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SYNONYMS

Motion patterns; Trajectory patterns

DEFINITION

Spatio-temporal data is any information relating space and time. This entry specifically considers
data involving point objects moving over time. The terms entity and trajectory will refer to such
a point object and the representation of its movement, respectively. Movement patterns in such
data refer to (salient) events and episodes expressed by a set of entities.

In the case of moving animals, movement patterns can be viewed as the spatio-temporal
expression of behaviours, as for example in flocking sheep or birds assembling for the seasonal
migration. In a transportation context, a movement pattern could be a traffic jam.

Only formalised patterns are detectable by algorithms. Hence, movement patterns are modelled
as any arrangement of subtrajectories that can be sufficiently defined and formalised, see for
example the patterns illustrated in Figure 1. A pattern usually involves a certain number of
entities. Furthermore a pattern starts and ends at certain times (temporal footprint), and it
might be restricted to a subset of space (spatial footprint).

HISTORICAL BACKGROUND

The analysis of movement patterns in spatio-temporal data is for two main reasons a relatively
young and little developed research field. First, emerging from static cartography, geographical
information science and theory struggled for a long time with the admittedly substantial
challenges of handling dynamics. For many years, occasional changes in a cadastral map were
challenging enough, not to mention the constant change of location as is needed for modelling
movement.

Second, only in recent years has the technological advancement in tracking technology reached
a level that allowed the seamless tracking of individuals needed for the analysis of movement
patterns. For many years, the tracking of movement entities has been a very cumbersome and
costly undertaking. Hence, movement patterns could only be addressed for single individuals
or very small groups. Hégerstrand’s time geography [10] may serve as a starting point of a
whole branch of geographical information science representing individual trajectories in 3D.
The two spatial dimensions combined with an orthogonal temporal axis proved to be a very
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powerful concept for exploring various kinds of spatio-temporal relationships, including movement
patterns.

With GPS and various other tracking technologies movement pattern research entered a new
era, stepping from ‘thread trailing’ and ‘mark and recapture’ approaches to low cost, almost
continuous capture of individual trajectories with possibly sub-second sampling rates. Within
a few years the situation completely reversed from a notorious data deficit to almost a data
overkill, with a lack of suited analytical concepts coping with the sudden surge of movement
data. Consequently, the huge potential of analysing movement in spatio-temporal data has
recently attracted the interest of many research fields, both in theory and application, as is
outlined in the next two sections.

SCIENTIFIC FUNDAMENTALS

Assume that the entities in Figure 1 are sheep on a pasture and that they are observed by a
geographer, a database expert and a computational geometer. Even though all three experts
see the very same sheep, they may all perceive totally different things. The geographer might
interpolate a sheep density surface of the pasture. For the database expert in contrast, each sheep
may represent a leaf in a dynamic tree optimised for fast queries. Finally, the computational
geometer might triangulate the sheep locations in order to detect a flocking pattern. Even though
the sheep will not care, their grazing challenges various research fields handling spatio-temporal
data. The following overview bundles the different perspectives addressing movement patterns
into the three sections exploration, indexing and data mining. See Figure 2 for a comprehensible
access guide to recommended reading.

GlScience: exploratory data analysis and visualisation In GIScience the term ‘pattern’ is
used in various contexts and meanings when addressing movement. However, as a common
denominator, movement patterns are generally conceptualised as salient movement events or
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episodes in the geospatial representation of moving entities. Given GIScience’s legacy in
cartography, it is not surprising that movement patterns are often addressed by a combination
of geovisualisation and exploration. Exploratory analysis approaches combine the speed and
patience of computers with the excellent capability of humans to detect the expected and discover
the unexpected given an appropriate graphical representation.

Salient movement patterns may emerge from (i) two-dimensional maps of fixes aligned in
trajectories, (ii) movie-like animated maps or even (iii) three-dimensional representations of
movement, if time is used as a third, orthogonal axis.

