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Abstract. One problem common to many reinforcement learning algo-
rithms is their need for large amounts of training, resulting in a variety
of methods for speeding up these algorithms. We propose a novel method
that is remarkable both for its simplicity and its utility in speeding up
Q-learning. It operates by scaling the values in the Q-table after lim-
ited, typically small, amounts of learning. Empirical results in a variety
of domains, including a partially observable multi-agent domain that
is exceptionally difficult to solve using standard reinforcement learning
algorithms, show significant speedups in learning when using scaling.

1 Introduction

A wide variety of algorithms exist for solving various instantiations of the gen-
eral reinforcement learning (RL) problem, and the field as a whole has enjoyed
both theoretical and empirical success. Two commonly cited empirical successes
are Tesauro’s TD-Gammon [1], which used RL to learn to play world class
backgammon, and Crites’ elevator dispatch system [2], whose learned policies
outperformed the best known heuristic approaches. Many algorithms have nice
theoretical properties as well. For example, Q-learning was a watershed because
it was the first off-policy RL method that provably converges to the optimal
policy [3].

Despite these successes, the field has always struggled with the often large
amount of training needed by many algorithms to learn good policies. The sys-
tems of both Tesauro and Crites needed vast amounts of training (millions of
games of backgammon and tens of thousands of hours of experience with simu-
lated elevators, respectively), and Q-learning converges only in the limit where
every action is taken in every state infinitely often. Unsurprisingly, speeding up
reinforcement learning algorithms has been an active area of research within the
community.

In this paper we present and thoroughly evaluate a novel method for speed-
ing up Q-learning that is remarkable both for its simplicity and its effectiveness.
In fact, rather than having a separate section describing the approach, we will
do that here in the introduction. Let n be an integer that represents an amount
of training, such as the number of episodes (for episodic domains) or the number
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of steps (for continuous domains). Let S, the scaling factor, be a real number
greater than one. After n episodes or steps (depending on the type of domain)
of standard Q-learning, multiply all of the values in the Q-table by S and then
continue training with standard Q-learning until convergence (or some other
stopping criterion is met). Despite its extreme simplicity, experiments in a va-
riety of domains, including a partially-observable multi-agent domain that is
exceptionally difficult for standard Q-learning [4], show significant reductions in
the amount of training required by Q-learning when scaling is used. In addition,
experiments strongly suggest that the effect of scaling cannot be obtained or
eliminated by a variety of other means, such as changing the learning rate, using
eligibility traces, or modifying the reward structure.

2 Related Work

A thorough review of work on speeding up RL algorithms is outside the scope
of this paper, so here we touch on a few of the more popular approaches and
cite exemplars of each. Variable resolution RL methods reduce the size of the
state space, and thus the time needed for learning, by partitioning it into regions
whose granularity is fine where small differences in the values of state variables
are important and coarse elsewhere [5, 6]. In some cases, the state space can be
factored into independent subsets of state variables, leading to faster learning [7].
Other methods assume a fixed resolution state space that cannot be factored and
focus computational resources, for example, on states or state/action pairs whose
value would change significantly if updated [8]. Macro-actions can be learned
that effectively shorten the number of steps required to reach a goal (terminal or
intermediate state) [9], and models can be learned online to generate simulated
experience in a domain when actions in the actual domain are expensive (e.g.,
when the learner is a robot) [10].

There are many popular and useful technique for speeding up learning. We
will briefly describe a few of the transfer learning techniques that are used in the
context of RL. The general idea of transfer learning has been around for quite
some time. Under the rubric of lifelong learning, it has been shown both empir-
ically [11] and theoretically [12] that biases derived from related tasks can be
powerful while skirting problems posed by various versions of the No Free Lunch
theorems. In classification tasks, training a neural network to simultaneously
predict several related class labels can lead to improved accuracy [13]. Hierar-
chical Bayesian methods achieve similar results through parameter sharing in a
Bayesian framework [14, 15].

Almost all prior work in transfer in the context of RL has required manual
intervention at some point to effect the transfer. In some cases it is assumed
that the state and actions spaces of the source and target domains are identical
[16, 17], or that the transition dynamics are the same and the reward structure
differs [18]. In others, the user is responsible for mapping features from the source
domain to the target [19], or for specifying a function that maps values from the
source state and actions spaces to those of the target [20].
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The reward function of a markov decision process can be modified preserving
the policy known as reward shaping to reduce learning time [21]. Rules can
be defined to choose the reward function and the initial Q-values to speedup
learning [22]. Learners have also utilized other agents experience by imitating
their behavior to speedup learning [23]. All the methods discussed above try and
improve the performance of reinforcement learning.

