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Abstract

Over the last decade, we have seen a revolution in con-
nectivity between computers, and a resulting paradigm shift
from centralized to highly distributed systems. With massive
scale also comes massive instability, as node and link fail-
ures become the norm rather than the exception. For such
highly volatile systems, decentralized gossip-based proto-
cols are emerging as an approach to maintaining simplicity
and scalability while achieving fault-tolerant information
dissemination.

In this paper, we study the problem of computing aggre-
gates with gossip-style protocols. Our first contribution is
an analysis of simple gossip-based protocols for the compu-
tations of sums, averages, random samples, quantiles, and
other aggregate functions, and we show that our protocols
converge exponentially fast to the true answer when using
uniform gossip.

Our second contribution is the definition of a precise no-
tion of the speed with which a node’s data diffuses through
the network. We show that this diffusion speed is at the
heart of the approximation guarantees for all of the above
problems. We analyze the diffusion speed of uniform gos-
sip in the presence of node and link failures, as well as for
flooding-based mechanisms. The latter expose interesting
connections to random walks on graphs.

1. Introduction

Over the last decade, we have seen a revolution in con-
nectivity between computers, and a resulting paradigm shift
from centralized computation to highly distributed systems.
For example, large-scale peer-to-peer (P2P) networks with
millions of servers are being used or designed for dis-
tributed information storage and retrieval [9, 30, 32], and
advances in hardware are leading to the augmentation of
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our physical environment with sensor networks consisting
of hundreds of thousands of small sensor nodes [24, 28, 35].
Applications for such large-scale distributed systems have
three salient properties that distinguish them from tradi-
tional centralized or small-scale distributed systems.

First, the dynamics of large-scale distributed systems are
often significantly different. For example, in P2P networks,
individual machines are often under the control of a large
number of heterogeneous users who may join or leave the
network at any time. Sensor networks often involve the de-
ployment in inhospitable or inaccessible areas that are natu-
rally under high stress (for example in battlefields or inside
larger devices). Individual sensors may fail at any time, and
the wireless network that connects them is highly unreli-
able. Thus, with massive distribution comes massive insta-
bility; consequently, the system as a whole must be highly
fault-tolerant, as node and link failures or temporary com-
munication disruptions are the norm rather than the excep-
tion.

Second, due to the large number of nodes and the volatil-
ity of the system, any reliance on central coordination
will limit the system’s scalability. Gossip-based(or epi-
demic) protocols are emerging as an important communica-
tion paradigm. In gossip-based protocols, each node con-
tacts one or a few nodes in each round (usually chosen
at random), and exchanges information with these nodes.
The dynamics of information spread bear a resemblance to
the spread of an epidemic [5, 10], and lead to high fault-
tolerance and “self-stabilization” [8, 10, 34]. Gossip-based
protocols usually do not require error recovery mechanisms,
and thus enjoy a large advantage in simplicity, while often
incurring only moderate overhead compared to optimal de-
terministic protocols, such as the construction of data dis-
semination trees. The guarantees obtained from gossip are
usually probabilistic in nature; they achieve high stability
under stress and disruptions, and scale gracefully to a huge
number of nodes. In comparison, traditional techniques
have absolute guarantees, but are unstable or fail to make
progress during periods of even modest disruption.

Third, due to the large scale of the system, the values of
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aggregate functions over the data in the whole network (or
a large part of it) are often more important than individual
data at nodes [17, 24, 34]. For example, in a sensor network
with temperature sensors, we are often more interested in
the average or median temperature measured by all sensors
in an area rather than the single measurement at an individ-
ual sensor. In a sensor network with acoustic and vibration
sensors, we may want to find out to which extent events of
especially large noise or vibration are spatially or tempo-
rally correlated. In a P2P system, we may be interested in
the total number of files, the average size of files stored, or
quantiles about the amount of free space on the machines’
disks. At the same time, communication bandwidth is often
a scarce resource in decentralized settings, so the computa-
tion of aggregates should involve only small messages. In
particular, any protocol collecting all local data at one given
node will create communication bottlenecks, or a message
implosion at that node.

Motivated by these considerations, we study the follow-
ing class ofNode Aggregationproblems: in a network ofn
nodes, each nodei holds a valuexi (or a setMi of values),
and the goal is to compute some aggregate function of these
values (such as sums, averages, quantiles, etc.) in a decen-
tralized and fault-tolerant fashion, while using small mes-
sages only. The Node Aggregation problem was recently
defined formally by Bawa et al. [7], who restrict their atten-
tion to sums, averages, minima, and maxima. They define
several natural notions of “validity” of a result in the pres-
ence of node failures, and show that “practical validity” (the
weakest notion) is the only one that can be achieved under
adversarial crash failures. They also present protocols for
aggregation based mostly on building trees.

Here, we extend the study of aggregation beyond sums
and averages, and show how to use gossip-based, com-
pletely decentralized protocols to compute random samples,
quantiles, and answers to several other aggregate database
queries in a decentralized fashion. We posit a weaker fail-
ure model than Bawa et al. [7], and obtain simple protocols
for all of the above problems. We can show that all of our
protocols converge to the true answer exponentially fast.

The Push-Sum protocol

Our first contribution is a simple and natural protocol Push-
Sum for computing sums or averages of values at the nodes
of a network. At all timest, each nodei maintains asum
st,i, initialized tos0,i := xi, and aweightwt,i, initialized to
w0,i := 1. At time 0, it sends the pair(s0,i, w0,i) to itself,
and in each subsequent time stept, each nodei follows the
protocol given as Algorithm 1.

