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Abstract—Sound source localization from a binaural input is
a challenging problem, particularly when multiple sources are
active simultaneously and reverberation or background noise are
present. In this work, we investigate a multi-source localization
framework in which monaural source segregation is used as a
mechanism to increase the robustness of azimuth estimates from
a binaural input. We demonstrate performance improvement
relative to binaural only methods assuming a known number
of spatially stationary sources. We also propose a flexible az-
imuth-dependent model of binaural features that independently
captures characteristics of the binaural setup and environmental
conditions, allowing for adaptation to new environments or cali-
bration to an unseen binaural setup. Results with both simulated
and recorded impulse responses show that robust performance
can be achieved with limited prior training.

Index Terms—Binaural sound localization, computational audi-
tory scene analysis (CASA), monaural grouping, reverberation.

I. INTRODUCTION

L OCALIZATION of multiple sound sources from a bin-
aural input is a challenging problem that has applications

in hearing prostheses, spatial sound reproduction, and mobile
robotics. Binaural localization has received significant attention
in the field of computational auditory scene analysis (CASA)
[37], which is guided by principles in the perceptual organi-
zation of sound by human listeners. Two principal localization
cues are interaural time difference (ITD), also commonly re-
ferred to as the time difference of arrival, and interaural level
difference (ILD), which is due to the effects of the head, torso,
and outer ear [5].

Many of the key differences between localization methods
result from assumptions about environmental factors such
as source propagation, background noise, or the microphone
setup. The generalized cross correlation (GCC) method is a
well-known approach for ITD estimation that assumes ideal
single-path propagation [22]. As this model does not account
for the effect of reverberation or background noise, techniques
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have been proposed to make GCC more robust in reverberation
[7], [35] or to more accurately model source propagation in
reverberant [3] and noisy [13] environments. While these ap-
proaches are applicable to any two-microphone setup, there has
been substantial research on localization models that are tai-
lored to a binaural setup [36]. Recent efforts have incorporated
azimuth-dependent models of ITD and ILD [27], [32], [38],
and it was shown in [27] that jointly considering ITD and ILD
improves azimuth estimation relative to ITD alone. However,
because the frequency-dependent pattern of ITDs and ILDs
can vary considerably across individuals, azimuth-dependent
models require prior training or calibration with the binaural
input and may suffer performance degradation for different
binaural setups.

Methods also differ in how interaural information is in-
tegrated across time and frequency. These differences are
largely a function of assumptions about source activity and
interaction. In the case of multiple moving sources, statistical
tracking approaches have been proposed to propagate localiza-
tion estimates across time [12], [25], [33]; however, binaural
methods have focused on conditions with little reverberation or
background noise [12], [33]. If it can be assumed that sources
are spatially stationary over a given interval of time, a simple
approach is to first integrate azimuth information across fre-
quency, then average across time and select multiple peaks in
the resulting azimuth-dependent response function [24], [34].
Methods based on histograms of frame-level azimuth estimates
have also been proposed [1], [27]. These methods assume that
each active source will be dominant in a sufficient number of
frames. This approach can be effective if there is sufficient
azimuth separation and time integration, but can perform poorly
when one source is dominant over the majority of the integra-
tion period. By assuming source sparsity in a time–frequency
(T-F) representation, spatial clustering methods have been
proposed to jointly segregate and localize a known number of
spatially stationary sources [26], [30]. In this case, localization
could potentially be improved by integrating features over a
subset of T-F units, however the demonstrated benefit of recent
systems is in terms of segregation rather than localization [26].

In this work, we propose a localization method where, sim-
ilar to spatial clustering methods, azimuth estimates are derived
from only those T-F units in which a given source is thought to
be dominant. In contrast to existing spatial clustering methods,
segregation is performed on the basis of both monaural and bin-
aural cues and we demonstrate that this improves azimuth esti-
mation in reverberant and noisy conditions. The proposed ap-
proach is motivated by psychoacoustics studies showing that
grouping on the basis of monaural cues can influence localiza-
tion judgements by human listeners (see, e.g., [4]), and by prior

1558-7916/$31.00 © 2012 IEEE



1504 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 5, JULY 2012

work in which pitch-based grouping was shown to improve lo-
calization and segregation of voiced speech [39]. Here we ex-
tend our previous system [39] to deal with both voiced and un-
voiced speech and develop a novel azimuth-dependent binaural
model of interaural cues. We provide extensive evaluation of the
localization procedure in adverse conditions and in situations
with limited prior knowledge of the binaural setup.

Some existing work has incorporated monaural features
within a two-microphone localization or tracking framework.
The methods in [21], [28] perform joint estimation of azimuth
and pitch, while [29] considers joint tracking of azimuth and
monaural spectral properties. These studies, however, have fo-
cused either on the single source case, or on conditions without
noise or reverberation. In [7] and [10], pitch information is used
to improve frame-level ITD estimation of a dominant source in
reverberation. Under the assumption that sources have strong
harmonic components, a method to cluster ITD cues extracted
from sinusoidal tracks is proposed in [40].

