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Abstract Categorical data clustering (CDC) and cluster ensemble (CE) have long been 
considered as separate research and application areas. The main focus of this paper is to 
investigate the commonalities between these two problems and the uses of these commonalities 
for the creation of new clustering algorithms for categorical data based on cross-fertilization 
between the two disjoint research fields. More precisely, we formally define the CDC problem as 
an optimization problem from the viewpoint of CE, and apply CE approach for clustering 
categorical data. Experimental results on real datasets show that CE based clustering method is 
competitive with existing CDC algorithms with respect to clustering accuracy. 
 
Keywords Clustering, Categorical Data, Cluster Ensemble, Data Mining 
 

1. Introduction 
 

Clustering typically groups data into sets in such a way that the intra-cluster similarity is 
maximized while the inter-cluster similarity is minimized. The clustering technique has been 
extensively studied in many fields such as pattern recognition [1], customer segmentation [2], 
similarity search [3] and trend analysis [4].  

Most previous clustering algorithms focus on numerical data whose inherent geometric 
properties can be exploited naturally to define distance functions between data points. However, 
much of the data existed in the databases is categorical, where attribute values can’t be naturally 
ordered as numerical values. An example of categorical attribute is shape whose values include 
circle, rectangle, ellipse, etc. Due to the special properties of categorical attributes, the clustering 
of categorical data seems more complicated than that of numerical data. A few algorithms have 
been proposed in recent years for clustering categorical data [5-24]. 

Cluster ensemble (CE) is the method to combine several runs of different clustering 
algorithms to get a common partition of the original dataset, aiming for consolidation of results 
from a portfolio of individual clustering results. Although the research on cluster ensemble has not 
been widely recognized as that combing multiple classifier or regression models, more recently, 
several research efforts have been done independently [e.g., 25-28]. 

Until recently, CDC and CE have long been considered as separate research and application 
areas. The starting point in this paper is the observation of some key underlying similarities 
between these two different areas. This observation makes possible the study of CDC problem 
from a CE perspective. This different perspective may enable a better understanding of the CDC 
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algorithms and help in devising improved or hybrid versions by combining elements from areas 
that would otherwise be considered incompatible. That is, our first contribution is the exploration 
of underlying properties, similarities and differences between CDC and CE, which creates the 
basis for the proposal of CE based clustering algorithms for categorical data. More precisely, 
although CE is a general framework with many applications and CDC is a special case in 
clustering research, from a restricted viewpoint, these two problems are equivalent in essence.  

Our second contribution is the direct adaptation and use of CE methodology for clustering 
categorical data. We formally define the CDC problem as an optimization problem from the 
viewpoint of CE, and apply CE approach for clustering categorical data. Our experimental results 
show the new categorical data clustering methods to achieve better clustering accuracy than 
previous algorithms, which confirms our intuition that CE approaches and CDC methods can be 
used interchangeably. Furthermore, the idea of linking CE and CDC will enable a problem at hand 
to be solved through either way. Thus, improvements can be achieved in both domains.  

The remainder of this paper is organized as follows. Section 2 presents a critical review on 
related work. Section 3 creates an interesting view on the underlying properties, similarities and 
differences between CDC and CE. In Section 4, we define the CDC problem as an optimization 
problem and describe the CE based algorithms for clustering categorical data. Experimental 
results are given in Section 5 and Section 6 concludes the paper. 

 

2. Related Work 
2.1 Clustering Categorical Data 
 

A few algorithms have been proposed in recent years for clustering categorical data [5-24]. In 
[5], the problem of clustering customer transactions in a market database is addressed. STIRR, an 
iterative algorithm based on non-linear dynamical systems is presented in [6]. The approach used 
in [6] can be mapped to a certain type of non-linear systems. If the dynamical system converges, 
the categorical databases can be clustered. Another recent research [7] shows that the known 
dynamical systems cannot guarantee convergence, and proposes a revised dynamical system in 
which convergence can be guaranteed.  

