF OF THEOREM [7}-(11)

Below we show how one can deduce the LDP for the process Z itself from the LDP
for the hitting times. Due to Theorem 4.1.11 in [II], the LDP for Z;/t holds with rate
function I and speed t if we show that

e—0 t—oo

lim lim inf % log P (% e(W—ed+ 5)) > —I1(9), (LB)
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Zy
lim lim sup — logIP’ < €W —e9+ €)> < —I(V). (UB)
e—=0 500 t
6.1. The lower bound. Given ¥ # 0 and d,c € (0,1) we define the events
B, = By(6,¢) :=={v(t+ dot) — v(t — dt) < ct},
Lemma 6.1. For any 9 # 0 and 6,c € (0,1) there exists t = t(c) > 0 such that
At N Bt g {Zt/t € (19 — 20,19 + 20)}
for all t > t.
Proof. Take any ¢ > 0 and assume A; N B, holds. Then, due to Assumption (A1),
|20 = 0] = 12 = Ziy | = Wiy = W)
StV T g) —v(EAT ) <v(t+6t) —v(t—dt) <ct.
Hence Z; € [|Ut| — ct, |9t] + ct], thus leading to the thesis. O
Lemma 6.2. For any ¢ #0 and § € (0,1) it holds
1 .
lim mf - log P(A4y) > —1(9) = V(5 1) lf v>0,

Proof. We give the proof for ¢ > 0, the one for ¥ < 0 being the same. Note that, fixed
e > 0, for ¢ large enough it holds

1 1 1—-6 T\ﬂtJ 1+6
—logP(A;) > —logP
; logPldr) = 7 log ( 9 TS T S o )
Thanks to the LDP for the hitting times 7}, this implies that
T 1
hm mf log P(A;) > ﬂllmlnf — 10g[P’<T(5 +e< < %5>
n

Z - inf J+ 2 —19J+(5)

(s5555)
as long as ¢ is chosen small enough so that 4 5 € (1195 + e, 12;5) O

Since 7;’s are positive i.i.d. random variables, for every py € (0,1) we can find some
n > 0 such that p := P(r; > n) > po. In particular, the ii.d. random variables r;’s
with r; := 1(r; > n) are Bernoulli of parameter p. They are a useful tool to bound the
probability of Bf:

Lemma 6.3. For any 9 # 0 and any ¢ € (0,1), there exists a constant 0, = 0(6,c¢) € (0,1)
depending only on 6,c such that, for all 6 € (0,9,], it holds

BB

t—o00 ]P(At)

Proof. We restrict to the case ¥ > 0, being the proof for ¢ < 0 similar. We observe that
the event Bf implies the event

=0.

[et]—1

U { (t—=0t) =7, > Tiise < 2575}

7=0 (=1
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Since the event {v(t — 0t) = j} depends only on 71, 7s,...,7j4+1, by independence we get

[ct]—1

P(Bf) < P(v(t - dt) ( 3 T < 25t)
j=0 /=1

et]—1 let] -1

=P( Y me<20t) <P D mo<20t/n).

/=1 /=1

(44)

Above we have used that 7, > nr;. Now we use Cramér Theorem for sums of i.i.d.
p-Bernoulli r.v.’s. The associated rate function is given by (cf. exercise 2.2.23 in [11])

I(x) xlog%%—(l—x)logﬁ if x €10,1],
xTr) =
b 400 otherwise

with the convention that 0log0 := 0. Trivially, 7, is strictly decreasing on [0,p] and
strictly increasing on [p, 1], while Z,(p) = 0. Let t, := [ct] — 1. Writing

[et] -1 t

te 1 26t
ploeB( X2 < 2stn) = poep (3 Yo < )
ogP Z re < 26t/n - log P
(=1
and using that 26t(nt,) ™! < 36(nec)~! for t large enough, we get
[ct]—1
lim su 10 IP’( rp < 20t )g—c inf Z,. 45
m sup 7 log ; ¢ <28t/ ot %o (45)

Now we have to choose carefully the constants in order to win. Fix ¥ > 0 and ¢ € (0,1).
The function Z,(0) = log ﬁ is increasing in p and lim, 1 Z,(0) = 4o0. In particular,
there exists pg > 0 such that Z,(0) > 9¥J,(1/9)/c for all p > py. We fix n such that
p=P(r; > n) > po.

If p =1 then 7; > 7 a.s. In particular, equation @) gives P(Bf) < 1(ct —1 < 27&),
so by setting . = nec/4 we have that for any 0 < d, and ¢ large enough P(Bf) = 0. This,
combined with Lemma [6.2] gives the thesis.

Assume, on the other hand, that p < 1. Recall that Z,(0) > 9J(1/9)/c. Since
lim.\ 0 Z,(¢) = Z,(0) and Z, is decreasing near 0, we can fix g > 0 such that Z,(¢) >
VJ4(1/9)/c for all € € [0,e0]. Note that the (now fixed) constants 7, p,eo depend only on
9, c. To conclude let 6, = (ncep/4) A 1. Then for each § € (0,6,] we have 35(nc)~! < g
and therefore the last term in ([A3]) is strictly bounded from above by —9.J(1/19). Coming
back to ([@4]) and (48] we conclude that

lim sup - log P(Bf) < —vJ4+(1/9). (46)
t—o00
The above bound together with Lemma implies the thesis. O

Combining Lemmas and we can prove the following key lower bound:
Lemma 6.4. For any ¥ # 0 and € € (0,1/2) the following holds

Z,
liminf - log]P’(7 e(W—e,d+ a)> > _I(9). (47)

t—o00



RANDOM WALKS ON QUASI ONE DIMENSIONAL LATTICES 21

Proof. Given € > 0, take ¢ := ¢/2 and 0 := (v, ¢) in the definition of A;, By given in
Lemma [6.1] where the constant d, is as in Lemma [6.:3 Due to Lemma for t large
enough we have