In Section II, we describe extraction of binaural features and
propose a novel azimuth-dependent binaural model and asso-
ciated training procedure. We summarize the monaural CASA
methods used in Section III. In Section IV, we describe how
binaural and monaural cues are integrated within the proposed
framework for the purpose of multi-source localization. We de-
scribe the evaluation methodology in Section V and discuss the
results of several experiments using both simulated and mea-
sured binaural impulse responses in Section VI. Section VII
concludes the paper with a discussion of the insights gained
from the evaluation and future work.

II. BINAURAL PATHWAY

A. Auditory Periphery and Binaural Feature Extraction

We assume a binaural input signal sampled at a rate of
44.1 kHz. The binaural signal is analyzed using a bank of 64
gammatone filters [31] with center frequencies from 80 to
5000 Hz spaced on the equivalent rectangular bandwidth scale.
Each bandpass filtered signal is divided into 20-ms time frames
with a frame shift of 10 ms to create a cochleagram [37] of T-F
units. A T-F unit is an elemental sound component from one
frame, indexed by , and one filter channel, indexed by . We
denote a T-F unit as where indicates the left
or right ear signal.

The binaural pathway consists of a low-level feature extrac-
tion stage where we calculate the ITD, denoted , and ILD,
denoted , for each T-F unit pair. We calculate ITD as the
maximum peak in a running cross-correlation between T-F units

and , where we consider time lags between and 1
ms. ILD corresponds to the energy ratio in dB between and

. Both values are calculated as described in [39]. We then
map ITD-ILD value pairs to azimuth-dependent features using
the trained probabilistic models described below.

B. Azimuth-Dependent Binaural Model

We employ a simple and flexible azimuth-dependent
Gaussian mixture model (GMM) of ITD and ILD. The model
independently captures the frequency-dependent pattern of ITD
and ILD values due to direct-path propagation, which we refer

to as direct-path cues, and the statistical effect of environmental
factors such as noise and reverberation. As a result, the model
is easily adaptable to different binaural setups and acoustic
conditions.

We denote the azimuth-dependent model of ITD and ILD as
, which represents the likelihood of observing a pair

of ITD and ILD values in frequency channel given energy
from a point source with azimuth . In order to model the direct-
path ITD and ILD independently of variance due to the acoustic
conditions, we introduce the direct-to-residual ratio (DRR) for
a point source as a latent variable. We calculate DRR, denoted

, within a pair of T-F units and as

(1)
where indexes a signal sample, denotes the component
of in response to the direct-path of the target source, and

. Each summation is over the interval of the
corresponding T-F unit. Note that our use of DRR differs from
the common use as an acronym for direct-to-reverberant ratio.

Given the DRR, , and the direct-path ITD and ILD asso-
ciated with azimuth , denoted and , we approximate
the joint ITD-ILD observation likelihood for an individual
frequency channel using

(2)

where denotes the prior probability of DRR. Here, we
assume that is independent of and and that the observed
ITD and ILD values are conditionally independent given the
DRR and direct-path cues. We also approximate integration over

by summation over a discrete set of values.
Due to spatial aliasing, the probability space for observed

ITDs in higher frequency channels is multi-modal. We there-
fore use a mixture of Gaussians to capture , or

(3)

where is determined based on the channel center fre-
quency, the direct-path ITD, and the range of observable
ITD values (between 1 and 1 ms in this study). The
ILD likelihood is well described by a single Gaussian,

. Finally, letting
be the number of discretized values for , is a set of
scalar values. Given that each component of the model is either
a set of Gaussians or a scalar, the full model can be written as a
two-dimensional GMM with components.

We show example models for at 1000 Hz in Fig. 1.
Fig. 1(a) and (b) shows the marginal likelihoods of ITD and
ILD, respectively, Fig. 1(c) shows two different DRR priors, and
Fig. 1(d) and (e) shows the two resulting log-likelihood distribu-
tions with marginalized. The joint log-likelihood functions in
Fig. 1(d) and (e) are shown as equal contour plots, where (d) is
generated using the descending prior (squares), and (e) is gener-
ated using the ascending prior (circles). in this example.
While each function exhibits two peaks, the primary peak in (e)
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Fig. 1. Marginal ITD (a) and ILD (b) likelihoods, DRR prior (c), and equal contour plots of the ITD-ILD log-likelihood distributions (d) and (e) for � � �� at
1000 Hz. The distribution in (d) uses the descending prior (squares) from (c), and the distribution in (e) uses the ascending prior (circles) from (c).

is much higher and sharper than the primary peak in (d) and is
more selective in terms of ILD. Also note that the secondary
peak in (d) has a slightly different ITD location and ILD much
closer to 0 than the secondary peak in (e).

C. Model Training

Recent approaches to training binaural models of ITD and
ILD incorporate simulations of multi-source pickup in a rever-
berant environment [27], [39], and thus may be sensitive to de-
viation from the room configuration or acoustic conditions used
in training. In this work, we generate training mixtures by com-
bining a point source with a simulated diffuse noise, and in
doing so, avoid capturing environment-specific effects. We as-
sume only the head-related transfer functions (HRTFs) of the
binaural setup are known. We simulate a point source by fil-
tering monaural signals using the HRTF for a given azimuth.
The diffuse noise is created by passing uncorrelated noise sig-
nals through each of the HRTFs for the binaural setup and then
adding them together. We provide more detail on the generation
of training data in Section V-C.