K-modes, an algorithm extending the k-means paradigm to categorical domain is introduced 
in [8,9]. New dissimilarity measures to deal with categorical data is conducted to replace means 
with modes, and a frequency based method is used to update modes in the clustering process to 
minimize the clustering cost function. Based on k-modes algorithm, [10] proposes an adapted 
mixture model for categorical data, which gives a probabilistic interpretation of the criterion 
optimized by the k-modes algorithm. A fuzzy k-modes algorithm is presented in [11] and tabu 
search technique is applied in [12] to improve fuzzy k-modes algorithm. An iterative initial-points 
refinement algorithm for categorical data is presented in [13]. The work in [23] can be considered 
as the extensions of k-modes algorithm to transaction domain. 

In [14], the authors introduce a novel formalization of a cluster for categorical data by 
generalizing a definition of cluster for numerical data. A fast summarization based algorithm, 
CACTUS, is presented. CACTUS consists of three phases: summarization, clustering, and 
validation.

ROCK, an adaptation of an agglomerative hierarchical clustering algorithm, is introduced in 
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[15]. This algorithm starts by assigning each tuple to a separated cluster, and then clusters are 
merged repeatedly according to the closeness between clusters. The closeness between clusters is 
defined as the sum of the number of “links” between all pairs of tuples, where the number of 
“links” is computed as the number of common neighbors between two tuples. 

In [16], the authors propose the notion of large item. An item is large in a cluster of 
transactions if it is contained in a user specified fraction of transactions in that cluster. An 
allocation and refinement strategy, which has been adopted in partitioning algorithms such as 
k-means, is used to cluster transactions by minimizing the criteria function defined with the notion 
of large item. Following the large item method in [16], a new measurement, called the small-large 
ratio is proposed and utilized to perform the clustering [17]. In [18], the authors consider the item 
taxonomy in performing cluster analysis. While the work [19] proposes an algorithm based on 
“caucus”, which is fine-partitioned demographic groups that is based the purchase features of 
customers.  

Squeezer, a one-pass algorithm is proposed in [20]. Squeezer repeatedly read tuples from 
dataset one by one. When the first tuple arrives, it forms a cluster alone. The consequent tuples are 
either put into an existing cluster or rejected by all existing clusters to form a new cluster 
according to the given similarity function. 

COOLCAT, an entropy-based algorithm for categorical clustering, is proposed in [21]. 
Starting from a heuristic method of increasing the height-to-width ratio of the cluster histogram, 
the authors in [22] develop the CLOPE algorithm. [24] introduce a distance measure between 
partitions based on the notion of generalized conditional entropy and a genetic algorithm approach 
is utilized for discovering the median partition.  

 
2.2 Cluster Ensemble 

 
In [25], the authors formally defined the CE problem as an optimization problem and propose 

combiners for solving it based on a hyper-graph model.  
A multi-clustering fusion method is presented in [27]. In that method, the results of several 

independent runs of the same clustering algorithm are appropriately combined to obtain a partition 
of the data that is not affected by initialization and overcomes the instabilities of clustering 
methods. After that, the fusion procedure starts with the clusters produced by the combining part 
and finds the optimal number of clusters according to some predefined criteria. 

The authors in [28] proposed a sequential combination method to improve the clustering 
performance. First, their algorithm uses the global criteria based clustering to produce an initial 
result, then use the local criteria based information to improve the initial result with a probabilistic 
relaxation algorithm or linear additive model. 

Other cluster ensemble methods are proposed in [29,30,31]. 

3. A Unified View on CDC and CE 
The researches on CDC and CE have been conducted in parallel. Our goal in this section is to 

argue that a unified view can be built for the CDC problem and CE problem, hence, CDC problem 
can be solved with existing CE algorithms. 
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3.1 Introductory Concepts and Notations 
 

Clustering aims at discovering groups and identifying interesting patterns in a dataset. We 
call a particular clustering algorithm with a specific view of the data a clusterer. Each clusterer 
outputs a clustering or labeling, comprising the group labels for some or all objects.  

Let X = {x1, x2… xn} denote a set of objects/samples/points. A partitioning of these n objects 

into k clusters can be represented as a set of k sets of objects lC ={l=1,…, k}or as a label vector 

nN∈λ . A clustererΦ is a function that delivers a label vector given a set of objects. Fig.1 

(adapted from [25]) shows the basic setup of the cluster ensemble: A set of r labelings ),...,2,1( rλ

is combined into a single labelingλ (the consensus labeling) using a consensus function Γ . A
superscript in brackets denotes an index and not an exponent. 