Our proposed method is far simpler than any of those cited above and, as
the next section shows, produces excellent results.

3 Experiments

This section describes experiments with scaling in a variety of domains.

3.1 Initial Experiments

Our first domain is a square grid in which the agent can perform any of four
actions: moving North, South, East, or West. In each case the agent starts at
the top left square. The goal is to reach the bottom right square. The rewards
are 1 to reach the goal state, −1 to hit the walls and −1 to reach any of the
other states. We perform ε-greedy Q-learning with ε = 0.1. The discount factor
is γ = 0.9. There is a 1% probability of action noise, i.e, with probability 0.01
the agent unknowingly takes a random action. The learning rate is α = 0.1. All
of the Q-values are initialized to zero.

(a) 10 × 10 Grid World: Scaling after 5
iterations

(b) 10 × 10 Grid World: Scaling after 15
iterations

Fig. 1.

Each iteration of our experiment consists of moving from the start state to
the goal state. The Q-values are scaled after a small number of iterations of
learning. We then see how many steps are required to go from the start state to
the goal state with and without scaling. For each experiment we plot the number
of iterations on the x-axis and the corresponding number of steps needed to reach
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the goal on the y-axis. In all of the figures we show the number of steps required
for each iteration from the point of scaling, i.e. after some number of initial
iterations through the domain using standard Q-learning. All plots are averaged
over ten runs.

We start with a simple 10×10 grid world. Figure 1(a) shows the performance
of our method (dashed and dotted lines) in a 10× 10 domain against no scaling
(solid line). We train in the domain for five iterations, i.e., five successful trips
from the start state to the goal state, before scaling. The plot shows the number
of steps needed to learn after five iterations of partial training.

It is clear from figure 1(a) that scaling, regardless of the value of S (the
scaling factor), improves performance, requiring fewer steps per iteration and less
overall experience in the domain (the area under each curve) to converge. With a
scaling factor of 15, convergence to the optimal policy occurs after approximate
100 iterations. Scaling by smaller values, such as 10 and 5, improve performance
over not scaling, but by successively smaller amounts.

Fig. 2. 50 × 50 Grid World: Scaling after 2 iterations where S=25

The maximum improvement in learning after scaling with partial learning
of fifteen iterations is achieved with a scaling factor of S = 5 as shown in
Figure 1(b). These experiments show that a smaller scaling factor improves the
performance of learning with a larger amount of partial training, and a large
scaling factor improves the performance of learning with a smaller amount of
partial training. The reason for this observation is explained in the analysis
section.

Until now we have used relatively small 10 × 10 grids to show the effects
of varying the scaling factor and the number of iterations of partial training.
Figure 2 shows the effect of scaling in a larger 50× 50 domain. The Q-values are
scaled by a scaling factor of S = 25 after two iterations of partial training. Note
the difference in the vertical axis on the plots for this domain, which requires far
more training than the smaller grids. After only two trips from the start to the
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goal using standard Q-learning, there is almost 50% improvement in learning
over the lifetime of the agent by using scaling.

One may wonder whether the same effect can be had by, for example, chang-
ing the learning rate, α. As will become clear in the next section, scaling es-
sentially tunes the learning rate differentially so that states for which the best
action is the greedy action have smaller learning rates and states for which the
best action is not the greedy action have larger learning rates. That is, scaling
has the effect of locking in greedy actions that are correct while allowing greedy
actions that are not correct to be modified easily by further learning.

Figure 4(a) compares the improvement in the performance of learning just by
increasing the learning rate versus scaling with the increased learning rate. From
the figure it is clear that scaling further improves the performance of learning
beyond just increasing the learning rate. The optimal point of scaling and scaling
factor depend on the learning rate. Again, the reasons for this will be discussed
in the next section.

(a) 10 × 10 Grid World: Comparison of
scaling with increased learning rate 0.3,
0.1 and 0.01. Scaling improves the per-
formance over increased learning rate

(b) 10 × 10 Grid World: Comparison
of scaling with Q(λ) (eligibility traces).
Scaling improves the performance over
learning with eligibility traces

Fig. 3.

One might also wonder whether the use of eligibility traces (i.e., the Watkins’s
Q(λ) algorithm [24]) might have much the same effect as scaling, or if using
them would make scaling less effective. Figure 4(b) shows the effect of scaling
in a 10 × 10 domain with eligibility traces. The value of λ, which is the trace
decay parameter, is 0.8 in this case. Though the use of eligibility traces improves
learning, using scaling gives an additional performance improvement.