]P’(% cW—ed+ a)) > P(A; N By) > P(A) — P(Bf) = P(Ay) <1 B P(Bg))

which implies

1 Z, 1 1 P(BY)
- - - > = - — .
tlog[P’( " e a,vﬂ—i—a)) > tlog]P’(At)—i— tlog (1 )

P(A)
Using Lemma to control the first term in the r.h.s. and Lemma to control the
second term in the r.h.s. we get the thesis. U

Being (A7) uniform in € € (0,1/2), one can let ¢ — 0 to conclude that the lower bound
([CLB) holds for all ¥ # 0. If ¥ = 0, take any € > 0 and let u = £/2. Then by Lemma [6.4]
one has

. . 1 Zt . . 1 Zt
= 2t (= > - 2t — > _I(u).
hg(l)gf " log[P’( " € (—s, +6)) > hglogf " log[P’( " € (u 6/4,u+6/4)) > —1(u)
Letting then € — 0 and therefore u — 0 gives (recall Theorems [3] B])
T | Zy :
Z . — > — = — .
gli%hgglftlogp< ; € ( 6,6)) > zl}g})](u) 1(0)

This concludes the proof of (LB) for all ¥ € R.

6.2. The upper bound. We now move to the proof of (UB). This is rather easy if the
asymptotic velocity v vanishes.

Lemma 6.5. If v =0 then ([UB]) holds for all ¥ € R.

Proof. If ¥ = 0 it is enough to observe that by the LLN Z;/t — 0 almost surely as t — oo,
and therefore in probability. Since I(0) = 0 by Theorems Bl B, we get the thesis.

To deal with the case ¥ # 0, recall that v =0 < A\, = 0 < Ji are strictly decreasing
on (a4, 00) (see Prop. B3). Since J1 = +00 on (—o0, ) and due to ([B5) we conclude
that Jy : R — [0,400] is a decreasing extended function. Fix now any ¢ > 0 and € > 0
such that ¥ —e > 0. Then, given any € > 0, for ¢ large it holds

P(% c (19—5,19+e)) gp(% >79—g) <P(Z, > (9 —e)t])

_p( Loy L
<P(o-ay <) =P([p=oy < g2 +4)

Hence, using the LDP for the hitting times 7}, and the fact that J, is decreasing,

1 A
limsupglogIP’<Tt € (W— 8,04—5))

t—o0
1 T, 1
< (9 —e)li - noo
< g)hyrln_f;pnbgp<n_19—€+€> (48)
: 1 -
<-(@—¢) inf J+:—(0—5)J+(ﬂ_€+e>.

()
Letting £ — 0 and using that J, is Ls.c. (see Prop. B.3]) we get that the first member of
(@) is bounded from above by — (9 — ¢)J; (1/(9 — €)). Taking now the limit £ — 0 and
using again that Jy is l.s.c. we get the thesis for ¢ > 0. The proof of (UB]) for ¢ < 0
follows by similar arguments. O
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We now prove that (UB]) holds for all ¥ € R assuming v > 0. The case v < 0 can be
addressed in the same way. The proof we present is based on a method introduced in [10],
that we re-adapt to our setting. The strategy consists in reducing the problem to proving
the following:

Proposition 6.6. Assume v > 0 and define S; := inf{s >t : Zs < 0}. Then it holds

lim sup E log P(S; < 00) < —1(0). (49)
t—o0 t

The fact that the above result implies that (UB]) holds for all ¥ € R can be seen
reasoning as in [I0], page 1017, with minor modifications. For completeness we give a
sketch of the proof in Appendix [Al

A detailed proof of Proposition is, on the other hand, given below. This choice is
due to the presence of a small gap [19] in the proof presented in [10] (see formula (4.14)
on page 1020 there), and to the fact that some additional arguments are necessary since
our holding times can be in general arbitrarily small while in [I0] they are bounded from
below by 1.

Proof of Proposition [6.0. Due to Prop. B3l since v > 0, A\, > 0 and the critical point
UF of Jy is finite and positive. Take any u € (0,1/97F) and fix ¢ > 1 integer such that
¢/u > 9, . Let, in order to simplify the notation, b, := P(S; < o0) with the convention
that b; = 1if t < 0. Recall that Ty, is the hitting time of [tu], and define

. {inf{s > Ty : Zs = 0}, if Ty < 00,
T() = .
+00 otherwise .
Then we have
by SP(TUUJ = t) + P(TUUJ <t, TO - TLtuJ >ct, S < OO) (50)
+]P>(TLtuJ < t, To — TLtuJ <ct, S < OO) .

For the first term in the r.h.s. of (B0) the LDP for the hitting times T, n — oo, implies
that

lim su 1lo IP’(TUUJ > L) < limsu 110 IP’(TUUJ > l) < —udy(1/u) = —1(u)
o P T = Tra) ) = P\ T Tw) =T ‘
(51)

Above we have used that J is increasing on (97, 4+00).
For the second term we apply the strong Markov property at time 74, to get

P(T\_tuj < t, T() — TLtuJ > ct, St < OO) < P(T—\_tuj > Ct) .

Therefore, by the LDP for the hitting times T",,, n — 00, and the fact that J_ is increasing
on (Y., +00), we obtain

1 - 1 T |tu) c>
limsup — log P(T 4,1 < t, Ty — T4y > ct, Sy < 00) < limsup — log P > —
msup - log (Ttu) 0 — Ttul t ) msup - log < ] Zu) (52)

< —uJ_(c/u) = —cl(—ujc).