 

(1)Φ

(2)Φ

(r)Φ

ΓX

)1(λ

)( rλ

)2(λ λ

Fig. 1. The cluster ensemble. A consensus function Γ combines clusterings )(qλ from a variety of 

sources. 
 
3.2 A Unified View in the CE Framework 
 

In this section, we firstly discuss the similarities between CDC problem and CE problem from 
the perspectives of input, output and objective to achieve. Then we present a unified view for the 
two problems in the CE framework (see Fig. 1). 
 
3.2.1 Similarities 
 

(1) Input: From the viewpoint of clustering, data objects with different cluster labels are 
considered to be in different clusters, if two objects are in the same cluster then they are 
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considered to be fully similar, otherwise they are fully dissimilar. Thus, it is obvious that cluster 
labels are impossible to be given a natural ordering in a way similar to real numbers, i.e., the 
output of clustering algorithm can be viewed as categorical (or nominal). 

Therefore, the input for CE problem is a categorical dataset. That is, in both CE and CDC 
problems, the datasets to be handled are categorical. 

(2) Output: CE tries to combine several runs of different clustering algorithms to get a 
common partition of the original dataset, aiming for consolidation of results from a portfolio of 
individual clustering results. Hence, the output for the CE problem is just the same as that of CDC 
problem. 

(3) Objective to achieve: Both CE and CDC aim at grouping the input categorical data into 
sets in such a way that the intra-cluster similarity is maximized while the inter-cluster similarity is 
minimized. 

 
Based on the above observations, we can get the conclusion that the CE problem and CDC 

problem are equivalent. Therefore, algorithms developed in both domains can be used 
interchangeably, which would enable a problem at hand to be solved through either way. 
Complementary to our method, we recently learned about two approaches [31, 35] that solves CE 
problem with a CDC algorithm, which provides evidence on the equivalence of the two problems 
in a reverse perspective. 

3.2.2 A Unified View in the CE Framework 

For a categorical dataset, if we consider attribute values as cluster labels, each attribute with 
its attribute values give a “best clustering” on the dataset without considering other attributes. So 
the CDC problem can be considered as the CE problem, in which the attribute values of each 
attribute are the outputs of different clustering algorithms.

More precisely, let the dataset X = {x1, x2… xn} be a set of objects described by r categorical 
attributes, A1, …, Ar with domains D1,…, Dr respectively. The value set Vi is a set of values of Ai

that are present in X. Recalling the CE framework described in Fig.1, if we define each 

clusterer
)(iΦ as a function that mapping values in Vi to distinct natural numbers, we can get the 

optimal partitioning 
)(iλ determined by each attribute Ai as: 

},.|).({ )()( XxVAxAx jiijij
ii ∈∈Φ=λ . So, we can combine the set of r labelings ),...,2,1( rλ

into a single labelingλ using a consensus function Γ to get the solution for the CDC problem. 
For example, Table 1 shows a categorical table with 10 records, each described by 2 

categorical attributes. Only considering “Attribute 1”, we can get the optimal partitioning 
{(1,2,5,7,10), (3,4,6,8,9)} with 2 clusters. Similarly, “Attribute 2” gives an optimal partitioning as 
{(1,4,9), (2,3,10), (5,6,7,8)} with 3 clusters. Then, we can use the cluster ensemble approach to 
combine the 2 partitionings and hence get the final clustering output for the categorical dataset. 

 
Furthermore, considering the CDC and CE problems in a unified view may enable a better 

understanding of their natures, and improvements can be achieved in both domains. 
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Table 1 Sample Categorical Data Set 

Record Number Attribute 1 Attribute 2 

1 M A

2 M B

3 F B

4 F A

5 M C

6 F C

7 M C

8 F C

9 F A

10 M B 

3.3 Differences 
 

It’s the time to mention the differences between the CDC and CE problem. Besides their 
difference in concepts, as we have discussed in Section 3.2, they are the same problem in nature. 
However, it should be noted that they do have slight difference in their input.

