
Information Sciences xxx (2012) xxx–xxx
Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Behavior modeling and automated verification of Web services

Quan Z. Sheng a,⇑, Zakaria Maamar b, Lina Yao a, Claudia Szabo a, Scott Bourne a

a School of Computer Science, The University of Adelaide, Adelaide, SA 5005, Australia
b College of Information Technology, Zayed University, Dubai, United Arab Emirates
a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Web service
Cloud computing
Service behavior
Conversation message
Symbolic model checking
0020-0255/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.ins.2012.09.016

⇑ Corresponding author.
E-mail addresses: qsheng@cs.adelaide.edu.au (Q

adelaide.edu.au (C. Szabo), scott.bourne@adelaide.ed

Please cite this article in press as: Q.Z. Sheng
http://dx.doi.org/10.1016/j.ins.2012.09.016
a b s t r a c t

Cloud computing has been rapidly adopted over the last few years. However, techniques on
Web services, one of the most important enabling technologies for cloud computing, are
still not mature yet. In this paper, we propose a novel approach that supports dependable
development of Web services. Our approach includes a new Web service model that sep-
arates service behaviors into operational and control behaviors. The coordination of oper-
ational and control behaviors at runtime is facilitated by conversational messages. We also
propose an automated service verification approach based on symbolic model checking. In
particular, our approach extracts the checking properties, in the form of temporal logic for-
mulas, from control behaviors, and automatically verifies the properties in operational
behaviors using the NuSMV model checker. The approach presented in this paper has been
implemented using a number of state-of-the-art technologies. We conducted a number of
experiments to study the performance of our proposed approach in detecting design prob-
lems in services. The results show that our automated approach can successfully detect
service design problems. Our system offers a set of tools assisting service developers in
specifying, debugging, and monitoring service behaviors.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Over the past few years, cloud computing is gaining a considerable momentum as a new computing paradigm for provid-
ing flexible and dynamic services and infrastructures on demand [2,33,41]. Cloud computing holds the potential to transform
the landscape of the IT industry by making software more attractive as services and shaping the way IT hardware is designed
and purchased.

Service-oriented architecture (SOA) and Web services in general are one of the most important enabling technologies for
cloud computing in the sense that resources (e.g., software, infrastructures, and platforms) are exposed in the clouds as ser-
vices [37]. Most research in cloud computing so far focuses on topics such as virtulization, reliability, scalability, security and
privacy of cloud services [28,25,20,30]. Although these are all important, Web services, the fundamental topic that underpins
the cloud computing paradigm, have not received enough attention. In fact, despite active research into, and development of,
Web services over the last decade, Web services are still not fully mature yet. According to a recent study in Europe [11], the
Web currently contains 30 billion Web pages, with 10 million new pages added each day. In contrast, only 12,000 Web ser-
vices exist on the Web. Even worse, most of these Web services have been deployed with dependability problems (e.g., unex-
pected behaviors, delayed or even no responses) [36,27,40]. One significant challenge is that, to the best of our knowledge,
. All rights reserved.

.Z. Sheng), zakaria.maamar@zu.ac.ae (Z. Maamar), lina.yao@adelaide.edu.au (L. Yao), claudia.szabo@
u.au (S. Bourne).

et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),

http://dx.doi.org/10.1016/j.ins.2012.09.016
mailto:qsheng@cs.adelaide.edu.au
mailto:zakaria.maamar@zu.ac.ae
mailto:lina.yao@adelaide.edu.au
mailto:claudia.szabo@ adelaide.edu.au
mailto:claudia.szabo@ adelaide.edu.au
mailto:scott.bourne@adelaide.edu.au
http://dx.doi.org/10.1016/j.ins.2012.09.016
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins
http://dx.doi.org/10.1016/j.ins.2012.09.016

2 Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx
there lacks of novel approaches and tools that would enable service developers to check the soundness and completeness of
their services design so that the design problems can be identified and addressed at early stages, which ultimately ensuring
the quality of the services released to clouds. Given the quick adoption of cloud computing in industry (e.g., Amazon Web
Services, Google AppEngine, and Microsoft Azure), more and more cloud services will emerge, which support the develop-
ment of numerous applications including mission-critical applications such as health care, air traffic control, and stock trad-
ing. This calls for the urgent need to develop novel techniques for producing highly dependable cloud services.

In this paper, we present our approach on modeling Web services so that design problems and errors can be early iden-
tified and addressed. In particular, we propose to divide Web service behaviors into two types: operational behaviors and con-
trol behaviors, based on the separation of concerns design principle [17]. The operational behavior, which is application
dependent, illustrates the business logic that underpins the functioning of a Web service. The control behavior, which is
application independent, acts as a controller over the operational behavior and guides its execution progress. The interac-
tions between control and operational behaviors are modeled as conversation sessions (i.e., sequences of messages exchanged
between the control and operational behaviors). By analyzing conversational messages and checking service behavior
specifications, it is possible to verify the service design. The main contributions of this paper are as follows:

� A service behavior model that decouples operational and control behaviors of Web services. This separation of Web ser-
vice behaviors eases not only the development and maintenance, but the verification (e.g., soundness and completeness
checking), testing, and debugging of Web services. To the best of our knowledge, this is the first effort that identifies two
behaviors of Web services.
� A service verification approach based on symbolic model checking [10]. Our approach extracts the checking properties, in

the form of temporal logic formulas, from control behaviors, and automatically verifies the properties in operational
behaviors.
� A fully functional prototype system that offers a set of tools for the specification of Web services and automated verifi-

cation of the service design.

The reminder of the paper is organized as follows. Section 2 describes the details of our new Web service behavior model.
Section 3 presents a symbolic model checking approach for verifying service designs. Section 4 focuses on the implementa-
tion and validation of the proposed system. Finally, Section 5 overviews related work and Section 6 provides some conclud-
ing remarks.
2. Service behavior model

Cloud services are normally exposed as Web services that follow the industry standards such as Web Services Description
Language (WSDL). Unfortunately, WSDL does not show how they function or how their executions can be overseen. As a re-
sult, Web services are still largely perceived as simple, passive components that react upon request only [8,40]. In this sec-
tion, we present a Web service behavior model using more richer description, which isolates a service from any orchestration
scenario before it abstracts and separates its behavior into operational behavior and control behavior. We use statecharts
[14] to model both behaviors. It should be noted that other formalisms such as Petri nets [21] also can be used. A magazine
version of the content in this section appears in [31]. In this paper, we present a complete and more formal description of the
service behavior model.

2.1. Operational and control behaviors

The operational behavior shows the business logic that underpins the functioning of a Web service. In contrast, the control
behavior guides the execution progress of the business logic of a Web service. The control behavior relies on a number of
states (activated, not-activated, done, aborted, suspended, and compensated) that are reported in the transactional
Web services literature [22,23,38].

