
Cryptographic Hash Functions: A SurveyS. Bakhtiari, R. Safavi-Naini, J. PieprzykCentre for Computer Security Research,Department of Computer Science,University of Wollongong, Wollongong,NSW 2522, AustraliaAbstractThis paper gives a survey on cryptographic hash functions. It gives an overview of all types ofhash functions and reviews design principals and possible methods of attacks. It also focuses onkeyed hash functions and provides the applications, requirements, and constructions of keyed hashfunctions.1 IntroductionHash functions map a large collection of messages into a small set of message digests and can be usedfor error detection, by appending the digest to the message during the transmission (the appended digestbits are also called parity bits). The error will be detected if the digest of the received message, in thereceiving end, is not equal to the received message digest. This application of hash functions is only forrandom errors, since an active spoofer may intercept the transmitted message, modify it as he wishes,and resend it appended with the digest recalculated for the modi�ed message.With the advent of public key cryptography and digital signature schemes, cryptographic hash func-tions gained much more prominence. Using hash functions, it is possible to produce a �xed length digitalsignature that depends on the whole message and ensures authenticity of the message. To produce digitalsignature for a message M , the digest of M , given by H(M ), is calculated and then encrypted with thesecret key of the sender. Encryption may be either by using a public key or a private key algorithm.Encryption of the digest prevents active intruders frommodifying the message and recalculating its check-sum accordingly. It e�ectively divides the universe into two groups: outsiders who do not have access tothe key of the encryption algorithm and hence cannot e�ectively produce a valid checksum, and insiderswho do have access to the key and hence can produce valid checksums. We note that in a public keyalgorithm, the group of insiders consists of only one member (the owner of the private key) and hencethe encrypted hash value uniquely identi�es the signer. In the case of symmetric key algorithms, boththe transmitter and the receiver have access to the secret key and can produce a valid encrypted hashfor an arbitrary message and therefore, unique identi�cation based on the encrypted hash is not possible.However, an outsider cannot alter the message or the digest.In the study of hash functions, Information Theory and Complexity Theory are two major approaches.The methods based on information theory provide unconditional security | an enemy cannot attack suchsystems even if he/she has unlimited power. This approach is generally impractical.In the second approach, some assumptions are made based on the computing power of the enemy orthe weaknesses of the existing systems and algorithms, and therefore, the security cannot be proven butestimated by the analysis of the best known attacking algorithms and considering the improvements of thehardware and softwares. In other words, hash functions based on complexity theory are computationallysecure. In this paper, we concentrate on the second approach.The organization of the paper is as follows. This section will be completed by providing notations,de�nitions, and types of hash functions. Section 2 study the design principals of hash functions. Methodsof attack on hash functions are introduced in Section 3. Section 4 gives applications, requirements, andconstructions of keyed hash functions. Some open problems are given in Section 5.1



Notation DescriptionP Plaintext in an encryption algorithm.C Ciphertext in an encryption algorithm.IV Initial vector of a hash function.M Arbitrary length input message of a hash function.MD Message digest of a hash function. (Other names for MD are: digest, hashcode,hashtotal, hashresult, imprint, checksum, compression, compressed encoding, seal,authenticator, authentication tag, �ngerprint, test key, condensation, messageintegrity code, and so on.)X Intermediate value (or chaining variable) in a cryptosystem.K Secret key in a cryptosystem.xi ith element (or block) of x, where x 2 fP;C;M;X;Kg.A One communicant (Alice).B Another communicant (Bob).E The opponent (Eve).E(K;P ) Encryption algorithm E() with a key K and a plaintext P .D(K;C) Decryption algorithm D() with a key K and a ciphertext C.H(M ) Keyless hash function H() with input message M . (The notation H(IV;M ) may beused when the initial vector IV is emphasized.)H(K;M) Keyed hash function H() with secret key K and input message M . (The notationH(K; IV;M ) may be used when the initial vector IV is emphasized.)mod Modular reduction or modular computation (reminder of a division).div Integer part of a division.and Bit-wise and operation.or Bit-wise or operation.not Bit-wise not operation. (Flipping the bits.)xor Bit-wise exclusive-or operation (addition modulo 2). Sometimes � is used instead.� Special bit-wise exclusive-or operation, where the operands may have di�erent lengths.The XOR will be performed bitwise, starting from the right most bits.� The same as above, but starting from the left most bits.k Concatenation. Table 1: Notations.1.1 Notations and PreliminariesTable 1.1 gives all the notations that are used in this paper, where encryption/decryption algorithm isan algorithm that is used for encryption/decryption, and the term cryptosystem is a general term for allcryptographic algorithms, such as hash functions.We use the term hard in this paper as computationally infeasible. The terms opponent, adversary,cryptanalyst, intruder, and enemy have the same meaning.1.2 De�nitionsSome useful de�nitions are given in this section.De�nition 1 A function H() that maps an arbitrary length message M to a �xed length message digestMD is a One-Way Hash Function (OWHF), if it satis�es the following properties:1. The description of H() is publicly known and should not require any secret information for itsoperation.2. Given M , it is easy to compute H(M ).3. Given MD in the rang of H(), it is hard to �nd a message M such that H(M ) = MD, and givenM and H(M ), it is hard to �nd a message M 0 (6=M) such that H(M 0) = H(M ).De�nition 2 A function H() that maps an arbitrary length message M to a �xed length message digestMD is a Collision Free Hash Function (CFHF), if it satis�es the following properties:2