Given a set of training data for a specific azimuth, we measure
and from each pair of mixture T-F units and calculate using

(1). Since the simulated target includes only direct-path propa-
gation, and are simply the premixed target and diffuse
noise signals. We discretize the values into equally spaced
bins. In this study we let and have found the procedure to
be relatively insensitive to the number of bins, provided a suffi-
cient number (roughly 3 or more) is used. The total number of
Gaussian components in the resulting model is proportional to

, thus choosing a small number limits the complexity of the
model.

For each frequency channel, azimuth and DRR bin
we learn the GMM parameters for the ITD dimension,

, using the EM algorithm,
where . We set the number of components,

, by determining the number of peaks in the range between
1.1 to 1.1 ms (to capture some edge effects) assuming that

the cross-correlation function used to calculate ITD is periodic
with the channel center frequency and that a peak exists at

. We then add one extra component to give the model more
flexibility. The expected number of peaks in the cross-correla-
tion function, and therefore , increases systematically with
center frequency. For each frequency channel, azimuth, and
DRR bin we also measure the sample mean and variance for the
ILD dimension, . Finally, we calculate
the number of data points that fall into each DRR bin for ,

although in order to remove the influence of training conditions,
these values may be unused. We discuss how is set for
the experiments in this study in Section V-D.

III. MONAURAL PATHWAY

Both harmonicity and onset synchrony are known to be strong
cues for across frequency grouping in auditory scene analysis
[8] and have been shown to influence localization judgements by
human listeners [4]. Motivated by this work and recent advances
in monaural source segregation [37], the proposed framework
incorporates a monaural pathway that uses a pitch-based and
an onset/offset analysis to group T-F units dominated by the
same underlying source. The grouping is used to constrain the
integration of binaural cues for azimuth estimation.

We use existing algorithms for multipitch tracking [20] and
onset/offset-based segmentation [17]. We also incorporate a
pitch-based grouping method that is similar to the approach
described in [19]. In this section, due to space constraints, we
provide only a brief description of these methods and discuss
their role in the proposed system. The interested reader is
referred to the cited papers for more details.

A. Multipitch Tracking

In order to group T-F units based on pitch information, we
incorporate a recent multipitch tracking system designed for
reverberant and noisy speech [20]. This system estimates up to
two pitch periods per time frame using a hidden Markov model
(HMM) tracking framework. The state space of the HMM is a
collection of subspaces corresponding to the cases with zero,
one, or two voiced sources. The one- and two-source subspaces
consist of all allowable single pitch and pitch combinations,
respectively (covering the frequency range from 80 to 500 Hz).
The model is allowed to jump between subspaces (i.e., the
number of voiced sources can change), and pitch dynamics
within a subspace are modeled by pitch transition probabilities.
The observed data used in computation of state likelihoods
is based on the correlogram [37]. The Viterbi algorithm is
used to find the optimal path through the pitch subspaces,
thereby estimating both the number of voiced sources and the
corresponding pitch periods in each time frame.

We use this system to generate pitch estimates from both the
left and right signals independently. Once pitch estimates are
generated, we link pitch points across time when the change in
pitch is below a predetermined threshold. We refer to a set of
linked pitch points as a pitch contour. We use a threshold of 7%
relative change in pitch frequency.
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B. Pitch-Based Grouping

Pitch contours are used as the basis for grouping T-F units
dominated by the same voiced source. For each individual pitch
estimate, we use a supervised learning approach to identify T-F
units across frequency that exhibit periodicity consistent with
that of the estimate. Since the pitch estimates have already been
linked across time intervals into pitch contours, T-F units as-
sociated with each pitch estimate are also grouped across time
to form sets of T-F units, which we refer to as simultaneous
streams.

Specifically, we use a multi-layer perceptron (MLP) to model
the posterior probability that the dominant source in a T-F unit
is consistent with a hypothesized pitch period. The features used
as input to the MLP are extracted from the correlogram and en-
velope correlogram, calculated from both the left and right sig-
nals. The correlogram is a normalized running auto-correlation
performed in each frequency channel for each time frame. We
use a low-pass filter with 500-Hz cutoff frequency and a Kaiser
window to extract signal envelopes. We train a separate MLP
for each frequency channel, which consists of a hidden layer
with 30 nodes. Training is accomplished using a generalized
Levenberg–Marquardt backpropagation algorithm. We train the
MLPs using a set of mixtures described in Section V-C. For each
training mixture we extract the correlogram and envelope cor-
relogram features, calculate the ideal binary mask (IBM) [37]
and generate the ground truth pitch of the target signal by run-
ning the pitch estimation method proposed in [6] on the pre-
mixed signal. The IBM is used to provide the true classification
label for each T-F unit and the ground truth pitch points are used
to select the correlogram features corresponding to the pitch pe-
riod of the target source. A more detailed description of models
and training for pitch-based grouping can be found in [19].