Definition 1 (Web Service Behavior). The behavior of a Web service is a 5-tuple B ¼ hS;L; T ; s0;Fi where:

– S is a finite set of state names.
– s0 2 S is the initial state.
– F #S is a set of final states.
– L is a set of transition labels.
– T #S � L � S is the transition relation. Each transition t = (ssrc, l, stgt) is composed of a source state ssrc 2 S, a target state

stgt 2 S, and a transition label l 2 L. We qualify these transitions as intra-behavior (the rationale behind this qualification
will be given later).

In statecharts, a label consists of three optional components (event E, condition C, and action A) and is written as E[C]/A.
A Web service’s control and operational behaviors are instances of the Web service’s behavior. These two behaviors are

denoted by Bco ¼ hSco;Lco; T co; s0
co;F coi and Bop ¼ hSop;Lop; T op; s0

op;F opi, respectively.
Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

Fig. 1. The behaviors of the translation service: (a) operational behavior, and (b) control behavior.

Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx 3
Fig. 1a and b depict respectively the operational and control behaviors of a translation service using the Google Trans-
late

1 and Microsoft Translator
2 APIs. Fig. 1a is the operational behavior represented in a simple statechart. The service

utilizes functions of the Google Translate service to translate a text, and optionally provides audio speech using the Micro-
soft Translator service. Following an input of text to be translated, target language, and translation format (text or speech),
the service first checks the support for the language. The base language of the input text is detected automatically, and the text
translation is then produced. If an audio speech is requested, the target language is checked once more, against the languages
supported by the speech function. Audio of the translation is then delivered, or the operation is canceled.

The control behavior of the translation service is illustrated in Fig. 1b, using a number of states extracted from the field of
transactional Web services [6]. These states include activated, not activated, done, aborted, suspended, and compensated. Other
types of states could be used if needed, without deviating from the original purpose of the control behavior of a Web service.

In Fig. 1, a Web service’s control and operational behaviors rely on a set of finite sequences of states and transitions. We
call these sequences paths and define them as follows:

Definition 2 (Path in Web Service Behavior). A path pi?j in a Web service’s behavior B is a finite sequence of states and

transitions starting at state si and ending at state sj, denoted as pi!j ¼ si!l
i

siþ1!l
iþ1

siþ2 . . . sj�1!l
j�1

sj such that

8k 2 fi; j� 1g : ðsk; lk; skþ1Þ 2 T (here the sequence of the exponents in the state names is only given for notational purposes).

For example, in Fig. 1b, not-activated!l
1

activated!l
2

done is a path in the control behavior of the translation service.
1 https://developers.google.com/translate/v2/getting_started#background-operations.
2 http://msdn.microsoft.com/en-us/library/ff512419.aspx.

Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://https://developers.google.com/translate/v2/getting_started#background-operations
http://msdn.microsoft.com/en-us/library/ff512419.aspx
http://dx.doi.org/10.1016/j.ins.2012.09.016

4 Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx
2.2. Connecting control and operational behaviors

We pointed out that the control behavior guides the execution of a Web service represented by its control flow. We dis-
cuss now how this guidance is implemented by connecting both behaviors together.

Concretely, the process of taking on states and thus, connecting operational and control behaviors together occurs by
establishing correspondences between the respective states of these two behaviors. These correspondences implement
the mapping step and result in forming conversation sessions. The idea of this mapping is to associate a given state in the con-
trol behavior with a set of possible paths in the operational behavior.

Definition 3 (Mapping Operation). Let Pco be the set of paths in the control behavior of a Web service starting by any state in
this behavior. The mapping operation is defined using the following function: Map : Sco ! 2Pop .

The mapping function Map associates each state in the control behavior with a set (possibly empty) of possible paths in
the operational behavior (2Pop is the power set of Pop). Fig. 2 is a mapping example in the translation service where
activated state in the control behavior is associated with different paths in the operational behavior. One of these paths
is: input collected? check text translate support ? detect input language? language identified?
translate text.

Interactions between operational and control behaviors are specified as part of the exercise of working out the conver-
sation sessions. These sessions’ role is to keep both behaviors synchronized. By specification, we mean how and when a state
in the operational behavior communicates with other states in the control behavior and vice-versa. This communication is
illustrated via the transitions between this state and the associated paths that the mapping function Map produces.

Definition 4 (Specification Operation). Let Pop be the set of paths in an operational behavior starting by any state in this
behavior, and LS be the set of labels associated with the transitions between operational and control behaviors. The
specification operation is defined through the following two functions:
Please
http:/
Spec : Sco ! 2LS�Pop�LS and Next : Sco � Pop ! Lco � Sco:
The specification function Spec associates each state sco in the control behavior with a (possibly empty) set of triples. Each
triple contains i) the label of the transition from sco to the first state in the operational behavior of a mapped path, ii) the
mapped path itself, and iii) the label of the transition from the last state in the operational behavior of the mapped path back
to sco. Transitions that connect states in independent statecharts are called inter-behaviors.

The partial function Next associates a given state in the control behavior along with the mapped path in the operational
behavior with the next state to take on in the control behavior along with the associated transition label.

Fig. 3 shows the specification and synchronization of our translation service’s operational and control behaviors where
two types of transitions exist: intra-behaviors (plain lines) and inter-behaviors (dashed lines). Labels1,2,3 name the inter-
behavior transitions and their structures are provided in Section 2.3. Fig. 3 contains Spec(activated) = {(label1, path1, label2),
(label1, path2, label3)}, where path1 = input collected? check text translate support? detect input

language? language identified? translate text? check speech support? generate speech? deliver

speech trans-lation and path2 = input collected ? check text translate support? detect input lan-

guage? language identified? translate text? check speech support? language unsupported.
Fig. 3 shows the initiation of the translation service in the control behavior with activated state, following receipt of

user’s input. Because of the (activated, label1, input collected) inter-behavior transition, the execution of the trans-
lation service commences by checking the language support of the input, translating the input into the target language, and
then checking the speech support. Afterwards, two cases exist as shown in Fig. 3. In Fig. 3a, the target language is supported,
Fig. 2. Example of operational and control behaviors mapping in the translation service.

cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
/dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

Fig. 3. Synchronization of the translation service’s control and operational behaviors: (a) the success case, and (b) the failure case.

Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx 5
the audio speech of the text is generated and delivered to the user. Because of (deliver speech translation, label2,
activated) inter-behavior transition, the translation service completes its operation with success by transiting from acti-

vated to done states in the control behavior. However, in Fig. 3b, the target language is not supported by the translator,
indicating with the language unsupported state. Because of (language unsupported, label3, activated) inter-behav-
ior transition, the whole translation service terminates its operation by transiting from activated to aborted states in the
control behavior.

