
2071 
 

Comparative analysis of AHP-TOPSIS and GA-TOPSIS methods 
for selection of raw materials in textile industries 

 
D. K. Banwet and Abhijit Majumdar 

Department of Management Studies, Indian Institute of Technology Delhi, India 
 

Abstract 
 
Textile industry plays a very dominant role in the economic activities of many countries. The quality of textile 
goods primarily depends on the quality of the raw material i.e. fibre. In India, most of the textile industries are 
cotton based. As cotton is a natural fibre, it has lot of variability in its properties. Besides, the overall quality of 
cotton fibre depends on factors like strength, elongation, fineness, length, short fibre content etc. Therefore, 
determination of quality value of cotton is basically a Multi-criteria Decision Making (MCDM) problem. 
Traditionally, Fibre Quality Index (FQI), which is a multiplicative expression incorporating major cotton fibre 
properties, is used in the textile industry to determine the overall quality. However, equal weights are considered 
for all the cotton fibre properties (decision criteria) which is questionable as different cotton fibre properties 
have different influence on the yarn qualities. MCDM techniques are yet to be applied for solving the problem 
of cotton fibre quality evaluation. In this project, cotton fibres has been graded and selected based on AHP-
TOPSIS and GA-TOPSIS approaches. In case of AHP-TOPSIS approach, AHP has been used to elicit the 
weights of various cotton fibre properties (decision criteria) and then TOPSIS has been applied to rank various 
alternatives as per the closeness index value. In the GA-TOPSIS approach, the weights of the cotton fibre 
properties (decision criteria) have been determined by the genetic algorithm. The correlation coefficient between 
the quality of cotton fibre and yarn strength has been taken as the fitness function. Finally, a comparative 
analysis has been performed between the efficacies of the two approaches. 
 
1 Introduction 
Determination of technological value of cotton fibre is an appealing field of textile research. The quality of final 
yarn is largely (up to 80%) influenced by the characteristics of raw cotton [1]. However, the level of influence of 
various cotton fibre properties on yarn quality is diverse and it changes with the yarn manufacturing technology. 
Besides, a cotton may have conflicting standards in terms of different quality criteria. Therefore, the grading and 
selection of cotton fibres in terms of different quality criteria will certainly not be the same. This will make the 
situation more intricate and application of multiple criteria decision making (MCDM) methods can probably 
deliver a plausible solution. The solution must produce an index of quality value of cotton fibre and the index 
should incorporate most of the important cotton fibre parameters. The weights of the fibre parameters should 
commensurate with their importance on the final yarn quality. 
 Based on the HVI (high volume instrument) results, multiplicative indexes like fibre quality index 
(FQI) and spinning consistency index (SCI) are used in textile industries to determine the quality value of cotton 
[2-5]. However, in case of FQI, all the cotton fibre properties are considered to have equal importance on the 
yarn quality. This assumption is practically not valid. On the other hand, SCI has been developed by USDA 
(United States Department of Agriculture) based on their research on Upland and Pima cotton and therefore the 
applicability of SCI on Indian cotton is questionable. 
 To overcome these drawbacks of the existing cotton fibre grading and selection system, an attempt will 
be made in this project to apply MCDM techniques to solve the stated problem. In case of AHP-TOPSIS 
approach, AHP will be used to elicit the weights of various cotton fibre properties (decision criteria) based on 
the perception of the decision maker (expert) and then TOPSIS will be used to rank various alternatives as per 
the closeness index value. In the GA-TOPSIS approach, the weights of the various cotton fibre properties 
(decision criteria) will be determined by the genetic algorithm. The correlation coefficient between the strength 
of yarn and quality of cotton fibre will be taken as the fitness function. Finally, a comparative analysis will be 
performed between the efficacies of the two approaches. 
 
2 Overview of Multi-criteria Decision Making 
Multi-Criteria Decision Making is a well-known branch of Operations Research (OR), which deals with 
decision problems involving a number of decision criteria and a finite number of alternatives. Various MCDM 
techniques such as weighted sum model (WSM), weighted product model (WPM), the analytic hierarchy 
process (AHP), revised AHP, technique for order preference by similarity to ideal solution (TOPSIS) and 
elimination and choice translating reality (ELECTRE) can be used in engineering decision making problems 
depending upon the complexity of the situation [6-8] The Analytic Hierarchy Process (AHP), introduced by 
Saaty [9-12], is one of the most talked about methods of MCDM. Although some researchers [13-16] have 
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raised concerns over the theoretical basis of AHP, it has proven to be an extremely useful method for decision-
making. The reason of popularity of AHP lies in the fact that it can handle the objective as well as subjective 
factors and the criteria weights and alternative scores are elicited trough the formation of pair-wise comparison 
matrix, which is the heart of the AHP.  
  