C. Onset/Offset Based Segmentation

To capture unvoiced speech regions, the monaural pathway
also incorporates the onset/offset segmentation approach pro-
posed in [17]. The method first identifies onsets (increases in
signal energy) and offsets (decreases in signal energy) across
time within gammatone sub-bands. Detected onsets and offsets
are linked across frequency into onset and offset fronts based on
synchrony. Onset fronts are grouped with corresponding offset
fronts based on frequency overlap. The set of T-F units between
a pair of onset and offset fronts forms a T-F segment. Segmenta-
tion is performed with three different scales of across-time and
across-frequency smoothing. Segments generated using the dif-
ferent smoothing scales are then integrated into a single set of
T-F segments.

We use this segmentation system to generate T-F segments
for the left and the right mixture independently. We make three
changes to the implementation relative to that presented in
[17]. First, to match the peripheral processing of the binaural
pathway we implement the segmentation algorithm using 64
frequency channels, rather than 128. Second, we adjust the
standard deviation of the Gaussian kernels used for across-fre-
quency smoothing to account for the change from 128 to 64
channels. Third, in preliminary experiments we have found
that pitch-based grouping is more reliable than the onset/offset

segmentation in voiced speech regions. With this in mind, we
eliminate T-F units from the segments if they are members of a
pitch-based simultaneous stream.

D. Onset-Based Weights

In challenging acoustic environments, many T-F units will be
corrupted by diffuse noise or reverberation. Although multiple
aspects of the system seek to overcome this issue, we neverthe-
less find it beneficial to weight the contribution of T-F units to
the localization decision so as to minimize the effect of units that
are likely dominated by noise. Motivated by the precedence ef-
fect [23], we incorporate a simple cue weighting mechanism that
identifies strong onsets in the mixture signal. We first extract the
signal envelope for each frequency channel of the left and the
right signal by squaring and passing each sub-band through a
first-order IIR filter with a time constant of 10 ms. The resulting
envelope signals are then decimated to a sample rate of 100 Hz
(to match the frame rate of the other processing stages). Finally
we compute

(4)

as the weight for unit . Here denotes the sample of
the decimated envelope signal corresponding to and
half-wave rectification.

IV. LOCALIZATION FRAMEWORK

The binaural pathway extracts azimuth-dependent informa-
tion from each T-F unit pair while the monaural pathway groups
T-F units that are likely to be dominated by the same source.
The final stage of the proposed system then integrates this in-
formation and produces a set of azimuth estimates. In [39],
we developed a maximum likelihood framework for joint local-
ization and labeling of pitch-based simultaneous streams. We
take a similar approach here, but now deal with both voiced and
unvoiced speech, and also use simultaneous streams and T-F
segments generated from both the left and right mixture.

Conceptually speaking, to perform localization we first postu-
late a set of possible azimuths, where we assume is known.
For each simultaneous stream or T-F segment we find the most
likely azimuth from the postulated set and integrate likelihood
scores over all streams and segments. The process generates
a total likelihood for each postulated set of azimuths, and we
choose the set that maximizes this value.

Formally, let be the total number of simultaneous streams
and T-F segments from ear signal . Each individual simulta-
neous stream or T-F segment, denoted , is a collection of T-F
units. Assuming conditional independence between T-F units,
the weighted log-likelihood for is then

(5)

We search for the most likely set of azimuths using

(6)

where denotes a set of azimuths and

(7)
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V. EVALUATION METHODOLOGY

We conduct three experiments to evaluate the effectiveness of
the proposed method relative to existing systems. This section
provides necessary details regarding the generation of training
and evaluation data, and the binaural models, comparison sys-
tems and metrics used in the evaluation.

A. Binaural Impulse Responses

We use two different sets of binaural impulse responses
(BIRs) in this study. One set is simulated and one set is
measured in real environments. Each set assumes a different
binaural setup, and we will refer to them according to the
assumed setup.

The simulated BIRs, which we refer to as the KEMAR set,
are generated using the ROOMSIM package [9]. This software
combines the image method for reverberation [2] with HRTF
measurements [15] made using a KEMAR dummy head. BIRs
generated in this way represent a reasonable simulation of
pickup by a KEMAR in real environments while allowing
control of array and source placement, as well as characteristics
of the room. We create a library of BIRs by generating ten
room configurations, where room size, array position, and
array orientation are set at random. We then generate BIRs for
azimuths between 90 and 90 , spaced by 5 , at distances
of 1, 2, and 4 m (where available in the room configuration).
Reflection coefficients of the wall surfaces are set to be equal
and to be the same across frequency, such that the reverberation
time ( ) is approximately 600 ms. In order to train binaural
models, as described in Section II-C, we generate anechoic
BIRs for the same azimuths using the HRTF measurements
directly (i.e., no room simulation).

