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Abstract

This paper gives a survey on cryptographic hash functions. It gives an overview of all types of
hash functions and reviews design principals and possible methods of attacks. It also focuses on
keyed hash functions and provides the applications, requirements, and constructions of keyed hash
functions.

1 Introduction

Hash functions map a large collection of messages into a small set of message digests and can be used
for error detection, by appending the digest to the message during the transmission (the appended digest
bits are also called parity bits). The error will be detected if the digest of the received message, in the
receiving end, is not equal to the received message digest. This application of hash functions is only for
random errors, since an active spoofer may intercept the transmitted message, modify i1t as he wishes,
and resend it appended with the digest recalculated for the modified message.

With the advent of public key cryptography and digital signature schemes, cryptographic hash func-
tions gained much more prominence. Using hash functions, it is possible to produce a fixed length digital
signature that depends on the whole message and ensures authenticity of the message. To produce digital
signature for a message M, the digest of M, given by H(M), is calculated and then encrypted with the
secret key of the sender. Encryption may be either by using a public key or a private key algorithm.
Encryption of the digest prevents active intruders from modifying the message and recalculating its check-
sum accordingly. It effectively divides the universe into two groups: outsiders who do not have access to
the key of the encryption algorithm and hence cannot effectively produce a valid checksum, and insiders
who do have access to the key and hence can produce valid checksums. We note that in a public key
algorithm, the group of insiders consists of only one member (the owner of the private key) and hence
the encrypted hash value uniquely identifies the signer. In the case of symmetric key algorithms, both
the transmitter and the receiver have access to the secret key and can produce a valid encrypted hash
for an arbitrary message and therefore, unique identification based on the encrypted hash is not possible.
However, an outsider cannot alter the message or the digest.

In the study of hash functions, Information Theory and Complexity Theory are two major approaches.
The methods based on information theory provide unconditional security — an enemy cannot attack such
systems even if he/she has unlimited power. This approach is generally impractical.

In the second approach, some assumptions are made based on the computing power of the enemy or
the weaknesses of the existing systems and algorithms, and therefore, the security cannot be proven but
estimated by the analysis of the best known attacking algorithms and considering the improvements of the
hardware and softwares. In other words, hash functions based on complexity theory are computationally
secure. In this paper, we concentrate on the second approach.

The organization of the paper is as follows. This section will be completed by providing notations,
definitions, and types of hash functions. Section 2 study the design principals of hash functions. Methods
of attack on hash functions are introduced in Section 3. Section 4 gives applications, requirements, and
constructions of keyed hash functions. Some open problems are given in Section 5.
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Plaintext in an encryption algorithm.

Ciphertezt in an encryption algorithm.

Inatial vector of a hash function.

Arbitrary length input message of a hash function.

Message digest of a hash function. (Other names for M D are: digest, hashcode,
hashtotal, hashresult, imprint, checksum, compression, compressed encoding, seal,
authenticator, authentication tag, fingerprint, test key, condensation, message
integrity code, and so on.)

Intermediate value (or chaining variable) in a cryptosystem.

Secret key in a cryptosystem.

ith element (or block) of , where # € {P,C, M, X, K}.

One communicant (Alice).

Another communicant (Bob).

The opponent (Eve).

Encryption algorithm E() with a key K and a plaintext P.

Decryption algorithm D() with a key K and a ciphertext C'.

Keyless hash function H() with input message M. (The notation H(I'V, M) may be
used when the initial vector 7V is emphasized.)

Keyed hash function H() with secret key K and input message M. (The notation
H(K,IV, M) may be used when the initial vector IV is emphasized.)

Modular reduction or modular computation (reminder of a division).

Integer part of a division.

Bit-wise and operation.

Bit-wise or operation.

Bit-wise not operation. (Flipping the bits.)

Bit-wise exclusive-or operation (addition modulo 2). Sometimes @ is used instead.
Special bit-wise exclusive-or operation, where the operands may have different lengths.
The XOR will be performed bitwise, starting from the right most bits.

The same as above, but starting from the left most bits.

Concatenation.

Table 1: Notations.

1.1 Notations and Preliminaries

Table 1.1 gives all the notations that are used in this paper, where encryption/decryption algorithm is
an algorithm that is used for encryption/decryption, and the term cryptosystem is a general term for all

cryptographic algorithms, such as hash functions.

We use the term hard in this paper as computationally infeasible. The terms opponent, adversary,

cryptanalyst, intruder, and enemy have the same meaning.

1.2 Definitions

Some useful definitions are given in this section.

Definition 1 A function H() that maps an arbitrary length message M to a fized length message digest

MD is a One-Way Hash Function (OWHF), if it satisfies the following properties:

1. The description of H() is publicly known and should not require any secret information for its

operation.

2. Given M, it is easy to compute H(M).

3. Given M D in the rang of H(), it is hard to find a message M such that H(M) = M D, and given

M and H(M), it is hard to find a message M' (# M ) such that H(M') = H(M).

Definition 2 A function H() that maps an arbitrary length message M to a fized length message digest

MD is a Collision Free Hash Function (CFHF), if it satisfies the following properties:




1. The description of H() is publicly known and should not require any secret information for its
operation.

2. Given M, it is easy to compute H(M).

3. Given M D in the rang of H(), it is hard to find a message M such that H(M) = M D, and given
M and H(M), it is hard to find a message M' (# M ) such that H(M') = H(M).

4. It is hard to find two distinct messages M and M’ that hash to the same result (H(M) = H(M")).

Definition 3 A function H() that maps a fired length key K and an arbitrary length message M to n-bit
message digest M D is a Secure Keyed Hash Function (SKHF) or simply a Keyed Hash Function, if it
satisfies the following properties:

1. The description of H() is publicly known.
2. Given K and M, it is easy to compute H(K, M).

3. Without knowledge of K, it is hard both to find M when H(K, M) is given, and to find two distinct
messages M and M’ such that H(K,M) = H(K,M'). (These properties are optional when the
secret key K is public.)

4. Given (possibly many) pairs of [M;, M D;] with M D; = H(K, M;), it is hard to find the secret key
K.

5. Without knowledge of K, it is hard to determine H(K, M) for any message M, even when a large
set of pairs [My, H(K, M;)], where M;’s are selected by the opponent (M # M;, VM;), is given.

Berson et al. [10] have proposed the idea of Collisionful Hash Functions (CHF), where some degree of
collision is desired rather than avoided, to make the key leakage more difficult. Gong’s version of the
definition of CHF is as follows [40].