We show that with probability at least1 − δ, the rela-
tive error in the approximation of the average has dropped
to within ε, in at mostO(log n + log 1

ε + log 1
δ ) rounds

Algorithm 1 Protocol Push-Sum
1: Let {(ŝr, ŵr)} be all pairs sent toi in roundt − 1
2: Let st,i :=

∑

r ŝr, wt,i :=
∑

r ŵr

3: Choose a targetft(i) uniformly at random
4: Send the pair( 1

2st,i,
1
2wt,i) to ft(i) andi (yourself)

5:
st,i

wt,i
is the estimate of the average in stept

(Section 3). Notice also that the lengths of all messages are
bounded by the largest number of bits to encode thexi, plus
the number of rounds that the protocol has run.

If we are interested in computing the sum instead of the
average, then we only need to apply a small change: instead
of all nodes starting with weightw0,i = 1, only one node
(for instance the one at which the query was inserted) starts
with weight 1, while all others start with weight0. We than
obtain exactly the same kind of approximation guarantees.

Push-Sum is a very natural protocol, yet the proof of the
approximation guarantee is non-trivial and relies crucially
on a useful property we termmass conservation: the av-
erage of all sumsst,i is always the correct average, and the
sum of all weightswt,i is alwaysn. For many natural proto-
cols violating this property (for instance, Pull-based proto-
cols), it is not difficult to verify that they cannotconvergeto
the true results, in the sense that with some constant prob-
ability (possibly depending onn, but not the timet), the
approximation stays bounded away from the true average.
We will elaborate more on this issue in the full version.

Diffusion Speeds

The analysis of Push-Sum builds on an understanding of the
diffusion speedof Uniform Gossip, characterizing how fast
a value originating with any one node diffuses through the
network. This notion is made precise in Section 2, although
we hasten to add here that it does not in general coincide
with the “broadcast time” [6, 18, 29]— the time it takes
to disseminate a message to all nodes using point-to-point
communication. Push-Sum is generic with respect to the
underlying mechanism for communication, and its conver-
gence speed corresponds in a precise sense to the diffusion
speed of the communication mechanism.

We believe that this correspondence is of interest in it-
self, as the choice of communication mechanism will de-
pend strongly on the actual network and its physical im-
plementation. In sensor networks or P2P networks of rel-
atively low degree, it may be easily feasible for a node to
send a message to all of its neighbors at once, but point-
to-point connectivity may be hard to achieve (in particular
for sensor networks, where nodes usually use radio broad-
casts). Other networks may support the abstraction of point-
to-point communication, but the number of messages that a
node can send in a round is limited, so that Uniform Gossip
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is preferred. Our approach permits us to design and ana-
lyze protocols independently of the actual communication
mechanism; the convergence speed will be determined by
the diffusion speed of the mechanism.

Hence, we analyze the diffusion speed not only for Uni-
form Gossip, but also for several other communication
mechanisms. In particular, we analyze the impact of node
failures and message loss on the diffusion speed of Uni-
form Gossip. In addition, we show that the diffusion speed
for flooding techniques corresponds in a precise sense to
the mixing time of a random walk on the network. Thus,
we obtain good diffusion speeds for flooding on many P2P
network architectures, which are known to possess good ex-
pansion properties.

Protocols for other problems

Building on ideas from the protocol Push-Sum and the no-
tion of diffusion speeds, we design protocols for several
more complex types of queries. Specifically, we show how
to extend the analysis in a relatively straightforward way
to answer many kinds of aggregate queries in databases
[3, 4, 11, 13, 14, 15, 33], essentially any query that can be
approximated well using linear synopses.

A somewhat more elaborate analysis shows that using
only small messages and few rounds of the underlying com-
munication mechanism, we can compute good random sam-
ples from among the union of all values held by the nodes.
This, in turn, permits us to design a fast decentralized algo-
rithm for computing quantiles (Section 4).

Related Work

Previously, several systems have been proposed that
combine gossip-based communication with an explicit hi-
erarchy on the nodes that allows for more easy aggregation
[17, 34]. These approaches have been observed to scale well
in practice, but require the maintenance of an explicit tree
on nodes, and the election of leaders within subtrees.

The dissemination time of gossip distributions, and the
time to broadcast one value to all nodes, has been studied
in the past, see [18] for a survey. In particular, Frieze and
Grimmett, and Pittel [16, 27] give precise constants in the
O(log n) upper bound for Uniform Gossip. Feige et al. [12]
consider random broadcasting on random graphs and hy-
percubes. Ravi [29] and Bar-Noy et al. [6] study approx-
imation algorithms for the (NP-complete) problem of op-
timal broadcasting. Karp et al. consider tradeoffs between
the number of rounds of gossip and the number of message
duplicates that are sent [20].

The impact of message size restrictions on the ability to
solve distributed computation tasks is investigated in [21].
It is shown that for the problems of locating the closest copy

of a resource or building an approximate minimum span-
ning tree, different gossip distributions exhibit qualitatively
different behavior when restricted to small messages.

2. Diffusion Speeds

We define a notion ofdiffusion speed, which lets us char-
acterize precisely how quickly values originating with mul-
tiple sources diffuse evenly through a network, for a given
communication mechanism.