(i) Basic movement patterns are obvious from simple plotting of movement trajectories on a
two-dimensional map. Trajectories bundled in narrow, directed bottlenecks represent often used
corridors. Less focussed trajectory footprints represent more arbitrary movement, such as in
grazing animals or visitors at a sports event strolling around a stadium. The application of GIS
analysis tools on points and lines representing moving entities has proven to be a very effective
approach. For example, GIS tools for generalisation, interpolation and surface generation may
be applied to support the detection of movement patterns in trajectory data. Brillinger et al. [5]
use a regularly sampled vector field to illustrate the overall picture of animals moving in their
habitat, with each vector coding in orientation and size for mean azimuth and mean speed at
that very location. Dykes and Mountain [8] use a continuous density surface and a ‘spotlight’
metaphor for the detection of activity patterns. Again, common GIS tools such as algorithms
initially designed for the analysis of digital terrain models can easily be adopted for the search
for salient movement patterns, for instance to identify ‘peaks’ of frequent visitation and ‘ridges’
of busy corridors [8].

(ii) Animation is suited to uncover specific movement behaviours of individuals and groups.
Animating moving entities with a constant moving time window in the so-called dynamic view
uncovers speed patterns of individuals [2, 8]. Flocking or converging are more complex patterns
of coordination in groups. Such group patterns are very striking when animating even large
numbers or individuals in a movie-like animation.

(iii) The extension of a two-dimensional map with a third orthogonal time axis produces a very
powerful tool for uncovering movement patterns. Such ideas go back to Hégerstrand’s time
geography [10] and have often been adopted in present day geocomputation [12]. In the specific
geometry in such a three-dimensional space-time aquarium episodes of immobility and certain
speed behaviours produce distinctive patterns of vertical and inclined time lines, respectively.
Furthermore, patterns of spatio-temporal collocation can be identified from vertical bottleneck
structures in sets of time lines [12].

Indexing spatio-temporal trajectories In the database community considerable research has
been focussing on spatial and temporal databases. Research in the spatio-temporal area in many
ways started with the dissertations by Lorentzos [15] in 1988 and Langran [13] in 1989. Not
surprisingly research has mainly focussed on indexing databases so that basic queries concerning
the data can be answered efficiently. The most common queries considered in the literature are
variants of nearest neighbour queries and range searching queries. For example:

eSpatio-temporal range query, e.g. ‘Report all entities that visited region S during the time
interval [ty,t5].”



eSpatial nearest neighbours given a time interval, e.g. ‘Report the entity closest to point p
at time t.’

eTemporal nearest neighbours given a spatial region, e.g. ‘Report the first entity visiting
region S.’

In general one can classify indexing methods used for spatio-temporal data into Parametric Space
Indexing methods (PSI) and Native Space Indexing methods (NSI). The PSI method uses the
parametric space defined by the movement parameters, and is an efficient approach especially for
predictive queries. A typical approach, described by Saltenis et al. [17] is to represent movement
defined by its velocity and projected location along each spatial dimension at a global time
reference. The parametric space is then indexed by a new index structure referred to as the
TPR-tree (Time Parameterised R-tree). The TPR-tree is a balanced, multi-way tree with the
structure of an R-tree. Entries in leaf nodes are pairs of the position of a moving point and a
pointer to the moving point, and entries in internal nodes are pairs of a pointer to a subtree
and a rectangle that bounds the positions of all moving points or other bounding rectangles
in that subtree. The position of a moving point is represented by a reference position and a
corresponding velocity vector. To bound a group of d-dimensional moving points, d-dimensional
bounding rectangles are used that are also time parameterised, i.e. their coordinates are functions
of time. A time-parameterised bounding rectangle bounds all enclosed points or rectangles at all
times not earlier than the current time. The search algorithm for a range query also performs
computation on the native space by checking the overlap between the range of the query and the
trapezoid representation of the node.

The NSI methods represent movement in d dimensions as a sequence of line segments in d + 1
dimensions, using time as an additional dimension, see for example the work by Hadjieleftheriou
et al. [9]. A common approach is to use a multi-dimensional spatial access method like the R-
tree. An R-tree would approximate the whole spatio-temporal evolution of an entity with one
Minimum Bounding Region (MBR) that tightly encloses all the locations occupied by the entity
during its lifetime. An improvement for indexing movement trajectories is to use a multi version
index, like the Multi Version R-tree (MVR-tree), also known as a persistent R-tree. This index
stores all the past states of the data evolution and allows updates to the most recent state. The
MVR-tree divides long-lived entities into smaller intervals by introducing a number of entity
copies. A query is directed to the exact state acquired by the structure at the time that the
query refers to; hence, the cost of answering the query is proportional to the number of entities
that the structure contained at that time.