Definition 4 A function H() that maps a fized length key K and an arbitrary length message M to
a fized length message digest M D is a Collisionful Hash Function (CHF), if it satisfies the following
properties:

1. Given K and M, it is easy to compute MD = H(K, M).
2. Given K, it is hard to find two distinct messages M and M' such that H(K, M) = H(K,M’).

3. Given t pairs of [My, MD;], with MD; = H(K,M;), i = 1,...,1, it is hard to find the secret key
K, though it is less hard to find a K' (# K ) with H(K,M;) = H(K', M;), for all M;.

4. Without knowledge of K, it is hard to determine H(K, M) for any message M.

Universal Hash Functions (UHF ) were defined by Carter and Wegman [24] in an attempt to provide an
input independent average linear time algorithm for storage and retrieval of keys in associated memories.

Definition 5 A class H of functions from a set A to a sel B is called universals, if for all x and y in
A, bp(x,y) < |H|/|B|, where |H| and |B| are the sizes of H and B, respectively, and §p(x,y) denotes
the number of functions h € H with h(x) = h(y).

In [25], they extended their work and defined strongly universal, and almost strongly universaly, and
showed their application to authentication.

Definition 6 A class H of hash functions is strongly universal, (SU,) if given any n distinct elements
ap, -, an of A and any n (not necessary distinct) elements by,--- by, of B, then |H|/(|B|") functions
take ay to by, as to by, etc. SU, hash functions can be used for multiple authentication.

1.3 Types of Hash Functions

In this section a brief description of different types of hash functions are given. For each type, some
existing functions are presented (or cited).
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Figure 1: Round function for a set of hash functions based on block ciphers.

1.3.1 Hash Functions Based on Block Ciphers

There have been many efforts to base the hash functions on the existing block ciphers and avoid the
construction of a hash function from scratch. Also when hardware implementation of a block cipher is
available, it is desired to use it both to have a fast algorithm and to decrease the cost of the design.

In the contrast, some block ciphers might not be useful for design of hash functions (they might
provide some weak points). The export restriction on encryption algorithms is another problem, in some
countries.

Figure 1 illustrates the general construction of a round function f() for the hash functions that are
based on block ciphers. E() is a block cipher that takes an input P and a key K to produces an output.
The arbitrary length message M 1s divided into n blocks My, ..., M, and each of which is processed in
one round. Based on Figure 1, the input P, the key K, and the XORed value T' are chosen from the
set S = {V,M;, X;, M; ® X;}, where V is a constant value and X; is the output of the previous round.
This provides 4% = 64 different possibilities for f(), where some of the possibilities should be discarded,
as M; should be used at least once in the round function f(). Preneel [63] gives detailed analysis of hash
functions based on the above f(), where most of them are found insecure.

Unfortunately, there are very few encryption based hash functions that are secure for message au-
thentication. FExamples of some encryption (not necessarily block cipher) based hash functions are
in [2, 15, 44, 45, 52], and the reader is referred to [63] for the study of the weaknesses of these hash
functions.

1.3.2 Hash Functions Based on Modular Arithmetic

The idea of cryptosystems based on modular arithmetic is to reduce the security of a system to the
difficulty of solving the problems in the number theory. Two important hard problems in number theory
are factorization and discrete logarithm.

e Factorization Problem is the problem of finding two integers p and ¢ > 1, such that p¢g = N, and
N is a given positive integer.

e Discrete Logarithm Problem is the problem of finding logf] (modulo N), where s and g are elements
of a Galois field GF(N), and N is a prime number or a power of 2.

The two most important cryptosystems, based on modular arithmetic, are RSA public key cryptosys-
tem [71] and ElGamal cryptosystem [38]. Hash functions that are based on modular arithmetic can have
variable digest length, depending on the size of modulus. Examples of the attack on this type of hash
functions are: to find fixed points in the modular expression, to find small numbers that result in (again)
small numbers (less that the modulo), and multiplicative attack.

In [63, Sections 6.3 and 7.3.1], Preneel refers to two keyed hash functions which were designed by
F. Cohen for the anti-virus package ASP [28]. They generate a secret checksum for each program and



evaluate it every time that the program is being loaded. Preneel has given a short description of these
algorithms and has examined some of their weaknesses.

1.3.3 Hash Functions Based on Cellular Automaton

There are some automata based cryptosystems that among them only a few are hash functions. Wol-
fram [79] has suggested the use of one-dimensional cellular automaton for pseudo-random bit generator.
The one-wayness property of such a generator can lead to the design of a hash function.

An example of the automata based hash function is Cellhash which was proposed by Daemen et al
in [31, 32]. This hash function is hardware oriented and has some disadvantages [63, Section 7.2.7].

1.3.4 Hash Functions Based on Knapsack Problem

Knapsack problem can be defined, in general, as: Given a set U = {u; | i = 1,...,n} and an integer
valued function s : U — N, is there a subset U’ C U such that ), ;. s(u;) = B, where B is a given
integer? This problem was first used in Merkle-Hellman public key cryptosystem [566]. Although it was
broken later, there have been a number of research efforts to find a secure cryptosystem based on knapsack
problem. Two examples of the hash functions based on knapsack problem are hash functions based on
additive knapsacks and hash functions based on multiplicative knapsacks [23, 35, 36, 39, 80] (<f. [63]).

1.3.5 Hash Functions Based on Algebraic Matrices

In [41], Harari used Algebraic Matrices to generate keyed one-way functions for authentication. A random
t x t matrix K is used as the key and is multiplied to the 1 x £ message matrix M. The message digest
is computed as MD = M'KM (or MD = K'MK), where X' is transpose matrix of X. There are some
weaknesses in the proposed algorithms, such as the possibility of finding collisions, which are pointed out

in [63].

1.3.6 Dedicated Hash Functions

There are several hash functions that are especially designed for hashing and are not provably secure.
(They are not based on a hard problem such as factorization.) In this section a brief review of these hash
functions and the existing attacks (if any) are given.

MD2 [47] is one of the MD-family hash functions that were proposed by RSA Data Security Inc.
The algorithm generates a 16-byte message digest for an arbitrary length input message. The author has
conjectured that:

1. The difficulty of finding a message with a given message digest is on the order of 2'2® operations.
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2. The difficulty of finding two messages with the same message digest is on the order of 2°* operations.

However, careful study of MD2 (cf. Appendix A.1) reveals some weak points. For example, in the
process of the last 16-byte block, the last 33 operations (T = X = X & Sp, for k& = 17,...,48,
and T = (T + j) mod 256) can be omitted, because, X;7 to X,g are discarded at the final stage.
Preneel [63] states that the most successful approach to find collisions seems to be a differential attack
(cf. Section 3.2.5). There is a recent attack by Rogier and Chauvaud [72] which can find collisions based
on some weaknesses in MD?2.