Figure ?? shows the effect of scaling when the Q-values are initialized ran-
domly between zero and one rather than starting out uniformly at zero. Again,
there is significant improvement in performance. Figure ?? shows that scaling
helps with a very different reward structure where the reward is 100 to reach
the goal state and 1 on every other transition. Note that this reward structure
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(a) 10 × 10 Grid World: Scaling after 5
iterations where S=15, Q-values initial-
ized randomly

(b) 10 × 10 Grid World: Scaling after 5
iterations S=15. Here the reward struc-
ture is different

Fig. 4.

results in much longer learning times in general because explored states have
positive Q-values whereas unexplored states have zero Q-values, thus making
them look less attractive and forcing the algorithm to find the goal by a long
sequence of exploratory moves. In this case, scaling helps to significantly reduce
the amount of training required to find the optimal policy.

The next experiment is a grid world domain where we start at the top left
corner and have to pick up four flags in sequence before reaching the goal state.
The state space is expanded to include a value that indicates which flags have
been collected and is thus fully observable. This domain is challenging for stan-
dard RL algorithms, and was used to demonstrate the utility of hand-coded
knowledge about the shape of the value function in reducing learning time [21].
Figure 5(a) shows the improvement in learning from scaling after ten iterations
of partial learning, which is significant.

(a) 5× 5 Grid World: Effect of scaling in
a grid world domain with subgoals

(b) 10× 10 Grid World: Multiple scaling

Fig. 5.
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Finally, figure 5(b) plots performance curves for learning where scaling is
done in multiple stages. It is apparent that scaling with less initial training
requires a larger scaling factor to be effective, and the size of the best factor
decreases with more initial training. The idea is to scale multiple times to try to
get even better performance increases. However, the effect of scaling after five
iterations of learning with S=15 has almost the same effect as scaling at two
points, once after five iterations with S=10 and then after ten iterations with
S=2. This approach requires additional exploration.

3.2 Multi-agent Block Moving

In our final domain, we have two agents that can take two actions: Left and
Right. The agents start at a random location and have to reach a goal location
where they can load a block. When both the agents are in the goal location they
load a block and have to move in synchrony to the start location, otherwise they
drop the block. Both the agents have a bit that can be set and reset. One agent
can see the other agent’s bit. The bit is set if an agent reaches the goal position.
The bit is reset if they drop the load. The agents get rewards only when a block
is loaded and they move together to the starting location [4]. The only possible
way of communication is for each agent to set or reset its bit. It is necessary
for both the agents to simultaneously arrive at compatible communication and
action policies, making this a very challenging problem.

Figure 6 shows the effect of scaling in a 3-location domain. The Q-values are
scaled after three iterations of learning with a scaling factor of S = 5. The solid
line shows the no scaling scenario and the dotted line shows the learning curve
with It can be seen that scaling helps tremendously in this domain.

Fig. 6. A 3-location block moving domain
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4 Analysis

4.1 Time of scaling

The two questions that we will analyze in this section are:

1. When does scaling help and when does it hurt?
2. Why does scaling help or hurt in the above cases?

Figures 1(a), 2 and 3 show plots of performance of learning with scaling factors of
S = 5, S = 10, and S = 15, and partial training of five, ten, and fifteen iterations,
respectively. We see that with a small scaling factor, performance increases as
the number of iterations of partial training increases and then decreases. With
a sufficiently large scaling factor, performance increases early on with fewer
iterations of partial training and then decreases. This study implies that it is
advisable to scale by large scaling factors with fewer iterations of partial training
and small scaling factors with more iterations of partial training.

The following observations can be made from the results of the experiments
performed:

1. If the Q-values are scaled with a small scaling factor, performance of learning
improves only after substantial iterations of partial training in the 10 × 10
domain. It does not help with fewer iterations of partial training.

2. If the Q-values are scaled with a large scaling factor performance of learning
improves early on with fewer partial iterations and hurts as the number of
partial iterations increases.

3. If the scaling factor is very high it hurts leaning even with fewer partial
iterations.

4.2 Effects of scaling

There are two effects of scaling on the Q-values:
1. Let the difference between the best and the next best Q-values at the point

of scaling for a state be ∆s. In figure 7(a) we plot the 100 states of a 10 × 10
grid on the x-axis and the corresponding ∆s on the y-axis. In this case after
five iterations of partial training we calculate the ∆s by taking the difference
between the largest and the second largest Q-values in each state. We see that
∆s for some states is larger for states with the correct policy (solid line) and
smaller for the states with the incorrect policy (dashed line). So scaling makes
it harder to change the policy where it is correct for some states but this is not
the case where the policy is wrong.