The formal definitions of inter-behavior and conversation session are as the following.

Definition 5 (Inter-Behavior Transition). The set of all inter-behavior transitions that connect the operational and control
behaviors of a Web service is denoted by IT where IT ¼ IT op!co [IT co!op such that:

– IT op!co #SITðopÞ � Lop!co � SITðcoÞ is the inter-behavior transition relation starting from the operational behavior and end-
ing at the control behavior.

– IT co!op #SITðcoÞ � Lco!op � SITðopÞ is the inter-behavior transition relation starting from the control behavior and ending at
the operational behavior.

– SITðopÞ #Sop is a finite set of state names in the operational behavior that take part in inter-behavior transitions.
– SITðcoÞ #Sco is a finite set of state names in the control behavior that take part in inter-behavior transitions.
– Lop!co is a set of inter-transitions’ labels from the operational to the control behaviors, and Lco!op is a set of inter-transi-

tions’ labels from the control to the operational behaviors ðLco!op [Lop!co ¼ LSÞ.
Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

6 Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx
Definition 6 (Web Service Conversation Session). A conversation session between the operational and control behaviors of a
Web service is a 4-tuple hsco, itco?op, pop, itop?coi such that:

– sco 2 Sco; itco!op 2 IT co!op; itop!co 2 IT op!co; pop 2 Pop.
– Labðitco!opÞ; pop;Labðitco!opÞÞ 2 SpecðscoÞ. The Lab function returns the label of an inter-behavior transition, Lab : IT ! LS .
2.3. Types and structure of conversational messages

In Definition 5, we treated labels of inter-behavior transitions in Lop!co and Lco!op sets as messages. To determine appro-
priate messages, we draw some analogies between operational/control behaviors and networking protocols. These analogies
result in the following seven types of messages: sync, ping, success, ack, fail, delay, and syncreq. The description of each mes-
sage type is given in Table 1. Each message type is associated with a category of performative either initiation from the con-
trol to operational behaviors to start an execution or outcome from the operational to control behaviors to report on the
execution status.

All conversational messages have input arguments denoted by str. While some arguments in str come out of states in the
control behavior and arrive to states in the operational behavior, other arguments are the opposite. We decompose input
arguments into Part1 (common arguments to all messages), Part2 (arguments from the control to operational behaviors),
and Part3 (arguments from the operational to control behaviors).

� Part1 consists of ID, Name, From, To, and Trigger arguments.
� Part2 consists of Authorized activity-time, Authorized passivity-time, and Required participants arguments.
� Part3 consists of Counter-part ID, Effective activity-time, Effective passivity-time, and Execution nature arguments.

Because of the monitoring nature of ping and ack messages, their input arguments, i.e., str, are different from the afore-
mentioned arguments. Hereafter we suggest examples on the use of some conversational messages. To this end, we consider
messages implementing some inter-behavior transitions of Fig. 3.

� sync(str)] corresponds to (activated, label1, input collected) where str is populated with elements reported in
Table 2a.
� fail(str)] corresponds to (language unsupported, label3, activated) that is correlated to (activated, label1,
input collected). str is populated with elements reported in Table 2b.
� ping(str)] is related to (activated, label1, input collected) where str is populated with elements reported in

Table 2c.
� ack(str)] is related to (activated, label1, input collected) where str is populated with elements reported in

Table 2d.
Table 1
Messages implementing inter-behavior transitions.

Message
type

Performative
category

Description

sync Initiation Originates from a control state and targets an operational state. The purpose is to trigger the execution of the
operational states (including the targeted operational state) in a conversation session. sync is a blocking message,
which makes the control state wait for a notification back from the last operational state to execute in this
conversation session

delay Initiation Originates from a control state and targets an operational state that was the destination of sync. The purpose is to
inform this operational state of the unacceptable delay in operational states execution so that corrective actions are
taken. The targeted operational state reacts to the delay by submitting either success, fail, or syncreq to the control
state depending on the current status of this execution

ping Initiation Originates from a control state and targets an operational state that was the destination of sync. The purpose is to
check the liveness of the operational states in the conversation session of the targeted operational state

success Outcome Originates from an operational state and targets the control state that submitted sync. The purpose is to inform this
control state of the successful execution of the operational states in a conversation session and to return the
execution thread back to this control state as well. success is coupled with sync

fail Outcome Originates from an operational state and targets the control state that submitted sync. The purpose is to notify this
control state of the failure execution of the operational states in a conversation session and to return the execution
thread back to this control state as well. fail is the opposite of success and is coupled with sync

syncreq Outcome Originates from an operational state and targets the control state that submitted sync, and denotes request for
another synchronization. syncreq is motivated by the possibility of unhandled exceptions in the conversation session
of this operational state and thus, required actions are to be taken

ack Outcome Originates from an operational state and targets a control state. The purpose is to confirm the liveness of the
operational states in a conversation session. ack is coupled with ping. If no ack is received within a time limit, the
control state submits another sync to the operational state prior to declaring the failure of this conversation session

Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

Table 2
Examples related to conversational messages.

Case a Case b

ID ID1 ID ID2

Name Label1 Name Label3
From Activated From language unsupported
To Input collected To Activated
Trigger 15 s [request receipt] Trigger Execution failure

Counter-Part-Id ID1
Authorized-Activity-Time 1 min Effective-Activity-Time 45 s
Authorized-Passivity-Time Null Effective-Passivity-Time Null
Required-Participants Google Translate Service Execution-Nature failure

Case c Case d

ID ID3 ID ID4

From Activated From input collected
To Input collected To Activated

Counter-Part-Id ID3
Status OK

Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx 7
2.4. Sequence of conversational messages

A sequence of conversational messages is an ordered list of messages that are put together in a consistent way. Capturing
such sequences generates the execution traces of a Web service and turns out to be very useful for post-analysis activities. An
execution trace helps review all actions that a Web service performed from operational and control perspectives. For in-
stance, delay messages can be examined so that similar and frequent cases in the operational behavior are addressed. In addi-
tion, fail messages might indicate a reliability problem in the control behavior requiring corrective actions. The following are
some possible sequences of messages where stands for ‘‘next’’:

� sync.success (resp. sync.fail) refers to synchronization followed by success (resp. failure).
� sync.delay.syncreq.sync.success refers to synchronization followed by delay then by request of re-synchronization then by

synchronization then by success.