For the third term in the r.h.s. of (B0) one has to deal with the critical points of Jy, so
the idea is to localize things. Fix m € N positive. Fix 0 < v’ < u, hence 1/|tu] < 1/tu’ for
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t large (as we assume). We take u/ very near to u such that 1/u’ > 97 and c/u’ > 1/9; .
Then

T 1 To— T
P(Ltuj <E 7“1” <u St<OO

m  mc

b1 (— Ltu mu' mau’ )’ LtuJ mu mu )’ t o0 (53)

= (T k-1 k T (-1 ¢
< Z LtuJ , P Ltu] € , b, (hyon
= |tu] mu’  mu! | tu] mu'  mu'| ) R
where we have applied the strong Markov property at times 7}, and T, and used that if
s <t then bgs > b; since S5 < S;. Now we analyze each term separately. Define

wy (r,0) == max{|J, (s) — Jo(t)| : s,t € 91, r],|s —t| <6},
w_(r,0) == max{|J_(s) — J_(t)| : s,t € [U,,r],|s —t| <6},

with the convention that wy (r,8) = 0 if 7 < 9F. The LDP for the hitting times 7}, then
gives

(54)

hmsuptlogIP’< Tlew € {k_l i D < —u inf Ji

oo |tu] mu'  mu/ (k=1 ]
k 1 E_um 1
Similarly we get
T —1
lim sup — logIP’< Ltu] € [6 , ‘ ]) < —u inf J_
PR - | tu] mu' mu [z I ]
1 1 1 um’ 14 1
< —uJ_({/mu) + vw_ (mu/,mu):—al(— 7 )—i—uw_(W,T) (56)
We set
k 1 Y4 1
Wie := w+(mu ma’ ) +w7(mu”W)’

1 1 c 1
W= ma {u (o) s o (G ) |

The above inequalities (B3] and (B6l), and the convexity of I, we have for any € > 0 and ¢
large enough that

T k-1 k T_ -1 ¢
[tu] [tu]
(gt = [ ) )P (T < [ )

< etetutWip =t [ (5 )+ (=) (57)

< oUWy~ 1(0) o te—t R0

where ¢g := mln{vﬂc , 9. }. We explain the last bound. Note that Wy, = 0 if k < 9 ma/
ko< L oand -4, —= < w7, we have Wy, < W.

mu’ — u

and ¢ <
Hence it holds
(k+10)

com

u'Wio <uWIL(k + £ > comu’) < w. (58)
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Let now
J :=min{I(u), cI(—c/u), I(0)} — W/cq. (59)
Then putting (B0), 1), (B2), (E3) and (E1) we have

m  mc
(k+€)
by < e—tl(u)—I—tE + e—th(—u/c)—I—tE + Zzew—tT‘]bt,(’ﬁz)t )
k=1 ¢=1 "
Note that if k£ + ¢ > m, then bt7 k+or = 1. Hence we get

m

_ _ (B0
by < (2 +mPc)e T 4 efe Z e tm Jbt_ (k+0)t - (60)
(k,0):1<k<m, 1<0<mc "
k+4<m
Call z = limsup, ,,, logh; € [—00,0]. Since, given a finite family of functions

{fi(t)}Yier, it holds limsupy_,. ¢ log (32, fi(t)) < maxer limsup;_, o, ¢ log(fi(t)) from (@0

we get
r <€+  max {—J—J—%(l—i)x}:x—i—a— min M

Jji2<j<m m m Jji2<j<m m
The above bound holds for any € > 0, hence we conclude that 0 < —minj.o<j<p, j(‘?:x).
This implies that J + 2 <0, i.e.
1
limsup — log by < —J. (61)

t—o00 t

Now, let m — oo first, so that W — 0 due to the fact that Ji are even C* on (o, 00)
and ag < ¥F (see Prop. and recall that 1/u’ > 9}, ¢/u’ > 9. ). Now we let u — 0.

By Theorems B, Bl and since v > 0, min{I(u), c¢I(—c/u), 1(0)} converges to 1(0) as u — 0.
This leads to the thesis. U

7. PROOF OF THEOREM [0 (GALLAVOTTI-COHEN TYPE SYMMETRY)
Due to the definition of I, I(9) = I(—19) + cv for all ¥ € R if and only if
JL(0) =J_(9) +e¢, Vi > 0. (62)

We now prove that (62) and Item (iii) with ¢ = —logC are equivalent. To this aim,
assume that ¢4 (A) = Cp_(A) for all A < A\, and some C > 0. Then logp(A) =
logp—(A) +1logC = logp_(A) — ¢ for all A € R. Hence, taking the Legendre transform
and recalling the definition (@) of J+ as Legendre transform of log vy, we get (G2)).

On the other hand suppose that ([62) holds. We claim that Ji () = J_(9) + ¢ also for
all ¥ < 0. Indeed, since ax > 0, the claim follows from Proposition E31-(ii) for ¥ < 0.
If ay,a— are both positive then Proposition B.3}-(ii) implies the claim also for ¢ = 0. If
ay,a_ are both zero, then (62) and the right continuity of Ji at ay (see Proposition
B3H(v)) imply the claim for ¥ = 0. We now show that a_ and a4 must be either both
positive or both zero, thus concluding the proof of our claim. Suppose for example that
a_ =0 and ay > 0. Then we would have Jy () = oo for ¥ € (0,a4) (by Proposition
B.3H(ii)). This fact together with (62]) implies that J_ () = +oo for ¥ € (0, o). Applying
Proposition B.3H(ii) to J_ we conclude that a; < a_ thus getting a contradiction.

Due to ([62) and the above claim we conclude that Jy(9) = J_(¥) + ¢ for all ¥ € R.
J+ (), J_(¥) 4 c are the Legendre transforms of log ¢, log ¢ — ¢, respectively, thought
as extended functions from R to (—oo,+0o0]. Due to Lemma 1] log ¢, logp_ — ¢ are
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convex, l.s.c. and not everywhere infinite. Hence, by the Fenchel-Moreau Theorem (cf.
[5]) we conclude that log ¢y =log¢_ — ¢, i.e. Item (iii) holds with ¢ = —log C'.