2. The updates for the states with the correct policy are much smaller com-
pared to the updates with incorrect policy. In figure 7(b) we plot the first iter-
ation after scaling on the x-axis and the corresponding magnitude of update of
the Q-values on the y-axis. The updates for the correct policies (solid line) are
much smaller compared to the updates for the incorrect policies (dashed line).
So once a correct policy is reached it is not undone with scaling. On the other
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(a) ∆s in each of the 100 states in a 10×
10 grid

(b) Updates in the Q-values in the first
iteration just after scaling

Fig. 7.

hand, in the no scaling scenario after five iterations of training the update for
a state with the correct policy is large and can change the correct policy to an
incorrect policy.

All these features on the Q-values apply more to the Q-values near the goal.
As we move away from the goal these changes fade. These two observations give
an insight on how and why scaling works so well. First, scaling makes it harder
to change a correct policy compared to an incorrect policy. Second, during the
initial iterations once a correct policy is achieved after scaling it is not undone
unlike the no scaling case. These two features of scaling improve the performance
of Q-learning tremendously.

4.3 Reasons for improvement in performance using scaling

Q(s, a) estimates the return for taking action a in state s and then following
policy π. To better understand the effect of scaling analytically, we make a couple
of simplifying assumptions that are reasonable. First, rewards are constant, in
our case −1 for all the steps in the grid world except for the goal step which is
1. Second, for a given s/a pair the return is summed out to N steps, after which
either the terminating goal state is entered or the impact of discounting is so
small that the remainder of the sum can be ignored. Thus, we have:

Qπ(s, a) = Eπ{Rt|st = s, at = a}

= Eπ{
∑N
k=0 γ

krt+k+1|st = s, at = a}

When we scale we multiply all of the Q values by a constant C. The Q values
we get could have been produced if all of the rewards were multiplied by C
instead:

C ∗Qπ(s, a) = Eπ{
N∑
k=0

γk[C ∗ rt+k+1]|st = s, at = a}
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Therefore, scaling makes the Q values look like they were learned in a domain
where the rewards were larger (by a constant factor) than they actually are. After
scaling, we in effect drop the reward values back to r from C ∗ r.

Now consider two states, S1 and S2. Suppose S1 is N steps from the goal
and S2 is N − 1 steps from the goal. That is, S2 is closer to the goal by one
step. Further, suppose A1 and A2 are the respective optimal action in each case.
Then:

Qπ(S1, A1)−Qπ(S2, A2) = Eπ{
N∑
k=0

γk ∗ rt+k+1}

−Eπ{
N−1∑
k=0

γk ∗ rt+k+1}

= Eπ{γN ∗ rt+k+1}

We can draw the following conclusions from this:

1. For states that are far from the goal, the differences between the Q values
will be small because N is large. Therefore, rewards, even small rewards, can
significantly impact the relative ranking of the actions for a given state.

2. For states that are close to the goal, the differences between the Q values
for the optimal actions will be relatively large, because N is small, making
it harder for rewards to overcome this difference.

3. In general, if we go from state S2 away from the goal to state S1 by taking
a non-optimal action, the difference between Q(S2, non− optimal−A) and
Q(S1, optimal − A) will be small because both involve going N steps to the
goal. Therefore, rewards will have a relatively larger impact in the Q update.
On the other hand, if we go from state S2 towards the goal to state S1 by
taking an optimal action, the difference between Q(S2, optimal − A) and
Q(S1, optimal − A) will be larger because both involve going N-1 steps to
the goal. Here rewards will have a relatively reduced impact in the Q update.
When we scale, we reduce the impact of rewards, locking in greedy actions
that are optimal, but not making it much harder for greedy actions that are
not optimal to change.

Figure 8 compares the performance of learning when the Q values are scaled
and when the rewards are reduced by the same scaling factor in a 10 × 10 grid
world after learning for a few iterations. Scaling the Q values by a factor of
C after K iterations and dividing the reward values by a factor of C after K
iterations produce almost identical results.

5 Conclusion

We have developed a new and innovative approach to speedup reinforcement
learning. We have run experiments over a wide range of situations. Our approach,
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Fig. 8. Comparing reducing reward versus scaling

although simple, performs very well in the two classes of domains we tested. The
experiments shown do not give the optimal time for scaling but they give us an
idea for finding a reasonable time for scaling. However, there is ample scope to
broaden our exploration of different situations and domains where scaling can be
of benefit. In particular, we will try to find optimal conditions for scaling. We will
explore new and more flexible domains and find cases where this approach might
or might not be useful. We also will continue work to improve our theoretical
understanding of this process, including its advantages and disadvantages in
different contexts.
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