All possible sequences of conversational messages can be represented using a combination of if-then rules. Formally:

Definition 7 (Sequences of Conversational Messages). Let n be the number of conversational messages exchanged during a
session. Also, let m1, . . . , m7 be conversational messages of Table 1, and mi(t)(i 2 {1, . . . 7}) be a conversational message sent
at time t from a state in the operational behavior (resp., the control behavior) to a state in the control behavior (resp., the
operational behavior). All possible sequences of conversational messages can be represented using a combination of rules of
the form:
Please
http:/
8t 2 ½0;n� 2�;miðtÞ)
_

j2J
mjðt þ 1Þwith J # f1; . . . ;7g and i – j
where mi(0) = sync _mi(0) = ping and mi(n � 1) = success _mi(n � 1) = fail _mi(n � 1) = ack.
Using this formula, it is possible to specify some conditions that help us determine that a conversation sequence of mes-

sages is well-formed. For instance, to avoid design errors such as deadlock situations of sync.delay.delay. . ., we can put some
restrictions on the conversations to be developed. Examples of some restrictions are the rules as follows:

– Each sync message in a sequence should be followed by either a success, fail, or delay message for the sake of synchroni-
zation matching. Formally, sync(t)) success (t + 1) _ fail(t + 1) _ delay(t + 1).

– Each ping message in a sequence should be followed by an ack message for the sake of synchronization matching. For-
mally, ping(t)) ack(t + 1).

A well-formed sequence of conversational messages suggests some benefits that make the engineering exercise of Web
services sound and complete. For instance, it would be possible to (i) determine if a Web service’s operational and control
states were properly executed (e.g., a Web service is not indefinitely waiting for an ack), (ii) to detect errors at design-time
(e.g., having a sync without a corresponding synchronization matching transition), and (iii) to verify Web services’ non-func-
tional properties (e.g., delay messages submitted upon response-time verification). In [7], we propose a set of rules that guar-
antee a well-formed conversation between operational and control behaviors. Interested readers are referred to that paper
for more details. In the next section, we will formally introduce our approach on automated verification of services design.
cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
/dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

8 Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx
3. Verification of control and operational behaviors

Our verification approach is based on the formal model checking of conversations of Web service behaviors. As shown in
Fig. 4, we propose to verify that the operational behavior is well-designed and fits well with the control behavior in two
ways. Firstly, we verify that the operational behavior and the control behavior are synchronized by checking the message
sequences defined above. Secondly, we verify that the operational behavior fits well within the control behavior using a no-
vel approach that extracts properties from the control behavior and verifies these properties on the operational behavior. We
represent these properties as temporal logic properties [9].

To prevent state-space explosion, we convert the operational behavior into a Kripke structure [9] (step 2 in Fig. 4). We
perform a semantic state abstraction algorithm to align states in the operational behavior to states in the control behavior
using information provided by the service designer (step 3), reduce the number of states using our reduction algorithm (step
4) and verify the temporal logic properties using model checking tools such as NuSMV [9]. Our approach is fully automated
and the details will be described below.
3.1. Extracting properties from control behaviors

As discussed above, the control behavior of a Web service is a domain-application independent behavior that guides the
execution progress of the service through conversations with the operational behavior. By nature, the states in the control
behavior will rarely be subject to change, and such several properties can be associated with them. Towards ensuring the
correctness of Web Services at design time, we propose to extract logical properties from the control behavior and verify that
the operational behavior conforms to them. This ensures that the operational behavior is well-designed and fits with its con-
trol behavior.

We propose to represent these logical properties using temporal logics such as Linear Temporal Logic (LTL) and Compu-
tation Tree Logic (CTL) [10] to facilitate the verification of a rich set of properties. The properties are associated with each
state in the control behavior. We employ both LTL and CTL logics because they are not equivalent, in that there exists prop-
erties in LTL that cannot be expressed in CTL and vice versa. For example, AFðp ^ Xp in an LTL property that cannot be ex-
pressed in CTL, and AGEFp vice versa. This is because LTL cannot express that at some instants along the execution it would
be possible to extend the execution to explore all possible paths. As such, the LTL property is checked for a particular run,
Fig. 4. Verifying well-designed control and operational behaviors.

Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx 9
with no possibility of switching to another run during the checking. On the other hand, the CTL semantics checks a formula
on all possible runs and will try either all possible runs (A operator) or only one run (E operator) when facing a branch. As
such, with carefully chosen properties, both LTL and CTL can be used to complement rather than contradict each other [5].

In the following, we represent LTL and CTL formulae using known symbols and operators summarized below:

� Fu: sometimes in the Future, u is true in some future moment.
� uUw: Until, u is true until w is true.
� Gu: Globally in the future, u is true in all future moment.
� Xu: neXt time, u is true in the next moment in time.

As CTL permits only branching-time operators, each of the LTL operators defined above (G;F ;X , and U) must be imme-
diately preceded by a path quantifier (i.e., A for All paths, and E for Existing a path). It is important to note that we are con-
sidering fair LTL and CTL [10], which means that in any computation, some states, called fair states, should be reached. For
instance, in the control behavior, Done is a fair state and should always be reached.

We use the following initials for simplicity to specify the control behavior states when defining the logical properties to
be checked: (1) Na: Not Activated, (2) Re: Received, (3) In: Invoked, (4) Su: Suspended, (5) Ab: Aborted, (6) Pr: Process, (7) Co:
Compensated, (8) Do: Done, and (9) En: End.

Let ? be the logical implication. Examples of fair LTL properties that can be defined and verified for the control behavior
are:

� U ¼ GðNa! XReÞ – always a Received state after a Not Activated state.
� U ¼ GðRe! XFðIn _ Ab _ Su _ DoÞÞ – always an Invoked, Aborted, Suspended, or Done state in the future after a
Received state.
� U ¼ GðCo! XFNaÞ – always a Not Activated state in the future after a Compensated state.
� U ¼ GðDo! XFðEn _ CoÞÞ – always an End or Compensated state in the future after a Done state.
� U ¼ GððDo _ AbÞ ! XFEnÞ – always an End state in the future after a Done or Aborted state.
� U ¼ GðIn! XFðAb _ Pr _ Re _ SuÞÞ – always an Aborted, Process, Received or Suspended state in the future after an
Invoked state.
� U ¼ AFððRe _ InÞ ! XðDo _ AbÞÞ – always a Done or Aborted state on all paths after a Received or Invoked state.