Algorithms and data mining In the previous section different indexing approaches were
discussed. This section will focus on mining trajectories for spatio-temporal patterns. This
has mainly been done using algorithmic or data mining approaches.

The most popular tools used in the data mining community for spatio-temporal problems has
been association rule mining (ARM) and various types of clustering. Association rule mining
seeks to discover associations among transactions within relational databases. An association rule
is of the form X = Y where X (antecedents) and Y (consequents) are disjoint conjunctions
of attribute-value pairs. ARM uses the concept of confidence and support. The confidence of
the rule is the conditional probability of Y given X, and the support of the rule is the prior
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probability of X and Y.

The probability is usually the observed frequency in the data set. Now the ARM problem can
be stated as follows. Given a database of transactions, a minimal confidence threshold and a
minimal support threshold, find all association rules whose confidence and support are above the
corresponding thresholds.

Chawla and Verhein [18] defined spatio-temporal association rules (STARs) that describe how
entities move between regions over time. They assume that space is partitioned into regions,
which may be of any size and shape. The aim is to find interesting regions and rules that predict
how entities will move through the regions. A region is interesting when a large number of entities
leaves (sink), a large number of entities enters (source) or a large number of entities enters and
leaves (thoroughfare).

A STAR (r;,T1,q) = (r},T>) denotes a rule where entities in a region r; satisfying condition ¢
during time interval T} will appear in region r; during time interval 75. The support of a rule 4
is the number, or ratio, of entities that follow the rule. The spatial support takes the size of the
involved regions into consideration. That is, a rule with support s involving a small region will
have a larger spatial support than a rule with support s involving a larger region. Finally, the
confidence of a rule ¢ is the conditional probability that the consequent is true given that the
antecedent is true. By traversing all the trajectories all possible movements between regions can
be modelled as a rule, with a spatial support and confidence. The rules are then combined into
longer time intervals and more complicated movement patterns.

Some of the most interesting spatio-temporal patterns are periodic patterns, e.g. yearly migration
patterns or daily commuting patterns. Mamoulis et al. [16] considered the special case when the
period is given in advance. They partition space into a set of regions which allows them to define
a pattern P as a 7-length sequence of the form rg,ry,..., 7,1, where r; is a spatial region or the
special character *, indicating the whole spatial universe. If the entity follows the pattern enough
times, the pattern is said to be frequent. However, this definition imposes no control over the
density of the regions, i.e. if the regions are too large then the pattern may always be frequent.
Therefore an additional constraint is added, namely that the points of each subtrajectory should
form a cluster inside the spatial region.

Kalnis et al. [11] define and compute moving clusters where entities might leave and join during
the existence of a moving cluster. For each fixed discrete time-step t; they use standard clustering
algorithms to find clusters with a minimum number of entities and a minimum density. Then they
compare any cluster ¢ found for ¢; with any (moving) cluster ¢ found for time-step ¢; ;. If ¢ and
¢ have enough entities in common, which is formally specified by a threshold value, then ¢ can
be extended by ¢, which results in a moving cluster. They propose several ideas to increase the
speed of their method, e.g. by avoiding redundant cluster comparisons, or approximating moving
clusters instead of giving exact solutions, and they experimentally analyse their performance.

In 2004 Laube et al. [14] defined a collection of spatio-temporal patterns based on direction
of movement and location, e.g. flock, leadership, convergence and encounter, and they gave
algorithms to compute them efficiently. As a result there were several subsequent articles studying
the discovery of these patterns. Benkert et al. [4] modified the original definition of a flock to
be a set of entities moving close together during a time interval. Note that in this definition the



entities involved in the flock must be the same during the whole time interval, in contrast to
the moving cluster definition by Kalnis et al. [11]. Benkert et al. [4] observed that a flock of m
entities moving together during k time steps corresponds to a cluster of size m in 2k dimensional
space. Thus the problem can be restated as clustering in high dimensional space. To handle high
dimensional space one can use well-known dimensionality reduction techniques. There are several
decision versions of the problem that have been shown to be NP-hard, for example deciding if
there exists a flock of a certain size, or of a certain duration. The special case when the flock is
stationary is often called a meeting pattern.