In general, no (or only a few) duplicates exist the input categorical dataset for the CDC 
algorithms. While the input categorical dataset for the CDC problem commonly contains a large 
amounts of duplicated objects because the clusterers often produce clusterings that are similar to 
each other. 

Moreover, most proposed algorithms for CDC problem deserve good scalabilities, because 
data mining person mainly conducts research in this field. In contrast, most CE algorithms focus 
on producing good clustering outputs and don’t care too much about the execution time.  

 

4. Cluster Ensemble Based Approach 
 
In this section, we borrow the idea of cluster ensemble [25, 26] to formalize the CDC 

problem as an optimization problem in terms of shared mutual information and describe those CE 
based algorithms for clustering categorical data.  
 
4.1 Object Function for CDC 
 

Consider the dataset X = {x1, x2… xn} be a set of objects described by r categorical attributes, 
A1, …, Ar with domains D1,…, Dr respectively. The value set Vi is a set of values of Ai that are 

present in X. As pointed out in Section 3.2, if we define each clusterer
)(iΦ as a function that 

mapping values in Vi to distinct natural numbers, we can get the optimal partitioning 

)(iλ determined by each attribute Ai. Hence the final clustering output can be regarded as the 
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cluster ensemble result by combining the clusters given by 
)(iλ .

Intuitively, a good combined clustering should share as much information as possible with 
the given r labelings. Strehl and Ghosh [25,26] use the mutual information in information theory 
to measure the shared information, which can be directly applied in this literature.  

More concisely, as shown in Strehl’s papers [25,26], given r groupings with the q-th 

grouping )(qλ having )(qk clusters, a consensus function Γ is defined as a function 

nrn NN →× mapping a set of clusterings to an integrated clustering: 

 λλ →∈Γ }},...,2,1{|{: rqq (1) 

The set of groupings is denoted as }},...,2,1{|{ rqq ∈=Λ λ . The optimal combined 

clustering should share the most information with the original clusterings. In information theory, 
mutual information is a symmetric measure to quantify the statistical information shared between 

two distributions. Let A and B be the random variables described by the cluster labeling )(aλ and 

)(bλ , with )(ak and )(bk gruops respectively. Let I (A, B) denote the mutual information between 

A and B, and H (A) denote the entropy of A. As Strehl has shown in [26], 

2
)()(),( BHAHBAI +

≤ holds. Hence, the [0,1]-normalized mutual information (NMI)1 [26] 

used is: 

)()(
),(2),(
BHAH

BAIBANMI
+

= (2) 

Obviously, NMI (A, A) = 1. Equation (2) has to be estimated by the sampled quantities 
provided by the clusterings [26]. As shown in [26], if we let n(h) be the number of objects in 

cluster Ch according to )(aλ , and let ng be the number of objects in cluster Cg according to )(bλ .

Let )(h
gn be denote the number of objects in cluster Ch according to )(aλ as well as in cluster Cg

according to )(bλ . The [0,1]-normalized mutual information criteria )( NMIφ is computed as 

follows [25,26]:  

∑∑
= =

=
)( )(

)()(

1 1
)(

)(

*
)()()()( )(log2),(

a b

ba

k

h

k

g g
h

h
g

kk
h

g
baNMI

nn
nn

n
n

λλφ (3) 

Therefore, the Average Normalized Mutual Information (ANMI) between a set of r labelings, 

,Λ and a labeling 
~
λ is defined as follows [26]: 

 
1 In the more recent work of Strehl and Ghosh [36], the authors use a different definition of (A)NMI. The source 
code that is available on the web and that we use also uses that new definition.  
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∑
=

=Λ
r

q

qNMIANMI

r 1

)(
~

)(
~

)( ),(1),( λλφλφ (4) 

According to [25,26], the optimal combined clustering )( optk−λ should be defined as the one 

that has the maximal average mutual information with all individual partitioning )(qλ given that 

the number of consensus clusters desired is k. Thus the objective function for categorical data 
clustering is Average Normalized Mutual Information (ANMI). Then, it is defined as [26]: 

∑
=

− =
r

q

qNMIoptk

1

)(
~

)()( ),(maxarg
~

λλφλ
λ

(5) 

where 
~
λ goes through all possible k-partitions.  