2.1 Analytic Hierarchy Process (AHP) 
Step 1:  
In this step the hierarchical structure of the problem is developed. The overall objective or goal of the problem is 
positioned at the top of the hierarchy and the decision alternatives are placed at the bottom. Between the top and 
bottom levels, there are the relevant attributes of the decision problem such as criteria and sub-criteria. The 
number of levels in the hierarchy depends on the complexity of the problem.  
 
Step 2:  
In this step relational data are generated for comparing the alternatives. This requires the decision maker to 
formulate pair-wise comparison matrices of elements at each level in the hierarchy relative to each element at 
the next higher level. In AHP, if a problem involves M alternatives and N criteria, then the decision maker has to 
construct N judgment matrices of alternatives of M x M order and one judgment matrix of criteria of N x N 
order. Finally, the decision matrix of M x N order is formed by using the relative scores of the alternatives with 
respect to each criterion. In AHP relational scale of real numbers from 1 to 9 and their reciprocals are used to 
assign preferences in a systematic manner. When comparing two criteria (or alternatives) with respect an 
attribute in a higher level, the relational scale proposed by Saaty [9-12] is used. The scale is shown in Table 1. 

 
Table 1: The fundamental relational scale for pair-wise comparisons 

Intensity of importance 
on an absolute scale 

Definition Explanation 

1 Equal importance Two activities contribute equally to the objective. 
3 Moderate importance of one 

over another 
Experience and judgment slightly favour one activity 
over another. 

5 Essential or strong 
importance 

Experience and judgment strongly favour one 
activity over another. 

7 Very strong importance An activity is strongly favoured and its dominance is 
demonstrated in practice. 

9 Extreme importance The evidence favouring one activity over another is 
of the highest possible order of affirmation. 

2, 4, 6, 8 Intermediate values 
between two adjacent 
judgment 

When compromise is needed. 

Reciprocals If activity p has one of the above numbers assigned to it when compared with 
activity q, then q has the reciprocal value when compared with p. 

 
Step 3:  
In this step, the relative importance of different criteria with respect to the goal of the problem and the 
alternative scores with respect to each of the criteria is determined. For N criteria the size of the comparison 
matrix (C1) will be N x N and the entry cij will denote the relative importance of criterion i with respect to the 

criterion j. In the matrix, cij = 1 if when i = j and 
1
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The relative weight or importance of the i th criteria (Wi) is determined by calculating the geometric mean (GM) 
of the i th row and then normalizing the geometric means of the rows of the above matrix.  
This can be represented as follows: 



2073 
 

1

1

N N

i
j

GM cij


 
  
 
 and 

1

i
i N

i
i

GM
W

GM





      (1) 

Then matrix C3 and C4 are calculated such that 3 1 2x C C C and 3
4

2

C
C

C
 , where 

 2 1 2 ...
T

NC W W W  

Principal eigen vector (λmax) of the original pair-wise comparison matrix (C1) is calculated from the average of 
matrix C4. To check the consistency in pair-wise comparison judgment, consistency index (CI) and consistency 
ratio (CR) are calculated from the following equations: 
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        (2) 

 
where RCI is random consistency index and its value could be obtained from Table 2. If the value of CR is 0.1 
or less then the judgment is considered to be consistent and acceptable. Otherwise the decision maker has to 
impart some changes in the entry of the pair-wise comparison matrix. 
 
Table 2: RCI values for different numbers of alternative (M) 

M 1 2 3 4 5 6 7 8 9 

RCI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 

 
Similarly, N numbers of pair-wise comparison matrices, one for each criterion, of M x M order are formed where 
each alternative is pitted against all of its competitors and pair-wise comparison is made with respect to each of 
the decision criterion. The eigen vector of each of these ‘N’ matrices represents the alternative performance 
scores in the corresponding criterion and from a column of the final decision matrix.  The decision matrix looks 
like as follows: 
 
 
 
 
 
 
 
Here 

1

1
M

ij
i

a


  

 
Step 4: 
In this step 
the final priority of all the alternatives is determined considering the alternative scores (aij) in each criteria and 
the weight of the corresponding criteria (Wj) using the following equation.  