The other set includes publicly available measured BIRs,
which are described in [18]. Impulse responses are measured
using a head and torso simulator (HATS) in five different
environments. Four environments are reverberant (rooms A,
B, C, and D), with different sizes, reflective characteristics,
and reverberation times. Measurements are also made in an
anechoic environment. In all cases, BIRs are measured for
azimuths between 90 and 90 , spaced by 5 , at a distance of
1.5 m. We use the BIRs from the three most reverberant rooms
(B, C, and D) to generate an evaluation database, where the
times are listed as 0.47, 0.68, and 0.89 s, respectively. We use
the anechoic measurements to train binaural models. We refer
to this set of BIRs as the HATS set.

B. Evaluation Data

We create two evaluation sets, one from the KEMAR BIR
set and one from the HATS BIR set. In the KEMAR evaluation
set we consider 2 or 3 target talkers, source distances of 1, 2,
and 4 m, and infinite, 6 and 0 dB speech-to-noise ratios (SNRs)
for a total of 18 conditions. We generate 100 binaural mixtures
for each condition. Azimuths are selected randomly such that
sources are spaced by 10 or more. The SNR is set by summing
the energy of all speech sources relative to a simulated diffuse
noise. The energy of both left and right channels is summed
prior to SNR calculation. Speech sources are simulated by fil-
tering monaural utterances, drawn randomly from the TIMIT

database [16], by a selected KEMAR BIR. Monaural utterances,
originally sampled at 16 kHz, are upsampled to 44.1 kHz to
match the rate of the KEMAR BIRs. The diffuse noise is created
by filtering uncorrelated speech-shaped noise signals through
each of the anechoic KEMAR BIRs and then adding them to-
gether. We create the speech-shaped filter by averaging the am-
plitude spectra of 200 speech utterances drawn from TIMIT
at random. Each mixture has a length of 2 s, where monaural
speech utterances are concatenated so that they are sufficiently
long (if needed). We employ an energy threshold to eliminate
silence at the beginning and end of the monaural utterances in
order to ensure that speech sources are active in the majority of
time frames.

We create the HATS evaluation set in the same way. In this
case we consider 2 target talkers in three rooms (B, C and D),
and infinite, 6 and 0 dB SNRs, giving us a total of nine condi-
tions. All other details are as described for the KEMAR set.

C. Training Data

To train binaural models we generate data using the anechoic
KEMAR and HATS BIRs. For each BIR set we generate 250
speech plus noise mixtures per azimuth where, as described in
Section II-C, we simulate anechoic speech using a BIR for a se-
lected azimuth and simulate diffuse speech-shaped noise as de-
scribed in Section V-B. Speech utterances are drawn randomly
from TIMIT. The only factors varying between mixtures are the
speech utterances used and the input SNR, which is selected
randomly to be 24, 12, , 3, 0, 3, 6, 12, or 24 dB.

In order to evaluate how well the proposed scheme for
training binaural models compares to a more ideal training
scenario, we also generate a training set using the reverberant
HATS BIRs. We generate 250 mixtures for each azimuth and
for each of the three rooms seen in the HATS evaluation set. The
procedure used to generate these training mixtures is identical
to that used for the evaluation mixtures, however, each training
mixture generated for a specific azimuth contains one speech
source placed at that azimuth.

Finally, we generate a set of 100 mixtures to train the MLPs
used for pitch-based grouping. Each mixture contains a domi-
nant speech source corrupted by a multi-talker babble consisting
of 10, 15, or 20 interfering speech sources. Monaural speech ut-
terances are drawn randomly from the TIMIT database and fil-
tered by a selected KEMAR BIR. The azimuth of all sources
is selected randomly between 90 and 90 and the SNR be-
tween the dominant talker and the multi-talker interference is
set at random between 6 and 12 dB (in 3 dB steps).

D. Binaural Models

Using the training procedure outlined in Section II-C along
with the anechoic speech plus diffuse noise data described in the
previous subsection, we create KEMAR and HATS models. In
addition to using the HATS models trained from anechoic mea-
surements, we generate a set of models for the HATS evaluation
set that we refer to as matched. The matched models are created
using the second set of training mixtures described in the pre-
vious subsection. A separate model is trained for each room. In
this case, target signals are simulated by convolution with a mea-
sured, reverberant impulse response. It is therefore necessary to
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approximate direct-path propagation of the target in order to cal-
culate the DRR. To accomplish this we identify the approximate
location of the direct-path component by finding the largest peak
in the BIR, then truncate the impulse response 10 ms after the
start of the direct-path component. For the HATS BIRs used in
this study, we have found that choosing 10 ms ensures capture of
the full direct-path component, while minimizing the number of
reflections included. This parameter may vary for different mea-
surements, but is not necessary to train models based on mea-
surements made in a controlled environment.