Recall that in the basic Push-Sum protocol, each node
chooses some other node uniformly at random, and passes
on half of its sum and weight, keeping the other half. We
generalize this idea to other communication mechanisms
as follows: each nodei, in each roundt, chooses a non-
negativeshareαt,i,j for each nodej, such that

∑

j αt,i,j =
1, and sends anαt,i,j fraction of its sum and weight to each
j. The choice of shares may be deterministic or random-
ized, and may or may not depend on the timet. We identify
the communication mechanism with the shares(αt,i,j)t,i,j .

To track the diffusion of a nodei’s value under a given
communication mechanism, we define — solely for the
purpose of analysis — the following vector-based version
of the protocol. Each nodei locally maintains ann-
dimensionalcontribution vectorvt,i. Initially, it sends the
vectorei (the vector with1 in thei-coordinate, and0 in all
others) to itself. In all subsequent rounds, the protocol is:

Algorithm 2 Protocol Push-Vector
1: Let {v̂r} be all vectors sent toi in roundt − 1
2: Let vt,i :=

∑

r v̂r

3: Choose sharesαt,i,j for all nodesj
4: Sendαt,i,j · vt,i to eachj

The sums and weights in the Push-Sum protocol can
be expressed in terms of contribution vectors asst,i =
vt,i · x =

∑

j vt,i,j · xj , andwt,i = ‖vt,i‖1 =
∑

j vt,i,j .
Therefore, ifvt,i is (close to) a multiple of the all-1 vector
1, then st,i

wt,i
is (close to) the true average, in a sense to be

made precise in Section 3.
This motivates characterizing the diffusion speed of the

communication mechanism by the speed with which the
contribution vectors converge to multiples of the1 vec-
tor. We define the relative error at nodei at time t to be
∆i,t = maxj |

vt,i,j

‖vt,i‖1

− 1
n | = ‖

vt,i

‖vt,i‖1

− 1
n · 1‖∞. We

say thatT = T (δ, n, ε) is (an upper bound on) thediffu-
sion speedof the mechanism defined by the distribution on
sharesαt,i,j if maxi ∆i,t ≤ ε with probability at least1−δ,
at all timest ≥ T (δ, n, ε). That is, the relative errors in the
contributions at all nodesi are bounded byε.1

1Although our framework is presented with decentralized communica-
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2.1. Uniform Gossip

In this section, we characterize the diffusion speed of
Uniform Gossip.

Theorem 2.1 The diffusion speed of Uniform Gossip is
TU (δ, n, ε) = O(log n+log 1

ε+log 1
δ ). Thus, with probabil-

ity at least1−δ, there is a timet = O(log n+log 1
ε +log 1

δ )
such that the contributions at all timest′ ≥ t and all nodes
i are nearly uniform, i.e.maxj |

vt′,i,j

‖vt′,i‖1

− 1
n | ≤ ε.

In order to prove this theorem, first notice that the prop-
erty of mass conservationmentioned in the introduction
now translates to the following

Proposition 2.2 (Mass conservation) Under the protocol
Push-Vector with Uniform Gossip, at any timet, the sum
of all of j’s contributions at all nodesi is

∑

i vt,i,j = 1,
and hence the sum of all weights is

∑

i wt,i = n.

The proof of Theorem 2.1 is based on studying the po-
tential functionΦt =

∑

i,j(vt,i,j −
wt,i

n )2, the sum, over all
i, of the variance of the contributionsvt,i,j (as a function
of j). The following Lemma guarantees geometric conver-
gence of the absolute errors, by showing thatΦ drops to less
than half its previous value in expectation.

Lemma 2.3 The conditional expectation ofΦt+1 is
E[Φt+1 | Φt = φ] = (1

2 − 1
2n )φ.

Proof. Suppose we are given all contributionsvi,j = vt,i,j

and weightswi = wt,i at timet, as well as the calling as-
signmentf = ft (i.e. nodei calls nodef(i)). Then, the
new potential at timet + 1 is

Φt+1 =
∑

i,j

(

1

2
(vi,j −

wi

n
) +

∑

k:f(k)=i

1

2
(vk,j −

wk

n
)

)2

=
1

4

∑

i,j

(vi,j −
wi

n
)2 +

1

4

∑

i,j

∑

k:f(k)=i

(vk,j −
wk

n
)2

+
1

2

∑

i,j

∑

k:f(k)=i

(vi,j −
wi

n
)(vk,j −

wk

n
)

+
1

2

∑

i,j

∑

k 6=k′:f(k)=f(k′)=i

(vk,j −
wk

n
)(vk′,j −

wk′

n
)

=
1

2
Φt +

1

2

∑

i,j,k:f(k)=i

(vi,j −
wi

n
)(vk,j −

wk

n
)

tion in mind, it does not a priori preclude the possibility of aggregating data
along the edges of a tree that is fixed. This would correspond to each node
sending its entire vector (with share1) to its parent during a first phase,
and parents distributing the correct aggregate evenly amongtheir children
in a second phase. The reader is encouraged to verify that ouraggregation
protocols then coincide with the natural way of aggregatingdata in a tree,
and the diffusion speed is twice the height of the tree.