MD4 [69] is another MD-family hash function which uses a very simple structure on 32-bit machines,
and is believed to be a fast hashing algorithm (cf. Appendix A.2). The resulting message digest length
i1s 128 bits and the same claim about the difficulty of finding collisions, which was mentioned for MD2,
is conjectured by the designer. Boer and Bosselaers [18] have found an attack on the last two rounds of
MD4. They can find collisions for MD4, if the first round of the algorithm is omitted. Vaudenay [78] has
also shown how to construct collisions for MD4, when the last round is omitted. His attack also finds
two close digests (according to Hamming distance) when the full MD4 is used. For the time being, there
is not any attack for the full version of MD4.



| Name Type Speed (Kbit/s) |

MD2 Dedicated (keyless) 78
FFT-hash T Dedicated (keyless) 212
N-hash Dedicated (keyless) 266
Snefru-8 Dedicated (keyless) 270
SHA Dedicated (keyless) 710
BCA Dedicated (keyless) 764
RIPEMD Dedicated (keyless) 1334
MD5 Dedicated (keyless) 1849
MD4 Dedicated (keyless) 2669

Table 2: A comparison on the performance of several hash functions, on a 16MHz IBM PS/2.

MD5 [70] is the strengthened version of MD4, where one extra round is added and each round consists
of more operations (c¢f. Appendix A.3). Although MD) is considered as one of the most promising hash
functions, current technologies demand a faster hash function [74].

For the time being, there is not any successful attack on the full MD5. Berson [9] introduced the
idea of differential cryptanalysis modulo 23? and applied to MD5. He could find collisions for individual
round functions, but the idea could not be extended to the full algorithm. Also, Boer and Bosselaers [19]
gave an algorithm to find pseudo-collisions for MD5 (cf. Section 2). The attack is hardly considered as a
cryptographic attack and the resulting initial vectors always differ in the most significant bits of the four
32-bit words.

As Kaliski and Robshaw have expressed in [46], the attack is not considered as an active attack,
because it does not imply a real collision, and the resulting messages are the same. Moreover, the attack
does not allow the intruder to arbitrary fix one of the initial vectors.

SHA [59] is another strengthened version of MD4, where, for instance, the digest length is increased
from 128 bits to 160 bits and the number of steps per rounds is increased from 16 steps to 20 steps. These
changes make SHA slower than both MD4 and MD5. There is not any successful attack on SHA (for the
time being).

HAVAL [83] is very similar to MD5 with the following advantages:

1. Tt uses five nonlinear boolean functions with Strict Avalanche Criterion (SAC) property.

2. Tt has 15 different versions by choosing the number of passes (3,4, or 5) and the digest length (128,
160, 192, 224, or 256 bits).

3. It is 60% faster than MD5 when 3 passes are required, and as fast as MD5 when full 5 passes are
required.

Other Dedicated Hash Functions are Snefru [55], RIPE-MD [65, 68, 76], FFT-Hash I and II [8,
30, 77], BCA (Binary Condensing Algorithm), MAA (Message Authentication Algorithm), and DSA
(Decimal Shift and Add) that are not included in this paper.

Table 2 gives a comparison of the performance among different hash functions (extracted from [63]).

2 Design Principals for Hash Functions

Study of hash functions clears that most hash functions have similar structures. We suggest the following
structure for hash functions:

1. Choose a good round function f(), depending on the required level of the security. For instance, if
a one-way hash function is required, the round function should be so. (Suppose the function maps
a t-bit block into an r-bit block, where 128 < r <1t.)



2. Use a padding procedure and pad a suffix to the arbitrary length message M such that the padded
message length (in bits) becomes a multiple of t. The following padding procedure is suggested
here:

(a) Store the length of M modulo 2° in a s-bit variable L and pre-pend it to the message.

(b) Append a single ‘1’ bit followed by enough ‘0’ bits to the message such that the length of the
result (in bits) is (! — s) modulo ¢. (At least one bit is appended.)

(c¢) Append the s-bit variable L to the previous result. This makes the padded message length
equal to a multiple of ¢.

The padded message will be (L || M || 100...0 || L), where ‘||” denotes concatenation. It is also
safer to append a plain checksum of the entire message before going to the next step.

3. Divide the padded message into n t-bit blocks M, ..., M,. This allows to process the message in
t-bit blocks, using the round function f().

4. Choose a good initial vector IV (probably by a random choice), and store it in an r bit buffer X .

5. Perform the round function f() to the all n blocks, using a chaining method (X; 41 = f(X;, M;), i=
1,...,n).

6. The output of the above process is the message digest. That is, MD = X, ;1.

It is clear that, to have a weak/strong one-way hash function, the underlying round function should be so.
(This is a necessary condition, that is, a hash function might not be one-way even if the underlying round
function is so.) The above structure thwarts general attacks, such as birthday attack, but the cryptanalyst
has still a chance to attack the hash function based on the weaknesses of use of the underlying round
function. In summary, the round function should have the following properties.

It should be secure against possible attacks (see next section) and satisfy the security assumptions.
For example, to have a collision free hash function the round function must be collision free, because,
if the opponent can find two distinct messages M; and M/ such that f(X;, M;) = f(X;, M]), for some
chaining variable (intermediate value) X;, he/she can find a collision for the entire hash function by just
replacing M; with M/.

In some cases, the underlying round function f() might have a weakness that allows the intruder to
find a pseudo collision. If the opponent can find two messages M; and M/ and two chaining variables X;
and X/ such that f(X;, M;) = f(X!, M), a pseudo collision is found. Sometimes pseudo collisions may
lead to real collisions. For instance, for the above pseudo collision, if the enemy can find a block M}’ such
that f(X;, M/") = X/, he/she can replace M; with (M || M/}), because f(X;, M;) = f(f(X;, M), M]).
In general, the ability of modifying the chaining variable, by traveling back and forth in the chaining
process, should be prevented.

Existence of fized points for the round function is another weakness. The cryptanalyst may find a
chaining variable X; such that f(X;, M;) = X;. In this case M; can be inserted without affecting the
result. However, adding the message length to the process provides some protections against this insertion
(another fixed point should be found and removed from the message to keep the message length intact).

A hash function must use every bit of the message block many times in the round function. This
prevents the cryptanalyst to create undetectable changes in the message, as changing a bit will cause
many changes to the result of the round function. This can be done more efficiently when the round
function is especially designed for hashing (probably from scratch). For instance, if the round function is
an encryption function such as DES, the invertiblity might harm the one-wayness of the hash function.