1. The description of H() is publicly known and should not require any secret information for itsoperation.2. Given M , it is easy to compute H(M ).3. Given MD in the rang of H(), it is hard to �nd a message M such that H(M ) = MD, and givenM and H(M ), it is hard to �nd a message M 0 (6=M) such that H(M 0) = H(M ).4. It is hard to �nd two distinct messages M and M 0 that hash to the same result (H(M ) = H(M 0)).De�nition 3 A function H() that maps a �xed length key K and an arbitrary length message M to n-bitmessage digest MD is a Secure Keyed Hash Function (SKHF) or simply a Keyed Hash Function, if itsatis�es the following properties:1. The description of H() is publicly known.2. Given K and M , it is easy to compute H(K;M ).3. Without knowledge of K, it is hard both to �nd M when H(K;M ) is given, and to �nd two distinctmessages M and M 0 such that H(K;M) = H(K;M 0). (These properties are optional when thesecret key K is public.)4. Given (possibly many) pairs of [Mi;MDi] with MDi = H(K;Mi), it is hard to �nd the secret keyK.5. Without knowledge of K, it is hard to determine H(K;M) for any message M , even when a largeset of pairs [Mi;H(K;Mi)], where Mi's are selected by the opponent (M 6= Mi; 8Mi), is given.Berson et al. [10] have proposed the idea of Collisionful Hash Functions (CHF), where some degree ofcollision is desired rather than avoided, to make the key leakage more di�cult. Gong's version of thede�nition of CHF is as follows [40].De�nition 4 A function H() that maps a �xed length key K and an arbitrary length message M toa �xed length message digest MD is a Collisionful Hash Function (CHF), if it satis�es the followingproperties:1. Given K and M , it is easy to compute MD = H(K;M ).2. Given K, it is hard to �nd two distinct messages M and M 0 such that H(K;M) = H(K;M 0).3. Given t pairs of [Mi;MDi], with MDi = H(K;Mi), i = 1; : : : ; t, it is hard to �nd the secret keyK, though it is less hard to �nd a K 0 (6= K) with H(K;Mi) = H(K 0;Mi), for all Mi.4. Without knowledge of K, it is hard to determine H(K;M) for any message M .Universal Hash Functions (UHF) were de�ned by Carter and Wegman [24] in an attempt to provide aninput independent average linear time algorithm for storage and retrieval of keys in associated memories.De�nition 5 A class H of functions from a set A to a set B is called universal2, if for all x and y inA, �H (x; y) � jHj=jBj, where jHj and jBj are the sizes of H and B, respectively, and �H (x; y) denotesthe number of functions h 2 H with h(x) = h(y).In [25], they extended their work and de�ned strongly universaln and almost strongly universal2, andshowed their application to authentication.De�nition 6 A class H of hash functions is strongly universaln (SUn) if given any n distinct elementsa1; � � � ; an of A and any n (not necessary distinct) elements b1; � � � ; bn of B, then jHj=(jBjn) functionstake a1 to b1, a2 to b2, etc. SUn hash functions can be used for multiple authentication.1.3 Types of Hash FunctionsIn this section a brief description of di�erent types of hash functions are given. For each type, someexisting functions are presented (or cited). 3
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VFigure 1: Round function for a set of hash functions based on block ciphers.1.3.1 Hash Functions Based on Block CiphersThere have been many e�orts to base the hash functions on the existing block ciphers and avoid theconstruction of a hash function from scratch. Also when hardware implementation of a block cipher isavailable, it is desired to use it both to have a fast algorithm and to decrease the cost of the design.In the contrast, some block ciphers might not be useful for design of hash functions (they mightprovide some weak points). The export restriction on encryption algorithms is another problem, in somecountries.Figure 1 illustrates the general construction of a round function f () for the hash functions that arebased on block ciphers. E() is a block cipher that takes an input P and a key K to produces an output.The arbitrary length message M is divided into n blocks M1; : : : ;Mn and each of which is processed inone round. Based on Figure 1, the input P , the key K, and the XORed value T are chosen from theset S = fV;Mi; Xi;Mi � Xig, where V is a constant value and Xi is the output of the previous round.This provides 43 = 64 di�erent possibilities for f (), where some of the possibilities should be discarded,as Mi should be used at least once in the round function f (). Preneel [63] gives detailed analysis of hashfunctions based on the above f (), where most of them are found insecure.Unfortunately, there are very few encryption based hash functions that are secure for message au-thentication. Examples of some encryption (not necessarily block cipher) based hash functions arein [2, 15, 44, 45, 52], and the reader is referred to [63] for the study of the weaknesses of these hashfunctions.1.3.2 Hash Functions Based on Modular ArithmeticThe idea of cryptosystems based on modular arithmetic is to reduce the security of a system to thedi�culty of solving the problems in the number theory. Two important hard problems in number theoryare factorization and discrete logarithm.� Factorization Problem is the problem of �nding two integers p and q > 1, such that pq = N , andN is a given positive integer.� Discrete Logarithm Problem is the problem of �nding logsg (modulo N ), where s and g are elementsof a Galois �eld GF (N ), and N is a prime number or a power of 2.The two most important cryptosystems, based on modular arithmetic, are RSA public key cryptosys-tem [71] and ElGamal cryptosystem [38]. Hash functions that are based on modular arithmetic can havevariable digest length, depending on the size of modulus. Examples of the attack on this type of hashfunctions are: to �nd �xed points in the modular expression, to �nd small numbers that result in (again)small numbers (less that the modulo), and multiplicative attack.In [63, Sections 6.3 and 7.3.1], Preneel refers to two keyed hash functions which were designed byF. Cohen for the anti-virus package ASP [28]. They generate a secret checksum for each program and4