+
1

2

∑

j,k

∑

k′ 6=k:f(k)=f(k′)

(vk,j −
wk

n
)(vk′,j −

wk′

n
)

In the last step, we used the fact that eachk appears in the
sum for exactly one nodei. Next, we take expectations, not-
ing that the independent and uniform choice of communica-
tion partners ensures thatP [f(k) = i] = 1

n for all nodesi
andk, andP [f(k) = f(k′)] = 1

n wheneverk 6= k′. Thus,
we obtain that

E[Φt+1 | Φt = φ]

=
1

2
φ +

1

2

∑

i,j,k

(vi,j −
wi

n
)(vk,j −

wk

n
) P [f(k) = i]

+
1

2

∑

j,k

∑

k′ 6=k

(vk,j−
wk

n
)(vk′,j−

wk′

n
)P [f(k)=f(k′)]

=
1

2
φ +

1

2n

∑

i,j,k

(vi,j −
wi

n
)(vk,j −

wk

n
)

+
1

2n

∑

j,k,k′

(vk,j −
wk

n
)(vk′,j −

wk′

n
)

−
1

2n

∑

j,k

(

vk,j −
wk

n

)2

= (
1

2
−

1

2n
)φ +

1

n

∑

j

∑

i

(vi,j −
wi

n
)
∑

k

(vk,j −
wk

n
)

= (
1

2
−

1

2n
)φ.

In the last step, we used the mass conservation property,
to show that the sum is 0.

Proof of Theorem 2.1. By taking expectations repeatedly
in Lemma 2.3, and using the fact thatΦ0 is at mostn, we
obtain thatE[Φt] ≤ n · 2−t.

With foresight, we chooseτ = 4 log n + log 2
δ , and an

absolute error of̂ε = ε2 · δ
2 · 2−2τ . Then, after running for

t = log n+log 1
ε̂ = log n+2 log 1

ε +log 2
δ +2τ rounds, the

expectation ofΦt is at mostE[Φt] ≤ ε̂. Hence, by Markov’s
Inequality, with probability at least1− δ

2 , the potentialΦt is
bounded byε2 · 2−2τ . In particular,|vt,i,j −

wt,i

n | ≤ ε · 2−τ

for all nodesi.
In order to obtain a good bound on the relative error, we

still have to give a lower bound on the weights at timet.
Let i be the node with largest weight at timet0 = t − τ ,
so thatwt0,i ≥ 1. We look at how weight diffuses fromi.
Consider a “message” that originates withi at timet0, and
is forwarded by all nodes that have received it. A result by
Frieze and Grimmett (Theorem 5.2 in [16]) shows that with
probability at least1 − δ

2 , the message reaches all nodes in
time at most4 log n + log 2

δ .
If in the “message” experiment, at any timet′ ≥ t0, a

nodej receives the message originating with nodei, then in
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the Push-Vector protocol,j receives weight at least2t0−t′ ,
as the weight is divided by2 in each round. In turn,j
continues to divide its weight by at most2 in each round,
and therefore, with probability at least1 − δ

2 , all nodes
have weight at least2−τ at time t = t0 + τ . Apply-
ing a Union Bound over the potential and weight events,
and dividing by the weightwt,i gives us that with prob-
ability at least1 − δ, we have|vt,i,j

wt,i
− 1

n | ≤ ε, at time

t = O(log n + log 1
δ + log 1

ε ).
Finally, to see that the same bound holds for all later

times, we use a simple inductive proof. The desired in-
equality at timet′ can be rewritten asn · vt′,i,j ∈ [(1 −
εn) · wt′,i, (1 + εn) · wt′,i]. Substituting these bounds into
the contributions at timet′ + 1, we obtain that

n · vt′+1,i,j =
1

2
n · vt′,i,j +

∑

k:ft′ (k)=i

1

2
n · vt′,k,j

∈
1

2
[(1 − εn) · wt′,i +

∑

k:ft′ (k)=i

(1 − εn) · wt′,k,

(1 + εn) · wt′,i +
∑

k:ft′ (k)=i

(1 + εn) · wt′,k]

= [(1 − εn) · wt′+1,i, (1 + εn) · wt′+1,i].

This proves the inductive step, and hence the claim holds at
all timest′ ≥ t, completing the proof.

Under some additional technical assumptions, we can
obtain similar guarantees for distributions that are not “too
different” from uniform. The diffusion speed will be slowed
down essentially by the largest (multiplicative) deviation
from the uniform distribution. The precise statement (and
more cumbersome analysis) will be given in the full version
of this paper.

2.2. Impact of faults on diffusion speed

The power of gossip-based techniques lies in their im-
plicit robustness against faults: often, there is no need to
distinguish failed nodes from temporary or permanent com-
munication disruptions; nor is any specific recovery action
required. In this section, we investigate the impact of sev-
eral models of failures on the diffusion speed of the Uniform
Gossip mechanism.

We consider the following two failure models: random
message loss and initial failures of some nodes. We assume
that nodes can detect when their message has not reached its
destination (for instance by means of an acknowledgment
mechanism). However, they are unable to discern the rea-
son, i.e. do not know whether a message got lost, or the des-
tination node has failed. The Push-Sum (and Push-Vector)
protocol is modified as follows: if a node detects that its
message was not delivered, it sends the message to itself in-
stead. Other than that, the protocol is not altered at all. We

let µ denote the loss rate for messages, or the fraction of
nodes that have failed at the beginning of the computation.

Theorem 2.4 If µ < 1 is an upper bound on the probability
of message loss in each round resp. the fraction of failed
nodes, then the diffusion speedT ′ in the presence of failures
satisfiesT ′(δ, n, ε) ≤ 2

(1−µ)2 T (δ, n, ε).