We now prove that Item (ii) implies Item (iii). To this aim assume that 7; and w; are
independent. Then f()\) = E(e*)p and f_(\) = E(e*)q for all A < \.. Combining this
with [22]) we get

= C, VA<,

which is Ttem (iii).

Finally we prove that Item (iii) implies Item (ii). Hence assume ¢4 (\) = Co_(\) for
all A < A\.. By [22) we have ifg\% = ?_rgg = (. Moreover, taking A = 0 in the previous
identity, from the definition of fi we deduce that C' = p/q.

In particular, given A,y < 0, we can write

E(eATi+7wi) = E(e“’e)‘”]l(wi = 1)) —i—E(e*“’e)‘”]l(wi = —1))

=R+ = ) (e ).

On the other hand:

f+(N)
p

E(e)) = E(eM1L(w; = 1)) + E(e’ L(w; = —1)) = f+()\)<1 + %) =

and
E(e™) = e'p+e Vg = p<ew + 67@) _
p

Putting all together, we conclude that

E(M7) = £, () (a +e—v€> _ <f+—“)> <p(ev +e—v€)> — E(M)E(e™),

p p p

thus implying the independence of 7;, w;.

8. PROOF OF THEOREM [G] (GALLAVOTTI-COHEN TYPE SYMMETRY FOR RW’S)

We start with a technical result, that is also useful in the applications for the computa-
tion of the functions f1(\). Consider a generic stochastic process (X¢)ier, as in Definition
21l Define

Jy:=inf{t >0 : X; € {-1,,0,, 1.}, Is € (0,¢) with X5 # Xo} ,

and set
fr(\) = Eo (eM1(Xy, = £1.)), 63)
foA) :=Eo, (M1(X, = 0,)).

Lemma 8.1. If fo()\) < 1, then

i
L= fo(N)

_
f—i—()‘)_ 1_];0()\)7 f—()‘)

If fo(A) > 1, then fr(A) = f-(\) = +o0.
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Proof. We call Jp’s the consecutive times at which the stochastic process (Xt) 4~ hits the

states of type n.,:

Jo:=0
{Jk =1inf{t > Jp_1 : Xy € {—1,,0,, 1.}, Is € (Jp—1,t) with Xy # X, |} k>1.

We can write
o0
S= (X =...=Xj, =0, Xy, € {~1u, L} Ty (64)
Taking the exponential at both sides and multiplying by 1(Xg = 1,) we get
M1(Xg =1,) Z]l (Xjp=...= Xy, =0, Xy, = L)

Note that, by Definition 21} w.r.t. the the probability measure Py, (-| X, =... = X, =
0«, XJ,,, = 14), the random variables eMJi=Ji-1) 1 < § < k + 1, are independent with
expectation Eq, (e’ X, = 0,) if 1 <i < k and Eq, (eM'|X ), = 1,) if i = k + 1. Hence,

F+(A) = Eo, (¥1(Xs = 1))

o0
= 3" Po, (X, = 0.)"Po, (X5, = L)Eo, (M X, = 0.)"Eo, (M1]X, = 1)
k=0 .

= foWFFr (N
k=0

A similar expression holds for f_ (). At this point it is immediate to derive the thesis. [

Let us now come back to the same context of Section (Xt)ter . 1s a continuous time
random walk on the quasi 1d lattice G = (V, &), with positive rates r(x,y), (z,y) € &,
such that ([2) and () hold. Due to (1) in the figures of G,G we draw only unoriented
edges with the convention that for each unoriented edge {x,y} the graph in consideration
presents both the edge (z,y) and the edge (y, x).

Recall that given an edge (u,v) € E in the fundamental graph G = (V, E), we have
defined (cf. (I2)) r(u,v) = r(n(u),m(v)) where 7 is the map V' — V such that 7(u) = ug
ifu#7 and 7(7) =v; = 1. Given v € V we set

r) =Y r(r(v),y). (65)
yi(m(v),y)EE

Note that r(v) = r(v). We point out that the map 7 : V' — V does not induce a graph
embedding of G into G. Indeed, problems come from the neighbors of v,v in G. Consider

|<
<l
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for example the fundamental graph G in Fig. B Then zg,y_1, 21 are neighboring points
of vy, while z1,yo, zo are neighboring points of vy. Despite this phenomenon, the map 7
induces an isomorphism between the family of paths (zg, z1, ..., %) in G from v to T with
interior points in V' \ {v,7} and the family of paths (z(,z,...,2,) in G from vy = 0, to
v, = 1, with interior points in V\{0., 1.}, moreover it holds r(z;, z41) = r(m(x;), m(zi11))
for 0 < i <m and r(z;) = r(mw(z;)) for 0 <4 < m. This property will be used below.

By Theorem [@ the Gallavotti-Cohen type symmetry (I3)) is satisfied for some constant
A if and only if ¢, (\)/p_(A) = 2 for all A < .. On the other hand, by [2)) and the
above Lemma Rl it holds

e-(N) ) ] -
Given an integer m > 1, let A, be the family of sequences (zg,z1,...,x,,) such that

To =V, Ty =0, (T4, xi+1) € Eforalli:0<i<mandzx; € V\{v,v}forall0 <i<m. We
call A7, the family of sequences satisfying the same properties as above when exchanging
the role of v and ©. Then we can write

m—1

Z Z /m dtrdty ... dt,,— 162?;61()\771(%))% H 7”(1'1‘71'2‘4—1)

m=1 (zo,x1,....2m)EAm i=0

_ -1 . .

_ Zmzl Z TOYTL ey T, ) EAm HZWLO T(xi’ xiJFl) HZWLO r :1:1 -\ if A< mingey T(x)

— ( ) (x4)
+00 otherwise .