evaluate it every time that the program is being loaded. Preneel has given a short description of thesealgorithms and has examined some of their weaknesses.1.3.3 Hash Functions Based on Cellular AutomatonThere are some automata based cryptosystems that among them only a few are hash functions. Wol-fram [79] has suggested the use of one-dimensional cellular automaton for pseudo-random bit generator.The one-wayness property of such a generator can lead to the design of a hash function.An example of the automata based hash function is Cellhash which was proposed by Daemen et al.in [31, 32]. This hash function is hardware oriented and has some disadvantages [63, Section 7.2.7].1.3.4 Hash Functions Based on Knapsack ProblemKnapsack problem can be de�ned, in general, as: Given a set U = fui j i = 1; : : : ; ng and an integervalued function s : U ! N, is there a subset U 0 � U such that Pui2U 0 s(ui) = B, where B is a giveninteger? This problem was �rst used in Merkle-Hellman public key cryptosystem [56]. Although it wasbroken later, there have been a number of research e�orts to �nd a secure cryptosystem based on knapsackproblem. Two examples of the hash functions based on knapsack problem are hash functions based onadditive knapsacks and hash functions based on multiplicative knapsacks [23, 35, 36, 39, 80] (cf. [63]).1.3.5 Hash Functions Based on Algebraic MatricesIn [41], Harari used Algebraic Matrices to generate keyed one-way functions for authentication. A randomt � t matrix K is used as the key and is multiplied to the 1 � t message matrix M . The message digestis computed as MD = M tKM (or MD = KtMK), where X t is transpose matrix of X . There are someweaknesses in the proposed algorithms, such as the possibility of �nding collisions, which are pointed outin [63].1.3.6 Dedicated Hash FunctionsThere are several hash functions that are especially designed for hashing and are not provably secure.(They are not based on a hard problem such as factorization.) In this section a brief review of these hashfunctions and the existing attacks (if any) are given.MD2 [47] is one of the MD-family hash functions that were proposed by RSA Data Security Inc.The algorithm generates a 16-byte message digest for an arbitrary length input message. The author hasconjectured that:1. The di�culty of �nding a message with a given message digest is on the order of 2128 operations.2. The di�culty of �nding two messages with the same message digest is on the order of 264 operations.However, careful study of MD2 (cf. Appendix A.1) reveals some weak points. For example, in theprocess of the last 16-byte block, the last 33 operations (T = Xk = Xk � ST , for k = 17; : : : ; 48,and T = (T + j) mod 256) can be omitted, because, X17 to X48 are discarded at the �nal stage.Preneel [63] states that the most successful approach to �nd collisions seems to be a di�erential attack(cf. Section 3.2.5). There is a recent attack by Rogier and Chauvaud [72] which can �nd collisions basedon some weaknesses in MD2.MD4 [69] is another MD-family hash function which uses a very simple structure on 32-bit machines,and is believed to be a fast hashing algorithm (cf. Appendix A.2). The resulting message digest lengthis 128 bits and the same claim about the di�culty of �nding collisions, which was mentioned for MD2,is conjectured by the designer. Boer and Bosselaers [18] have found an attack on the last two rounds ofMD4. They can �nd collisions for MD4, if the �rst round of the algorithm is omitted. Vaudenay [78] hasalso shown how to construct collisions for MD4, when the last round is omitted. His attack also �ndstwo close digests (according to Hamming distance) when the full MD4 is used. For the time being, thereis not any attack for the full version of MD4. 5



Name Type Speed (Kbit/s)MD2 Dedicated (keyless) 78FFT-hash I Dedicated (keyless) 212N-hash Dedicated (keyless) 266Snefru-8 Dedicated (keyless) 270SHA Dedicated (keyless) 710BCA Dedicated (keyless) 764RIPEMD Dedicated (keyless) 1334MD5 Dedicated (keyless) 1849MD4 Dedicated (keyless) 2669Table 2: A comparison on the performance of several hash functions, on a 16MHz IBM PS/2.MD5 [70] is the strengthened version of MD4, where one extra round is added and each round consistsof more operations (cf. Appendix A.3). Although MD5 is considered as one of the most promising hashfunctions, current technologies demand a faster hash function [74].For the time being, there is not any successful attack on the full MD5. Berson [9] introduced theidea of di�erential cryptanalysis modulo 232 and applied to MD5. He could �nd collisions for individualround functions, but the idea could not be extended to the full algorithm. Also, Boer and Bosselaers [19]gave an algorithm to �nd pseudo-collisions for MD5 (cf. Section 2). The attack is hardly considered as acryptographic attack and the resulting initial vectors always di�er in the most signi�cant bits of the four32-bit words.As Kaliski and Robshaw have expressed in [46], the attack is not considered as an active attack,because it does not imply a real collision, and the resulting messages are the same. Moreover, the attackdoes not allow the intruder to arbitrary �x one of the initial vectors.SHA [59] is another strengthened version of MD4, where, for instance, the digest length is increasedfrom 128 bits to 160 bits and the number of steps per rounds is increased from 16 steps to 20 steps. Thesechanges make SHA slower than both MD4 and MD5. There is not any successful attack on SHA (for thetime being).HAVAL [83] is very similar to MD5 with the following advantages:1. It uses �ve nonlinear boolean functions with Strict Avalanche Criterion (SAC) property.2. It has 15 di�erent versions by choosing the number of passes (3,4, or 5) and the digest length (128,160, 192, 224, or 256 bits).3. It is 60% faster than MD5 when 3 passes are required, and as fast as MD5 when full 5 passes arerequired.Other Dedicated Hash Functions are Snefru [55], RIPE-MD [65, 68, 76], FFT-Hash I and II [8,30, 77], BCA (Binary Condensing Algorithm), MAA (Message Authentication Algorithm), and DSA(Decimal Shift and Add) that are not included in this paper.Table 2 gives a comparison of the performance among di�erent hash functions (extracted from [63]).2 Design Principals for Hash FunctionsStudy of hash functions clears that most hash functions have similar structures. We suggest the followingstructure for hash functions:1. Choose a good round function f(), depending on the required level of the security. For instance, ifa one-way hash function is required, the round function should be so. (Suppose the function mapsa t-bit block into an r-bit block, where 128 � r � t.)6