Andersson et al. [1] gave a more generic definition of the pattern leadership and discussed how such
leadership patterns can be computed from a group of moving entities. The proposed definition
is based on behavioural patterns discussed in the behavioural ecology literature. The idea is to
define a leader as an entity that (1) does not follow anyone else, (2) is followed by a set of entities
and (3) this behaviour should continue for a duration of time. Given these rules all leadership
patterns can be efficiently computed.

Be it exploratory analysis approaches, indexing techniques or data mining algorithms, all effort
put in theory ultimately leads to more advanced ways of inferring high level process knowledge
from low level tracking data. The following section will illustrate a wide range of fields where
such fundamentals underlie various powerful applications.

KEY APPLICATIONS

Animal Behaviour The observation of behavioural patterns is crucial to animal behaviour
science. So far, individual and group patterns are rather directly observed than derived from
tracking data. However, there are more and more projects that collect animal movement by
equipping them with GPS-GSM collars. For instance, since 2003 the positions of 25 elks in
Sweden are obtained every 30 minutes. Other researchers attached small GPS loggers to racing
pigeons and tracked their positions every second during a pigeon’s journey. It is even possible to
track the positions of insects, e.g. butterflies or bees, however most of the times non-GPS based
technologies are used that allow for very small and light sensors or transponders. Analysing
movement patterns of animals can help to understand their behaviour in many different aspects.
Scientists can learn about places that are popular for individual animals, or spots that are
frequented by many animals. It is possible to investigate social interactions, ultimately revealing
the social structure within a group of animals. A major focus lies on the investigation of leading
and following behaviour in socially interacting animals, such as in a flock of sheep or a pack of
wolves [7]. On a larger scale, animal movement data reflects very well the seasonal or permanent
migration behaviour. In the animation industry, software agents implement movement patterns
in order to realistically mimic the behaviour of animal groups. Most prominent is the flocking
model implemented in NetLogo which mimics the flocking of birds [19].

Human Movement Movement data of people can be collected and used in several ways. For
instance, using mobile phones that communicate with a base station is one way to gather data
about the approximate locations of people. Traffic-monitoring devices such as cameras can deliver
data on the movement of vehicles. With the technological advancement of mobile and position
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aware devices, one could expect that tracking data will be increasingly collectable. Although
tracking data of people might be available in principle, ethical and privacy aspects need to be
taken into consideration before gathering and using this data [6]. Nonetheless, if the data is
available, it could be used for urban planning, e.g. to plan where to build new roads or where to
extend public transport.

The detection of movement patterns can furthermore be used to optimise the design of location-
based-services (LBS). The services offered to a moving user could not only be dependent on the
actual position, but also on the estimated current activity, which may be derived from a detected
movement pattern.

Traffic Management Movement patterns are used for traffic management in order to detect
undesirable or even dangerous constellations of moving entities, such as traffic jams or aeroplane
course conflicts. Traffic management applications may require basic Moving Object Database
queries, but also more sophisticated movement patterns involving not just location but also speed,
movement direction and other activity parameters.

Surveillance and Security Surveillance and intelligence services might have access to more
detailed data sets capturing the movement of people, e.g. coordinates from mobile phones or
credit card usage, video surveillance camera footage or maybe even GPS data. Apart from
analysing the movement data of a suspect to help prevent further crime, it is an important task
to analyse the entire data set to identify suspicious behaviour in the first place. This leads to
define ‘normal behaviour’ and then search the data for any outliers, i.e. entities that do not
show normal behaviour. Some specific activities and the corresponding movement patterns of
the involved moving entities express predefined signatures that can be automatically detected in
spatio-temporal or footage data. One example is that fishing boats in the sea around Australia
have to report their location in fixed intervals. This is important for the coast guards in case of
an emergency, but the data can also be used to identify illegal fishing in certain areas. Another
example is that a car thief is expected to move in a very characteristic and hence detectable
way across a surveilled car park. Movement patterns have furthermore attracted huge interests
in the field of spatial intelligence and disaster management. Batty et al. [3] investigated local
pedestrian movement in the context of disaster evacuation where movement patterns such as
congestion or crowding are key safety issues.