(67)

Given v = (xg,x1,...,2;,) and given e € E we write N¢(v) for the number of indices
i:0<1i<m—1such that (x;,z;41) = e. Then the above formula can be rewritten as

3 {Zm 1 Z (20,21, Zm)EAm HEEE T(e)Ne(’Y) H:iBl T'($i1)—>\ if A< minIGV T‘(QT) ’

f+(\) =

+00 otherwise .
(68)
A similar formula holds for f_(\).

Suppose now that G is (v, 7)-minimal. We want to prove that (I3) is satisfied with A
given by ([I4)). Call G1,Ga,..., G} the subgraphs attached to the path v, = (20, 21, ..., 2n)
as in Def. [Z1] such that each G, has exactly one point in common with {21, 22,...,2,-1}
(recall that zg = v and 2, = ©). Then given (xg,x1,...,2Zy) € A, there exist indices

0<n<pn<ig<jo< - <ip1<[Jro1<ip <jJr<m

such that for any &k : 1 < k < r the subpath (called ezcursion)

(xilw Lig415- .- 7mjk)
satisfies: (i) x;, = x;, and such a point belongs to v, (ii) the points x;,+1,...,xj,—1 are
in G4\ {20, 21,...,2n} for some a: 1 <a <k. When r = 0 then there is no excursion and
the path (xg,x1,...,2) has support in {zg,21,...,2,}. Call (zg,21,...,2,,)" the new

path obtained by inverting (zg,x1,. ..,y ) with the exception that the excursions inside
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are performed in their original orientation:

* -—_— . . . . . . .
(0,21, s Tm) " = (T T 15 oo s Ty Ty Tt 15 Tipt 25+ oy Loy Tio— 15 Tip 25 -
xjr—rl*l, Lip1yLip_q41ye-- 'Ijq«_1715 'Ijq«_pxir_l*la """ axj1+la
Liyy Ljp41y--- ,$j1,1,$j1,$i1,1,$i1,2, .. aanxlaxO) .

Above we have underlined the excursions (note they appear in their original orientation).
We point out that the map A, > (xg,x1,...,Zm) — (z0,21,...,Tm)" € A, is a bijection.
Hence it holds

f-(\) = St Domwoaem)edn Heen (@O TIL rahms i A < mingey r(2)
+00 otherwise .
(69
Note that [[;", ﬁ = [, W since r(v) = r(v). By construction N¢(7v)
Nc(v*) if e is not of the form (z;, z;+1). On the other hand,

H?folr(zl-,zzjrl) (24, z+1) H 0 (Zi+1,Z‘)N(zi+1’zi)(’Y)

H T(ZZ7ZZ+1) zzi_,_l)(“/*)l_‘[;l 01 T(ZZ+17 )N(zi+1vzi)(7*)

~—

[Ty (21, zi) M) O T 0 r(zit1, z) " G20 0) B o)
H?io r(zi, zi01) G0 O T (234, 2) Nz @)
H <T(Z ZZ+1)> (Zz z+1)(7) 1+1,zi)(7 _ﬁ Z@,Zl+1

T(ZZJFI’ZZ) ZZ+17ZZ

since it must be N(Zi7zi+1)(7) = N(z41,20)(7) = 1 for any path v € A, for some m > 1. Due

to (8), [B3) and the previous observations, we get that fi(\)/f_(\) = e® with A given
in (I4). Due to (66) and Theorem [ we get (I3]).

We now prove the reverse implication. Consider the oriented subgraph G = (V, E)
consisting of the points in V' and edges in E that appear in some path ~ as v varies in A,
and m varies in {1,2,... }.

Proposition 8.2. Suppose that the fundamental graph G is not (v,v)-minimal. Fix
(r(e) : e € E\ E) € (0, —i—oo)E\E Call R C (0 ,—|—oo)E the family of vectors (r(e) :
e € E) € (0,400)¥ for which the random walk on G induced by (r(e) : e € E) satisfies the

Gallavotti-Cohen type symmetry ([I3) for some constant A, depending on (r(e) : e € E).
Then R has zero Lebesgue measure in (0, +00)¥.

Since E # () and by Fubini theorem, this would conclude the proof of Theorem Bl The
proof is in part based on complex analysis.

8.1. Proof of Proposition From now on r(e), e € E\ E, are fixed positive constants.
We first prove some preliminary results.

Lemma 8.3. Define the open subset @ C (—o0,0) X (O,—i—oo)E as the family of vectors
(A, (r(e)).cp) withr(e) >0 Ve € B and —\ > 3max, _y r(v) + 1, where r(v) is the value
defined in (GB) for the random walk on G induced by (r(e) : e € E).

Consider the positive function h4 ()\, (T(e))e€E> defined on Q as the function fi(\)
for the random walk on G induced by (r(e) : e € E). Then there exists an holomorphic
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function % : Q, — C defined on an open subset Q. C Cx CE such that Q = Q.NRx RE)
and hy is the restriction to Q of the function h%..

Proof. In what follows, to simplify the notation, we write r instead of (r(e) tee€ E) In

general r will be an element of CE. Given v € V we define the map o, : CF 5 C as

¢ (77) - Z(U,y)eﬁj T(/U’ y) lf v e V \ {Q, 5} ’
! Z(U,y)eE T(U, y) + Z(y,y)eE\E T(Q, y) + Z(@,y)eE\E 7“(5, y) itv=0v,7.
(71)
Recall that ()€ B\ r(v,y) and > (Ba)e B\ r(v,y) are fixed positive constants since the
values r(e), e € E \ E, have been fixed once for all. Moreover note that for r € (0, —|—oo)E

it holds ¢,(r) = r(v), where r(v) is the value defined in (G5) for the random walk on G
induced by (r(e) : e € E).
Given r € CF we define R(r) € R” as the vector whose entries are the real part of the
entries of r, i.e.
R(r)(e) :=R(r(e)), ecE.
We define 2, C C x CE as the set of vectors (A, 1) satisfying the following properties:
(i) R(x) € (0,+00)",
(i) |r(e)] < 2R (r(e)) Ve € E
(i) —R(A) > 3¢, (R (r ))—l—lforallvEV
Note that €, N (R x RE) Q.