As noted in [25, 26], more balanced clusters are desired in the object function presented in 
Equation (5), which is also observed in our experiments. This is a good property since many real 
life data mining applications demand comparably sized segments of the data, irrespective of 
whether the natural clusters in the data have balanced sizes or not. 

Since we have pointed out that the CDC problem can be considered as a CE problem. So, 
using Equation (5) as an object function to be maximized, we formally define the CDC problem as 
an optimization problem. Compared with other optimization models in this field, such as [9,16, 21, 
24], our formalization is more intuitive and suitable for the categorical data from an optimization 
aspect.  
 
4.2 Cluster Ensemble Based Algorithms 
 

So far, there are several algorithms for cluster ensemble [e.g., 25-28]. The approach in [27] is 
designed for combining runs of clustering algorithms with the same number of clusters. Thus, it is 
not suitable in our literature, for the number of clusters determined by different categorical 
attribute can be different. The sequential combination method proposed in [28] has the same 
problem as the approach in [27]. In addition, their algorithm has the limitation to combine only the 
outputs of two specific clustering algorithms. 

Strehl and Ghosh [25, 26] propose three hypergraph-model based algorithms, namely CSPA, 
HGPA and MCLA for cluster ensemble, which are adopted for clustering categorical data in this 
paper. In the following, we will give brief introductions on the three algorithms.  

(2.1) CSPA  
If two objects are in the same cluster then they are considered to be fully similar, and if not 

they are dissimilar. This is the simplest heuristic and is used in the Cluster-based Similarity 
Partitioning Algorithm (CSPA) [25]. With this viewpoint, one can simply reverse engineer a 
single clustering into a binary similarity matrix. Similarity between two objects is 1 if they are in 
the same cluster and 0 otherwise. For each clustering, a binary similarity n×n matrix is created. 
The entry-wise average of r such matrices representing the r sets of groupings yield an overall 
similarity matrix. Then, the METIS [32] algorithm is used to partition the similarity graph 
(vertex= object, edge weight = similarity) to get the final clusters. 
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(2.2) HGPA 
Each cluster is represented as a hyperedge with the same weights, the data objects are 

considered as vertices with the same weights. Then, a hypergraph partitioning algorithm, HMETIS 
[33], is used to partition the hypergraph such that the sum of weights hyperedge cut is minimized. 
The produced unconnected components are taken as the final outputs. 

(2.3) MCLA 
As done in HGPA, each cluster is represented as a hyperedge. The idea in MCLA is to group 

and collapse related hyperedges and assign each object to the collapsed hyperedge in which it 
participates most strongly. The hyper-edges that are considered related for the purpose of 
collapsing are determined by a graph based clustering of hyperedges. Each cluster of hyperedges 
is referred as a meta-cluster [26]. Collapsing reduce the number of hyper-edges to k.

Since the objective function (Equation (5)) has an added advantage that it allows one to add a 
stage that selects the algorithm without any supervision information, by simply selecting the one 
with the highest ANMI [26]. So, for the experiments in this paper, to test the effectiveness of CE 
method for clustering categorical data, we first run all the three algorithms, CSPA, HGPA and 
MCLA, and selecting the one with the greatest ANMI as the final result. We denote this integrated 
CE approach as ccdByEnsemble (Clustering Categorical Data By Cluster Ensemble). 
 

5. Experimental Results 
 
A comprehensive performance study has been conducted to evaluate our method. In this 

section, we describe those experiments and the results. We ran our algorithm on real-life datasets 
obtained from the UCI Machine Learning Repository [34] to test its clustering performance 
against other algorithms.  
 
5.1 Real Life Datasets and Evaluation Method 

 
We experimented with four real-life datasets: the Congressional Votes dataset, the Wisconsin 

Breast Cancer dataset, the Mushroom dataset and the Zoo dataset, which were obtained from the 
UCI Machine Learning Repository [34]. Now we will give a brief introduction about these 
datasets. 
 
� Congressional Votes: It is the United States Congressional Voting Records in 1984. Each 

record represents one Congressman’s votes on 16 issues. All attributes are Boolean with Yes 
(denoted as y) and No (denoted as n) values. A classification label of Republican or Democrat 
is provided with each record. The dataset contains 435 records with 168 Republicans and 267 
Democrats. 