Choosing an appropriate round function, the process of the whole hash function should be analyzed.
Any irregularities in the distribution of the output can lead to an attack. Differential attack (cf. Sec-
tion 3.2.5) is an instance attack that can use such irregularities.

In keyed hash functions, since a secret key contributes to the process, the designer can base the hash
function on either the security or the efficiency — he/she can make the hash function secure against the
outsiders (who do not know the key) or make it secure for all people (including the insiders who know
the key). The first approach allows the designer to construct an efficient algorithm, by a well studied use
of the secret key in the process. The security is increased if the secret key contributes in the process of
at least the first and the last rounds, because, the opponent will not have access to the components of
the algorithm which is protected by a secret key.



If the designer intends to design a keyed hash function that is secure when the key is known, the
design procedure becomes more complex. The problem of having a keyed hash function secure against
the insiders is left open by Preneel [63]. However, in most cases, such a property will not be useful.
For instance, if for a given key K, the keyed hash function H() is collision free, it means that it is not
possible to find two distinct messages M and M’ such that H(M) = H(M’). This prevents a sender to
send a pair [M, H(M)] to a receiver and claim that [M' H(M')] is sent. However, a key holder could
send [M, H(M)] and claim that [M’, H(M')] is sent, since he/she has access to the secret key and can
calculate H(M') for any M’. This problem can be solved by using techniques such as digital signature
which certainly reduce the efficiency.

At present, hash functions that are based on a hard problem, such as factorization, are not efficient,
and dedicated hash function are being used in practice.

The methods of hashing, described in Section 1.3, are Serial Methods [62] or Chaining Methods [63].
In Parallel Method [62] or Tree Approach [63], the hashing process can be sped up, using many processors.
A simple parallel construction is as described below.

Xil :f(MZi—laMZi)a = 1’”.’2(]—1’
X] = fX3N, XY, i=207) =2 k- L
MD:f(Xf_l’Xg_l)’

where k = 29, ¢t = 2r, ¢ is an integer, and f(), Xij, M;, and M D have the same meanings as before. The
message digest is O(log k) instead of O(k). Similar to the chaining method, the underlying function f()
must be secure [36, 64].

To design a hash function, one can also use nested form of existing hash functions. For instance, if
the hash functions H;() and H3(), and the round function f() exist, one can define the following hash
functions (M and X are message and chaining variable, respectively):

H(M) = f(H (M) [| Ho(M)),

H(M) = Hi(M) || Ho(M)).

It is also possible to form a round function g() from an existing round function f() and a hash function
H():
9(X, My) = f(H(X), H(M;)).

The new hash function can be described as,
H'(M) = g(g(- - g(IV, My) -+, M 1), My),

where 'V is the initial vector. More examples are given in Section 4.3.1.

3 Methods of Attack on Hash Functions

In this section an overview of the known methods of attack on hash functions is presented. The attacks
are divided into two major groups. The ones that depend on the weaknesses of the underlying algorithm
and the ones that do not depend on the algorithm.

A successful attack on a hash function means to find a way to falsify a claimed security property of
the hash function. For example, if a hash function is claimed to be one-way, a successful attack is to find
at least one case that a message can be constructed for a given digest.

In keyed hash functions, since a secret key contributes to the hashing process, the methods of attack
on the secret key should be included. If the cryptanalyst can find a method to extract the secret key,
the system is entirely compromised (during the key life time). There might also be some weaknesses in
the algorithm that allow the intruder to bypass the secret key. Existence of weak keys is one example of
this case, where the algorithm results in the same digest for several keys (cf. either for a fixed message
or all messages). The intruder can then guess the key, since the key domain is shrunk by some factors.
Therefore, design of the keyed hash functions needs careful consideration.

In this section, we also study high level attacks which can be applied to the protocols that use hash
functions.



3.1 General Attacks (independent of the algorithm)

Assuming that a hash function uniformly distributes the set of messages to the set of possible digests,
there are some general methods available to an attacker. These methods do not assume knowledge of the
algorithm and only depend on the message digest length, and the key length in keyed hash functions.
Examples of these attacks are Birthday Attack, Ezhaustive Key Search, Random Attack, and Pseudo
Attack.

3.1.1 Birthday Attack

This attack is originated from Birthday Paradoz which 1s the probability of finding at lease two people
with the same birthday among 23 people. To describe the attack, we assume that the message digest
length is r bits, which provides 2" possibilities for the message digest. If two pools from the digest
space, one containing x; samples and the other containing xz, samples, are generated by an adversary,
the probability of finding a match between the two pools is approximated by,

r1x2

Pal—e 72

bl

where x5 is a big integer [61]. In particular, when z; = x5 = 23 and z, 22 = O(y/n), the probability of

the match equals 63%. That is,

1
P=~1—-—-=0.63.

(&

The important advantage of birthday attack is that, if the opponent slightly increases the size of the
samples (21 and x2), the above probability will significantly increase. In practice, the opponent wishes
to substitute a bogus messages with a genuine message. Assuming that zo genuine digests are available,
the probability of a match equals 1 — e~ .

In keyed hash functions (assuming that the key is kept secret against the adversary), the adversary
cannot calculate the digest corresponding to the bogus message, and therefore, cannot find a match.
However, this technique can be used to find collisions for genuine pairs of [message , digest].

Preneel [63] gives a complete description of this attack and suggests that a 160-bit message digest will
be secure against this attack for at least 20 years. Pieprzyk and Sadeghiyan [62] recommend a 128-bit
message digest to achieve the security against this attack.

3.1.2 Exhaustive Key Search

In keyed hash functions, a secret key is used in the hashing process to make the algorithm secure. If the
adversary has access to at least one pair [message , digest], the key can be found by examining the key
space elements against the [message , digest] pair(s). Since the map from message space to digest space
is not one-to-one, more than one key could be found. However, it might be possible to determine the key
uniquely, if a large number of pairs is given.

As stated in [63], the expected number of trials to find the secret key is upper bounded by,

m

1 i 1
(1_2_7*)2 9r(i—1) < 1_9-r’

i=1

where r is the message digest length and m is the number of [message , digest] pairs. The total number
of trials to identify the key is upper bounded by,
2k — 1

T

where k is the key length (in bits). The number of resulting keys (including the real key) is expected to

be 1+ 2=1 (cf. [63]). Tt means that, about % pairs of [message , digest] are needed to uniquely determine

gmr

the secret key (since, (1 + 2;7; )~ Qk—mr).