 .

1

= max
AHP

N

ij j

j

A a W

  for i = 1,2,3, …..M     (3) 

 
2.2 The TOPSIS Method 
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was developed by Hwang and Yoon 
[7]. The basic philosophy of TOPSIS is that the selected alternative should have shortest distance, in a 
geometrical sense, from the ideal solution and longest distance from the worst solution. In case of hybrid AHP-
TOPSIS method the pair-wise comparison method of AHP is amalgamated with the other steps of TOPSIS. The 
major steps involved in TOPSIS method are explained below. 
 
Step 1 
The relevant objective or goal, decision criteria and alternatives of the problem are identified in this step. 

 
 
 
Alternative 

Criterion 

C1 C2 C3 … CN 

(W1) (W2) (W3) … (WN) 

A1 a11 a12 a13 … a1N 

A2 a21 a22 a23 … a2N 

A3 a31 a32 a33 … a3N 

… … … … … … 

AM aM1 aM2 aM3 … aMN 
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Step 2 
This step produces a decision matrix of criteria and alternatives based on the information available regarding the 
problem. If the number of alternatives is M and the number of criteria is N, then the decision matrix having an 
order of M x N is represented as follows: 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N
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M M MN
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a a a
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 where an element aij of the decision matrix DMxN represents the actual value of the i th alternative in 
terms of j th decision criterion. 
 
Step 3 
In this step the decision matrix is converted to normalized decision matrix, so that the scores obtained in 
different scales becomes comparable. An element rij of the normalized decision matrix R is calculated as 
follows: 
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Step 4 
The weighted normalized matrix is obtained by multiplying each column of the normalized decision matrix R 
with the associated criteria weight corresponding to that column. Hence an element vij of weighted normalized 
matrix V is represented as follows: 

.ij j ijv W r          (5) 

Step 5 
This step produces the positive ideal solution (A*) and negative ideal solution (A-) in the following manner. 
 

 * (max  / ), (min  / ') for 1, 2,3,....ij ijA v j J v j J i M     1 2*, *,..... *Nv v v  

 (min  / ), (max  / ') for 1, 2,3,....ij ijA v j J v j J i M      1 2, ,....., Nv v v    

 where  1,2,...., /  associated with benefit or positive criteriaJ j N j   

and  ' 1, 2,...., /  associated with cost or negative criteriaJ j N j   

For the benefit criteria, the decision maker wants to have the maximum value among the alternatives. Therefore, 
A* indicates the positive ideal solution. Similarly, A- indicates the negative ideal solution. 
 
Step 6 
The N dimensional Euclidean distance method is applied, as shown in equation 6, to measure the separation 
distances of each alternative from the positive and negative ideal solution. 
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 where Si* and Si

- are the separation distances of alternative i from the positive ideal solution and 
negative ideal solution, respectively. 
 
Step 7 
In this step the relative closeness (Ci*) value of each alternative with respect to the ideal solution is determined 
using the equation 7. The value of Ci* lies within the range from 0 to 1. 
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Step 8 
All the alternatives are now arranged in descending order according to the value of Ci*. The alternative at the 
top of the list is the most preferred one.  
 
2.3 Genetic Algorithm (GA) 
 
The GA is an unorthodox search method based on natural selection process for solving complicated optimisation 
problems. Prof. John Holland [17] of the University of Michigan developed it in the early 1970s. Unlike 
conventional derivative based optimisation that requires differentiability of the function to be obtimised as a 
prerequisite, GA can handle functions with discontinuities or piecewise segments. To perform the optimisation 
task, GA maintains a population of points called ‘individuals’ each of which is a potential solution to the 
optimisation problem. Generally the individuals are coded with a string of binary numbers. The GA repeatedly 
modifies the population of individual solutions. At each step, the genetic algorithm selects individuals from the 
current population (parents) and uses them produce children for the next generation, which competes for 
survival. Over successive generations, the population ‘evolves’ toward an optimal solution. Genetic algorithm 
can be applied to solve a variety of optimisation problems where the objective function is discontinuous, non-
differentiable, stochastic or highly non-linear.  
 
2.3.1 Fitness Function 
GA evaluates the fitness score of each individual of the old population. Let for an optimisation problem, having 
a fixed number of inputs, the task is to achieve a target function value g . In GA, each individual of a population 

will represent a set of the inputs with corresponding function value ig . The GA is programmed to obtain a set of 

inputs whose function value is closest to the target value g . The approach thus requires the minimization of 

distance between g  and ig . Since GA is a maximizing procedure, a fitness value for the i th individual may be 

expressed as follows.  

