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Abstract. We use a variant of learning vector quantization (LVQ) for
extracting a rule based characterization of given labeled mixed domain
data. Thereby, standard LVQ is improved to not only a more stable pro-
totype calculation mechanism, but also to automatic detection of the
importance of the different input data components by implementing an
adaptive metric. This component weighting is related to the importance
of certain components for providing a good data classification, and the
obtained component ranking is then used to generate a classification tree
from the prototypes by calculating natural splits of the input space.
We present the generalized relevance vector quantizer (GRLVQ), its ex-
tension, supervised neural gas (SRNG), and we show how both methods
can be used for extracting so called BB-classification trees and rules from
data. Artificial data, data from the UCI repository, and linguistic data
are used in our experiments. Since the data domains might be a mix-
ture of real values, integers, and discrete nominal data, we also discuss
appropriate preprocessing techniques.

1 Introduction

In machine learning we find the principle paradigms: rule based data represen-
tation and soft distributed representation.
Rule based descriptions are particularly well suited for labeled symbolic data,
since frequency and information measures can be obtained from their discrete
domains in a straightforward manner without prior partitioning. Usually, for
symbolic data an explicit ordering scheme is given, like rule inference, which can
be represented as data driven decision tree with labeled leaves [1, 2]. Classic pro-
grams like FOIL [3] and GOLEM [4] both provide an induction of Horn clauses
from data, but the domain of ILP has been extended to dynamic hypothesis
generation [5], learning recursive logic [6], and program synthesis [7, 8].
Soft representations are especially suitable for real value data, because the nat-
ural order of numbers allows to approximate data by in-between and nearby



states. The canonic coding is a flat vector format, which is used in several statis-
tical and neural data modeling approaches. Many of these methods try to catch
the data characteristics using regression techniques and provide some kind of
factor analysis for revealing the relationships between the data vectors’ compo-
nents. Traditional techniques such as the principle component analysis (PCA)
fail for a proper description of multi-modal or nonlinear or labeled data.
Self-organizing maps [9] have been proposed as a density based nonlinear neural
alternative to PCA [10]. The training resembles cortical activity: similar high
dimensional stimuli are mapped to neighboring neurons located in a low dimen-
sional grid of neurons. Naturally, the unsupervised similarity-based ordering of
the map crucially depends on the metric used for comparing the high dimen-
sional input. Recent work proposes a recursive design of self-organizing maps
[11], incorporates an adaptive metric into [12]; also some work about rule ex-
traction can be found [13], and even labeled structured data is dealt with [14].
These advances make the self-organizing maps (SOM) an interesting research
field.
Closely related to the SOM are the learning vector quantizers (LVQ). Like SOM,
they also provide a similarity based Hebbian update mechanism, but they are
a priori designed for handling labeled data, and they are prototype based and
thus do not require a grid of neurons with uncertain topology. For these reasons,
we take LVQ as a root technology that we extend by an adaptive metric for
learning the data representation.
In an additional step, we use trained LVQ networks for inferring logical rules
of controllable complexity. This topic, rule extraction from neural networks, has
been at stagnation for the last few years, but very recent work of Duch et al.
about special multilayer perceptrons (C-MLP2LN) has brought this issue back
into discussion [15]. Related work to rule extraction from neural networks has
been done by Tickle et al. [16] and Andrews et al. [17], and encoding in neural
networks is realized by the hybrid SHRUTI [18], BRAINN [19], and the recursive
BUR architecture [20]. Contrary to graphs or multilayer networks, our focus lies
on first order rule extraction in combination with the LVQ classification algo-
rithm. Thus, integrating soft and crisp representation, we set the foundations
for realizing a hybrid data model.