The proof of Theorem 2.4 is deferred to the full version
of this paper. Note that the Theorem does not give guaran-
tees if nodes leave the network during the computation. If
we assume that they leave in an orderly fashion (after send-
ing all of their sum and weight (or vector) to another node
first), then it can be seen fairly easily that the potentialΦt at
most doubles as a result of nodes leaving, when at most half
of the nodes leave in one round. In particular, at most one
additional round is required for convergence. If nodes crash
during the computation, then our results do not carry over.
We are currently investigating the question of whether the
system can recover from crash failures, and what the impact
on the diffusion speed is.

2.3. Flooding

In several topologies, such as P2P or wireless radio net-
works, point-to-point communication may not be a rea-
sonable assumption, while the small number of neighbors
(or the physical implementation of communication) may
make it feasible to send one message to all neighbors at
once. If the shares assigned to each neighbor are time-
independent, then we can characterize all shares by a matrix
A = (αi,j)i,j , where the entryαi,j denotes what fraction of
its vectorvt,i nodei sends toj. (In most applications, the
sharesαi,j will be the same for all nodesj— however, our
results hold in greater generality.) Thus,e

T
j · At is exactly

the vector of contributions(vt,i,j)i from nodej at all other
nodes. As this is also the probability that the Markov Chain
defined byA (and starting at nodej) is at statesi at timet,
we can leverage a large body of work on the mixing speed of
Markov Chains in analyzing diffusion speeds for flooding.2

To make this notion precise, we recall the following
definitions. π denotes the vector of stationary probabil-
ities of the Markov Chain. For two vectorsa, b, we
define the fractiona

b
pointwise, i.e. itsi-coordinate is

ai

bi
. Most results on mixing times for Markov Chains

use either the total variation distance or the‖·‖2-distance
(which lie within constant factors of each other). The
‖·‖2,π-distance from the stationary probability with respect

to π is ‖
e

T
j ·At

π − 1‖2,π :=
(
∑

i(
e

T
j ·At·ei−πi

πi
)2 · πi

)1/2
.

Here, we are interested in the‖·‖∞-distance, which is

‖
e

T
j ·At

π − 1‖∞ := maxi |
e

T
j ·At·ei−πi

πi
|. Whenever the

2We assume that the Markov Chain so defined is actually ergodic.
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Markov Chain is reversible, i.e.πiαi,j = πjαj,i, for all i, j,
these two distance measures can be related in the following
precise sense (see Lemma 2.4.6 from [31], and its analogue
for discrete time Markov Chains):

Lemma 2.5 [31] If A defines a reversible Markov Chain,

then whenevermaxj‖
e

T
j ·At

π − 1‖2,π ≤ δ, we have

maxj‖
e

T
j ·A2t

π − 1‖∞ ≤ δ2.

Hence, by doubling the time for the chain to run, we
obtain equally good (or usually better) bounds on the‖·‖∞-
norm. Now, ift is a time such that|vt,i,j−πi

πi
| ≤ nε

nε+2 , then
a straightforward calculation shows that|

vt,i,j

‖vt,i‖1

− 1
n | ≤ ε.

Thus, we obtain the following

Theorem 2.6 Let T be a function such that

maxj‖
e

T
j ·At

π − 1‖2 ≤ ǫ, for all t ≥ T (n, ǫ). Then,

TF (n, ε) := 2T (n,
√

nε
2+nε ) is an upper bound on the

diffusion speed for the flooding mechanism defined byA.

Theorem 2.6 allows us to leverage a large body of lit-
erature on the convergence speed of Markov Chains and
Random Walks for the analysis of our aggregate compu-
tation protocols (see for instance [1, 23, 31]). In particular,
whenever the underlying network is an expander, then we
obtain diffusion speedT (n, ε) = O(log n+log 1

ε ). Several
Peer-to-Peer topologies explicitly generate expander graphs
[22, 26], and others [30, 32, 36] build hypercube-like net-
works which are expected to also have good expansion.
Thus, we believe that our techniques will yield quick con-
vergence on many P2P architectures.

2.4. Practical Considerations

We present the protocols Push-Sum, Push-Random (Sec-
tion 4), etc. in terms of synchronous rounds, and with a
synchronized starting point. The latter is certainly unnec-
essary. Instead, the node at which the query was posed may
simply assign a unique identifierQ, and use the underlying
communication mechanism to inform all other nodes of the
query. Once a node first learns about a query, it adds its
own value and weight to the received values, and then par-
ticipates fully in the protocol. It is fairly straightforward to
see that this does not affect the behavior, and convergence
will be equally fast as before once all nodes have learned of
the query.

The assumption of synchronous rounds is also not truly
necessary for the definition of the protocols. Instead, nodes
may simply follow their own clocks in deciding when to for-
ward a share of their values or vectors. Mass conservation
is still ensured; however, the analysis of the convergence
speed for Uniform Gossip or flooding needs to be altered.

We conjecture that the diffusion speed of the asynchronous
version matches that of the synchronous version; the analy-
sis, however, becomes more complex.

As another practical consideration, nodes will usually
want to stop processing a query after some time, when the
approximation guarantee is good enough. This can be done
easily if the nodêv posing the queryQ disseminates a mes-
sage stating thatQ is finished. However, it also raises the
interesting question of hoŵv will be able to decide that its
approximation is good enough. If the number of nodes or
the network topology are known, then̂v has exact bounds
on the quality of approximation. However, nodes will often
not know the entire topology in decentralized settings. We
are currently investigating techniques by which nodes can
locally estimate the quality of their current approximations.