Military and Battlefield The digital battlefield is an important application of moving object
databases. Whereas real-time location data of friendly troops is easily accessible, the enemy’s
location may be obtained from reconnaissance planes with only little time lag. Moving object
databases not only allow the dynamic updating of location and status of tanks, aeroplanes and
soldiers, but also answering spatio-temporal queries and detecting complex movement patterns.
Digital battlefield applications answer spatio-temporal range queries like ‘Report all friendly
tanks that are currently in region S.” A more complex movement pattern in a digital battlefield
context would be the identification of the convergence area where the enemy is currently
concentrating his troops.



Sports Scene Analysis Advancements in many different areas in technology are also influencing
professional sports. For example, some of the major tennis tournaments provide three-
dimensional reconstructions of every single point played, tracking the players and the balls.
It is furthermore known that, e.g. football coaches routinely analyse match video archives to
learn about an opponents behaviours and strategies. Making use off tracking technology, the
movement of the players and the ball can be described by 23 trajectories over the length of
the match. Researchers were able to develop a model that is based on the interactions between
the players and the ball. This model can be used to quantitatively express the performance
of players, and more general, it might lead to an improved overall strategy. Finally, real-time
tracking systems are developed that keep track of both players and the ball in order to assist the
referee with the detection of the well-defined but nevertheless hard to perceive offside pattern.

Movement in Abstract Spaces In contrast to tracking and analysing the movement of animals
and people on the surface of the earth, it is also possible to obtain and analyse spatio-temporal
data in abstract spaces also in higher dimensions. Every scatter plot that constantly updates the
changes in the x and y values, produces individual trajectories open for movement analysis. Two
stock exchange series plotted against each other could build such a dynamic scatter-plot. As
another example, basic ideological conflicts can be used to construct abstract ideological spaces.
Performing factor analysis on referendum data, researchers hypothesised a structure of mentality
consisting of dimensions such as ‘political left vs. political right’ or ‘liberal vs. conservative’.
Whole districts or even individuals such as members of parliament could now be localised and
re-localised in such ideological space depending on their voting behaviour and its change over
time, respectively. Movement in such a space represents the change of opinions and analysing
this can lead to more insight and understanding of human psychology and politics.

FUTURE DIRECTIONS

For simplicity reasons, theory and application of movement patterns in spatio-temporal data
focussed so far largely on moving point objects. However, many processes can only be modelled
as dynamics in fields or in their discretised counterparts that is dynamic polygons. When
monitoring a hurricane threatening urban areas, the tracking of its eye alone may not provide
sufficient information, but additional tracking of its changing perimeter will be required. The
consideration of both location and change of polygonal objects raises the conceptualisation and
detection of movement patterns to a higher level of complexity, which has only rarely been
addressed so far.

For the many fields interested in movement, the overall challenge lies in relating movement
patterns with the underlying geography, in order to understand where, when and ultimately
why the entities move the way they do. Grazing sheep, for example, may perform a certain
movement pattern only when they are on a certain vegetation type. Homing pigeons may show
certain flight patterns only when close to a salient landscape feature such as a river or a highway.
And, the movement patterns expressed by a tracked vehicle will obviously be very dependant
on the environment the vehicle is moving in, be it in a car park, in a suburb or on a highway.
Thus, patterns have to be conceptualised that allow linking of the movement with the embedding
environment.
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Figure 2: Access guide to the references in the further reading section below.

Cross References
Computational Geometry (Ch. 7), Terrain Modeling (Ch. 15), Query Operation & Query
Languages (Ch. 30), Navigation and Transportation Issues (Ch. 43), Management of Moving

Obj

ects (Ch. 45), Privacy in location-based services (Ch. 47), Location Based Services (Ch. 73),

GIS for Transportation (Ch. 74), GIS in Army (Ch. 76), GIS Intelligence (Ch. 79), Legal and
Ethical Issues of GIS. Association Rule Mining (Ch. 80), Spatio-temporal modeling and reasoning
(Ch. 83), Spatio-temporal Indexing (Ch. 85), Spatio-Temporal Representation (Ch. 88).