For each v = (zg,21,...,Zm) € Apm, m > 1, we consider the holomorphic function (cf.
[20]) g : 2 — C defined as

H r(e)Ne®) H %z (72)

ecE

Recall that N.() counts the number of times the edge e appears along the path v and
that ¢, (r) is an affine function of r.

Fix (A\*,r*) € Q.. Consider the open subset U(A\*,r*) C Q. given by the vectors (A, r) €
Q, such that —R(\*)/vV2 < —R(\) < —V2R(\*) and R(r*) /vV2 < R(r) < V2R (r*).
Trivially, (\*, %) € U(X*,r").

If y € Ay, and (A, 1) € U()\* r*) we can bound

s\ ) = [ Ir(e |N€(”H|¢x A|<2m]‘[§)<e )Ner H%

eck _ %(A)
§4mH%(T* H (bxz _ %(A*)
ecE
= H %(47“* H (bxz _ %(A*)
ecE
SH%(M* Ne 1:[%1 T
ecE =0
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Indeed the first bound follows from Assumptions (i) and (ii) in the definition of ., the
second bound follows from the definition of U(A*,r*), the last identity follows from the
fact that all edges of v are in E, while the last bound follows from Assumption (iii) in the
definition of Q. since we can bound

P (R(r7)) = R(XY) = 4, (R(r")) +1 = ¢, (R(4r7)) + 1. (74)
We are now interested to the infinite series of holomorphic functions

> > gy(A,1). (75)

m=1~y=(20,x1,....;Tm )EAm

By (@) for any (\,r) € U(X*,r*) we have

i Z |9'y(>‘a£)|

m=1 ’y:(ﬂco,$1,...,xm)6./4m

0o m—1
1
<> X rerEe™ ]I SRR
m=1~y=(20,&1,....2m)EAm ecE i=0 Gos (R(AL7)) +1

Comparing with ([B8), the above r.h.s. equals the function f* (R(A\*)) with f¥ defined as
the function f+ referred to the random walk on G induced by weights

E5e— 4r*(e) %feeE, )
r(e) ifec F\E.

Since R(A\*) < 0 the value f¥ (R(\*)) is finite by definition of f%.

Since each compact subset of €2, can be covered by the union of a finite family of sets
of the form U (\*,r*) we conclude that series (75]) converges uniformly on compact subsets
of Q.. By a classical theorem in complex analysis (see e.g. [33[[Ch. I, Prop.2] or [20][Ch.
I, Lemma 11]), we conclude that the limiting function h% is holomorphic. Since by (GS])
the function i, in the main statement equals the series ([75) on = Q, N (R x RE) we
conclude that h is the restriction of A% on ). By similar arguments, h_ is the restriction

of h* on Q, h* being an holomorphic function on €2, whose definition is analogous to
h*.. O
+

Since h_ > 0 on 2, there exists an open subset 2, C C x (CE with Q C Q.. C Q, and
such that A* # 0 on Q... At cost to restrict ., we can assume that

{AeC: (\r) € D} (76)

is connected for any fixed r € (0, —i—oo)E.

Remark 8.4. By definition of 2, given r € (0, —|—OO)E, it holds (\,1) € Quu if X is real
and =X > 3max, _; r(v) + 1.

The function h% /h* is well defined and holomorphic on Q... As a consequence, also
the derivative h := 0\(h% /h* ) is holomorphic (cf. [6][Sec. IV.2.2]). Note that, due to (GE)
and Theorem [g the function %(A,f) restricted to 2 does not depend on A if r € R, the

set defined in Proposition 82l In particular, h(A,r) = 0if (A,r) € Q and r € R. Consider
the holomorphic function A — h(\,r), where r € R is fixed. This function is defined on
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the set {\ € C : (\,r) € Q. }. Since it has no isolated zeros and since (Z6]) is connected,
we get that A(\,r) =0 for any r € R and any A € C : (\,r) € Q.. (see [6]).

Suppose now, by contradiction, that the set R has positive Lebesgue measure (here and
in what follows we refer to the |E|-dimensional Lebesgue measure). Fix A < 0 and define

Oy = {56 RE . (\,r) € Q} and the function hy : Q) — R as hy(r) := h(\,r). Note
that ) is connected and that h) is a real analytic function (locally it admits a convergent
power series expansion, since restriction of an holomorphic function). Since Q) C Q,/ if
N < X and since Uy = (0, 4+00)F, we can find \g < 0 such that Qy NR has positive
Lebesgue measure for A < A\g. From now on we assume A < \g. This implies that the set
{h) = 0} has positive Lebesgue measure. We claim that it must then be hy = 0 on the
entire connected set €2, as a consequence of Weierstrass Preparation Theorem. Indeed,
hy is the restriction to Q) of the holomorphic function A(\,-) defined on an open subset

of CE containing 2. Then the thesis follows from this general fact:

Lemma 8.5. Fiz n > 1 integer. Let V be an open set of C" such that U := V NR" is
connected. Let f:V — C be an holomorphic function. Then either f =0 on U or the set
{z €U : f(z) =0} has zero n—dimensional Lebesque measure.

Proof. Note that U is open. Below Lebesgue measure is considered as n—dimensional. It
is enough to prove the following claim:

Claim 8.6. For any z € U there is a neighborhood B, of z in U such that the set {y €
B, : f(y) = 0} has nonempty open part or has zero Lebesgue measure.