3.1.3 Random Attack

Another attack on hash functions, that is independent of the algorithm, is Random Attack. In this attack,
the adversary chooses a random message (or part of a message) and hopes that its message digest is equal
to a genuine one.

The success probability of this attack for a hash function which holds the required random behavior
is 21—“ where 7 is the message digest length. It is suggested to have at least 64 bits for the message digest
to thwart this attack.

3.1.4 Pseudo Attack

We have called this attack Pseudo Attack, since the cryptanalyst tries to find a pseudo key K with
H(K,M)= H(K, M), where H() is a keyed hash function, K is the real key, and M is a message. (This
is similar to finding more than one key in Exhaustive Key Search.) This may allow the enemy (Eve) to
identify herself as a legitimate user who has access to the secret key.

A pseudo key K for some given [message , digest] pairs does not necessarily generate a correct message
digest for another message. In other words, suppose a key K is used to generate ¢ pairs [M;y, M D],
[Ma, M Ds], ..., [My, M D], where MD; = H(K, M;), i =1,...,t. Now if the intruder can find a pseudo
key K with MD; = H([A(,Mi), i=1,2,...,1, it does not necessarily imply that for an M'(# M;, =

~

1,2,...,8), H(K,M') = H(K,M’). This attack is also discussed in [6].

3.2 Special Attacks (that depend on the algorithm)

In this section, the methods of attack which are based on the weaknesses of the round function or, in
general, the hash function, are briefly described. However, these attacks would not be successful on
keyed hash functions, because a secret key protects the components of the hash function against the
outsiders. The attacks that are discussed in this section are Meet in the Middle Attack, Correcting Block
Attack, Fized Point Attack, Attack on the Underlying Encryption Algorithm, Differential Cryptanalysis,
and Linear Cryptanalysis.

3.2.1 Meet in the Middle Attack

This attack is a variation of birthday attack and is applicable to the hash functions that use a round
function f(), invertible to the chaining variable X or the message block M;. Tt allows the opponent to
construct a message which corresponds to a certain message digest. To apply this attack, the adversary
should generate 1 samples for the first and x5 samples for the last part of a bogus message. He/she
goes forwards from initial value and goes backwards from the hash value, and the probability that the
two intermediate values are same, is given by,

r1x2

Pal—e 72

bl

where r is the length of initial vector, intermediate values, and message digest (cf. [63, Appendix B]).
Now if a meeting point is found, the concatenation of the message parts forms a bogus message that
results in the given hash value.

3.2.2 Correcting Block Attack

In this attack, the opponent uses a pre-existing [message , digest] pair, and tries to change one or more
message blocks such that the resulting digest remains intact. One round of MD5 is vulnerable to this
attack, where the cryptanalyst takes a message block M; (16 words), fixes 11 message words, modifies
one word, and calculates the remaining 4 words to form another message block M/ which maps to the
same digest.

A simple solution is to provide redundancy to the message blocks in such a way that the message
digest heavily depend on every bit of the message. Full MD5 is an instance, where each 32-bit word of
the message block contributes in all four rounds of the algorithm. Disadvantage of this solution is the
decrease in the speed of hashing.
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3.2.3 Fixed Point Attack

In this attack, the intruder looks for a fized point for the round function f(). A fixed point is a chaining
variable (intermediate value) X; which satisfies f(X;, M;) = X;. In other words, existence of the message
M; does not change the final result. Therefore, M; can be inserted to the message, whenever the chaining
variable equals X;. Again, there are very simple methods to thwart this attack. Similar to the previous
attack, the designer can make redundancy to the input blocks and/or simply add the message length to
the input message, before performing the last rounds. Note that, in the latter case, if there are plenty
of fixed points, the enemy may insert M; with f(X;, M;) = X; to the M round and remove M; with

F(X;,M;) = X; from the jth round. In this case the message length remains intact.

3.2.4 Attack on the Underlying Encryption Algorithm

In Section 1.3, the hash functions based on encryption algorithms were briefly discussed. Because the
encryption algorithms are designed for encryption and decryption, they might have some weaknesses
when they are used as the round function of a hashing algorithm.

The major weaknesses of the encryption algorithms are Key Collisions, Complementation Property,
Weak Keys, and Fized Points [63]. Details on these weaknesses are beyond the scope of this paper, and
the reader is referred to [1, 16, 21, 20, 42, 48, 49, 50, 51, 58, 60, 66, 67] for more information.

3.2.5 Differential Cryptanalysis

The idea of this attack was first given by Biham and Shamir in [14]. In Differential Cryptanalysis, the
correlation between the difference in input and output is studied. In other words, the intruder searches for
a particular difference in input that cause a specific difference in output. This attack i1s applied to almost
all cryptosystems, including most dedicated hash functions. In the case of hash functions, the difference
in output should be zero to result in collisions. Examples of this attacks are in [9, 11, 14, 15, 16, 17, 51].

3.2.6 Linear Cryptanalysis

Linear Cryptanalysis was proposed by Matsui [54] in early 1993. Although it is inspired by Differential
Cryptanalysis, better results are gained compared with Differential Cryptanalysis (specially on block
ciphers such as DES) [12, 13, 26, 43, 54].

For the time being, there is no proposed attack on the hash functions, based on Linear Cryptanalysis.
However, the hash functions based on encryption algorithms are expected to be the most vulnerable hash
functions against this attack. An implementation of Linear Cryptanalysis on DES can be found in [4, 5].

3.3 High Level Attacks

This section gives an overview of some high level methods of attack on hash functions, when they are
used in a protocol or for a non-hashing purpose.

The first method is Replay Attack or Restore Attack. The components of the hash function (or scheme)
are not changed in this attack, but they are reused. The opponent may store transmitted information and
retransmit it at a later time. On the other hand, an adversary may delete the contents of a transmission.
Therefore, one party will not receive the message that another party assumes he/she has sent to that
party. In banking transmissions, in particular, such an attack can let the intruder to earn millions of
dollars.

Although these attacks are very serious, there are very simple methods to thwart them. To avoid
replay attack, the transmission date and time can be attached to the message. This attached part is called
time stamps. The time resolution should be higher than the resolution of the message transmission. For
example, if a message can be received at least 2 second after the previous one, the time stamp should
include even the seconds of the transmission. However, there are some difficulties to synchronize the
clock pulses and also to remove the delays in a communication channel.