2 Learning Vector Quantization and Beyond

The original LVQ algorithm was developed by Kohonen [9]. LVQ is an Hebbian
style supervised learner with prototypes competing for the classification of in-
put space regions according to the regions’ most prominent class occurrence:
prototypes responsible for a certain class try to maximize their classification ac-
curacy by adapting their locations within the data points until a good position
is reached. This dynamic is referred to as a self-organizing process, and, since
prototypes compete for maximizing the similarity to data points of their own
class, this winner-take-all dynamic is referred to as neural self-organization with
lateral inhibition.



Several versions of the prototype update strategy exist, and they are known as
LVQ1, LVQ2, LVQ3, or OLVQ, which differ in robustness and the rates of con-
vergence. A crucial step in the design of an appropriate update rule is the choice
of a similarity measure which is a distance metric to determine which data points
are located in the neighborhood of a prototype. An intuitive cost function for
quantifying the goodness of fit for the prototypes is the sum of distances of all
data points to their nearest correct prototype: if for a given prototype set the
overall sum is at minimum, we expect a good classification. In most cases, a new
data point with unknown class should then be mapped to its correct class by its
closest prototype. Therefore, we use an update rule for the prototype locations
which is based on a cost function for which a gradient descent can be formulated
as suggested in [21].
In order to also determine the relevance of the input vectors’ components we sup-
ply variable weighting factors to the distance metric. Since this adaptive metric
is nested in the cost function, we can obtain the factors by a gradient descent on
the cost function as well. The technical details how both the prototype locations
and the global metric are adapted will be given below.
Our training procedure, the iterative minimization of the cost function, can be
outlined as follows: (a) presentation of a labeled data point from the training
set, (b) determination of the closest correct prototype and the closest wrong
prototype, (c) realizing a stochastic online gradient descent for the prototype
locations by moving the correct prototype towards the given point and moving
the closest wrong prototype away, and (d) adaptation of the metric weighting
factors using the formulas for the gradient descent. After training, small weight-
ing factors indicate input dimensions which are irrelevant for the classification,
and the data set may be projected to only important components.
Furthermore, the remaining ranked components can be used to calculate splits of
the input space: with decreasing importance, the midpoints between according
prototype components hierarchically separate the data space into hypercubes
for which the class membership is known. Finally, since paths in the split chain
represent and-decision rules pointing to hypercubes, rule simplification can be
obtained by merging those hypercubes belonging to the same class [25]. This
combination leads to or-concatenations of the and-rule chains, where trivial
merges with shared edges can be further reduced by just extending the respec-
tive cube boundaries.
The following subsections provide an overview of the formal aspects of our pro-
posed LVQ variants and the rule extraction procedure: we briefly review the two
related algorithms GRLVQ [22] and SRNG [23], and the procedure to obtain a
BB-classification [24] tree and a possibly simplified set of rules.

2.1 Generalized Relevance Learning Vector Quantization (GRLVQ)

Let’s consider the clustering task for a set of training data X = {(xi, yi) ∈
Rn × {1, . . . , C} | i = 1, . . . ,m} for n-dimensional items xk = (xk

1 , . . . , xk
n) to

C classes. For these classes a set of prototypes W = {w1, . . . , wK} in Rn is
chosen, wi = (wi

1, . . . , w
i
n, ci), with class labels ci attached to the prototypes’



locations. The classified region, the receptive field Ri, of prototype wi is given
by any point x nearer to wi than to any other prototype: if d(x, y) denotes an
inter-point distance ignoring class labels, then Ri = {x ∈ Rn | ∀wj (j 6= i →
d(x,wi) ≤ d(x,wj))}.
Here, we implement an adaptive Euclidean metric d(x, y) =

√∑

i λi(xi − yi)2,
with scaling factors λi ≥ 0 for which

∑

i λi = 1. The cost function to be mini-
mized is

CGRLVQ :=
m

∑

i=1

sgd
(

µλ(xi)
)

where µλ(xi) =
d+

λ (xi)− d−λ (xi)
d+

λ (xi) + d−λ (xi)
.