Finally, many decentralized settings, such as sensor net-
works, also involve frequently changing data that needs to
be monitored. In our setting, a nodei can simply add the
amount∆ by which its valuexi changed into its own sum
st,i at any change, and continue disseminating this new
value. This will ensure that a snapshot over the entire sys-
tem will always give the correct value, although the esti-
mates at nodes may be temporarily incorrect. However, they
will eventually converge to the true average, once no more
changes happen for a sufficiently long time. Thus, our pro-
tocols implement theEventual Consistencyparadigm [34].

3. Averages, Sums, and Aggregates

Using Theorem 2.1, it is fairly straightforward to prove
the convergence of Push-Sum to the true average that we
claimed in the introduction.

Theorem 3.1 1. With probability at least1 − δ, there is
a timet0 = O(log n + log 1

ε + log 1
δ ), such that for all

timest ≥ t0 and all nodesi, the relative error in the

estimate of the average at nodei is at mostε ·
∑

j
|xj |

|
∑

j
xj |

(where the relative error is 1
|
∑

j
xj |

·|
st,i

wt,i
− 1

n ·
∑

j xj |).

In particular, the relative error is at mostε whenever
all valuesxj have the same sign.

2. The sizes of all messages sent at timet are bounded by
O(t+maxj bits(xj)) bits, wherebits(xj) denotes the
number of bits in the binary representation ofxj .

Proof. Theorem 2.1 guarantees that with probability at
least1 − δ, there is a timet0 = O(log n + log 1

δ + log 1
ε )

such that the contributions at all timest ≥ t0 satisfy
‖

vt,i

‖vt,i‖1

− 1
n · 1‖∞ ≤ ε

n . At time t, the estimate of the

average at nodei is vt,i·x
wt,i

. By applying the Triangle In-
equality under the sum (Ḧolder’s Inequality), we obtain the
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desired bound on the relative error at nodei as follows:

|(
vt,i·x
wt,i

) − 1
n

∑

j xj |

| 1n
∑

j xj |
= n ·

|(
vt,i

‖vt,i‖1

− 1
n · 1) · x|

|
∑

j xj |

≤ n ·
‖

vt,i

‖vt,i‖1

− 1
n · 1‖∞ · ‖x‖1

|
∑

j xj |

≤ ε ·

∑

j |xj |

|
∑

j xj |
.

For the second part of the theorem, notice that values are
only divided by2 in each round. Hence, adding one bit of
precision in each round suffices to keep full accuracy.

Of course, we may substitute any other communication
mechanism instead of Uniform Gossip, and will only have
to adapt the statement about the speed with which the values
converge to the true average to the diffusion speed of the
mechanism.

If only one node (instead of all nodes) starts with weight
1, then the value computed at the nodes converges to the
sum of thexj , instead of their average, as a very similar
proof to the above shows. In fact, this technique can be
used to count the number of nodes in the network in a de-
centralized manner, if each node starts with valuexj = 1,
but only one node with weightwj = 1 (the others having
weight0).

3.1. Linear Synopses

In turn, the ability to compute sums approximately is
a powerful primitive for more complex queries. In Sec-
tion 4, we see how to combine it with random sampling
to compute quantiles. Another application is in answer-
ing database queries that can be approximated well us-
ing linear synopses, i.e. functionsh on multisets such that
h(S1 ∪ S2) = h(S1) + h(S2). Following the work by Alon
et al. on using sketches to estimate join sizes [3, 4], there
has been a large body of work suggesting such techniques
for different kinds of queries, including aggregate functions
over joins [11],Lp norms [13, 15], distinct values [4, 14]
and histograms [33].

If each node computes the “local synopsis” of its own
data, then the synopsis of the entire data can be approxi-
mated by adding these local synopses, using the Push-Sum
protocol. From the synopses, nodes can in turn compute
approximate function values. It is then important to analyze
how the error introduced by Push-Sum affects the error in
the final outcome. A subtle difficulty arises from the fact
that in many cases (e.g. sketches), the expectation of the
synopsis is0, so the actual value of the sum may be close
to 0, even though the local synopses are large in magnitude.
Thus, Theorem 3.1 does not give useful bounds. Instead, we

want to show that even if the relative error in the approxi-
mation of the sum of the synopses is large, the effect on the
function under consideration is small.

Specifically, we assume that the actual functionh is ap-
proximated byE[f̂ ], wheref̂(h1, . . . , hK) is computed as a
polynomial fromK small linear synopses of the data (which
in turn are the sums of local synopseshk(i) at nodes, and
are often random variables). In addition, and most cru-
cially, we assume thatE[f̂ ] can be rewritten as a polyno-
mial

∑

r βrE[
∏K

k=1

∏

i hk(i)]pr,k,i in terms of the expec-
tationsE[hk(i)] of local synopses, such that every additive
term isalways non-negative. Notice that the non-negativity
requirement does not need to apply to the synopses them-
selves, but rather to the monomials inE[f̂ ]. We write
d = maxr

∑

k,i pr,k,i for the maximum degree of any term
in this polynomial.

3.1.1 The Push-Synopses protocol

In the gossip protocol for synopses-based approximation,
each nodei locally maintains a weightwt,i, and a vector
st,i of K synopsesst,i,k. The synopses are initialized to
s0,i,k = hk(i), and the weights tow0,i = 0 at all nodes
except a specific starting nodêv, which hasw0,v̂ = 1. At
time step0, each node sends the pair(s0,i, w0,i) to itself.
In each time stept ≥ 1, each nodei executes the following
protocol.