2. Use a padding procedure and pad a su�x to the arbitrary length message M such that the paddedmessage length (in bits) becomes a multiple of t. The following padding procedure is suggestedhere:(a) Store the length of M modulo 2s in a s-bit variable L and pre-pend it to the message.(b) Append a single `1' bit followed by enough `0' bits to the message such that the length of theresult (in bits) is (t � s) modulo t. (At least one bit is appended.)(c) Append the s-bit variable L to the previous result. This makes the padded message lengthequal to a multiple of t.The padded message will be (L k M k 100 : : :0 k L), where `k' denotes concatenation. It is alsosafer to append a plain checksum of the entire message before going to the next step.3. Divide the padded message into n t-bit blocks M1; : : : ;Mn. This allows to process the message int-bit blocks, using the round function f ().4. Choose a good initial vector IV (probably by a random choice), and store it in an r bit bu�er X1.5. Perform the round function f () to the all n blocks, using a chainingmethod (Xi+1 = f (Xi;Mi); i =1; : : : ; n).6. The output of the above process is the message digest. That is, MD = Xn+1.It is clear that, to have a weak/strong one-way hash function, the underlying round function should be so.(This is a necessary condition, that is, a hash function might not be one-way even if the underlying roundfunction is so.) The above structure thwarts general attacks, such as birthday attack, but the cryptanalysthas still a chance to attack the hash function based on the weaknesses of use of the underlying roundfunction. In summary, the round function should have the following properties.It should be secure against possible attacks (see next section) and satisfy the security assumptions.For example, to have a collision free hash function the round function must be collision free, because,if the opponent can �nd two distinct messages Mi and M 0i such that f (Xi;Mi) = f (Xi;M 0i ), for somechaining variable (intermediate value) Xi, he/she can �nd a collision for the entire hash function by justreplacing Mi with M 0i .In some cases, the underlying round function f () might have a weakness that allows the intruder to�nd a pseudo collision. If the opponent can �nd two messages Mi and M 0i and two chaining variables Xiand X 0i such that f (Xi;Mi) = f (X 0i ;M 0i ), a pseudo collision is found. Sometimes pseudo collisions maylead to real collisions. For instance, for the above pseudo collision, if the enemy can �nd a block M 00i suchthat f (Xi;M 00i ) = X 0i, he/she can replace Mi with (M 00i k M 0i ), because f (Xi;Mi) = f(f (Xi;M 00i );M 0i).In general, the ability of modifying the chaining variable, by traveling back and forth in the chainingprocess, should be prevented.Existence of �xed points for the round function is another weakness. The cryptanalyst may �nd achaining variable Xi such that f(Xi;Mi) = Xi. In this case Mi can be inserted without a�ecting theresult. However, adding the message length to the process provides some protections against this insertion(another �xed point should be found and removed from the message to keep the message length intact).A hash function must use every bit of the message block many times in the round function. Thisprevents the cryptanalyst to create undetectable changes in the message, as changing a bit will causemany changes to the result of the round function. This can be done more e�ciently when the roundfunction is especially designed for hashing (probably from scratch). For instance, if the round function isan encryption function such as DES, the invertiblity might harm the one-wayness of the hash function.Choosing an appropriate round function, the process of the whole hash function should be analyzed.Any irregularities in the distribution of the output can lead to an attack. Di�erential attack (cf. Sec-tion 3.2.5) is an instance attack that can use such irregularities.In keyed hash functions, since a secret key contributes to the process, the designer can base the hashfunction on either the security or the e�ciency | he/she can make the hash function secure against theoutsiders (who do not know the key) or make it secure for all people (including the insiders who knowthe key). The �rst approach allows the designer to construct an e�cient algorithm, by a well studied useof the secret key in the process. The security is increased if the secret key contributes in the process ofat least the �rst and the last rounds, because, the opponent will not have access to the components ofthe algorithm which is protected by a secret key. 7



If the designer intends to design a keyed hash function that is secure when the key is known, thedesign procedure becomes more complex. The problem of having a keyed hash function secure againstthe insiders is left open by Preneel [63]. However, in most cases, such a property will not be useful.For instance, if for a given key K, the keyed hash function H() is collision free, it means that it is notpossible to �nd two distinct messages M and M 0 such that H(M ) = H(M 0). This prevents a sender tosend a pair [M;H(M )] to a receiver and claim that [M 0;H(M 0)] is sent. However, a key holder couldsend [M;H(M )] and claim that [M 0;H(M 0)] is sent, since he/she has access to the secret key and cancalculate H(M 0) for any M 0. This problem can be solved by using techniques such as digital signaturewhich certainly reduce the e�ciency.At present, hash functions that are based on a hard problem, such as factorization, are not e�cient,and dedicated hash function are being used in practice.The methods of hashing, described in Section 1.3, are Serial Methods [62] or Chaining Methods [63].In Parallel Method [62] or Tree Approach [63], the hashing process can be sped up, using many processors.A simple parallel construction is as described below.X1i = f(M2i�1;M2i); i = 1; : : : ;2q�1;Xji = f(Xj�12i�1;Xj�12i ); i = 1; : : : ;2q�j; j = 2; : : : ; k � 1;MD = f(Xk�11 ; Xk�12 );where k = 2q, t = 2r, q is an integer, and f (), Xji , Mi, and MD have the same meanings as before. Themessage digest is O(logk) instead of O(k). Similar to the chaining method, the underlying function f()must be secure [36, 64].To design a hash function, one can also use nested form of existing hash functions. For instance, ifthe hash functions H1() and H2(), and the round function f () exist, one can de�ne the following hashfunctions (M and X are message and chaining variable, respectively):H(M ) = f(H1(M ) k H2(M ));H(M ) = H1(M ) k H2(M )):It is also possible to form a round function g() from an existing round function f () and a hash functionH(): g(X;Mi) = f (H(X);H(Mi)):The new hash function can be described as,H0(M ) = g(g(� � � g(IV;M1) � � � ;Mn�1);Mn);where IV is the initial vector. More examples are given in Section 4.3.1.3 Methods of Attack on Hash FunctionsIn this section an overview of the known methods of attack on hash functions is presented. The attacksare divided into two major groups. The ones that depend on the weaknesses of the underlying algorithmand the ones that do not depend on the algorithm.A successful attack on a hash function means to �nd a way to falsify a claimed security property ofthe hash function. For example, if a hash function is claimed to be one-way, a successful attack is to �ndat least one case that a message can be constructed for a given digest.In keyed hash functions, since a secret key contributes to the hashing process, the methods of attackon the secret key should be included. If the cryptanalyst can �nd a method to extract the secret key,the system is entirely compromised (during the key life time). There might also be some weaknesses inthe algorithm that allow the intruder to bypass the secret key. Existence of weak keys is one example ofthis case, where the algorithm results in the same digest for several keys (cf. either for a �xed messageor all messages). The intruder can then guess the key, since the key domain is shrunk by some factors.Therefore, design of the keyed hash functions needs careful consideration.In this section, we also study high level attacks which can be applied to the protocols that use hashfunctions. 8