Another high level attack is Padding Attack. Suppose a keyed hash function is constructed from
an unkeyed one by just using the initial vector as the secret key. If Alice sends [M, M D] as a pair of
[message , digest] to Bob, the adversary (Eve) can easily pad M with an arbitrary message M’ and
evaluate the message digest corresponding to (M || M’). Then the pair [M, M D] would be substituted
by [(M || M"), MD']. Padding attack can be easily thwarted by pre-pending the message length to the
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message or by using some fixed suffixes that are not appeared within the message. More examples of this
attack are in [29, 33, 34]. Some methods of avoiding this attack are also suggested in [6].

4 Keyed Hash Functions

Keyed hash functions (cf. Definition 3) can be used for message authentication. In this section, applica-
tions, security requirements, and constructions of keyed hash functions are studied.

4.1 Applications of Keyed Hash Function

Several applications of keyed hash functions are discussed in this section, and advantages and disadvan-
tages of each application is reviewed. These applications are mostly authentication schemes that use
symmetric keys to make the algorithm secure.

4.1.1 Message Authentication between Two Parties

Although electronic signature schemes ([73]) can be used for message authentication, they are usually
slow and inefficient. They also need key distribution schemes for public keys and therefore the problem
remains with the authenticity of the public key and so on. When two parties need to communicate, it is
easier to use a symmetric key rather than public and secret keys. We also note that keyed hash functions
are preferred to be used in authentication schemes (compared with the schemes based on encryption
algorithms), since hashing and encryption are combined and, hence, higher speed can be achieved.

Having a secure keyed hash function (examples are in Section 4.3), a message authentication between
two communicants can be provided by sending the pair [M, M D] from one communicant to the other,
where M D is the message digest of the message M, using the keyed hash function and a secret key shared
between the two communicants.

4.1.2 Message Authentication among Multiple Parties

In some applications, such as FElectronic Mail (Email), a message can be broadcasted to people to re-
duce the communication bandwidth. (The message distribution is done whenever the destinations are
different.) When a user A (Alice) wants to send a message M to other users Bi,..., By, she can, for
example, send (M, H(Kap,, M), ...,H(Kap,,M)] or [M,E(Kap,, (K || H(K,M))),...,E(Kap,,(K ||
H(K,M)))], where H() is a keyed hash function, F() is an encryption algorithm, K 4p, is the secret key
shared between A and B; (i =1,...,n), and K is a fixed length session key chosen by A.

In the first case, B; (1 < ¢ < n) can evaluate the authenticity of the message by recomputing
H(Kap,,M). Disadvantage of this technique is that, 4 should compute H(), n times for n users.
However, it is straight forward and uses only a keyed hash function.

In the second case, B; (1 < ¢ < n) can decrypt F(Kap,, (K || H(K,M))), using the secret key
Kap,, and find the session key K. The evaluation of the authenticity can be done now, by recomputing
H(K,M). Note that, (K || H(K,M)) has a fixed length and will be computed once for all users. This
technique 1s more efficient when the message is very long. Otherwise, the existence of the encryption
algorithm E() makes this technique less efficient.

4.1.3 Password Checking

In many systems, to let a user log into the system, user’s login-name and password is asked. In the earlier
schemes,; password was taken as a key to encrypt the login-name, using an encryption algorithm. The
ciphertext was kept together with the login-name by the system and was decrypted whenever the password
is being validated by the system. In the latter schemes, it was suggested to verify the authenticity by
recomputing and not decrypting the ciphertext.

This technique does not need decryption and can be implemented by use of a secure one-way algo-
rithm. Keyed hash functions are examples of secure one-way algorithms and can be used to compute the
encrypted part of the password table. Since keyed hash functions are, in general, faster than encryption
algorithms, validation of the password entry will be done faster.
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4.1.4 Software Protection

Keyed hash functions can be used to protect a software against modifications (and viruses). The pro-
tection can be provided by computing the digest of the file (software) using a keyed hash function and
saving in a safe place.

In the case that some access protected memory or disk is reserved for the system and users cannot
interrupt the system, any change in the file can be realized by the system, if the secret key is known by
the system.

If no space is reserved for the system, the protection should be provided and verified by the owner of
the file (or an authorized user).

4.1.5 Encryption Algorithms

Hash functions can be used to construct encryption algorithms. In keyed hash functions, since a secret
key contributes to the process of hashing, design of encryption algorithms becomes even simpler. An
example clarifies the idea.

Suppose () is a secure keyed hash function which produces r-bit message digests. To encrypt a
plaintext P = (Py || P2), where P, and P, are r-bit blocks, the following steps are followed:

1. T=H(Ky,P\)& P,
= H(K,,T)& Py,
(

2. O} T
3. Cy=H(Ks,C)® T,

where K = (K; || K2 || K3) is the secret key and Cy and Cs are each r bits. The cipher text is
C = (Cy || C2) and can be decrypted by a similar method:

1. TIH([(g,Cl)@CQ,
2. Ple([(z,T)@Cl,
3. Pz:H([(l,Pl)@T.

A similar scheme was originally proposed in [53] and was briefly examined in [3]. Their scheme uses a
one-way function and adds a secret key as a part of the input message.

4.2 Requirements for Keyed Hash Functions

We consider the following properties for keyed hash functions.

e Security Requirements:

1. Tt should satisfy the requirements of Definition 3.

2. Tt should use a secret key of at least 128 bits to thwart exhaustive key search.

3. It should produce a message digest with at least 128 bits to thwart birthday attacks.

4. Tt should uniformly distribute the message digest in the message digest space. This thwarts
statistical attacks.

o Design Heuristics:

1. It should use the secret key many times in the hashing process — especially at the beginning

and the end.

2. Tt should use every bit of the message several times in the hashing process (redundancy of the
message).

3. The underlying round function should be analyzed very carefully to thwart the attacks that
are based on the weaknesses of the round function, such as fixed point attack. It needs special
care when the design is based on an existing algorithm, such as an encryption algorithm or a
hash function. (Sometimes, it is preferred to construct a keyed hash function from scratch to
avoid these problems.)
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Figure 2: Hash-then-encrypt construction for keyed hash function H(), where H'() is a hash function,
E() is an encryption algorithm, IV is the initial vector, M is the message, K is the key, and M D is the
message digest.

e Operational Requirements:

1. The secret key must remain secret among the trusted parties. Usage of a symmetric key cannot
guarantee the security of the algorithm against attacks from the trusted users.

2. If the keyed hash function is used in a protocol, the security of the algorithm should be
checked in the new environment. In some cases, other security parameters should be included
in the higher level structures. Use of time stamps and serial numbers are examples of such
parameters. Use of different keys for different purposes (eg. authentication and/or secrecy) is
another example.

Other general requirements for keyed hash functions are Complementation Freedom, Addition Freedom,
Multiplication Freedom, Correlation Freedom. The reader is referred to [3] for more details about these
general requirements.