sgd(x) = 1/(1 + exp(−x)) is the logistic function. d+
λ (xi) = d2

λ(xi, wi+) is the
squared weighted Euclidean distance of xi to the nearest prototype wi+ with the
same class as xi, and d−λ (xi) = d2

λ(xi, wi−) is the distance of xi to the nearest
prototype wi− of a different class. The update formulas for the closest correct and
the closest wrong prototype and the metric weights, respectively, are obtained
by taking the derivatives of the above cost function:

4wi+ =
4ε+sgd′(µλ(xi))d−λ (xi)

(d+
λ (xi) + d−λ (xi))2

· Λ · (xi − wi+)

4wi− =
−4ε−sgd′(µλ(xi))d+

λ (xi)
(d+

λ (xi) + d−λ (xi))2
· Λ · (xi − wi−)

4λj =
−2ε sgd′(µλ(xi))

(d+
λ (xi) + d−λ (xi))2

(

d−λ (xi)(xi
j − wi+

j )2 − d+
λ (xi)(xi

j − wi−
j )2

)

Λ is the diagonal component weight matrix with entries λ1, . . . , λn; the non-
negative adaptation rates are ε+, ε− and ε.
The update mechanism reflects Hebbian learning style by the difference terms
(xi−wi−|+). Setting the weighting factors λi fixed to 1/n yields generalized LVQ
(GLVQ). For variable λi as above we also obtain relevance adaptation for the
input dimensions, which is a generalized relevance learning vector quantization
algorithm, GRLVQ in short [22].

2.2 Supervised Relevance Neural Gas (SRNG)

No word has yet been said about prototype initialization: since GRLVQ ’pulls’
correct prototypes and ’pushes away’ wrong prototypes, attention must be payed
to the case of prototype configurations, for which well fitted prototypes prevent
badly fitted from reaching their data cluster; implicitly, the dislocated prototypes
might be pushed away, barricaded by the well located to access better regions. In
high dimensions with many degrees of freedoms, such suboptimal cases for which
attraction and repulsion are at equilibrium are rare. Nevertheless, convergence
is significantly faster for fairly initialized prototypes, and a way to achieve this
is discussed in the following.



A common method for prototype based density representation of unlabeled data
is given by the neural gas (NG) algorithm [26]. The essential idea is to adapt
the NG prototypes according to a neighborhood ranking: the nearest prototype
to a presented data point is adapted strongest, while the most distant prototype
is affected weakest. This kind of neighborhood cooperation is now incorporated
into GRLVQ.
For a class given by a training pattern, the class-related prototypes perform rank
based updates according to GRLVQ towards this pattern, and the closest wrong
prototype is again pushed away. As a result, prototypes spread over the data
according to a combination of the density based neural gas and the GRLVQ
active class separation.
Given mathematical shape, using W (yi) the set of prototypes with label yi of
cardinality Ki, the cost function becomes

CSRNG =
m

∑

i=1

∑

wj∈W (yi)

hσ(kj(xi,W (yi))) · sgd(µλ(xi, wj))/h(Ki) ,

µλ(xi, wj) =
d2

λ(xi, wj)− d−λ (xi)
d2

λ(xi, wj) + d−λ (xi)
.

hσ(x) = exp(−x/σ) controls the neighborhood interaction. The degree of neigh-
borhood cooperation σ > 0 is decreased to 0 during training to fade over from
coarse global ordering to fine local adaptation. kj(xi, W (yi)) ∈ {0, . . . , Ki − 1}
denotes the rank of wj in W (yi) for prototypes sorted by the distances dλ(wk, xi).
For normalizing purposes, we apply the inverse of h(Ki) =

∑Ki−1
j=0 hσ(j) to the

cost function. For small neighborhoods CGRLVQ is really an instance of CSRNG,
because limσ→0 CSRNG = CGRLVQ.
Again, the learning rule is obtained by taking the derivatives of the cost function.
Given a training pattern (xi, yi), all wj ∈ W (yi), the closest wrong prototype
wi− , and the factors λk are adapted:

4wj =
4ε+ sgd′(µλ(xi, wj)) hσ(kj(xi,W (yi))) d−λ (xi)

(dλ(xi, wj) + d−λ (xi))2 h(Ki)
· Λ · (xi − wj)

4wi− = −4ε−
∑

wj∈W (yi)

sgd′(µλ(xi, wj)) hσ(kj(xi,W (yi))) d2
λ(xi, wj)

(d2
λ(xi, wj) + d−λ (xi))2 h(Ki)

· Λ · (xi − wi−)

4λk = −2ε
∑

wj∈W (yi)

sgd′(µλ(xi, wj)) hσ(kj(xi,W (yi)))
(d2

λ(xi, wj) + d−λ (xi))2 h(Ki)
·

(

d−λ (xi)(xi
k − wj

k)2 − d2
λ(xi, wj) (xi

k − wi−
k )2

)

As desired, for σ → 0 GRLVQ is re-obtained (after some calculation).
The training of a given data set can be done in several modes: prototype adap-
tation only, relevance λ adaptation only, or both combined. Empirically, it turns
out that keeping the λi fixed at the beginning and releasing them after a number
of training cycles on a time scale larger than the prototype adaptation process,
i.e. ε << ε+|−, this will provide a good characterization of how relevant input
dimensions are for the more or less settled prototypes.



2.3 BB-Trees: From Prototypes to Rules

We need the following ingredients for turning a trained GRLVQ or likewise a
SRNG network into a decision tree: properly located prototypes and a ranking
of the relevances of the input. Roughly speaking, we use the locations of the
prototypes as centers for axes parallel bounding boxes enclosing the data points.
Due to the ranking, though, we only need to take the most relevant dimensions
into consideration. In a recursive manner, starting at the root node, we assemble
a tree with these properties: each node N of the tree may possess an arbitrary
number CN of children; an interior node N is labeled by an index IN ≤ n and
real values WN

1 < . . . < WN
CN−1; each leaf L is labeled with a class number

CL ≤ C.
Now, classifying a data point requires taking a decision at each interior node
which child-related path to follow. This is accomplished by projecting the point
to its IN th dimension and selecting the surrounding interval from the node’s
ordered list of real numbers. Since an interval refers to the next child node, the
point successively percolates to a leaf node containing the class label, and the
classification for this point is done.
For efficient tree construction it is a good idea to discriminate the most selective
dimensions first; these are easily available by ranking the trained GRLVQ/SRNG
dimensions’ metric weights. The nodes’ real number entries, the interval borders,
are given by the midpoints of adjacent prototypes projected to the current di-
mension.
Putting all together we formulate the BB-tree generator with these arrange-
ments: Λ is the list of indices i sorted according to the magnitude of the weight-
ing factors λi; first(Λ) denotes its first entry, rest(Λ) the rest of the list; X
denotes the training set and W is the set of prototypes. For reasons of efficiency,
we assume that all dimensions i which, due to a small weighting factor λi, do
not contribute to the classification are ignored, and all prototypes with empty
receptive fields are removed before starting the following procedure:

BB-Tree (X,W ,Λ):
if STOP: output a leaf with class argmaxc|{xi | yi = c, (xi, yi) ∈ X}|
else: output an interior node N with |W | children,

choose IN := first(Λ),
compile a sorted list [a1, . . . , a|W |] from {wi

IN | wi ∈ W}
choose WN

i := (ai + ai+1)/2, i = 1, . . . , |W | − 1 (∗)
choose the i th child of N , i = 1, . . . , |W |, as the output of

BB-Tree ({(x, y) ∈ X | xIN ∈ (WN
i−1,W

N
i ]}, W , rest(Λ) • [first(Λ)])

As indicated by the list concatenation operator • and the recursive formulation,
the height of the tree is technically not limited by the number ñ of dimensions
accounted for in the rank list. Instead, the stopping criterion STOP controls the
tree’s height and thus the length of the rule chains. In our experiments, we stop
if the tree is higher than nS ≤ ñ, empirically choosing nS according to satisfy-
ing classification results for both training and test set, without producing too



many rules. Other stopping criteria are useful, when smarter alternatives to the
midpoint interval calculation are considered which prevent recursive repetitions
of the same intervals; then, trees higher than ñ of possibly arbitrary accuracy,
though higher granularity and lower generality, might be obtained, which must
be the subject of further investigations.