� Wisconsin Breast Cancer Data2: It has 699 instances with 9 attributes. Each record is 
labeled as benign (458 or 65.5%) or malignant (241 or 34.5%). In our literature, all attributes 

 
2 We use a dataset that is slightly different from its original format in UCI Machine Learning Repository, which has 
683 instances with 444 benign records and 239 malignant records. It is public available at: 
http://research.cmis.csiro.au/rohanb/outliers/breast-cancer/brcancerall.dat. 
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are considered categorical with values 1,2, …, 10.  
� The Mushroom Dataset: It has 22 attributes and 8124 records. Each record represents 

physical characteristics of a single mushroom. A classification label of poisonous or edible is 
provided with each record. The numbers of edible and poisonous mushrooms in the dataset 
are 4208 and 3916, respectively. 

� The Zoo data consists of 101 instances of animals with 17 features and 7 output classes. The 
name of the animal constitutes the first attribute. There are 15 boolean features corresponding 
to the presence of hair, feathers, eggs, milk, backbone, fins, tail; and whether airborne, 
aquatic, predator, toothed, breathes, venomous, domestic, catsize. The character attribute 
corresponds to the number of legs lying in the set {0, 2, 4, 5, 6, 8}. 

Validating clustering results is a non-trivial task. In the presence of true labels, as in the case 
of the data sets we used, the clustering accuracy for measuring the clustering results was computed 
as follows. Given the final number of clusters, k, clustering accuracy r was defined as: r

=
n

ak

i i∑ =1 , where n is the number of records in the dataset, ai is the number of instances occurring 

in both cluster i and its corresponding class, which had the maximal value. In other words, ai is the 
number of records with the class label that dominates cluster i. Consequently, the clustering error 
is defined as e = 1ዊ�r.

5.2 Experiment Design 
 
We studied the clustering found by three algorithms, our algorithm denoted as 

ccdByEnsemble, the Squeezer algorithm introduced in [20] and the GAClust algorithm proposed 
in [24]. Choosing the Squeezer algorithm and GAClust algorithm for comparison is based on the 
following considerations. 

It has been demonstrated that the Squeezer algorithm [20] can produce better clustering 
output than other algorithms in categorical dataset with respect to clustering accuracy. Thus, this 
algorithm is selected for the competition. In [24], the CDC problem is also formalized as an 
optimization problem based on information theory, which is similar to our method while they use 
a very different object function. Hence, comparing our method with the GAClust algorithm [24] 
will provide us an insight on the advantage of our mutual information based formalization for the 
CDC problem. 

Until now, there is no well-recognized standard methodology for CDC experiments. However, 
we observed that most clustering algorithms require the number of clusters as an input parameter, 
so in our experiments, we cluster each dataset into different number of clusters, varying from 2 to 
9. For each fixed number of clusters, the clustering errors of different algorithms were compared.  

In all the experiments, except for the number of clusters, all the parameters required by the 
ccdByEnsemble algorithm are set to be default3. The Squeezer algorithm requires only a similarity 
threshold as input parameter, so we set this parameter to a proper value to get the desired number 

 
3 Since our implementation for the ccdByEnsemble algorithm is adapted from ClusterEnsemble algorithms 
developed by Strehl [25,26, 36]. So, the readers may refer to Strehl’s codes for implementation details. The source 
codes of ‘ClusterEnsemble’ are available at http://www.strehl.com/. 
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of clusters (For the Squeezer algorithm, if the output number of clusters is same, the clustering 
accuracy is almost identical. Hence, we can use any similarity threshold value that can make the 
algorithm get the desired number of clusters). For the GAClust algorithm, we set the population 
size to be 50, and set other parameters to their default values4.

Moreover, since the clustering results of ccdByEnsemble algorithm and Squeezer algorithm 
are fixed for a particular dataset when the parameters are fixed, only one run is used in the two 
algorithms. The GAClust algorithm is a genetic algorithm, so its outputs will differ in different 
runs. However, we observed in the experiments that the clustering error is very stable, so the 
clustering error of this algorithm is reported with its first run. In summary, we use one run to get 
the clustering errors for all the three algorithms. 
 