Let us first assume the above claim and show how to conclude. If for all z € U the set
{y € B, : f(y) = 0} has zero Lebesgue measure, then each compact subset K C U can
be covered by a finite family B,,, B.,,...,B.,, thus implying that {y € K : f(y) = 0} has
zero Lebesgue measure. This trivially leads to the fact that {z € U : f(y) = 0} has zero
Lebesgue measure. On the other hand, if for some z € U the set {y € B, : f(z) = 0} has
nonempty open part, then the analytic function given by f restricted to U is zero on a
ball inside U and therefore is zero on all U (see [6][Ch. IV.2.3]).

At this point we only need to prove the above Claim If f(z) # 0 then for B, small
the set {y € B, : f(z) = 0} is empty and we are done. Suppose that f(z) =0 and f not
identically zero around z. By Weierstrass preparation theorem [20][Ch. I1.B], there exists
e > 0 such that for all y = (y1,v2,...,yn) € C" with |y; — z;| < e for all 7 it holds

F@) =h) |(yn — 20)" + a1y, - Y1) (Yo — 20)

(77)

+o At ag—1 (Y Yn—1)Yn — 20) + @k (Y15 Yn-1) |
where y = (y1,...,Yn), k is a suitable integer, ay,...,a; are holomorphic functions, and
h is a never—zero holomorphic function. It then follows that, fixed (y1,...,yn—1) with

lyi — zi| < e, the set {y, € C : |yn — 20| < e, f(Y1,---,Yn—-1,Yn) = 0} has cardinality at
most k (in particular, it has zero Lebesgue measure when intersected with R). The thesis
follows by taking B, := {y € R" : |y; — 2| < €} and applying Fubini theorem. O

Up to now, assuming that R has positive Lebesgue measure, we have proved that
for each r € (0,+00)” it holds h(\,7) = 0 for A < 0 and |)| large enough: A < Ao
and —\ > 3max _p r(v) + 1 (see Remark B4)). In particular, it is simple to define an
increasing function ¢ : (0, +00) — (0, 400) such that h(),r) = 0 for all r € (0, +00)” and
A < —¢p (max, B r(e)). In particular we have proved the following fact:
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Fact 8.7. For each fized r € (0, —i—oo)E, the ratio hy(\,1)/h_(\,1) is constant for A\ <
— (max__zr(e)).

We now show that this is in contradiction with the assumption that the fundamental
graph G is not (v,7)-minimal. Indeed, since G is not (v,v)-minimal, there exist at least
two paths v(1) = (29, 21,..., zp7) and 4?) = (20,215, 2y) in Apr and App respectively,
such that the points z; are all distinct, the points 2] are all distinct, and for some non—
negative integers k1, ko with k1 + ko +2 < M A M’ it holds

zi:zg V0<i<k,

2m—i =2 V0 <i<ko,

{2141y -y ZM—pg—1} N {zé,z{,...,zﬁ\/[,} =0,
{20,215 2m} N {zl 41 2y g1} = 0.

In other words, v(') and 4(?) are linear chains, they have in common the first 1 + 1 points
and the last ko + 1 points, while they divide in their interior part.
Let E, :=T1'1 Uy, where

Ty = {(zi, 2zi41), (zix1,2i) : 0 <i < M}, Dy = {(2},211), (zj41,25) 1 0< j < M'}.

Note that F, c E. Introduce a new connected fundamental graph G’ = (V', E’), where
E' = (E\ E)UE, and V' is given by the vertices appearing in the edges of E'. As marked
vertices we take again v, .

Let 7= (r(e) : e € E,) € (0,+00)%* and for k > 1 let 7®) € (0, —|—OO)E be defined as 7
on E, and as 1/k on F \ E,. Then

Jim b (320) = 200, 3 —p(mperte)). )

where f; refers to the rw on the quasi 1d lattice induced by (G’,v,7) and by the weights

r(e) with e € E\ E (that have been fixed once and for all) and the weights 7(e) with
e € E,. The limit (78)) follows from the fact that, as k — oo, the probability to have
a jump along an edge not in £’ goes to zero (use the graphical construction for Markov
chains)

Due to ([8) and Fact 87 we have that the ratio fi()\)/ff()\) is constant for A < 0 with
|A| large. At this point, to have a contradiction it is enough to prove that for a suitable
choice of T the above assertion is impossible. Let A/ be the analogous of A,, referred now
to the graph G’ = (V', E"). Then for each path v in A/ for some m going from v to 7, it
holds either

Nizzoo) (V) = Nizypy () =1 foralli: 0 <i<m, (79)
N(%y) (’)/) — N(yw)(’)/) =0 for all (x,y) eIy \Fl ,

or

() =1 foralli:0<i<m',

i

Ntz () = Neay,
Nizy) (V) = Nyay(7) =0 forall (z,y) € 1\ Iy,
So we can define the two disjoint sets
Py :={ paths in U,,>1 A}, such that (79) holds}
Py :={ paths in U,,>1 A}, such that (80) holds}

(80)
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Inverting the role of v, 7 and considering paths from T to v, one can define (A,)*, Py, Ps
analogous of A, P1, P2, respectively. For example, Py is given by the paths ~ in
Um>1(A7,)* such that

Nz () = Nz oy () =1 foralli: 0 <i<m,

81
Niayy (1) = Nigy(7) =0 for all () € [y \ Ty, (81)

Given a path v = (zg,z1,...,2Zy) we define the reversed path v* = (2, 1,...,20).
Note that if v € P; then v* € Pf. Using formulas similar to (68) referred now to G’ we
have

== & 82
) (82)

where, for s =1, 2,

© m—1
fe=Y ¥ @ [ ———.
m=1~eP.NA., ecE, =0 r(xi)
m—1
fs — Ne('y ; .
mz:l’yep*;fl’m)* eg* ig (@) = A

Note that 7(z) is now referred to the fundamental graph G with weights r(e) with e € E\E
(that have been fixed once and for all) and the weights r(e) with e € E,. Simply forget
G.