The choice of values for the DRR prior, , will influence
the shape of the resulting likelihood distribution (see Fig. 1). If

is set empirically (i.e., by counting the number of training
data points that fall into each DRR bin), the distributions will
reflect the acoustic conditions seen in training. If one desires to
minimize the influence of training data, , can be set ac-
cording to some assumptions about the acoustics that will be
seen in practice. As described in Section II-C, we discretize
DRR into 5 bins, corresponding to values of 0.83, 0.67, 0.5,
0.33, and 0.17, or approximately 7, 3, 0, 3 and 7 in dB.
For the KEMAR and HATS models, we set ,

, , ,
for all frequencies and azimuths. We chose these values to

inject limited knowledge of the evaluation set acoustics. Specif-
ically, this prior reflects an assumption that a given T-F unit is
more likely to be dominated by the residual signal (noise or
reverberation) than the direct-path of a speech source. These
specific values were chosen by an informal analysis of a small
number of mixtures that resemble those seen in the evaluation
set. Since the matched models for the HATS evaluation set are
trained using data that perfectly matches the conditions that will
be seen in testing, we set empirically for the matched
models.

E. Comparison Systems

In the experiments below, we compare performance of the
proposed method with two existing methods from the literature
[11], [26]. The system proposed in [11], denoted SRP, is a
steered beamformer that incorporates the phase transform
weighting to increase robustness in reverberant conditions. Our
implementation measures the response power over 20-ms time
frames that overlap by 50%. We integrate over frequencies up
to 8 kHz, since the TIMIT sources do not have energy beyond
this frequency, sum the responses across time and select the

most prominent peaks as the source azimuths. We consider
the same set of azimuths used in the proposed method and use
the direct-path interaural phase differences of the KEMAR or
HATS array, depending on the evaluation set, for beam steering.

The second comparison system used is the joint localization
and segregation approach presented in [26], dubbed MESSL,
and is representative of the spatial clustering approach to lo-
calization. We use an implementation of MESSL provided by
the algorithm’s author. The system requires specification of the
number of sources and iteratively fits GMM models of inter-
aural phase difference (IPD) and ILD to the observed data using
an EM procedure. Across frequency integration is handled by
tying GMM models in individual frequency bands to a principal
ITD. Based on the model fits, we find the most likely ITD for

each source and map this to an azimuth estimate using the group
delay of the anechoic KEMAR or HATS BIRs, depending on
the evaluation set. MESSL is initialized using the PHAT-His-
togram method [1], where we use the group delay of the ane-
choic KEMAR or HATS BIRs to specify the ITD bins for the
histogram. Mixture signals are first downsampled from 44.1 to
16 kHz because the original TIMIT sources were sampled at
16 kHz.

We selected these methods from a set of candidates that
also included the systems proposed in [1], [24], [40]. We
found that in most conditions, the performance of MESSL
and PHAT-Histogram [1] was comparable, but that MESSL
outperformed PHAT-Histogram for short integration times. We
also found the stencil filter method in [24] to perform similarly,
but systematically worse than the SRP method. Finally, we
found the clustering method proposed in [40] to perform poorly
on our data set. The system was unable to localize sources at
angles more lateral than 45 even in single-source anechoic
conditions, due to the large number of frequencies in which
spatial aliasing was present.

F. Evaluation Metrics

In all cases and for all methods we assume oracle knowledge
of the number of speech sources. With this knowledge we seek
to estimate the azimuth angle of each source based on a fixed
amount of observed data. We evaluate the different localiza-
tion systems using two metrics. For each evaluation mixture, we
consider a source to be detected if there is an azimuth estimate
within (and including) 10 . We then measure the gross accuracy
as the percentage of detected sources. We also measure the av-
erage azimuth error of those estimates that were within the 10
threshold and refer to this as the fine error. Note that a single az-
imuth estimate cannot be used to detect more than one source.

VI. EVALUATION RESULTS

In this section, we present the results from three experiments.
The first experiment analyzes the impact of monaural cues on
localization. The second experiment provides a comparison of
the proposed method to existing systems using simulated im-
pulse responses. The third experiment tests generalization of
the system to measured impulse responses and robustness using
mismatched binaural models.

A. Experiment 1: Influence of Monaural Cues

In this experiment, we analyze the influence of monaural
cues on localization performance. We compare performance to
two binaural baselines that use the proposed azimuth-depen-
dent models but do not incorporate monaural cues. The first
baseline, denoted Binaural-Hist, uses the procedure proposed
in [27]. This approach estimates the dominant azimuth in each
frame according to

(8)

then generates an across-time histogram of the frame-level az-
imuth estimates and selects the largest histogram peaks as
the source azimuths. The second baseline method, denoted Bin-
aural-ML, is a maximum likelihood procedure similar to the
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Fig. 2. Gross accuracy (%) shown over the two-talker KEMAR set as a function of (a) integration time, (b) distance, and (c) noise level. In (b) and (c), we show
results for a 2-s integration time. The legend in (a) is applicable to all figures shown.

Fig. 3. Gross accuracy (%) shown over the three-talker KEMAR set as a function of (a) integration time, (b) distance, and (c) noise level. In (b) and (c), we show
results for a 2-s integration time. The legend in (a) is applicable to all figures shown.