 
1

1i
i

f
g g


 

       (8) 

The above function is considered as a fitness function. This choice of fitness function is not unique and a given 
task has to be formulated as a maximising function. 
 
2.3.2 Reproduction Operator 
It is usually the first operator, which selects good individuals or parents from the present population to create a 
mating pool and contribute to the population of the next generation. GA selects individuals by the ‘reproduction’ 
process on the basis of fitness score of individuals. Computationally it is implemented like a ‘roulette wheel 
selection’. In this method, each individual is assigned a segment of a wheel proportional to their fitness score 
[21]. If the wheel is rotated and observed from a point, the individuals having high fitness score will have more 
probability to be selected. Figure 1 shows the selection of four individuals by the ‘roulette wheel’ method. 
Based on the area of the segments, the probability of selection of the individuals in decreasing order is f1, f3, f2 
and f4. Another popular method of selection is ‘tournament selection’. 

 
 

Figure 1: Roulette wheel selection of individuals 
 
2.3.3 Crossover and Mutation Operator  
After the selection of individuals, GA combines them by using ‘genetic operators’ such as ‘crossover’ and 
‘mutation’. Both the operators are having defined probabilities, which algorithmically can be viewed as a means 
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to combine them and to change the current solutions locally. In crossover, the part of the strings is exchanged 
between the two individuals and the qualities encoded in those parts are also exchanged as depicted in Figure 2. 
The children ‘C’ and ‘D’ possess the qualities of parents ‘A’ and ‘B’ as a result of single point cross-over of the 
strings. However, to inject new qualities which is absent in the both the parent strings, mutation operator is used 
which typically flips 0 to 1 and vice versa to produce children ‘E’ and ‘F’ as shown in Figure 12. Typical range 
of cross-over probability is 0.6-0.8 while the range of mutation probability is 0.01-0.001. Higher mutation 
probability can not be used as it may spoil the good individuals which have already been found by the GA. 
Single point, two point and matrix crossover are some of the commonly used crossover operator.  

 
 

Figure 2: Schematic representation of single point crossover and mutation 
 

2.3.4 Stopping Criterion 
The GA programme is terminated either by the maximum number of generations or by some other termination 
criterion that is an indicator of improvement in performance. A realistic termination criterion may be the ratio of 
the average fitness to the maximum fitness in a generation. Variables encoded in the best string of the final 
generation is the solution to the given optimisation problem. Thus GA has the potential to provide globally 
optimum solutions as it explores multiple points of the search space.  
 
3 Traditional Models to Determine the Technological Values of Cotton 
3.1 Fibre quality index (FQI) 
It is probably the most widely used method to determine the technological value of cotton [19-20]. The main 
reason behind its popularity may be attributed to the simplicity of the equation used. Several variants of FQI 
model are available. In this work we have used the following form of FQI proposed by South Indian Textile 
Research Association. 
 

. . .LUR FS M
FQI

FF
         (9) 

 
where L is 2.5% span length, UR is uniformity ratio, FS is fibre bundle strength, M is maturity coefficient and 
FF is fibre fineness (micronaire). If the HVI mode of fibre testing is used then the above expression is changed 
as follows: 
 

. .
HVI

UHMLUI FS
FQI

FF
       (10) 

 
where FQIHVI is HVI quality index, UHML is upper half mean length and UI is uniformity index. 
 
3.2 Spinning consistency index (SCI) 
It is a calculation for predicting the overall quality and spinnability of the cotton fibre. It is chiefly used to gain 
within and between lay-down consistencies of major cotton properties. The regression equation of SCI uses 
most of the individual HVI measurement and it is based on five-year crop average of U. S. Upland and Pima 
cotton. The regression equation [21] used to calculate SCI is as follows: 
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414.67 2.9 49.17 4.74 9.32 0.65 0.36( )SCI FS UHML UI FF Rd b          (11) 

 where Rd is reflectance degree and +b is yellowness of cotton fibre.  
 
4 Material and Methods 
4.1 Data collection and analysis 
The results of seventeen cotton fibre lots and the corresponding yarn strength data in two different counts (16 
Ne and 30 Ne) were collected from the industry. The summary statistics of fibre properties are given in Table 3. 
 