It should also be noted that the last LTL property defined above cannot be expressed in CTL.
Similarly, examples of CTL properties that can be verified from the control behavior are:

� U ¼ AGðNa! AXReÞ – there is always a path from state Not Activated to state Received.
� U ¼ AGðRe! AXAFðIn _ Ab _ Su _ DoÞÞ – there is always a path from state Received to states Invoked, Aborted, Sus-
pended, or Done.
� U ¼ AGðCo! AXAFNaÞ – there is always a path from state Compensated to state Not Activated.
� U ¼ AGðDo! AXAFðEn _ CoÞÞ – there is always a path from state Done to state End or Compensated.
� U ¼ AGððDo _ AbÞ ! AXAFEnÞ – there is always a path from state Done or Aborted, to state End.
� U ¼ AGðIn! AXAFðAb _ Pr _ Re _ SuÞÞ – there is always a path from state Invoked to state Aborted, Process,
Received or Suspended.
� U ¼ AGEFðEnÞ – state End is always potentially reachable.
� U ¼ AGEFðDoÞ – state Done is always potentially reachable.
� U ¼ AGEFðAb _ DoÞ – states Aborted or Done are always potentially reachable.
� U ¼ AGEFðRe! InÞ – a path from state Received to state Invoked is always potentially reachable.
� U ¼ AGEFððIn! EXPrÞ _ ðIn! EXReÞÞ – a path from state Invoked to the next state Process, or from state Invoked to

next state Received is always potentially reachable.
� U ¼ AGEFððPr ! EXReÞ _ ðPr ! EXAbÞÞ – a path from state Process to the next state Received, or from state Process

to next state Aborted is always potentially reachable.

The last six CTL properties are examples of CTL properties that cannot be expressed in LTL, for reasons discussed above.

3.2. Kripke-structured operational behavior

The verification of the above properties may lead to state-space explosion, particularly for complex services. Towards
reducing this problem, we propose to transform the operational behavior into a Kripke structure [19] that captures only
the states in the operational model that are relevant to its behavior. This reduces complex behaviors to simplified represen-
tations without complex structures such as and-states. Next, we perform a semantic state abstraction as shown in step 3 in
Fig. 4. This is because the CTL and LTL properties defined above refer to control behavior states such as Invoked, or Done,
which may not be present in the operational behavior. Towards this, we match operational behavior states to the corre-
sponding state in the control behavior. For example, if the text-to-speech Web service is invoked in the operational behavior,
Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

10 Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx
this state is abstracted as Invoked. These mappings from operational behavior states to the symbols Na, Re, In, Su, Ab, Pr, Co,
Do, and En are performed at design-time by the user, and are saved into a hash map to be later used in the abstraction algo-
rithm. To further reduce the number of states, we also developed a reduction algorithm, detailed in Section 3.2.1.

A Kripke structure is a nondeterministic finite state machine that is used in model checking to represent system behavior.
In a Kripke structure, the nodes represent reachable states and edges represent state transitions. Labels attached to each
node represent the set of properties that hold in the corresponding state.

Formally, let AP be a set of atomic proposition (e.g., boolean expression over variables, constants and predicate symbols),
a Kripke structure is a 4-tuple expressed as:Mk ¼ hSk; I k;Rk;Lki, where Sk is a finite set of states, I k : I k #Sk, is the set of
initial states, Rk : Rk #Sk � Sk (8s 2 Sk; 9s0 2 Sk, such that ðs; s0Þ 2 Rk), is the transition relation, and Lk : Sk ! 2AP , is a label-
ing function that labels states with atomic propositions from a given language. It defines for each state s 2 Sk the set LkðsÞ of
all atomic propositions that are valid in s. In a Kripke structure, a transition function must be complete, i.e., each state must
have a transition from it. Deadlock states are those in which the state has a single outgoing edge to itself.
3.2.1. Transforming operational behavior to Kripke structures
We propose the following algorithm for automatically translating an operational behavior into a Kripke structure. In our

algorithm, each state sop in the operational behavior is translated to a set of atomic states and transitions in the Kripke struc-
tureMk, in which one or more of the logical properties extracted from the control behavior are true. Each transition is trans-
lated to one or many transitions. If sop is an atomic state, it is translated into exactly one state inMk with the same content. If
sop is a compound state, i.e., a statechart state, two cases exist: (i) sop is a sequential state; (ii) sop is a concurrent state (e.g., an
and-state). In both cases, each atomic state in sop is translated into one state with the same content and all the end states in
sop are translated to one end state in Mk.

In the case of a sequential compound state sop, we keep the sequences of states and the connector is replaced by the next
state or by the first state of the next sequential state or concurrent state. In the case of a concurrent compound state sop, the
concurrent states are simply considered as sequential and the sequence order is selected randomly. This is because in a con-
current state, all the states must be considered but their order is not important, and only the last state in the selected order is
related to the next state by a transition. The number of possible Kripke-like structures thus depends on the number of states
in the concurrent states. However, all executions are equivalent and thus only one structure should be considered. The con-
ditional selections are captured by deterministic transitions. Transitions between atomic states are translated to transitions
between the corresponding states in the Kripke-like structure. Transitions between atomic and sequential states or concur-
rent states are translated into transitions between the atomic state and the first state of the sequential state or concurrent
state.

Fig. 5a shows the Kripke-like model after translating the operational behavior of the translation service in Fig. 1a using the
above translation procedure. The service does not contain any concurrent states and as such the translation is straightfor-
ward. We perform a semantic state abstraction as discussed above, resulting in the model shown in Fig. 5b.

We also introduce a reduction algorithm to reduce the number of states and transitions. The idea is that two states labeled
with the same atomic propositions using the valuation function Lk are equivalent and they can be reduced to only one state.
For all s1 and s2 in the Kripke structure, if s2 is reduced to s1, then:

� If (s1, s2) and (s2, s1) are two transitions, then they are replaced by the transition (s1, s1).
� If only one of the two transitions exists, then it is removed.
� For all x, if (sx, s2) is a transition, then it is removed and replaced by the transition (sx, s1) if such a transition does not exist.
� For all y, if (s2, sy) is a transition, then it is removed and replaced by the transition (s1, sy) if such a transition does not exist.

The reduction algorithm preserves the behavioral semantics of the Kripke structure and Fig. 5c shows the result after
reducing the Kripke-like model in Fig. 5b.
3.3. Symbolic model checking of web service behaviors

In this paper, we exploit symbolic model checking as it reduces state space explosion by avoiding to build or explore the
state space corresponding to the models explicitly. Instead, a symbolic representation is used, based on ordered binary deci-
sion diagrams (OBDDS) or propositional satisfiability (SAT) solvers [10]. This is further enhanced by our Kripke-structure
transformation as discussed above. We employ the NuSMV [9] model checker, which is a software tool for the formal ver-
ification of finite state systems against specifications in the temporal logics LTL and CTL. It is aimed at reliable verification of
industry-size designs, for use as a backend for other verification tools, and as a research tool for formal verification
techniques.