3.1 General Attacks (independent of the algorithm)Assuming that a hash function uniformly distributes the set of messages to the set of possible digests,there are some general methods available to an attacker. These methods do not assume knowledge of thealgorithm and only depend on the message digest length, and the key length in keyed hash functions.Examples of these attacks are Birthday Attack, Exhaustive Key Search, Random Attack, and PseudoAttack.3.1.1 Birthday AttackThis attack is originated from Birthday Paradox which is the probability of �nding at lease two peoplewith the same birthday among 23 people. To describe the attack, we assume that the message digestlength is r bits, which provides 2r possibilities for the message digest. If two pools from the digestspace, one containing x1 samples and the other containing x2 samples, are generated by an adversary,the probability of �nding a match between the two pools is approximated by,P � 1� e� x1x22r ;where x2 is a big integer [61]. In particular, when x1 = x2 = 2 r2 and x1; x2 = O(pn), the probability ofthe match equals 63%. That is, P � 1� 1e � 0:63:The important advantage of birthday attack is that, if the opponent slightly increases the size of thesamples (x1 and x2), the above probability will signi�cantly increase. In practice, the opponent wishesto substitute a bogus messages with a genuine message. Assuming that x2 genuine digests are available,the probability of a match equals 1� e� x22r .In keyed hash functions (assuming that the key is kept secret against the adversary), the adversarycannot calculate the digest corresponding to the bogus message, and therefore, cannot �nd a match.However, this technique can be used to �nd collisions for genuine pairs of [message , digest].Preneel [63] gives a complete description of this attack and suggests that a 160-bit message digest willbe secure against this attack for at least 20 years. Pieprzyk and Sadeghiyan [62] recommend a 128-bitmessage digest to achieve the security against this attack.3.1.2 Exhaustive Key SearchIn keyed hash functions, a secret key is used in the hashing process to make the algorithm secure. If theadversary has access to at least one pair [message , digest], the key can be found by examining the keyspace elements against the [message , digest] pair(s). Since the map from message space to digest spaceis not one-to-one, more than one key could be found. However, it might be possible to determine the keyuniquely, if a large number of pairs is given.As stated in [63], the expected number of trials to �nd the secret key is upper bounded by,(1� 12r ) mXi=1 i2r(i�1) < 11� 2�r ;where r is the message digest length and m is the number of [message , digest] pairs. The total numberof trials to identify the key is upper bounded by,m + 2k � 11� 2�r ;where k is the key length (in bits). The number of resulting keys (including the real key) is expected tobe 1+ 2k�12mr (cf. [63]). It means that, about kr pairs of [message , digest] are needed to uniquely determinethe secret key (since, (1 + 2k�12mr ) � 2k�mr). 9



3.1.3 Random AttackAnother attack on hash functions, that is independent of the algorithm, is Random Attack. In this attack,the adversary chooses a random message (or part of a message) and hopes that its message digest is equalto a genuine one.The success probability of this attack for a hash function which holds the required random behavioris 12r , where r is the message digest length. It is suggested to have at least 64 bits for the message digestto thwart this attack.3.1.4 Pseudo AttackWe have called this attack Pseudo Attack, since the cryptanalyst tries to �nd a pseudo key bK withH(K;M ) = H( bK;M ), where H() is a keyed hash function, K is the real key, and M is a message. (Thisis similar to �nding more than one key in Exhaustive Key Search.) This may allow the enemy (Eve) toidentify herself as a legitimate user who has access to the secret key.A pseudo key bK for some given [message , digest] pairs does not necessarily generate a correct messagedigest for another message. In other words, suppose a key K is used to generate t pairs [M1;MD1],[M2;MD2], : : :, [Mt;MDt], where MDi = H(K;Mi), i = 1; : : : ; t. Now if the intruder can �nd a pseudokey bK with MDi = H( bK;Mi), i = 1;2; : : : ; t, it does not necessarily imply that for an M 0(6= Mi; i =1;2; : : : ; t), H(K;M 0) = H( bK;M 0). This attack is also discussed in [6].3.2 Special Attacks (that depend on the algorithm)In this section, the methods of attack which are based on the weaknesses of the round function or, ingeneral, the hash function, are brie
y described. However, these attacks would not be successful onkeyed hash functions, because a secret key protects the components of the hash function against theoutsiders. The attacks that are discussed in this section are Meet in the Middle Attack, Correcting BlockAttack, Fixed Point Attack, Attack on the Underlying Encryption Algorithm, Di�erential Cryptanalysis,and Linear Cryptanalysis.3.2.1 Meet in the Middle AttackThis attack is a variation of birthday attack and is applicable to the hash functions that use a roundfunction f (), invertible to the chaining variable X or the message block Mi. It allows the opponent toconstruct a message which corresponds to a certain message digest. To apply this attack, the adversaryshould generate x1 samples for the �rst and x2 samples for the last part of a bogus message. He/shegoes forwards from initial value and goes backwards from the hash value, and the probability that thetwo intermediate values are same, is given by,P � 1� e� x1x22r ;where r is the length of initial vector, intermediate values, and message digest (cf. [63, Appendix B]).Now if a meeting point is found, the concatenation of the message parts forms a bogus message thatresults in the given hash value.3.2.2 Correcting Block AttackIn this attack, the opponent uses a pre-existing [message , digest] pair, and tries to change one or moremessage blocks such that the resulting digest remains intact. One round of MD5 is vulnerable to thisattack, where the cryptanalyst takes a message block Mi (16 words), �xes 11 message words, modi�esone word, and calculates the remaining 4 words to form another message block M 0i which maps to thesame digest.A simple solution is to provide redundancy to the message blocks in such a way that the messagedigest heavily depend on every bit of the message. Full MD5 is an instance, where each 32-bit word ofthe message block contributes in all four rounds of the algorithm. Disadvantage of this solution is thedecrease in the speed of hashing. 10