Table 3: Summary statistics of cotton fibre properties  

Fibre Properties Minimum Maximum Mean Standard deviation 
Fibre bundle strength, cN/tex 26.5 30.8 28.78 1.067 

UHML, inch 0.97 1.15 1.06 0.047 
Uniformity index 79.2 83.2 81.5 1.100 
Short Fibre Content 5.6 18.4 11.69 3.019 
Micronaire 3.1 4.7 4.09 0.417 

 
4.2 Hierarchy formulation for AHP 
The goal or objective of the present investigation is to determine the overall quality value of cotton with respect 
to yarn strength which is the most important yarn property. In general, the cotton fibre properties (decision 
criteria) of this problem can be classified under three heads, namely tensile properties, length properties and 
fineness properties. Tensile property of cotton fibre is mainly represented by fibre strength. Upper half mean 
length (UHML), uniformity index (UI) and short fibre content (SFC) are the relevant sub-criteria of length 
properties. Fineness is solely represented by the micronaire (FF) value of cotton. At the lowest level of the 
hierarchy there are 17 cotton fibre alternatives, which should be ranked according to their quality value. The 
schematic representation of the problem is depicted in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3: Hierarchical structure of cotton fibre quality 
 
4.3 Determination of criteria weights 
The pair-wise comparison matrix of three criteria with respect the overall objective of the problem is given in 
Table 4. Here the comparisons are made according to the Saaty’s scale given in Table 1.  
 
Table 4: Pair-wise comparison matrix of criteria with respect to objective  

Criteria Tensile  Length  Fineness  GM Normalized GM 
Tensile  1 1 5 1.709 0.454 
Length  1 1 5 1.709 0.454 
Fineness  1/5 1/5 1 0.342 0.092 

 

Cotton quality 

Fineness properties Length properties 

Strength UHML 

Tensile properties 

SFC Micronaire 

Cotton 1 Cotton 17 Cotton 16 … Cotton 2 

 UI 
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It can be inferred from Table 4 that tensile and length properties are having strong dominance over the fineness 
properties. However, tensile and length properties have equal importance with respect to the yarn strength. The 
normalized GM column of Table 4 indicate the relative weights of tensile, length and fineness properties are 
0.454, 0.454 and 0.092, respectively. For the measurement of consistency of judgment, the original matrix is 
multiplied by the weight vector to get the product as shown below: 
 

1 1 5 0.454 1.368

1 1 5 * 0.454 1.368

1/ 5 1/ 5 1 0.092 0.274

     
          
          

 

 

Now, 
1.368 1.368 0.274 9.005

max = ( ) / 3 = = 3.002
0.454 0.454 0.092 3

    

Therefore, 3.002 3
0.001

3 1
CI


 


 and 

0.002
0.003

0.58

CI
CR

RCI
    < 0.1 (acceptable) 

 
The next step is concerned with finding the relative weights of various sub-criteria (Level 3) with respect to the 
corresponding criteria (Level 2). The pair-wise comparison between the sub-criteria of length properties and the 
derived weight vectors are shown in Table 5. Finally, the global weight of a sub-criterion is calculated by 
multiplying the relative weight of a sub-criterion with respect to the corresponding criterion and the relative 
weight of that criterion with respect to the objective. For example, global weight of UHML, UI and SFC are 
0.227 (0.454 ×0.500), 0.114 (0.454 ×0.250) and 0.114 (0.454 ×0.250) respectively. 
 
Table 5: Pair-wise comparison of sub-criteria with respect to length properties 
Length properties UHML UI SFC Normalized GM 

UHML 1 2 2 0.500 
UI 1/2 1 1 0.250 
SFC 1/2 1 1 0.250 
CR = 0 
 
4.4 Formulation of Genetic algorithm optimisation 
To determine the optimum combination of weights of cotton fibre properties, genetic algorithm has been used.  
 

  5

i
i= 1

i

Fitness function: 

maximise Z = correlation coefficent (cotton quality, yarn strength)

Subject to: w 1

0 w 1 



 


 

 
 