4.3 Construction of Keyed Hash Functions

In Section 1.3, different types of hash functions were discussed and examples of the existing hash functions
for each type were noted. Keyed hash functions can be easily constructed from encryption algorithms,
as they already have a secret key. However, an encryption algorithm might not satisfy the security
requirements of keyed hash functions. In this section, construction of keyed hash functions from existing
hash functions, block ciphers, and also from the scratch are examined.

4.3.1 Construction from Existing Hash Functions

In this section, we show how a pre-existing hash function can be used to construct a keyed hash func-
tion. This implies that, some security requirements of the designed keyed hash function relies on the
security of the underlying hash function. However, other security requirements for keyed hash functions
must be examined separately. We will consider Hash-then-Encrypt Construction, Nested Hash Function
Construction, and Construction Using a Key as Part of Message or Initial Vector.

Hash-then-Encrypt Construction This method is the simplest way of constructing a keyed hash
function. The collision freeness depends on a collision free hash function H'() and the protection against
active spoofer depends on an encryption algorithm F(). The keyed hash function is defined as,

H(K,M)= E(K,H'(M)),

where K is the secret key and M is the message. Figure 2 illustrates this construction.
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Figure 3: Nested hash function construction for the round function f() in keyed hash function H(), where
H'() is a hash function (with IV’ as its initial vector), M; is the ith message block, and X; is the output
of the previous round. Note that, X1 = IV is the initial vector of the keyed hash function H(), which is
set to the key K.

Note that, the length of H'(M) should be equal to the required length of the input for E(). This
scheme is proposed in the CCITT X.509 standard as a standard scheme ([22]). We note that, the first
property of Definition 3 slightly suffers from the slow speed of the encryption algorithm.

Nested Hash Function Construction There are many ways to construct a keyed hash function from
nested hash functions. In this section, three schemes are examined and their advantages and disadvantages
are explained.

1. The first scheme is as follows. Suppose H'() is a one-way hash function with r-bit message digest.
The round function is defined as:

F(Xi, My) = H'(H'(X;) @ M;),

where X; is the chaining variable (output of the last round) and M; is the ith message block (r bits).
The chaining variable X;11 will be set to f(X;, M;) at the end of each round, where X; = I'V. The keyed
hash function uses the above round function with the same design principals that was discussed earlier.
It can be summarized as:

H(K, M) = f(f(--- f(J(K, M), M), ..., Mn_1), My),

where K is the key (K = X; = IV) and M is the message, which is divided into n r-bit blocks
(My,...,My,). Figure 3 illustrates the round function f().

It can be easily tested that H () satisfies all requirements of Definition 3 [10]. Advantage of this scheme
is its dependency on only one one-way hash function. Disadvantage of this scheme is the overhead in
the calculation of H'() (twice for each message block M;, in every round). The plain use of this scheme
suffers from padding attack — an arbitrary message M’ can be appended to M to generate a genuine
pair [(M || M"), H(K,(M || M"))]. However, there are some easy methods to thwart this attack (cf. [6]).

2. The second scheme is similar to the previous one, and the round function f() is defined as:
(X, M) = H'(H'(X3) || M;).

Figure 3 can be used to illustrate this method. The only difference is that, the ‘@’ operation should
be changed to the concatenation operation. Similar to the first scheme, the keyed hash function can be
summarized as:

H(K, M) = f(f(-- f(J(K, M), M), ..., Mn_1), My).
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Figure 4: Nested hash function construction for the modified keyed hash function H(), where H"() is
a keyed hash function (with IV" as its initial vector), H'() is a hash function (with IV’ as its initial
vector), M is the message, K Is the key, s is a suitable salt value, and ‘||’ denotes concatenation.

In this scheme, the message blocks, M;’s, can be of any fixed size, because, it is concatenated to H'(X;)
rather than being XORed. This change in the round function adds one advantage: it is hard to find
K, M,K', and M' with K # K' and M # M’ such that f(K,M) = f(K', M'). That is true because,
the XOR operation is replaced by concatenation. However, it is not clear that the fourth property of
Definition 3 is satisfied. This scheme still has the overhead problem (twice use of H'()) in the process of
the round function and also suffers from padding attack.

3. In the previous method, it was not clear that the fourth property of Definition 3 is satisfied. The
third scheme is the combination of the previous two methods and satisfies the fourth property. Using the
same assumptions that were mentioned earlier, the keyed hash function with additional property can be

defined as:
H(K, M) =s|| H'(H'(H"(K,s)) || H'(M)),

where H"() is a keyed hash function and s is a suitable salt value. (Berson et al. [10] have used a salt
value to make dictionary attacks more difficult.) Figure 4 illustrates this modified keyed hash function.

For example, if H”() is the keyed hash function that was constructed in the first scheme, this method
can be described as:

H(K, M) =s|| H'(H'(f(K,s)) || H'(M)),
with f(K,s) = H'(H'(K) & s), or simply:

H(K,M)=s| H'(H'(H'(H(K)®s)) || H(M)).
Note that, the message is processed only in the last use of H'(). Therefore, the scheme can be summarized

| H(K,M) = s | H'(K' || H'(M)),

where K’ is the secret part and depends on s.

Construction Using a Key as Part of Message or Initial Vector In this section, the construction
of keyed hash functions from a pre-existing hash function, by having a key as parts of message or initial
vector, 1s studied, and therefore, the speed of the constructed keyed hash function remains almost the
same as that of the hash function.
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Figure 5: Construction of a keyed hash function using MD5, where K ap is the secret key, M is the
message, P is the padding bits for MD5, and M D is the message digest. In this construction, the secret
key (128 bits) is used as both the initial vector and a suffix to the message.

In the following, several schemes are given, where H'() is a collision free (and pseudo-collision free)
hash function, K = (K || K3) is the secret key, ‘||” denotes concatenation, and the notations ‘ @& * and
‘@’ are especial XOR operations (cf. Section 1.1).

1. H

M)), where TV is a fixed initial vector.
2. H

M || K)), where IV is a fixed initial vector.

3. H

(3)), where IV is a fixed initial vector.

()), where I'V is a fixed initial vector.

@ M)), where IV is a fixed initial vector.
M @ K)), where IV is a fixed initial vector.

K1 ® M @ Ks)), where IV is a fixed initial vector.