We provide an automatic translation from the Kripe-like structure obtained from the operational behavior to the SMV
(Symbolic Model Verifier) code. This is done by transforming each state in the reduced Kripke structure of the operational
behavior into a case branch in a switch statement. For example, for the reduced Kripke structure in Fig. 5c, we define an
initial state Na, and a switch statement as shown below:
Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

Fig. 5. (a) Model of the translation service, (b) Kripke model of the translation service, and (c) reduced Kripke model of the translation service.

Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx 11

Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

12 Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx
init(state) :¼ Na;
next(state) :¼ case

{state = Re}: In
{state = In}: Ab, Pr, Re
. . .

The code above describes an initial state Na, followed by a decision on the next states depending on the current state. The
code follows closely the graph presented in Fig. 5c and includes all the states in the structure, as shown in Fig. 8. The prop-
erties to be checked are extracted from the control behavior based on the control behavior states and their associated LTL
and CTL properties defined above, are translated into LTL and/or CTL, and then appended to the SMV code.

4. System implementation and experiments

In this section, we describe a prototype implementation of our proposed approach for developing dependable cloud ser-
vices. The implementation and experiments conducted have shown that the ideas proposed in this paper are realizable using
existing technologies.

4.1. Implementation

Fig. 6 shows the architecture of our prototype system, which has been implemented in Java and is based on state-of-the-art
technologies like XML, SOAP, WSDL and symbolic model checking. Service engineers access our system’s CASE-like tool for
cloud services design via a dedicated user interface. Specifically, the ControlBehaviorModeler and the Operational-

BehaviorModeler assist engineers in specifying the control and operational behaviors of a cloud service, respectively. In
the implementation, we extended ArgoUML,3 a leading open source UML modeling tool for behavior specification (see Fig. 7).
Behaviors represented in ArgoUML statechart diagrams are exported as XMI files. The ConversationModeler takes a service’s
behavior specifications (i.e., the XMI files generated by the behavior modelers) as input and produces conversation specifications
as output (that is, the inter-transitions and message sequences between the two behaviors). The respective modeler then
translates all these specifications into XML documents for subsequent processing.

The BehaviorConverter is used to extract the properties from the control behaviors as the LTL and CTL representations
(see Section 3.1), while the BehaviorTranslator takes the responsibility of abstracting the operational behavior into a
Kripe-like structure system model and automatically translating the model into SMV code (see Section 3.2.1). The Model-

Processor then generates the model specifications using the outputs from the BehaviorConverter and the Behavior-

Translator, which will be used as input for the ServiceVerifier to do the model checking of cloud services. In our
implementation, the ServiceVerifier has been implemented using NuSMV2.4

Finally, the ConversationController implements functions to support the conversations between operational and
control behaviors. Specifically, it provides methods for managing conversation sessions, triggering transitions, and commu-
nicating with the ServiceManager, which is responsible for managing and coordinate service execution. Through the Con-
versationController, ModelController, and the ServiceManager, a cloud service engineer can conveniently track
and analyze (if necessary) the service’s execution according to its conversation definition (for example, whether messages
are received and sent in an appropriate order).

It should be noted that we integrated all these features in a single interface. In the interface shown in Fig. 7, we offer a
number of buttons that a service designer can simply click to perform the checking of services design. For example, after the
designer completes her design of a cloud service, she can click the ConversationChecking button and the analysis result
of the conversation messages between control and operational behaviors will be displayed in the bottom left panel. If she
clicks on the ModelChecking button, the model checking process will be triggered and a pop-up window will appear dis-
playing the result (see Fig. 8). The designer also can simulate the execution of the service (see Fig. 9). When the designer is
happy about the service design and clicks on the ServiceDelpoying button, the service specification will be transformed
into executable Web service, represented in BPEL process, using RubyGems 1.0.1.5 The generated BPEL process is then de-
ployed to GlassFishESB 2.1,6 an open source application server, and exposed as a Web service.

4.2. System validation

To evaluate the proposed approach, we conducted experiments using the implemented prototype system. Our experi-
ments focus on studying the performance on detecting design problems in Web services.
3 http://argouml.tigris.org/.
4 http://nusmv.fbk.eu/.
5 http://rubyforge.org/projects/rubygems.
6 http://openesb-dev.org/.

Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://argouml.tigris.org/
http://nusmv.fbk.eu/
http://rubyforge.org/projects/rubygems
http://openesb-dev.org/
http://dx.doi.org/10.1016/j.ins.2012.09.016

Fig. 6. Prototype architecture.

Fig. 7. Specifying service behaviors.

Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx 13

Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

Fig. 9. Simulation of service execution step by step.

Fig. 8. Model checking of service behaviors.

14 Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx
We validated the design of ten Web services including the translation service described in Fig. 1, as well as other
well-known Web service examples such as WeatherWS, a weather information collection service, and TravelWS, a travel
planning Web service. For each Web service, we designed 20 test cases and each test case was designed in a way of inten-
tionally modified with wrong designs (e.g., wrong state in control behaviors, incorrect conversation sequences, properties
not satisfied by specifications). We then ran the system (particularly ServiceVerifier) using these test cases to check
if the design problems are correctly detected. Fig. 10 shows partial results of the conversation checking and model checking
Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

Fig. 10. Verification results on (a) the conversation checking, and (b) fragment of the model checking.

Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx 15
of a particular test case of TravelWS service. In the experiments, our system detected successfully the design problems of all
test cases. Interested readers are referred to [39] for more results on detecting design problems of additional Web services
and test cases.
Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

16 Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx
The experimental results show that our system supports the specification of Web services and can perform automated
checking to detect service design problems. In the future, we plan to conduct more experiments to study further the perfor-
mance (e.g., scalability when services become very complicated) and the usability of the system.
5. Related work

Over the last few years, Web services has been a very active area of research and development [36,40,8,31,4,12,18,26].
Our work proposed in this paper is at the crossing point of several initiatives that examine Web services from different per-
spectives such as conversation, behavior modeling, management, and verification.

From the conversational perspective, two specifications back the added value of conversations to Web services: the Web
Services Conversation Language [3], which describes the external behavior of a Web service in terms of acceptable sequences
to invoke a Web service, and the Web Services Choreography Interface [1], which supports message correlation, message
choreography, and service operation compensation. These specifications focus on examining the surrounding environment
of a Web service, not its internal structure.