Rule Simplification As said before, single paths in the tree correspond to a rule of
and-combined decisions which is equivalent to hypercube based representation.
Different cubes containing the same class can be merged by or, which in adjacent
cases can be achieved by interval extension. Also, disjoint cubes of the same class
can be merged to their convex hull, if only a negligible amount of points belonging
to other classes is located in this region.

3 Experiments

In order to shed light on how our approach performs on different kind of data, we
use (a) an exclusively real-value artificial multi-modal data set, (b) discrete nom-
inal data, the mushroom data from the UCI repository learning repository [27],
and (c) discrete linguistic data concerning the diminutive prediction in Dutch,
and (d) a mixture of real and boolean data, the hypothyroid data, also from
the UCI repository. Prototypes and the metric weights have been determined by
means of the SRNG algorithm.

3.1 Data Preparation

Some data preprocessing is useful before applying SRNG. Since real-life data,
seldom live in the product space D × D . . . × D of the single domain R, but
appears as a mixture D1×D2 . . .×Dn of different domains Di, it is necessary to
render data into the Euclidean space for establishing compatibility with the used
adaptive Euclidean metric. For nominal data we suggest the unary bit encoding
to represent the k different states of the concerned input dimension. Thus, all
states span a simplex in Rk, and the Hebbian term in the prototype update
makes sure, that prototypes with valid initialization remain on the simplex’ sur-
face.
As will be demonstrated below, it might be advisable to visually inspect the data
scatter plot matrix for continuous components. This will reveal relationships be-
tween pairs of data dimensions. Especially, class separability might be enhanced
by a logarithmic transforms of exponential correlations, or double logarithmic
transforms in the presence of power laws; both types of relationships are rather
common for medical and real-life data.
Many training data sets exhibit strong asymmetries concerning the number of
points for a certain class. This situation would yield a biased prototype update
for GRLVQ and SRNG, because the frequent presentation of data points from
the largest class would implicitly push away prototypes for smaller classes in
the neighborhood. Therefore, the training set should be augmented to obtain a
balanced class representation.
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Fig. 1. Data preparation. Left: scatter plot of original data, hypothyroid features TSH
versus T3. Right: same data after logarithmic and z-transform.

Normalization is suggested in the final preparation step. Rescaling the data
components to the interval [0, 1] is not tolerant to outliers, therefore, mean sub-
traction followed by rescaling the standard deviation to 1 is preferred, which is
in statistics is known as z-transform. The mean and standard deviation for each
dimension are saved for being applied to the test sets and to new data, and for
reconverting the obtained rule interval boundaries back to the original domain.
In figure 1 the positive effect of transforms becomes visible, exemplary for two
features of the hypothyroid data used later. In the left plot, the data points
are not well spread over the two dimensions, but they are clustered in a linear
axes-parallel shape: roughly, the attribute ’normal function’ is located near the
left axis, ’compensated hypothyroid’ states are near the lower left corner, and
the ’primary hypothyroid’ mode is rather at the bottom line. This point config-
uration is not suitable to be captured and separated into the three classes by
the receptive fields, the Voronöı regions, of only few data prototypes.
The right plot shows the same data spreading faithfully in the plane after tak-
ing the logarithms, followed by a z-transform. Class clusters are turned into a
more circular shape which is good for the prototype representation. The hori-
zontal and vertical structures display the recording threshold, the resolution of
the data set. At a glance, the data can still hardly be separated, but since there
are more dimensions left in the data set, we expect that taking all of them into
consideration will improve the prototype based description.
A benefit of relevance based clustering is that transformed data can just be
added as new dimensions to the data, and if these dimensions turn out to be
worthless for the separation task, their metric weight factors just vanish.