TABLE I
GROSS ACCURACY (%) FOR THE KEMAR SET FOR ALTERNATIVE

T-F INTEGRATION METHODS

proposed method, but does not incorporate monaural grouping.
In this case, azimuth estimates are derived using

(9)

(10)

where is a set of azimuths and is
an integer to specify the assignment of T-F unit to one of
the sources. The Binaural-ML system performs segregation on
the basis of binaural cues, similar to [26], [30], and derives each
azimuth estimate from a subset of T-F units. Along with the
binaural baselines, we evaluate three variations of the proposed
system, where we consider only pitch-based grouping, only
onset/offset segmentation, and the full proposed system. Per-
formance differences between the two baselines and different
variations of the proposed system are entirely due to how
binaural information is integrated across time and frequency.

Table I shows the gross accuracy over the entire set of two-
and three-talker KEMAR mixtures. We first note that that the
Binaural-ML method provides a small improvement over the
Binaural-Hist approach. This gain can be attributed to the fact
that evidence for multiple sources can be extracted from even a

single time frame, which is not possible with the Binaural-Hist
approach. However, the rather marginal gain suggests that while
it is conceptually appealing to perform joint segregation and
localization, there appears to be little improvement in local-
ization when the segregation process is based entirely on bin-
aural cues. In contrast, all systems that incorporate monaural
grouping achieve substantial gains relative to the binaural base-
lines. The best performance is achieved by the full system that
incorporates both types of monaural grouping and onset-based
weights, where we see a nearly 8% absolute gain in gross ac-
curacy relative to the Binaural-ML approach on the three-talker
mixtures.

We also note that in addition to the constraints enforced on
T-F grouping, the monaural mechanisms select a subset of the
T-F units for binaural integration. On the KEMAR data set,
about 84% of T-F units are selected. The number of talkers and
the source distance appear to have a very small influence on this
percentage, while decreasing the SNR can substantially reduce
the percentage of T-F units selected. On average, the percentage
of T-F units selected decreases from roughly 91% at infinite
SNR to 79% at 0 dB SNR.

B. Experiment 2: Comparison on Kemar Evaluation Set

In this experiment, we compare localization performance of
the proposed system to the two comparison methods from the
literature [11], [26] on the KEMAR evaluation set. We present
the gross accuracy for various experimental conditions in Figs. 2
and 3. We show results considering integration times of 0.1,
0.5, 1, and 2 s in Figs. 2(a) and 3(a). We do so by providing
each system the mixture signals from beginning to the specified
time. Results for different integration times are averaged over
all distances and SNRs. We show results as a function of source
distance in Figs. 2(b) and 3(b). In this case, we generate results
using the entire mixture (2 s) and average results over SNRs.
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TABLE II
GROSS ACCURACY (%) AND FINE ERROR ( ) FOR THE KEMAR SET

Similarly, we show results as a function of SNR in Figs. 2(c) and
3(c) using the entire mixture and average over source distances.
As one would expect, all systems perform better as more data
is used for the estimate, while there is a systematic decrease in
performance as sources become more distant or the background
noise level increases.

We can see that the proposed system outperforms the compar-
ison methods in terms of gross accuracy for all evaluation con-
ditions. MESSL outperforms SRP when the integration time is 1
s or longer. On the shortest integration time, 0.1 s, the initializa-
tion of MESSL by PHAT-Histogram [1] is poor, and the algo-
rithm is more likely to have large errors than SRP. The improve-
ment in gross accuracy by the proposed system over MESSL is
8.8% (absolute), calculated over the entire two- and three-talker
evaluation set. The improvement in gross accuracy relative to
SRP is 11.7% over the entire evaluation set. In Figs. 2(b), (c),
3(b), and (c), we see that the improvement achieved by the pro-
posed system tends to be larger in the more difficult conditions
with distant sources and strong background noise. For example,
on the two-talker evaluation set with sources at 4 m and 0-dB
SNR, the improvement in gross accuracy is about 23% relative
to both MESSL and SRP.

In Table II we show the gross accuracy and the fine error
on the full two- and three-talker data sets when using a 2-s
integration time. As previously stated, the gross accuracy using
the proposed method is higher than for the comparison methods
on both the two- and three-talker data and we can also see
that the fine error is lower. Since the proposed system utilizes
prior training, the performance increase relative to comparison
methods is due to both the inclusion of monaural cues and the
prior knowledge captured by the binaural model. Although
there are numerous differences between the Binaural-ML
system (see Section VI-A) and the comparison methods, some
indication of the relative contribution of monaural cues and the
binaural model can be gained by noting that the Binaural-ML
system achieves a 2.3% and 5.2% gain in gross accuracy
relative to MESSL and SRP, respectively, while the proposed
method achieves the 8.8% and 11.7% gains noted above.

To test the necessity of prior training with HRTFs of the bin-
aural setup that will be seen in testing, we also performed tests
with binaural models trained on HRTFs that simulate micro-
phone pickup on the surface of a rigid sphere [14]. We found
degradation in terms of gross accuracy to be only 3.4% and 4.5%
on the two- and three-talker data sets, respectively. Degradation
in terms of fine error was larger, from 1.0 with the KEMAR
models to 3.3 with the sphere-based models on the two-talker
set, and from 1.3 to 3.1 on the three-talker set. These results
indicate that the proposed method can still perform well even

Fig. 4. Gross accuracy (%) as a function of noise level for the HATS evaluation
set with an integration time of 2 s.

with no prior knowledge of the binaural setup to be used in
practice.