5 Results and Discussion 
5.1 Comparison of performance of AHP-TOPSIS and GA-TOPSIS approaches 
Table 6 shows the weights of five major cotton fibre properties with respect to yarn strength. It is seen, that the 
weights determined by AHP and GA methods are significantly different. Besides, according to GA method, only 
three properties of cotton fibre (decision criteria) namely strength, length uniformity and short fibre content 
have weights (0.339, 0.628 and 0.033 respectively). The quality value of cotton fibre derived by various 
methods and correlation coefficient (R) between the quality value of cotton and yarn strength have been shown 
in Tables 7 and 8.  
 From Table 8, it is observed that the SCI method yields rather low correlation coefficient between the 
quality value of cotton and yarn strength (0.590 and 0.527 for 16 Ne and 30 Ne yarns respectively). The AHP-
TOPSIS method has improved the results (0.668 and 0.701 for 16 Ne and 30 Ne yarns, respectively) as the 
experience of the expert has been translated to elicit the weights of various decision criteria. However, the GA-
TOPSIS approach is showing the best correlation coefficient between the quality value of cotton and yarn 
strength (0.853 for 16 Ne yarn). This can be attributed to the fact that exact determination of criteria weights is 
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very difficult by the AHP method. However, GA elicited the exact contribution of each cotton fibre properties 
while maximising the fitness function (correlation coefficient). As a result the GA-TOPSIS approach yielded the 
best results. 
 
5.2 Validation of GA-TOPSIS approach 
To validate the hybrid GA-TOPSIS  approach, the weights of cotton fibre properties (decision criteria) 
were determined using the results of 16 Ne yarns. Once the optimum weight combination has been obtained by 
the GA, they were used in case of 30 Ne yarn and it was found that the correlation coefficient between the 
cotton fibre quality and yarn strength was 0.814. Therefore, it can be inferred that the weights of various 
decision criteria as optimised by the GA are reliable and can be applied for generalising the model. 
 
Table 6: Weights of cotton fibre parameters (decision criteria) determined by AHP and GA 

 Cotton fibre properties AHP Genetic algorithm 

Strength 0.309 0.339 
UHML 0.290 0.000 

Uniformity 0.145 0.628 
Short fibre content 0.145 0.033 

Micronaire 0.110 0.000 
 
Table 7: Cotton fibre properties and quality values  

Alternative  
No 

FS UHML UI SFC FF Cotton quality value 
SCI AHP- 

TOPSIS 
GA-

TOPSIS 
1 28.7 1.09 81 13.8 4.4 119.9 0.4735 0.4890 

2 28.5 1.15 80.2 11.9 3.5 125.7 0.6247 0.4513 

3 28.7 1.1 79.2 18.4 3.7 118.9 0.3295 0.3515 

4 30.8 1.13 82.6 9.8 4.3 133.6 0.7878 0.9117 

5 26.5 1.09 81.5 8.4 3.8 120.6 0.5838 0.3808 

6 27.5 1.07 82.8 8.4 4.5 120.6 0.6081 0.5088 

7 29.2 0.98 80 16.6 4.5 109.2 0.3288 0.4625 

8 29 1.05 81.9 10.9 4.2 124.3 0.6291 0.6287 

9 30.3 1.1 83.2 8.7 4.4 134.3 0.7798 0.9102 

10 28.1 1.01 80.7 15.5 3.8 117.5 0.3335 0.3594 

11 30.6 1.07 83.1 9 4.7 130.1 0.7366 0.9546 

12 28.7 1.05 81 11.8 3.9 120.2 0.5828 0.5226 

13 28.3 0.97 81.5 13.1 3.8 118.3 0.4565 0.4732 

14 29 1.06 80.7 11.3 3.1 129.1 0.6653 0.5543 

15 27.7 1.05 81.5 11.7 4.7 110.5 0.4881 0.4211 

16 29.1 1.05 81.7 11.2 4 123.9 0.6337 0.6279 

17 28.6 1.04 82.4 10.8 4.2 125.0 0.6021 0.5962 

 
Table 8: Correlation coefficient between the quality value of cotton and yarn strength 

 Quality value model Yarn count 
16 Ne 30 Ne 

SCI 0.590 0.527 

AHP-TOPSIS 0.668 0.701 

GA-TOPSIS 0.853 0.814* 

* validation result 
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6 Conclusion 
A new MCDM based approached have been proposed to determine the quality value of cotton fibre in the textile 
industry. It has been found that both the AHP-TOPSIS and GA-TOPSIS approaches outperform the traditional 
SCI method which is used in the textile industry. Past experience of the decision maker plays a key role in 
determining the criteria weights in the AHP-TOPSIS method. However, in case of GA-TOPSIS approach, GA 
was used as an optimisation tool to elicit the optimum combination of decision criteria weights for maximising 
the correlation coefficient between the cotton quality value and yarn strength. The results of GA-TOPSIS 
approach was found to be the best and the result was also validated by applying the weight combination in a 
different yarn count also. 
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