From a behavioral modeling perspective, representative specifications include the Semantic Markup for Web Service
(OWL-S,7 formerly DAML-S) and the Web Service Semantics (WSDL-S8) [35]. The former organizes the description of a Web
service along three categories, namely profile (what it does), process model (how it operates internally), and grounding (how
it accepts requests), while the latter provides a lightweight approach for creating semantic descriptions of Web services.
Unfortunately, verifying the design of Web services is not discussed in these specifications. From a management perspective,
there exist a good number of specifications. For instance, the W3C Web Services Architecture Working Group suggests the life
cycle of a Web service, and how this Web service processes requests.9

Our approach stresses the (intra-) conversation sessions that Web services initiate and thus, goes beyond the simple use
of conversations as an interaction means. In particular, we (i) separate the operational and control behaviors of Web services,
(ii) specify conversation-based mechanisms that synchronize these behaviors, (iii) develop performatives to implement
these conversations, and (iv) develop an automated symbolic model checking approach for verifying service design. Com-
pared to the aforementioned conversation specifications and existing research initiatives on Web service conversations
[4,24,12,16], this is the first work that the operational and control behaviors are combined and made accessible (interactible)
to each other through conversations. It is noted that some existing initiatives focus on either the operational behavior (e.g.,
[4]) or the control behavior (e.g., [24]) of Web services, while other works do not even acknowledge the existence of these
behaviors.

Verification of Web services has become an active research topic recently. In [29], the authors propose to verify the
Atomic Transaction Protocol (WS-AT) using UPPAAL. The verification aims at ensuring that coordinations of Web services
reach an agreement on the outcome of a distributed transaction. In [12,13], the authors proposed an approach to verify
Web services specified in a Petri net model. Their tool can be used to check that Web services satisfy LTL properties. In their
approach, BPEL specifications are converted into guarded automata, which are then translated into Promela language and
checked in the SPIN model checker [15]. Hull and Su present several composition models in [16] including the Roman model,
and the Mealy conversation model. They also give techniques for analyzing Web services by translating services into formal-
isms that are suitable for analysis (e.g., state machines are extended to mealy machines and process algebra). In [32], the
authors propose a framework to check behavioral correctness of the Web services by monitoring runtime conversations
between partners. They exploit a subset of UML 2.0 Sequence Diagrams as a property specification language to capture safety
and liveness properties. Although these verification approaches are similar to ours, our work has several advantages. The
verification in our approach is based on separating behaviors and symbolic model checking (NuSMV). Compared to
automata-based techniques, our symbolic model checking approach does not suffer from the state explosion problem. In
addition, our approach can check not only LTL specifications, but also CTL specifications.

Finally, in [34], the authors show the importance of asynchronous messaging in sharing information and resources in the
form of Web processes. Web service interaction models are formalized into a conversation concept with ordering constraints
on messages. FIFO queues are considered in the design of message passing between services. In terms of verification, only
some abstract strategies of model checking service composition for both bottom-up and top-down design approaches are
outlined. However, the detailed analysis or implementation of these strategies are not provided.
6. Conclusion

With the increasingly rapid adoption of cloud computing during the past few years, more and more cloud services will be
available in the near future. Unfortunately, techniques on developing dependable Web services, which underpin the devel-
opment of flexible and reliable cloud services, are still not fully mature yet. In this paper, we have presented a novel ap-
proach that supports dependable development of Web services. In particular, we introduced a new Web service model
7 http://www.w3.org/Submission/OWL-S.
8 http://www.w3.org/Submission/WSPL-S.
9 http://www.w3.org/TR/2004/NOTE-wslc-20040211.

Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/WSPL-S
http://www.w3.org/TR/2004/NOTE-wslc-20040211
http://dx.doi.org/10.1016/j.ins.2012.09.016

Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx 17
that separates service behaviors into operational and control behaviors. The coordination of operational and control behav-
iors at runtime is facilitated by conversational messages. This richer description of Web services offers a number of advan-
tages such as easy maintenance and better testing, analyzing, and debugging. We also proposed an automated service
verification approach based on symbolic model checking. Our approach extracts the checking properties, in the form of
LTL and/or CTL formulas, from control behaviors, and automatically verifies the properties in operational behaviors. The ap-
proach presented in this paper has been implemented using a number of state-of-the-art technologies and is fully functional.
We conducted experimental studies to validate the feasibility of our approach. Experimental results show that our approach
can correctly detect design problems in Web services. Given that testing and debugging tasks are still difficult and early
detection can help address problems at design time, the techniques proposed in this paper can be extremely valuable in
practice.

The encouraging results from our work so far are stimulating a number of further researches to extend the current pro-
totype. Firstly, we will investigate the restrictions that transactional properties, e.g., pivot and retriable, would put on the
behaviors of a Web service. For instance, if the translation service is declared as pivot, then the number of sync messages
that the operational behavior could submit to the control behavior needs to be limited to one. As a result, this will make
the use of other sync messages or syncreq messages prohibited. This prohibition has to be reflected on the conversation ses-
sions along with their respective sequences of conversational messages. Secondly, we also plan to extend our approach to the
composition of Web services, an important technology for integrating complex cloud applications. Finally, we will conduct
more experiments to further study the performance (e.g., scalability and usability) of our system for services verification.
Acknowledgment

Quan Z. Sheng’s work has been partially supported by Australian Research Council (ARC) Discovery Grant DP0878367. The
authors thank the anonymous reviewers for their valuable feedback on this work.
References

[1] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi, D. Orchard, S. Pogliani, K. Riemer, S. Struble, P. Takacsi-Nagy, et al., Web Service Choreography
Interface (WSCI) 1.0. <http://www.w3.org/TR/wsci/>.

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing,
Communication of the ACM 53 (4) (2010) 50–58.

[3] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govindarajan, A. Karp, H. Kuno, M. Lemon, G. Pogossiants, S. Sharma, et al., Web Services
Conversation Language (WSCL) 1.0. <http://www.w3.org/TR/wscl10/>.

[4] B. Benatallah, F. Casati, F. Toumani, Web service conversation modeling: a cornerstone for e-business automation, IEEE Internet Computing 8 (1) (2004)
46–54.

[5] Beatrice Berard, Michel Bidoit, Alain Finkel, Francois Laroussinie, Antoine Petit, Laure Petrucci, Philippe Schnoebelen, Systems and Software
Verification. Springer Link, 2001.

[6] S. Bhiri, O. Perrin, C. Godart, Ensuring required failure atomicity of composite web services, in: Proc. of the 14th International World Wide Web
Conference (WWW 2005), Chiba, Japan, 2005.

[7] S. Bourne, C. Szabo, Q.Z. Sheng, Ensuring well-formed conversations between control and operational behaviors of web services, in: Proc. of the 10th
International Conference on Service-Oriented Computing (ICSOC 2012), Shanghai, China, November 2012.

[8] G. Castagna, N. Gesbert, L. Padovani, A theory of contracts for web services, ACM Transactions on Programming Languages and Systems 31 (5) (2009)
19.

[9] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella, Nusmv 2: an opensource tool for symbolic model
checking, in: Proc. of International Conference on Computer-Aided Verification (CAV 2002), Copenhagen, Denmark, July 2002.