As one might expect from studies of localization acuity in
human subjects [5], the azimuth error is lower near the me-
dian plane than to the side of the head when using the proposed
method. Across the entire two-talker data set, the average error
(error over all estimates, not the fine error) for sources with az-
imuth between 30 and 30 is 0.6 , whereas it increases to 4
for sources with azimuth more lateral than 60 . We also note that
gross accuracy is lower in test cases where sources are spaced
more closely.

C. Experiment 3: Hats Evaluation Set

In this experiment, we compare localization performance
of the proposed system to the two comparison methods on
the HATS evaluation set, which uses measured BIRs from
real room environments. We also compare the performance
achieved using the HATS models trained on anechoic mea-
surements to the matched models trained on the BIRs seen in
testing. We assume that using the matched models will provide
a performance upper bound and are interested in the amount
of degradation due to using mismatched models. Performance
using the HATS models on this evaluation set should give the
best indication of how the system would perform in a practical
setting where calibration measurements may be assumed, but
extensive training in real environments would not be available.

We present the gross accuracy as a function of SNR in Fig. 4,
where results are averaged over all rooms and an integration
time of 2 s is used. Notable is the fact that the difference in gross
accuracy between the matched models and the HATS models is
1.1% or less for the infinite and 6-dB mixtures and 3.2% for the
0-dB mixtures. Consistent with Experiment 2, the performance
improvement achieved by the proposed system relative to the
comparison methods increases as the level of background noise
increases.

In Table III, we show the gross accuracy and the fine error
for all four systems on each room in the HATS set separately,
with a 2-s integration time. We see that the HATS models per-
form comparably to the matched models in terms of gross ac-
curacy, and the proposed system with HATS models achieves a
gross accuracy about 10% higher than MESSL and about 15%
higher than SRP. However, we can see that the fine error is con-
sistently lower when using the matched models. The fine error is
similar for all three realizable systems, with MESSL achieving



WOODRUFF AND WANG: BINAURAL LOCALIZATION OF MULTIPLE SOURCES IN REVERBERANT AND NOISY ENVIRONMENTS 1511

TABLE III
GROSS ACCURACY (%) AND FINE ERROR ( ) FOR THE HATS SET

the lowest fine error on average. The larger fine error for the
proposed system with HATS model and the SRP system on the
Room D data is due to a systematic discrepancy between the di-
rect-path cues of the anechoic measurements and the direct-path
cues of the Room D measurements.

VII. CONCLUDING REMARKS

The results in Section VI clearly demonstrate the effec-
tiveness of the proposed localization method. By integrating
monaural CASA methods with an azimuth-dependent model
of ITD and ILD, we are able to accurately localize multiple
sources in adverse conditions. The method yields a significant
improvement over baseline methods that do not incorporate
monaural grouping. The results from Experiment 1 support
the perspective that monaural segregation can facilitate local-
ization. The results from Experiment 2 show that localization
improvement is largest in adverse conditions and for distant
sources and the results from Experiment 3 establish the robust-
ness of the proposed method when using impulse responses
measured in real room environments.

We have also proposed a flexible binaural model that can be
easily adapted to different binaural setups and acoustic condi-
tions. Results from Experiments 2 and 3 indicate that robust
performance can be achieved with only anechoic measurements
of the binaural setup, and thus the simulations used to train the
models proposed in [27] and [39] may be unnecessary. Although
only briefly discussed here, preliminary results for generaliza-
tion to unseen binaural setups are promising.

Since we generate pitch-based simultaneous streams and
onset/offset based segments from both the left and right signals,
some of the resulting sets of T-F units will overlap in time and
frequency, thus the independence assumption made in order to
derive (6) and (7) is clearly violated. Considering dependencies
between simultaneous streams and T-F segments will increase
computational complexity of the system; however, it is possible
that doing so could improve performance.

In this work, we assumed prior knowledge of the number of
sources, and thus a key problem for future work is estimating the
number of sources. The computational complexity of the search
over azimuth combinations limits the total number of sources
that can be detected by the proposed method to a small number
(e.g., 3 or 4), but as the proposed method is a maximum like-
lihood approach, several well-known model selection criteria
such as Akaike information criterion or minimum description
length could be employed in (6) to penalize overestimating the
number of sources. Our preliminary analysis with such a penalty
term has produced promising results. We also note that in cases

when the number of sources is misestimated or wrongly pro-
vided to the proposed system, we observe that our system still
produces reasonable results. If the number of sources is underes-
timated, the system tends to localize the most dominant sources,
while if the number is overestimated, the system tends to break
one azimuth into two closely spaced ones.

Another important extension of the proposed system is to the
case with a time-varying number of moving sources. The results
presented in this study suggest that incorporating monaural cues
improves assignment of T-F units to source signals, and as such,
monaural cues could potentially benefit detection and tracking
of moving sources. This is a topic that will be addressed in future
work.
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