RECOMMENDED READING

[1]

M. Andersson, J. Gudmundsson, P. Laube, and T. Wolle. Reporting leadership patterns among
trajectories. In Proceedings of the 22nd ACM Symposium on Applied Computing, 2007.

N. V. Andrienko and G. L. Andrienko. Interactive maps for visual data exploration. International
Journal of Geographical Information Science, 13(4):355-374, 2003.

M. Batty, J. Desyllas, and E. Duxbury. The discrete dynamics of small-scale spatial events: agent-
based models of mobility in carnivals and street parades. International Journal of Geographical
Information Science, 17(7):673-697, 2003.

M. Benkert, J.Gudmundsson, F. Hiibner, and T. Wolle. Reporting flock patterns. In Proceedings of
the 14th Furopean Symposium on Algorithms, volume 4168 of Lecture Notes in Computer Science,
pages 660—671. Springer, 2006.

D. R. Brillinger, H. K. Preisler, A. A. Ager, and J. G. Kie. An exploratory data analysis (EDA)
of the paths of moving animals. Journal of statistical planning and inference, 122(2):43-63, 2004.
J. E. Dobson and P. F. Fisher. Geoslavery. IEEE Technology and Society Magazine, 22(1):47-52,
2003.

B. Dumont, A. Boissy, C. Achard, A. M. Sibbald, and H. W. Erhard. Consistency of animal
order in spontaneous group movements allows the measurement of leadership in a group of grazing
heifers. Applied Animal Behaviour Science, 95(1-2):55-66, 2005.

9



8]

[9]
[10]

[11]

[19]

J. A. Dykes and D. M. Mountain. Seeking structure in records of spatio-temporal behaviour: visual-
ization issues, efforts and application. Computational Statistics and Data Analysis, 43(4):581-603,
2003.

M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Indexing spatio-temporal
archives. The VLDB Journal, 15(2):143-164, 2006.

T. Hagerstrand. What about people in regional science. Papers of the Regional Science
Association, 24:7-21, 1970.

P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-temporal data.
In C. B. Medeiros, M. J. Egenhofer, and E. Bertino, editors, Proceedings of the 9th International
Symposium on Advances in Spatial and Temporal Databases, volume 3633 of Lecture Notes in
Computer Science, pages 364-381. Springer, 2005.

M. P. Kwan. Interactive geovisualization of activity-travel patterns using three dimensional geo-
graphical information systems: a methodological exploration with a large data set. Transportation
Research Part C, 8(1-6):185-203, 2000.

G. Langran. Time in Geographic Information Systems. PhD thesis, University of Washington,
1999.

P. Laube, M. van Kreveld, and S. Imfeld. Finding REMO - detecting relative motion patterns in
geospatial lifelines. In P. F. Fisher, editor, Developments in Spatial Data Handling, Proceedings
of the 11th International Symposium on Spatial Data Handling, pages 201-214. Springer, Berlin
Heidelberg, DE, 2004.

N. A. Lorentzos. A Formal Ezxtension of the Relational Model for the Representation and
Manipulation of Generic Intervals. PhD thesis, Birbeck College, University of London, 1988.

N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. Cheung. Mining, indexing,
and querying historical spatiotemporal data. In Proceedings of the 10th ACM International
Conference On Knowledge Discovery and Data Mining, pages 236—245. ACM, 2004.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the positions of
continuously moving objects. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 331-342, 2000.

F. Verhein and S. Chawla. Mining spatio-temporal association rules, sources, sinks, stationary
regions and thoroughfares in object mobility databases. In Proceedings of the 11th International
Conference on Database Systems for Advanced Applications, volume 3882 of Lecture Notes in
Computer Science, pages 187-201. Springer, 2006.

U. Wilensky. Netlogo flocking model. http://ccl.northwestern.edu/netlogo/models/Flocking.

10