[10] E.M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.
[11] J. Domingue, D. Fensel, Toward a service web: integrating the semantic web and service orientation, IEEE Intelligent Systems 23 (1) (2009) 86–88.
[12] X. Fu, T. Bultan, J. Su, Analysis of interacting BPEL web services, in: Proc. of the 13th International World Wide Web Conference (WWW 2004), New

York, NY, USA, May 2004, pp. 621–630.
[13] X. Fu, T. Bultan, J. Su, Synchronizability of conversations among web services, IEEE Transactions on Software Engineering 31 (12) (2005) 1042–1055.
[14] D. Harel, A. Naamad, The STATEMATE semantics of statecharts, ACM Transactions on Software Engineering and Methodology 5 (4) (1996) 293–333.
[15] G.J. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison-Wesley, 2003.
[16] R. Hull, J. Su, Tools for composite web services: a short overview, ACM SIGMOD Record 34 (2) (2005) 86–95.
[17] Y. Kambayashi, H.F. Ledgard, The separation principle: a programming paradigm, IEEE Software 21 (2) (2004) 78–87.
[18] M. Kovas, J. Bentahar, Z. Maamar, H. Yahyaoui, Formal verification of conversations in composite web services, in: Proc. of the 8th International

Conference on Software Methodologies, Tools and Techniques (SoMeT 2009), Prague, Czech Republic, 2009.
[19] S. Kripke, Semantical considerations on modal logic, Acta Philosophica Fennica 16 (1963) 83–94.
[20] J. Li, J. Huai, C. Hu, Y. Zhu, A secure collaboration service for dynamic virtual organizations, Information Sciences 180 (17) (2010) 3086–3107.
[21] X. Li, Y. Fan, Q.Z. Sheng, Z. Maamar, H. Zhu, A petri net approach to analyzing behavioral compatibility and similarity of web services, IEEE Transactions

on Systems, Man, and Cybernetics, Part A 41 (2) (2011) 1–12.
[22] M. Little, Transactions and web services, Communications of the ACM 46 (10) (2003) 49–54.
[23] Z. Maamar, N. Narendra, D. Benslimane, S. Subramanian, Policies for context-driven transactional web services, in: Proc. of International Conference on

Advanced Information Systems Engineering (CAiSE 2007), Trondheim, Norway, June 2007.
[24] Z. Maamar, Q.Z. Sheng, B. Benatallah, Towards a conversation-driven composition of web services, Web Intelligence and Agent Systems 2 (2) (2004)

145–150.
[25] A.A. Nyre, M.G. Jaatun, Privacy in a semantic cloud: what’s trust got to do with it? in: Proc. of the First International Conference on Cloud Computing

(CloudCom 2009), Beijing, China, December 2009.
[26] E.K. Ozorhan, E.K. Kuban, N.K. Cicekli, Automated composition of web services with the abductive event calculus, Information Sciences 180 (19) (2010)

3589–3613.
[27] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented computing: state of the art and research challenges, IEEE Computer 40 (11)

(2007) 38–45.
Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://www.w3.org/TR/wsci/
http://www.w3.org/TR/wscl10/
http://dx.doi.org/10.1016/j.ins.2012.09.016

18 Q.Z. Sheng et al. / Information Sciences xxx (2012) xxx–xxx
[28] S. Paquette, P.T. Jaeger, S.C. Wilson, Identifying the security risks associated with governmental use of cloud computing, Government Information
Quarterly 27 (3) (2010) 245–253.

[29] Anders Ravn, Jiri Srba, Saleem Vighio, A formal analysis of the web services atomic transaction protocol with UPPAAL, in: Proceedings of the 4th
International Conference on Leveraging Applications of Formal Methods, Verification, and Validation, 2010, pp. 579–593.

[30] B. Rochwerger et al, Reservoir-when one cloud is not enough, IEEE Computer 44 (3) (2011) 44–51.
[31] Q.Z. Sheng, Z. Maamar, H. Yahyaoui, J. Bentahar, K. Boukadi, Separating operational and control behaviors: a new approach to web services modeling,

IEEE Internet Computing 14 (3) (2010) 68–76.
[32] J. Simmonds et al, Runtime monitoring of web service conversations, IEEE Transactions on Services Computing 2 (3) (2009) 223–244.
[33] S. Srinivasan, V. Getov, Navigating the cloud computing landscape-technologies, services, and adopters, IEEE Computer 44 (3) (2011) 22–23.
[34] J. Su, T. Bultan, X. Fu, Web service interactions: analysis and design, in: Proc. of the Fifth International Conference on Computer and Information

Technology (CIT 2005), Shanghai, China, September 2005.
[35] K. Verma, A.P. Sheth, Semantically annotating a web service, IEEE Internet Computing 11 (2) (2007) 83–85.
[36] M. Vieria, N. Laranjeiro, H. Madeira, Benchmarking the robustness of web services, in: Proc. of the 13th International Symposium on Pacific Rim

Dependable Computing (PRDC 2007), Melbourne, Australia, December 2007.
[37] Y. Wei, M.B. Blake, Service-oriented computing and cloud computing: challenges and opportunities, IEEE Internet Computing 14 (6) (2010) 72–75.
[38] W. Yang, S. Tang, A solution for web services transaction, in: Proc. of the 1st International Conference on Hybrid Information Technology (ICHIT 2006),

Jeju Island, Korea, November 2006.
[39] L. Yao, A novel approach to automatic verification of web service design, Masters Thesis, School of Computer Science, The University of Adelaide, 2010.
[40] Q. Yu, X. Liu, A. Bouguettaya, B. Medjahed, Deploying and managing web services: issues, solutions, and directions, The VLDB Journal 17 (3) (2008)

537–572.
[41] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research challenges, Journal of Internet Services and Applications 1 (1) (2010) 7–

18.
Please cite this article in press as: Q.Z. Sheng et al., Behavior modeling and automated verification of Web services, Inform. Sci. (2012),
http://dx.doi.org/10.1016/j.ins.2012.09.016

http://dx.doi.org/10.1016/j.ins.2012.09.016

	Behavior modeling and automated verification of Web services
	1 Introduction
	2 Service behavior model
	2.1 Operational and control behaviors
	2.2 Connecting control and operational behaviors
	2.3 Types and structure of conversational messages
	2.4 Sequence of conversational messages

	3 Verification of control and operational behaviors
	3.1 Extracting properties from control behaviors
	3.2 Kripke-structured operational behavior
	3.2.1 Transforming operational behavior to Kripke structures

	3.3 Symbolic model checking of web service behaviors

	4 System implementation and experiments
	4.1 Implementation
	4.2 System validation

	5 Related work
	6 Conclusion
	Acknowledgment
	References