3.2 Artificial Data

As a first test, we use an artificial data set with overlap. We embed points in R10

as follows: starting with points (x1;x2), we add 8 dimensions obtaining points



(x1; . . . ;x10). We choose x3 = x1 +η1, . . . , x6 = x1 +η4 , where ηi is distributed
according to Gaussian noise, with variances 0.05, 0.1, 0.2, and 0.5; x7, . . . , x10
contain randomly scaled white noise. This generator has been used to produce a
multi-modal distribution for 3 classes. Then, data has been z-transformed and
trained with SRNG.
A number of 3 prototypes per class has been used, and the training parameters
have been set to ε+ = 0.1, ε− = 0.05 and ε = 10−5 with an initial neighborhood
size of 9 that rapidly decayed to zero. Several training runs with 10,000 epochs
produced an average accuracy of 85%, and the best of which with 93% has been
used for rule extraction. Its weighting factors λi display a typical result for the
runs: λ = (0.27; 0.45; 0.28; 0; 0; 0; 0; 0; 0; 0). These values show that the important
first two data dimensions are clearly separated, and also the small variance of
0.05 on the first component for the 3rd component has no negative effect on the
classification.
A projection of the data to the two generating dimensions is plotted in figure 2.
Moreover, the prototypes with training adaptation steps, as well as the extracted
hypercubes are shown. From an extracted BB-tree of height 3, we have obtained
14 rules, which in a second step have been automatically reduced to a number
of 6. Thereby, pairs of related hypercubes have been arranged in a hierarchy
of unions in a binary tree and checked according to decreasing classification
accuracy. Note, that neighboring boxes for the same class can merge without
increasing the misclassification to more than the sum of the two, and also empty
space might be bridged between disjoint rules. Manually, two more rules could
be taken away by formulating an else-case for the (+)-shaped class, thus leading
to a total number of 4 cubes, shown as projections in plot 2. The overall accuracy
for this set of rules is 81.7%, which is lower than for the original trained SRNG,
because axes parallel cuts usually do harm on overlapping classes, as in the
present case. Here, convex receptive fields of the prototypes seem more suitable
for the classification. Taking a second look on the boxes, though, reveals that
the midpoint-between-prototype criterion could be refined in order to calculate
cube boundaries that catch still more data.

3.3 Mushroom Data

The mushroom data set from the UCI repository consists of 8,124 vectors, each
with 22 symbolic attributes, some of which are binary, others taking up to 12 dif-
ferent values. These attributes have been converted by unary encoding into vec-
tors of dimension 117 and then z-transformed. The two class labels are ’e=edible’,
which represents 51.8% of the data, and 48.2% of ’p=poisonous’ examples. 75%
of this data set has randomly been taken for training, 25% for validation.
In a first training step over 1,000 epochs, 10 prototypes were used for each class
with learning rates ε+ = 0.1, ε− = 0.05 with no weight adaptation ε = 0, an-
nealing the neighborhood size from 10 to almost 0. Calculating the number of
data in the receptive fields showed, that 5 of the prototypes could be removed
without significantly affecting the classification accuracy of roughly 92%, thus 3
prototypes were left for the poisonous case and 2 for the edible. Then, training
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Fig. 2. Artificial data set with 3 classes, projected to its 2 original dimensions. Tiny
symbols: data points. Medium symbols: initial prototype coordinates. Largest symbols:
converged prototype locations. Dotted trajectories: paths of prototypes during training.
Also shown: rule interval boundaries.