5.3 Clustering Results on Congressional Voting (votes) Data 

Fig. 2 shows the results on the votes dataset of different clustering algorithms. From Fig. 2, 
we can summarize the relative performance of these algorithms as follows Table 2. 

Comparing to the Squeezer algorithm and the GAClust algorithm, the ccdByEnsemble 
algorithm performed best in 4 cases and second best in 4 cases. It never performed worst. And the 
average clustering error of the ccdByEnsemble algorithm was relatively smaller than that of other 
algorithms. 
 

ዊ�
ዊ�ዊ� ዊ�
ዊ�ዊ� ዊ�
ዊ�ዊ� ዊ�
ዊ�ዊ� ዊ�
ዊ�ዊ� ዊ�

ዊ� ዊ� ዊ� ዊ� ዊ� ዊ� ዊ� ዊ�
ዊ�ዊ�ዊ�ዊ� ዊ�ዊ�ዊ�ዊ�ዊ�ዊ� ዊ� ዊ�ዊ� ዊ� ዊ�ዊ� ዊ�ዊ�ዊ� ዊ�ዊ� ዊ�

ዊ�
ዊ�ዊ�
ዊ�ዊ�
ዊ�ዊ�
ዊ�ዊ�
ዊ�ዊ�
ዊ�ዊ�
ዊ�ዊ�
ዊ�

ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ� ዊ�ዊ�ዊ�ዊ� ዊ�ዊ�ዊ� ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ�ዊ� ዊ�

Fig.2. Clustering error vs. Different number of clusters (votes dataset) 

Table 2: Relative performance of different clustering algorithms (votes dataset) 

Ranking 1 2 3 Average Clustering Error 
Squeezer 2 1 5 0.163
GAClust 3 2 3 0.136

ccdByEnsemble 4 4 0 0.115 

Since in the integrated CE approach, ccdByEnsemble, we first run CSPA, HGPA and MCLA 
respectively, and selecting the one with the greatest ANMI as the final result. In this dataset, it is 
observed that CSPA has the greatest ANMI for 6 times, and MCLA has the greatest ANMI for 2 
times. Hence, the reported results of ccdByEnsemble are dominated by CSPA. 
 

4 The source codes for GAClust are public available at: http://www.cs.umb.edu/~dana/GAClust/index.html. The 
readers may refer to this site for details about other parameters. 
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5.4 Clustering Results on Cancer Data 

The experimental results on the cancer dataset are described in Fig. 3 and the summarization 
on the relative performance of the 3 algorithms is given in Table 3. From Fig. 3 and Table 3, 
although the average clustering accuracy of our algorithm is only a little better than that of the 
Squeezer and GAClust algorithm, while the cases of our algorithm that beat the other two 
algorithms are dominant in this experiment.  

In this dataset, CSPA has the greatest ANMI for all cases and determine the clustering results 
of ccdByEnsemble absolutely. From this experiment and results reported in Section 5.3, it is clear 
that the clustering output of ccdByEnsemble is mainly determined by CSPA. That is, 
ccdByEnsemble can outperform the Squeezer and GAClust is mainly due to the effectiveness of 
CSPA. 
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Fig.3. Clustering error vs. Different number of clusters (cancer dataset) 

Table 3: Relative performance of different clustering algorithms (cancer dataset) 

Ranking 1 2 3 Average Clustering Error 
Squeezer 2 4 2 0.091
GAClust 0 2 6 0.117 

ccdByEnsemble 6 2 0 0.071 

5.5 Clustering Results on Mushroom Data 

Because the mushroom dataset have 8124 records, CSPA failed to work on this larger dataset. 
So ccdByEnsemble uses only HGPA and MCLA in this experiment. That is, we first run HGPA 
and MCLA, and selecting the one with the greatest ANMI as the final result. 