3.2.3 Fixed Point AttackIn this attack, the intruder looks for a �xed point for the round function f(). A �xed point is a chainingvariable (intermediate value) Xi which satis�es f (Xi;Mi) = Xi. In other words, existence of the messageMi does not change the �nal result. Therefore, Mi can be inserted to the message, whenever the chainingvariable equals Xi. Again, there are very simple methods to thwart this attack. Similar to the previousattack, the designer can make redundancy to the input blocks and/or simply add the message length tothe input message, before performing the last rounds. Note that, in the latter case, if there are plentyof �xed points, the enemy may insert Mi with f (Xi;Mi) = Xi to the ith round and remove Mj withf (Xj ;Mj) = Xj from the jth round. In this case the message length remains intact.3.2.4 Attack on the Underlying Encryption AlgorithmIn Section 1.3, the hash functions based on encryption algorithms were brie
y discussed. Because theencryption algorithms are designed for encryption and decryption, they might have some weaknesseswhen they are used as the round function of a hashing algorithm.The major weaknesses of the encryption algorithms are Key Collisions, Complementation Property,Weak Keys, and Fixed Points [63]. Details on these weaknesses are beyond the scope of this paper, andthe reader is referred to [1, 16, 21, 20, 42, 48, 49, 50, 51, 58, 60, 66, 67] for more information.3.2.5 Di�erential CryptanalysisThe idea of this attack was �rst given by Biham and Shamir in [14]. In Di�erential Cryptanalysis, thecorrelation between the di�erence in input and output is studied. In other words, the intruder searches fora particular di�erence in input that cause a speci�c di�erence in output. This attack is applied to almostall cryptosystems, including most dedicated hash functions. In the case of hash functions, the di�erencein output should be zero to result in collisions. Examples of this attacks are in [9, 11, 14, 15, 16, 17, 51].3.2.6 Linear CryptanalysisLinear Cryptanalysis was proposed by Matsui [54] in early 1993. Although it is inspired by Di�erentialCryptanalysis, better results are gained compared with Di�erential Cryptanalysis (specially on blockciphers such as DES) [12, 13, 26, 43, 54].For the time being, there is no proposed attack on the hash functions, based on Linear Cryptanalysis.However, the hash functions based on encryption algorithms are expected to be the most vulnerable hashfunctions against this attack. An implementation of Linear Cryptanalysis on DES can be found in [4, 5].3.3 High Level AttacksThis section gives an overview of some high level methods of attack on hash functions, when they areused in a protocol or for a non-hashing purpose.The �rst method is Replay Attack or Restore Attack. The components of the hash function (or scheme)are not changed in this attack, but they are reused. The opponent may store transmitted information andretransmit it at a later time. On the other hand, an adversary may delete the contents of a transmission.Therefore, one party will not receive the message that another party assumes he/she has sent to thatparty. In banking transmissions, in particular, such an attack can let the intruder to earn millions ofdollars.Although these attacks are very serious, there are very simple methods to thwart them. To avoidreplay attack, the transmission date and time can be attached to the message. This attached part is calledtime stamps. The time resolution should be higher than the resolution of the message transmission. Forexample, if a message can be received at least 2 second after the previous one, the time stamp shouldinclude even the seconds of the transmission. However, there are some di�culties to synchronize theclock pulses and also to remove the delays in a communication channel.Another high level attack is Padding Attack. Suppose a keyed hash function is constructed froman unkeyed one by just using the initial vector as the secret key. If Alice sends [M;MD] as a pair of[message , digest] to Bob, the adversary (Eve) can easily pad M with an arbitrary message M 0 andevaluate the message digest corresponding to (M k M 0). Then the pair [M;MD] would be substitutedby [(M k M 0);MD0]. Padding attack can be easily thwarted by pre-pending the message length to the11



message or by using some �xed su�xes that are not appeared within the message. More examples of thisattack are in [29, 33, 34]. Some methods of avoiding this attack are also suggested in [6].4 Keyed Hash FunctionsKeyed hash functions (cf. De�nition 3) can be used for message authentication. In this section, applica-tions, security requirements, and constructions of keyed hash functions are studied.4.1 Applications of Keyed Hash FunctionSeveral applications of keyed hash functions are discussed in this section, and advantages and disadvan-tages of each application is reviewed. These applications are mostly authentication schemes that usesymmetric keys to make the algorithm secure.4.1.1 Message Authentication between Two PartiesAlthough electronic signature schemes ([73]) can be used for message authentication, they are usuallyslow and ine�cient. They also need key distribution schemes for public keys and therefore the problemremains with the authenticity of the public key and so on. When two parties need to communicate, it iseasier to use a symmetric key rather than public and secret keys. We also note that keyed hash functionsare preferred to be used in authentication schemes (compared with the schemes based on encryptionalgorithms), since hashing and encryption are combined and, hence, higher speed can be achieved.Having a secure keyed hash function (examples are in Section 4.3), a message authentication betweentwo communicants can be provided by sending the pair [M;MD] from one communicant to the other,where MD is the message digest of the messageM , using the keyed hash function and a secret key sharedbetween the two communicants.4.1.2 Message Authentication among Multiple PartiesIn some applications, such as Electronic Mail (Email), a message can be broadcasted to people to re-duce the communication bandwidth. (The message distribution is done whenever the destinations aredi�erent.) When a user A (Alice) wants to send a message M to other users B1; : : : ; Bn, she can, forexample, send [M;H(KAB1 ;M ); : : : ;H(KABn ;M )] or [M;E(KAB1 ; (K k H(K;M))); : : : ;E(KABn ; (K kH(K;M )))], where H() is a keyed hash function, E() is an encryption