Algorithm 3 Protocol Push-Synopses

1: Let {(ŝr, ŵr)} be all pairs sent toi in roundt − 1
2: Let st,i :=

∑

r ŝr, wt,i :=
∑

r ŵr

3: Choose sharesαt,i,j for eachj
4: Send(αt,i,j · st,i, αt,i,j · wt,i) to eachj
5: f̂(

st,i,1

wt,i
, . . . ,

st,i,K

wt,i
) is the estimate at timet

The approximation properties of the Push-Synopses pro-
tocol are summarized by the following theorem. The proof
is a fairly straightforward generalization of the proof of
Theorem 3.1, and deferred to the full version of this paper.

Theorem 3.2 LetT be the convergence speed of the chosen
communication mechanism in step 2. Givenε andδ, let ε′

be such that(1 + ε′)d ≤ 1 + ε, andt ≥ T (δ, n, ε′).
Then, with probability at least1− δ, the relative error at

all nodesi incurred by the communication layer is at mostε,
at all timest′ ≥ t. Here, the relative error is 1

E[f̂(h1,... ,hK)]
·

|E[f̂(
st,i,1

wt,i
, . . . ,

st,i,K

wt,i
)] − E[f̂(h1, . . . , hK)]|.

Notice thatε′ will be only polynomially smaller thanε,
becaused is a constant. For most communication mech-
anisms,T grows at most logarithmically inε, so the time
required to reach error bounded byε′ will only be longer by
a constant factor than that to reach errorε.
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3.2. Applications

Linear synopses are a common technique for computing
aggregate information in database settings. We illustratethe
applicability with respect to sketching techniques for join
size queries, and list several other applications.

If fu andgu denote the frequency with which the ele-
mentu appears in the relationsRf andRg, then the join
size of the two relations is

∑

u fugu. In their work on
approximating frequency moments [3, 4], Alon et al. in-
troducedsketchesas powerful linear synopses of such fre-
quency tablesRf , Rg. A sketch ofRf is a random variable
Xf =

∑

u∈U ξufu, where eachξu is a random variable
with values uniformly in{−1, 1}. A straightforward calcu-
lation shows that if theξu are fourwise independent, then
not only is the expectationE[Xf · Xg] =

∑

u fugu, but the
variance is also reasonably bounded.3 ConsideringXf and
Xg as synopses of the data, we see thatE[Xf ·Xg] is a sum
of monomials that are always non-negative, and hence the
techniques introduced above apply.

In addition to join-size queries, the following synopses-
based aggregation techniques satisfy the required properties
above, and can hence be combined with gossip-based ag-
gregation protocols (an elaboration on the exact form of the
synopses is again deferred to the full version of this paper):

• A substantial generalization of the techniques by Alon
et al. [11] to include a much larger class of aggregate
queries over multi-way joins in databases.

• Approximate histogram construction using sketches
[33].

• Lp-norms, by using either range-summable hash func-
tions with limited independence [13], orp-stable dis-
tributions [19].

• Distinct Value Queries, using hash functions [14, 4].

4. Random Sampling and Quantiles

A second important task besides computing sums and av-
erages is to find random samples and quantiles of a multiset
of elements. We assume that each nodei holds a multiset
Mi of mi elements, and letM =

⋃

i Mi be the union of
all these multisets, writingm = |M | =

∑

i mi. We give a
simple protocol with small messages for sampling elements
nearly uniformly at random fromM , and show how to com-
bine it with Push-Sum to compute quantiles ofM in a de-
centralized fashion.

3In order to apply these results in our distributed setting (and still obtain
linearity), all nodes have to use the same multipliersξu. Alon et al. show
how to generate fourwise independent multipliers from a random seed of
length logarithmic in the size of the universe [2, 4], so it suffices to dissem-
inate this seed to all nodesi.

4.1. Random Sampling

In order to draw a random sample fromM , each nodei
first samples an elementq0,i fromMi uniformly at random4,
and then sends the pair(q0,i,mi) to itself. Subsequently,
each node executes the following protocol Push-Random in
each round.

Algorithm 4 Protocol Push-Random
1: Let {(q̂r, ŵr)} be all pairs sent toi in roundt − 1
2: Let wt,i :=

∑

r ŵr

3: Chooseqt,i at random from{q̂r} with probabilities ŵr

wt,i

4: Choose sharesαt,i,j for eachj
5: Send(qt,i, αt,i,j · wt,i) to eachj
6: qt,i is the random element at timet

The protocol only uses small messages, and at any given
time, each node holds some elementqt,i. The important
question is how soon this element will be close to uniformly
distributed. The convergence behavior is characterized by
the following Theorem:

Theorem 4.1 LetT be the diffusion speed of the underlying
communication mechanism. Then, with probability at least
1−δ, afterT (δ, n, ε

(2+ε)n ) rounds, the element at each node
i will be ε-close to uniform, i.e. each element is selected
with probability between1−ε

m and 1+ε
m .

Proof. We show by induction on the timet that
P [qt,i = q0,j ] =

vt,i,j ·mj

wt,i
(recall thatvt,i are the contri-

butions vectors). At time0, this is clearly true, as the ratio
is 1 for j = i, and0 otherwise, and nodei holds its own
element.