Due to (79) and (8I) and similar formulas, for s = 1,2 we get

1 7 ] o (2, Zit1) L M 7"(2{, Zerl)
fs,+()‘) - fS,*()‘) Asa Al Ca 21—[ ’I"(Zi+1,ZZ') ’ A2 - ZI—IO ’I"( 2 ;) : (83)
Combining (82) and (83]) we have
fr) _ Ji1,+()\) + f2,+(f\) _ (84)

-0 AT () + A3 o (V)

If A = Ay then the ratio f, (\)/f_()\) is independent of A, but this happens for a set
of rates of Lebesgue measure 0. Assume now A; # As. Then dividing by f17+()\) we
conclude that the Lh.s. of (84)) does not depend on A for A < 0 with || large if and only
if the same holds for the ratio fo 1 (\)/f1.1+ ().

We point out that each path in P; belongs to A/, for some m > M. The only path in
P1 belonging to A’ is ~W) | while there is no path in P; belonging to -’49\/[4-1- Moreover,
| Al | < 3™ since, when constructing a path v € A/, vertex by vertex, at each step we can
choose only among 2 or 3 neighbors. Hence

‘ Z Z H Ne('y)H ‘ i omn :(C/‘)\‘)M+2 )
A T=¢/|Al

m=M+2~yeP1NA}, e€Fx m=M-+2

where ¢ := 3max{r(e) : e € E,}. In particular, separating the contribution of 7D from
the other paths in the definition of f; 1 (), we have that

f1+ —01 H <’)\’]\1/[+2> s Cl = H 7“(22‘,22‘4_1)
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Above O (W) means that the term in consideration is bounded in modulus by C/|\[M+2.

Note that for A < 0 with |\| large we have

1 1 1 1 (%)
= — = — 1——+5i()\)>
r(zi) = A A THr(z)/[AL (A ( R
where limy_, o [A[€;()\) = 0. The same arguments hold for fo , where ¢; := Hi]\ilgl (2, 24 1)

In conclusion we have

z 1
firl = |A|M‘|A|M+1Z “ <|A|M+1>’

~ (&) 1
e = i = e 2 Z 4o ()

Since fi +(\), fa+ (\) are proportional for A < 0 with || large, it must be M = M’ and
Zi\io r(z;) = ZZMO (z}). These identities cannot be true in general. If M # M’ trivially
we have a contradiction. Otherwise take r(e) = 1 for all e € T'y and r(e) = a > 0 for all
a €9\ T'y. If a is large then the identity Zi]\io r(z;) = Zi]\io r(z) fails. O

APPENDIX A. PROPOSITION ivPLIES (UB))

For completeness, following similar arguments as in [10], we explain how one can deduce
from Proposition the upper bound (UB]) for all ¥ € R, assuming v > 0. Recall that
Sy :=inf{s > t: Zs, <0}, and observe that for all u > 0 it holds

<12£Z < ut> < g UP(S, < 00),  qi=P(w =—1). (86)

To prove the above bound observe that one possible way of realizing the event { infg> Zs <
0} is the following. If Z; > |ut| then the process hits |ut] after time ¢ and then performs
|ut] consecutive steps to the left. If Z; < |ut| then after time ¢ the process performs |ut|
consecutive steps to the left. In particular we get

P(S; < o0) = ]P’(irgZS < O) > ]P’(lan < Lutj) Lut] > P(lan < ut)q
From (B6]) and Proposition [6.6] we readily get (UB]) for 9 = 0:
Zy
lim sup — loglP(— € (- )) < limsup — log[P’(mfZ < €t> —e—1(0) =9 —1(0) .

t—o00 t—o00

Fix, now, any ¥ > 0 and take ¢ small enough so that u : =9 —e > 0 and fix v’ € (0, u).
Let m be any positive integer. Then we have for ¢ large (as we assume)

Z,
P < tt €(W—egd+ 6)) < P(Z; € [ut,ut + 2et]) = P(Ty) < t, Zt € [ut,ut + 2¢t])

IN

Tt
P [t < U’ 1an < ut + 2¢t

i T Ek—1) k
lut] ( ) .
< <
<Sor( e [ ) (o 7=
_ utJ ]4? — 1) k
zetZ[[D( [ D ) e(s, w <o),




RANDOM WALKS ON QUASI ONE DIMENSIONAL LATTICES 35

We point out that the third inequality above follows from the strong Markov property
applied at time 77, and the fact that the probability P (infs>; o Zs < 2et) is increasing
in a. The last inequality follows from (8@J).

Reasoning as in (B5]) and using Proposition [6.6, we get for 1 < k <m

(Tt e [l P p(s, < ) < oo ()t an ()1 (- 2)10)

ut um Tu'm
|

11
< 6t6+tuw+(7,m) eftl(u’) ,

where ¢ is taken large enough and w; is defined as in (54]). Note that the last inequality
follows from the convexity of I. When k = m, on the other hand, ]P)(Stiﬁ < oo) = IP’(SO <

00) =1 and, as in (B5), for ¢ large we have
p T\_utJ c (m — 1) 7 i < et6+tuw+ (ui/’mlu’ ) e—tl(u’) .
|ut ] u'm o

Putting all together, we have shown that for any ¢ small and ¢ large enough it holds

1
7

P(% € (W —e 9+ 6)> < m- g etertues (G) )
with u =9 — ¢, and therefore

1 Z 1 1
limsupzlogIP(?t € (¥ —6,19+6)> < —2510gq+6+uw+(

ol !
t—00 u' mu

) —I(u).

Letting, now, m — oo and then ¢ — 0 (so that also u — ) and taking «’ — o gives (UB]).
The proof of the same bound for ¥ < 0 follows by similar arguments.
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