algorithm,KABi is the secret keyshared between A and Bi (i = 1; : : : ; n), and K is a �xed length session key chosen by A.In the �rst case, Bi (1 � i � n) can evaluate the authenticity of the message by recomputingH(KABi ;M ). Disadvantage of this technique is that, A should compute H(), n times for n users.However, it is straight forward and uses only a keyed hash function.In the second case, Bi (1 � i � n) can decrypt E(KABi ; (K k H(K;M ))), using the secret keyKABi , and �nd the session key K. The evaluation of the authenticity can be done now, by recomputingH(K;M ). Note that, (K k H(K;M )) has a �xed length and will be computed once for all users. Thistechnique is more e�cient when the message is very long. Otherwise, the existence of the encryptionalgorithm E() makes this technique less e�cient.4.1.3 Password CheckingIn many systems, to let a user log into the system, user's login-name and password is asked. In the earlierschemes, password was taken as a key to encrypt the login-name, using an encryption algorithm. Theciphertext was kept together with the login-name by the system and was decrypted whenever the passwordis being validated by the system. In the latter schemes, it was suggested to verify the authenticity byrecomputing and not decrypting the ciphertext.This technique does not need decryption and can be implemented by use of a secure one-way algo-rithm. Keyed hash functions are examples of secure one-way algorithms and can be used to compute theencrypted part of the password table. Since keyed hash functions are, in general, faster than encryptionalgorithms, validation of the password entry will be done faster.12



4.1.4 Software ProtectionKeyed hash functions can be used to protect a software against modi�cations (and viruses). The pro-tection can be provided by computing the digest of the �le (software) using a keyed hash function andsaving in a safe place.In the case that some access protected memory or disk is reserved for the system and users cannotinterrupt the system, any change in the �le can be realized by the system, if the secret key is known bythe system.If no space is reserved for the system, the protection should be provided and veri�ed by the owner ofthe �le (or an authorized user).4.1.5 Encryption AlgorithmsHash functions can be used to construct encryption algorithms. In keyed hash functions, since a secretkey contributes to the process of hashing, design of encryption algorithms becomes even simpler. Anexample clari�es the idea.Suppose H() is a secure keyed hash function which produces r-bit message digests. To encrypt aplaintext P = (P1 k P2), where P1 and P2 are r-bit blocks, the following steps are followed:1. T = H(K1; P1)� P2,2. C1 = H(K2; T )� P1,3. C2 = H(K3; C1)� T ,where K = (K1 k K2 k K3) is the secret key and C1 and C2 are each r bits. The cipher text isC = (C1 k C2) and can be decrypted by a similar method:1. T = H(K3;C1)� C2,2. P1 = H(K2; T )� C1,3. P2 = H(K1; P1)� T .A similar scheme was originally proposed in [53] and was brie
y examined in [3]. Their scheme uses aone-way function and adds a secret key as a part of the input message.4.2 Requirements for Keyed Hash FunctionsWe consider the following properties for keyed hash functions.� Security Requirements:1. It should satisfy the requirements of De�nition 3.2. It should use a secret key of at least 128 bits to thwart exhaustive key search.3. It should produce a message digest with at least 128 bits to thwart birthday attacks.4. It should uniformly distribute the message digest in the message digest space. This thwartsstatistical attacks.� Design Heuristics:1. It should use the secret key many times in the hashing process | especially at the beginningand the end.2. It should use every bit of the message several times in the hashing process (redundancy of themessage).3. The underlying round function should be analyzed very carefully to thwart the attacks thatare based on the weaknesses of the round function, such as �xed point attack. It needs specialcare when the design is based on an existing algorithm, such as an encryption algorithm or ahash function. (Sometimes, it is preferred to construct a keyed hash function from scratch toavoid these problems.) 13
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Figure 2: Hash-then-encrypt construction for keyed hash function H(), where H 0() is a hash function,E() is an encryption algorithm, IV is the initial vector, M is the message, K is the key, and MD is themessage digest.� Operational Requirements:1. The secret key must remain secret among the trusted parties. Usage of a symmetric key cannotguarantee the security of the algorithm against attacks from the trusted users.2. If the keyed hash function is used in a protocol, the security of the algorithm should bechecked in the new environment. In some cases, other security parameters should be includedin the higher level structures. Use of time stamps and serial numbers are examples of suchparameters. Use of di�erent keys for di�erent purposes (eg. authentication and/or secrecy) isanother example.Other general requirements for keyed hash functions are Complementation Freedom, Addition Freedom,Multiplication Freedom, Correlation Freedom. The reader is referred to [3] for more details about thesegeneral requirements.4.3 Construction of Keyed Hash FunctionsIn Section 1.3, di�erent types of hash functions were discussed and examples of the existing hash functionsfor each type were noted. Keyed hash functions can be easily constructed from encryption algorithms,as they already have a secret key. However, an encryption algorithm might not satisfy the securityrequirements of keyed hash functions. In this section, construction of keyed hash functions from existinghash functions, block ciphers, and also from the scratch are examined.4.3.1 Construction from Existing Hash FunctionsIn this section, we show how a pre-existing hash function can be used to construct a keyed hash func-tion. This implies that, some security requirements of the designed keyed hash function relies on thesecurity of the underlying hash function. However, other security requirements for keyed hash functionsmust be examined separately. We will consider Hash-then-Encrypt Construction, Nested Hash FunctionConstruction, and Construction Using a Key as Part of Message or Initial Vector.Hash-then-Encrypt Construction This method is the simplest way of constructing a keyed hashfunction. The collision freeness depends on a collision free hash function H 0() and the protection againstactive spoofer depends on an encryption algorithm E(). The keyed hash function is de�ned as,H(K;M ) = E(K;H 0(M ));where K is the secret key and M is the message. Figure 2 illustrates this construction.14