The experimental results on the mushroom dataset are described in Fig. 4 and Table 4. As Fig. 
4 and Table 4 show, our algorithm and Squezzer algorithm outperform GAClust algorithm in this 
dataset. Squezzer algorithm achieves the best clustering performance. As we have argued in 
Section 5.4, the effectiveness of ccdByEnsemble mainly comes from CSPA. While CSPA failed to 
work in this larger dataset, which resulted in the unsatisfactory performance of ccdByEnsemble 
algorithm in this experiment. However, even in the absence of CSPA, ccdByEnsemble algorithm 
performed best in 2 cases. 
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Fig.4. Clustering error vs. Different number of clusters (mushroom dataset) 

 

Table 4: Relative performance of different clustering algorithms (mushroom dataset) 

Ranking 1 2 3 Average Clustering Error 
Squeezer 6 0 2 0.206 
GAClust 0 4 4 0.393

ccdByEnsemble 2 2 2 0.315

5.6 Clustering Results on Zoo Data 

The above votes, cancer and mushroom datasets have roughly balanced class distribution, 
which is very suitable for ccdByEnsemble algorithm because this algorithm desires to produce 
balanced clusters. In this Section, we test the performance of ccdByEnsemble algorithm on the 
Zoo dataset, which has unbalanced class distribution (See Table 5).  

 
Table 5: Class Distribution of the Zoo Dataset 

Class# Set of animals 
1 (41)  aardvark, antelope, bear, boar, buffalo, calf, 

 cavy, cheetah, deer, dolphin, elephant, 
fruitbat, giraffe, girl, goat, gorilla, hamster, 

 hare, leopard, lion, lynx, mink, mole, mongoose, 
 opossum, oryx, platypus, polecat, pony, 
 porpoise, puma, pussycat, raccoon, reindeer, 
 seal, sealion, squirrel, vampire, vole, wallaby,wolf 

2 (20)  chicken, crow, dove, duck, flamingo, gull, hawk, 
 kiwi, lark, ostrich, parakeet, penguin, pheasant, 
 rhea, skimmer, skua, sparrow, swan, vulture, wren 

3 (5)    pitviper, seasnake, slowworm, tortoise, tuatara 
4 (13)   bass, carp, catfish, chub, dogfish, haddock, 

 herring, pike, piranha, seahorse, sole, stingray, tuna 
5 (4)    frog, frog, newt, toad 
6 (8)    flea, gnat, honeybee, housefly, ladybird, moth, termite, wasp 
7 (10)   clam, crab, crayfish, lobster, octopus, 

 scorpion, seawasp, slug, starfish, worm 
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From Fig.5 and Table 6, we can see that the performance of ccdByEnsemble algorithm on the 
zoo dataset is not satisfactory compared with another two algorithms. It indicates that 
ccdByEnsemble with its current object function is not very suitable for datasets with unbalanced 
class distribution. However, it should be noted that the clustering performance of ccdByEnsemble 
is very close to that of the other two algorithms. That is, even in dataset with unbalanced class 
distribution, our algorithm can achieves comparative performance. 
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Fig.5. Clustering error vs. Different number of clusters (zoo dataset) 

Table 6: Relative performance of different clustering algorithms (zoo dataset) 

Ranking 1 2 3 Average Clustering Error 
Squeezer 5 3 1 0.190 
GAClust 2 4 2 0.210

ccdByEnsemble 2 1 5 0.234

5.7 Summary 
 

The above experimental results on the four dataset demonstrate the effectiveness of cluster 
ensemble approach for clustering categorical dataset. One may argue that the results cannot 
precisely reflect that our method has better performance since our method only dominate on two 
datasets. However, from those results, we are confident to claim that our method could provide at 
least the same level of accuracy as other popular methods. 
 

6. Conclusions 

CE is a general knowledge reuse framework with many applications, and CDC is a special 
case in clustering research. Until recently, CDC and CE have been considered as separate research 
and application areas. Our main contribution in this paper is to explicitly state the equivalence 
between the CDC problem and CE problem from a restricted viewpoint for the first time, and 
point out that algorithms developed in both domains can be used interchangeably. Moreover, to 
verify our statement, we formally define the CDC problem as an optimization problem from the 
viewpoint of CE, and apply CE approach for clustering categorical data. Empirical evidences 
show that our idea is promising in practice.  

For future work, we are planning to design k-means like clustering algorithms for categorical 
data that directly optimize the mutual information sharing based object function.   
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