For the inductive step, consider a nodei, and all the pairs
it receives; letk be the node that sent̂qk = qt−1,k, which
is chosen byi with probability αt−1,k,i·wt−1,k

wt,i
. Using con-

ditional probabilities over all of thek, and the induction
hypothesisP [qt−1,k = q0,j ] =

vt−1,k,j ·mj

wt−1,k
, we obtain that

P [qt,i = q0,j ] =
∑

k

αt−1,k,i · wt−1,k

wt,i
·
vt−1,k,j · mj

wt−1,k

=
mj

wt,i
·
∑

k

αt−1,k,i · vt−1,k,j

=
vt,i,j · mj

wt,i
.

Given a desired quality of approximationε, we choose
ε′ ≤ ε

(2+ε)·n , and consider a timet at which the rela-
tive error in contributions at all nodesi is less thenε′,

4If Mi = ∅, theni initializes q0,i =⊥ for some special symbol⊥.
As the⊥ element is always associated with weight0, it will be overridden
by any true element, and hence, we can ignore this case for the rest of the
analysis.

8



i.e.vt,i,j ∈ ‖vt,i‖1 · [
1
n − ε′, 1

n + ε′] for all j andi. Let q be
any element inM (we consider all elements distinct here),
andj the node such thatq ∈ Mj . Then, nodei holdsq if and
only if q0,j = q, andqt,i = q0,j . Since these two events are
independent, the probability is1mj

·
vt,i,j ·mj

wt,i
=

vt,i,j
∑

k
vt,i,k·mk

.
Using the bounds from the diffusion speed both in the de-
nominator and the numerator, we obtain that

P [qt,i = q] =
vt,i,j

∑

k vt,i,k · mk

∈
1

m
· [

1/n − ε′

1/n + ε′
,
1/n + ε′

1/n − ε′
]

⊆ [
1 − ε

m
,
1 + ε

m
].

4.2. Quantile Computation

Here, we phrase the problem of finding quantiles as that
of actually finding theφ-largest element, with probability
at least1 − δ. Our algorithm is essentially a decentral-
ized implementation of the simple randomized “Find” algo-
rithm [25]. It starts with the entire (multi-)set of elements,
and in each round chooses apivot elementfrom among the
remaining elements uniformly at random. The algorithm
then counts the number of elements larger resp. smaller than
the pivot, and recurses in the corresponding subinterval. A
fairly straightforward analysis shows that when the random
samples are uniform, and the element counts are exact, then
the expected number of iterations is bounded byO(log m),
and the actual number of iterations is sharply concentrated
around its expectation.

In the decentralized version, given below as Algorithm
5, one node (for instance the one at which the query was
posed), is considered theleader, and decides when to enter
the next phase of the protocol. It uses the underlying com-
munication mechanism to broadcast the information about
the next phase to all other nodes. The leader maintains a
candidate intervalI at all times; the interval is initialized to
be the entire universe(−∞,∞), and the algorithm termi-
nates when the interval consists of a single point.

The following theorem states that within a logarithmic
number of iterations of thewhile loop, the algorithm finds
the φ-largest element, with high probability. The proof is
a relatively straightforward combination of Chernoff and
Union Bounds, and deferred to the full version.

Theorem 4.2 1. With probability at least 1 − δ,
the Distributed-Find algorithm finds theφ-
largest element within O((log m + log 1

δ ) ·
T (O( 1

log m+log(1/δ) ), n,O( 1
m ))) total rounds of

communication (whereT is the diffusion speed of the
underlying communication mechanism).

2. In particular, using Uniform Gossip, Distributed-Find

Algorithm 5 Distributed-Find
1: Use Push-Sum to approximate the numberm of ele-

ments byµ, to within 1 ± 1
2 , with probability at least

1 − δ
3

2: Let m̂ := 2µ, p := 3min( log(4/3)
2 log m̂ , 1

8 ln(3/δ) )

3: while intervalI = (a, b) has more than one pointdo
4: Use Push-Random to select a randomq in I, within

± 1
2m̂ of uniform, with probability at least1 − p

2
5: DisseminateI andq to all nodes
6: Approximately count the numberss1 ands2 of el-

ements in the intervalsI1 = (a, q), I2 = (q, b), to
within relative error at most13m̂ , with probability at
least1 − p

2 . Rounds1 ands2 to the nearest integers
7: UpdateI to the sub-interval containing theφ-largest

element according to the countss1, s2

8: end while

finds theφ-largest element withinO((log m + log 1
δ ) ·

(log n+log m+log log 1
δ )) rounds of communication.

5. Conclusions

In this paper, we have presented a novel framework for
processing many types of aggregation queries in decen-
tralized settings. Our approach uses small messages and
gossip-style local communication to provide simple and
fault-tolerant protocols.

The power of the approach also comes with liabilities.
In particular, when the protocols use flooding on networks
with slowly mixing random walks (for instance grid-like
graphs), convergence of the protocols will be slow. This
suggests trying to use (decentralized) techniques to learn
more about the topology, and trying to adapt the mecha-
nism to speed up communication. We consider the question
of how to judiciously use long-range connections, or how
to speed up random walks, a very interesting direction for
future research.

A further direction is the development of protocols
for other complex types of queries. In particular, it
seems promising to use our techniques for iceberg queries
(i.e. finding elements with outstandingly high frequency).
Also, it would be desirable to develop techniques that allow
nodes to estimate the current error of approximation with-
out knowledge of the underlying network or communication
mechanism.

We are currently validating our results with practical ex-
periments on several network topologies. For uniform gos-
sip and several Internet-like topologies, preliminary results
are very encouraging. We plan to report on these results in
detail in future work.
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