was refined with ε+ = ε− = 0.075, ε = 10−7, and an initial neighborhood size
of practically zero. Tenfold cross-validation produced classification accuracies ≥
97.5% on the test data. The best set of prototypes with its metric weights λi

produced 98.7% accuracy, and it has been used for the BB-tree extraction pro-
cedure.
The relevances for the different components are shown in figure 3. Within the
odor feature block, feature number 28, corresponding to odor:’none’ out of
9 alternatives, displays highest discrimination ability. This feature is followed
by 41.gill-color:’buff’, 37.gill-size:’narrow’, 36.gill-size:’broad’, 101.spore-print-
color:’chocolate’, 22.bruises:’no’, 21.bruises:’yes’, 95.ring-type:’pendant’, 93.ring-
type:’large’, and 27.odor:’foul’, respectively. Obviously, for binary items like the
bruises, both possible states complement each other.
The relevances are also reflected in the final set of rules which have been ex-
tracted for a BB-tree of height 6 and compiled in table 1. These rules explain
97.2% of the test set and 97.5% of the training set. A portion of 88.7% of the
data can be classified using the single rule odor = ’none’ → e, because the one
conflicting rule accounts for only for 0.1% of the data. Still, redundancies are
visible in the set of rules, because the gill-size attribute appears twice. At this
point, the automatic rule simplification algorithm could not handle the don’t
care state (-), which will be improved in future.
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Fig. 3. Adapted weight factors λ1≤i≤117 for the mushroom data. Different line styles
and points indicate the membership to the 22 different attributes.

By means of the 4 rules for the edible case, using 6 components, we obtain a
good data representation; the poisonous class is subsumed in the else case. Our
findings are not quite as good as compared to the results of Duch et al. [15],
who with 3 rules and 5 components obtain 100% accuracy. But interestingly, we
have found the same important attributes: odor, gill-size, and spore-print-color.

3.4 Linguistic Data

In a preliminary test, we compared the SRNG-with-rule-extraction procedure
to the nearest neighbor classifier TiMBL [28], which has been designed for the
induction of linguistic knowledge. The TiMBL package supplies a test set with
SAMPA coded syllable information of Dutch words, for which one of the 5 pos-
sible diminutive forms -je, -etje, -pje, -kje, and tje shall be predicted.
Since TiMBL is a nearest neighbor classifier, it stores training examples in mem-
ory, 2999 items for the diminutive data. Very roughly, new data is classified ac-
cording to a majority vote of examples with best matching overlap metric. For
the 950 test cases, an accuracy of 96.6% was achieved.

Table 1. Rules for the mushroom data set for a BB-tree of height 6.

bruises odor gill-size gill-size gill-color spore-print-color
Class Freq.

22:’no’ 28:’none’ 36:’broad’ 37:’narrow’ 41:’buff’ 101:’chocolate’
- 0 - - 1 - p 21%
- 0 1 0 0 1 p 19%
0 0 - - 0 0 p 3%
1 0 0 1 0 0 p 4%
1 1 0 1 0 - p 0.1%
0 1 - 0 0 - e 16%
1 0 1 0 0 0 e 8%
1 1 - 0 0 - e 25%
0 1 0 1 0 - e 3%
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Fig. 4. Adapted weight factors λ1≤i≤403 for the diminutive data.

SRNG training was performed with just 4 prototypes per class for the unary
encoded, augmented, z-transformed data. Nevertheless, the final result for the
prototype classification already gives 92.6% accuracy on the test set, and 92.3%
on the training set. Figure 4 displays the metric weights. Since the data vector
is organized in triples of (’stress’,’onset’, ’nucleus’, ’coda’) aligned to the word
endings, the weights reflect the intuitive fact that the word endings determine
the choice of the proper diminutive suffix.
Another nice property can be obtained: calculating the rules for a BB-tree of
height 25, we obtain an improved classification accuracy of 95.5% and 95.1%
for the test and training set, respectively. Unfortunately, this height of 25 cor-
responds to a set of 117 rules, which cannot be simplified easily. After all, this
result is not too bad, because it might give a hint for a dilemma in linguistic
research: the question is, whether human linguistic skills are rule based rather
than analogy based, or vice versa.
On the one hand, some rules have a high degree of generality and account for up
to 10% of all cases. On the other hand, the large number of special rules indicate
that many exceptions have to be learned extra. As a reference, the C4.5rules
program [2] has generated 71 rules, and its accuracy is at about 97.1% for the
test set and 97.5% for the training set.