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� Do Xj+16 = Mi;j; Xj+32 =Mi;j �Xj; for j = 1; : : : ; 16.� Set T = 0.� Do the followings, for j = 1; : : : ;18.{ Do T = Xk = Xk � ST ; for k = 1; : : : ; 48.{ Set T = (T + j)mod 256.5. Message Digest: The message digest is the 16-byte output string MD = (X1; : : : ;X16).A.2 MD4MD4 (Message Digest 4) is designed for 32-bit operation machines. In the process of MD4, the followingnotations and functions are used:fi(X;Y; Z) = 8<: (X and Y ) or (not(X) and Z); i = 1; : : : ;16:(X and Y ) or (X and Z) or (Y and Z); i = 17; : : : ;32:X xor Y xor Z; i = 33; : : : ;48:ti (in hex:)====== 8<: 00000000; i = 1; : : : ;16:5a827999; i = 17; : : : ; 32:6ed9eba1; i = 33; : : : ; 48:ri = 8>>>>>><>>>>>>: i; i = 1; : : : ;16:4� ((i � 13)mod 4) + ((i � 13) div 4); i = 17; : : : ;32:((2 � i � 66)mod 15) + 1; i = 33;35;38;40;41;43;46:((2 � i � 66)mod 15) + 7; i = 34;36;42;44:(((2 � i � 66)mod 15) + 7)mod 12; i = 37;39;45;47:16 i = 48:si =8>>>>>>>>>><>>>>>>>>>>: 3; i = 1; 5;9;13;17;21;25;29;33;37;41;45:5; i = 18;22;26;30:7; i = 2; 6;10;14:9; i = 19;23;27;31;34;38;42;46:11; i = 3; 7;11;15;35;39;43;47:13; i = 20;24;28;32:15; i = 36;40;44;48:19; i = 4; 8;12;16:add(X;Y; : : :) = (X + Y + � � �)mod 232:rol(X;s) = Rotate left X by s bits.Now MD4 can be summarized as:1. Appending the Padding Bits and the Length: The arbitrary length message M is padded by a single`1' bit followed by enough `0' bits so that the length of the padded message (in bits) is congruent to448, modulo 512. Length of M (only the least signi�cant 64 bits of the length) is then appended sothat the �nal length becomes a multiple of 512 (in bits). Let Mi;j denote the jth word of the ithblock of the padded message, where each word has 32 bits, each block has 16 words (1 � j � 16),and n is the number of 512-bit blocks in the padded message (1 � i � n).2. Initialization: A 4-word bu�er IV = (X1;X2; X3;X4), which is used to keep the 128-bit messagedigest, is initialized (in hexadecimal) to:X1 = 67452301; X2 = efcdab89; X3 = 98badcfe; X4 = 10325476:3. Processing the Message in 16-word (512-bit) Blocks:� Set A = X1; B = X2; C = X3; D = X4.24



� Do the followings, for i = 1; : : : ; n.{ Do T = add(A;fj(B;C;D);Mi;rj ; tj); A = D; D = C;C = B; B = rol(T; sj); for j = 1; : : : ;48.{ Set X1 = add(X1;A); X2 = add(X2; B); X3 = add(X3; C); X4 = add(X4;D).4. Message Digest: The produced message digest is the 4-word (128-bit) outputMD = (X1; X2;X3;X4).A.3 MD5MD5 (Message Digest 5) is the strengthened version of MD4. It has one more round and uses moreoperations in each round. The basic notations and functions are de�ned �rst.fi(X;Y;Z) = 8>><>>: (X and Y ) or (not(X) and Z); i = 1; : : : ;16:(X and Z) or (not(Z) and Y ); i = 17; : : : ; 32:X xor Y xor Z; i = 33; : : : ; 48:(not(Z) or X) xor Y; i = 49; : : : ; 64:ti = sin(i)mod 232; i = 1; : : : ; 64:ri = 8>><>>: i; i = 1; : : : ; 16:(1 + 5� (j � 17))mod 16; i = 17; : : : ;32:(5 + 3� (j � 33))mod 16; i = 33; : : : ;48:7� (j � 49)mod 16; i = 49; : : : ;64:si = 8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
4; i = 33;37;41;45:5; i = 17;21;25;29:6; i = 49;53;57;61:7; i = 1;5;9;13:9; i = 18;22;26;30:10; i = 50;54;58;62:11; i = 34;38;42;46:12; i = 2;6;10;14:14; i = 19;23;27;31:15; i = 51;55;59;63:16; i = 35;39;43;47:17; i = 3;7;11;15:20; i = 20;24;28;32:21; i = 52;56;60;64:22; i = 4;8;12;16:23; i = 36;40;44;48:add(X;Y; : : :) = (X + Y + � � �)mod 232:rol(X;s) = Rotate left X by s bits.MD5 can be summarized as:1. Appending the Padding Bits and the Length: The arbitrary length message M is padded by a single`1' bit followed by enough `0' bits so that the length of the padded message (in bits) is congruent to448, modulo 512. Length of M (only the least signi�cant 64 bits of the length) is then appended sothat the �nal length becomes a multiple of 512 (in bits). Let Mi;j denote the jth word of the ithblock of the padded message, where each word has 32 bits, each block has 16 words (1 � j � 16),and n is the number of 512-bit blocks in the padded message (1 � i � n).2. Initialization: A 4-word bu�er IV = (X1;X2; X3;X4), which is used to keep the 128-bit messagedigest, is initialized (in hexadecimal) to:X1 = 67452301; X2 = efcdab89; X3 = 98badcfe; X4 = 10325476:25



3. Processing the Message in 16-word (512-bit) Blocks:� Set A = X1; B = X2; C = X3; D = X4.� Do the followings, for i = 1; : : : ; n.{ Do T = add(A;fj(B;C;D);Mi;rj ; tj); A = D; D = C;C = B; B = add(B;rol(T; sj)); for j = 1; : : : ;64.{ Set X1 = add(X1;A); X2 = add(X2; B); X3 = add(X3; C); X4 = add(X4;D).4. Message Digest: The computedmessage digest is the 4-word (128-bit) outputMD = (X1; X2;X3; X4).A.4 SHASHA (Secure Hash Algorithm) is another strengthened version of MD4, where the bu�er size is increasedfrom 128 bits to 160 bits and the number of steps per rounds is increased from 16 steps to 20 steps. Thereare some other small changes that will be mentioned in the following summary. The basic notations andfunctions for SHA are:fi(X;Y;Z) = 8>><>>: (X and Y ) or (not(X) and Z); i = 1; : : : ; 20:X xor Y xor Z; i = 21; : : : ; 40:(X and Y ) or (X and Z) or (Y and Z); i = 41; : : : ; 60:X xor Y xor Z; i = 61; : : : ; 80:ti (in hex:)====== 8>><>>: 5a827999; i = 1; : : : ; 20:6ed9eba1; i = 21; : : : ;40:8f1bbcdc; i = 41; : : : ;60:ca62c1d6; i = 61; : : : ;80:mj(i) = � Mi;j; j = 1; : : : ;16:Mi;(j�3) �Mi;(j�8) �Mi;(j�14) �Mi;(j�16); j = 17; : : : ;80:add(X;Y; : : :) = (X + Y + � � �)mod 232:rol(X;s) = Rotate left X by s bits.Now SHA process can be summarized as:1. Appending the Padding Bits and the Length: The arbitrary length message M is padded by a single`1' bit followed by enough `0' bits so that the length of the padded message (in bits) is congruent to448, modulo 512. Length of M (only the least signi�cant 64 bits of the length) is then appended sothat the �nal length becomes a multiple of 512 (in bits). Let Mi;j denote the jth word of the ithblock of the padded message, where each word has 32 bits, each block has 16 words (1 � j � 16),and n is the number of 512-bit blocks in the padded message (1 � i � n).2. Initialization: A 5-word bu�er IV = (X1; X2;X3; X4;X5), which is used to keep the 160-bit messagedigest, is initialized (in hexadecimal) to:X1 = 67452301; X2 = efcdab89; X3 = 98badcfe; X4 = 10325476; X5 = c3d2e1f0:3. Processing the Message in 20-word (640-bit) Blocks:� Set A = X1; B = X2; C = X3; D = X4; E = X5.� Do the followings, for i = 1; : : : ; n.{ Do Mi;j = mj(i); T = add(rol(A;5); fj(B;C;D); E;Mi;j; tj); E = D;D = C; C = rol(B;30); B = A; A = T; for j = 1; : : : ;80.{ Set X1 = add(X1; A); X2 = add(X2;B); X3 = add(X3;C);X4 = add(X4; D); X5 = add(X5; E).4. Message Digest: The produced message digest is the 5-word (160-bit) outputMD = (X1; X2;X3;X4; X5).26