3.5 Hypothyroid Data

A difficult separation task is given by the hypothyroid data from the UCI reposi-
tory. There are three classes, ’normal’, ’primary hypothyroid’, and ’compensated
hypothyroid’, determined by 22 attributes, 15 of which are binary and 6 are con-
tinuous. In the training set, there are 3772 cases, and 3428 cases in the test set.
Due to the large overlap between the classes and the strong prominence of the
’normal’ class with a portion of about 92%, this data is known to be difficult for
neural classification [29].
First SRNG runs with the original data reproduced the 92% accuracy, which
can trivially be obtained, be classifying all data as ’normal’. In a second run
with training set and test set augmented to about 10,000 cases each, this result
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Fig. 5. Adapted weight factors λ1≤i≤27 for the hypothyroid data. Different line styles
and points indicate the membership to the binary (left), real (center), and logarithms
of the real attributes (right).

dropped to only 78%. Performing a z-transform did not significantly improve
the situation.
A breakthrough was achieved by adding the logarithms of the real-value data.
This step has been discussed in the data preparation section and has been sup-
ported by figure 1. For the weights shown in figure 5 and 5 prototypes per class,
the classification accuracy increased to 97.1%. After augmentation, it turns out
that now the correct prediction of the ’normal’ class causes problems: the worst
prototype for this class misclassifies 11.1% of the ’normal’ cases, whereas the
worst for ’compensated hypothyroid’ only fails in 5.5% of the cases, and for the
’primary hypothyroid’ class, no misclassification is done at all. In other words:
if we predict one of the hypothyroid cases, we can be very certain about this re-
sult, whereas for ’normal’ diagnosis we must not be too certain; this false alarm
reduction induced by data augmentation might be a desirable feature in diag-
nostics.
Plot 5 indicates, that some of the binary features have been detected as irrele-
vant; moreover, only one of the original real components has survived, and the
most prominent dimensions are 23:logarithmic TSH, and 27:logarithmic FTI,
which confirms the findings of Duch et al. [15]. As related to the weight ranking
shown in figure 5, the simplified extracted rules for a BB-tree of height 3 make
are reduced to these two features. The three obtained rule are:

logZtsh∈ ]−0.347; ∞] ∧ logZfti ∈ ]−∞; 0.092] → 0 (97%) ,
logZtsh∈ ] 0.366; ∞] ∧ logZfti ∈ ] 0.068; ∞] → 1 (94%) ,
logZtsh∈ ]−∞;−0.347] → 2 (100%) .

With these rules, 96.2% accuracy is obtained for the test set, and 97.0% for the
training set. Increasing the hight of the extracted tree to 10, involves the binary
data, too; then, many rules with little generality are generated: the accuracy of
the training set increased to 99.1%, but the test set was only predicted correctly
to an amount of 93.2%.



4 Conclusions

We have presented a brief introduction to the supervised GRLVQ and SRNG
vector quantizers. These networks can be used to extract decision trees and hence
first order rules from trained data, exploiting the ranking of the learned dimen-
sion relevances and the prototype locations in the data space. The method has
been applied to four different data sets, all of which are difficult, exhibiting class
overlap, mixed domains, or high dimensionality. The results are promising, and
they might still be improved by refining the BB-classification tree extractor and
the rule simplification strategy. Since the LVQ fundament of our method is in-
herently subsymbolic for which we now have access to rules, further work should
focus on designing a real data-driven hybrid model with integrated prototype-
rule representation. This will be an intriguing task for the near future.
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