10. H(K, M
11. H(K,M) =

The first three methods were suggested by Tsudik in [75], where K has 512-bit length. Other methods
are improved versions of the first three ones that are studied in [6], and use only 128-bit keys. Methods
1, 5, and 9 suffer from padding attack. However, very simple solutions are suggested in [6]. The tenth
method is considered as the best method. This method is safe against the known attacks and at the
same time is efficient. Figure 5 is an example of this method, where MDb5 1s used as the underlying hash
function (it is supposed that MD5 is collision free). The figure shows that the only operation added to
the normal process of MD5 is the XOR operation on 128 bits, and hence, it 1s fast. On the other hand,
the message is surrounded by the secret key and this thwarts any possible attack.
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Figure 6: One round of KHF.

4.3.2 Construction from Block Ciphers

Since a block cipher uses a secret key to provide the secrecy, it can be used as the round function of a keyed
hash function. The problem rises when the block cipher does not satisfy the security requirements of the
keyed hash function. Also, most of the known block ciphers work on 64-bit plaintexts and ciphertexts and
can provide 64-bit hash values. This is not desired for the hash functions (in Section 3, it was suggested
to have about 128 bits as the digest length). A complete study on hash functions based on block ciphers
are in [63, 81].

4.3.3 Construction from Scratch

In the previous two sections, constructions of keyed hash functions from hash functions and block ci-
phers were examined. Existence of a secret key makes the analysis of an algorithm more difficult for
the outsiders. Therefore, instead of using a pre-existing hash function a new algorithm with the best
performance can be designed. The authors have designed a new keyed hash function (KHF), which is
still under the examination. It uses the following functions as the underlying round functions.

(A and F) xor (B and C) xor
A xor (B and (A xor D)) xor

(B xor C') and D), i=0mod5
((Aand D) xor C')and F), i=1mod5

TN~

Ji(A,B,C, D,F)=< Axor (C and D and E) xor ((4 and C) or (B and D)), i=2mod5
B xor ((D and F) or (4 and (), i=3mod5
D xor F xor (((D and E) xor A) and not(B and '), i=4mod5

They are functions of five variables and have the following important properties [27].
e They are 0-1 balanced.
e They satisfy the Strict Avalanche Criterion (SAC).
e They are highly non-linear.
e They are pairwise linearly non-equivalent.
e They are far from each other, in terms of the Hamming distance.
e They can be shown by short Algebraic Normal Forms (ANF).

In KHF, four possibilities for the 128-bit buffers Kx, Ky, and Kz are suggested.
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1. Kx, Ky, and Kz are all secret keys with Kx = Ky = Kz (total key bits = 128).

2. Kx is a fixed (public) initial vector and Ky and Kz are secret keys with Ky = Kz (total key bits
— 128).

3. Kx is a fixed (public) initial vector and Ky and Kz are different secret keys (total key bits = 256).
4. Kx, Ky, and Kz are all secret keys with Kx = Kz (total key bits = 256).

Figure 6 illustrates one round of KHF.

5 Open Problems

In the study of hash functions, there are many open problems and difficulties. In this section, a set of
typical open problems are given:

1. Ts it possible to construct an efficient (fast) and provably secure keyed hash function (or hash
function, in general)? In other words, is there an optimizes keyed hash function?

2. Ts it possible to construct an efficient (fast) keyed hash function that can provide public and secret
key (not based on public key cryptosystems)? In other words, Is it possible to construct a digital
signature scheme, using only keyed hash functions? (We call it Public Keyed Hash Function.)

3. Is 1t possible to construct an efficient and secure encryption algorithm based on keyed hash func-
tions?
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A Description of some Dedicated Hash Functions

In this appendix, a brief description of some dedicated hash functions are given.

A.1 MD2
MD2 (Message Digest 2) can be described as follows [47].

1. Appending the Padding Bytes: ‘x’ bytes of value ‘z’ are appended to the arbitrary length message
M so that the length (in bytes) of the padded message becomes congruent to zero, modulo 16. Let

M; ; denotes the jth byte of the ™ block of the padded message, where 1 < 5 <16, 1 <1 < n,
and n is the number of 16-byte blocks of the padded message.

2. Appending the Checksum: The following algorithm calculates a 16-byte checksum (C4,. .., Ci¢) for

the message. It uses a 256-byte string as a random permutation, where \S; denotes the it element
(byte) of that string.

e Do C; =0, fori=1,...,16.

e Set L =0.

e Do L=C;=5rgm,;, forj=1,...,16,¢:=1,...,n.

2,77

The 16 bytes C4,...,C16 are the checksum and should be appended to the padded message. (The
message length is now (n + 1) x 16 bytes.)

3. Initialization: A 48-byte buffer IV = (X1,..., X4s), which is used to keep the message digest, is
initialized to zero.

4. Processing the Message in 16-byte Blocks:
Do the followings, for i = 1,... ,n+ 1.
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o Do Xjti6=M;j, Xjpso=M;; ®X;, forj=1,...,16.
e Set T'=0.
e Do the followings, for j =1,...,18.

— Do T'=Xp =X, ® Sy, fork=1,...,48.

— Set T'= (T + j) mod 256.

5. Message Digest: The message digest is the 16-byte output string M D = (X1,..., X15).

A.2 MD4

MD4 (Message Digest 4) is designed for 32-bit operation machines. In the process of MD4, the following
notations and functions are used:

(X and Y) or (not(X) and 7), i=1,...,16.
(XY, Z)=< (XandY)or (X and Z) or (Y and 7), i=17,...,32.
X xor Y xor 7, 1 =33,...,48.

, 00000000, i=1,...,16.
t; ====== 5a827999, :=17,...,32.
6ed9ebal, ¢=33,...,48.

i, i=1,...,16.

4% ((i—13) mod 4) + ((i — 13) div 4), i=17,...,32.
) (2xi—66)mod 15)+1, i = 33,35,38,40,41,43,46.
7Y ((2xi—66)mod 15)+ 7, i =34,36,42,44.

(((2 x i — 66) mod 15) + 7) mod 12, i = 37,39,45,47.

16 i = 48.

3, i=1,59,1317,21,25,29,33,37,41,45.
5, i=18,22,26,30.

7, i=2,6,10,14.

9, i=19,23,27,31,34,38,42,46.

11, i=3,7,11,15,35,39,43,47.

13, i=20,24,28,32.

15, i = 36,40,44,48.

. i=4,8,12,16.

add(X,Y,...) = (X +Y +---) mod 2*%.
rol(X,s) = Rotate left X by s bits.

Now MD4 can be summarized as:

1. Appending the Padding Bits and the Length: The arbitrary length message M is padded by a single
‘17 bit followed by enough ‘0’ bits so that the length of the padded message (in bits) is congruent to
448, modulo 512. Length of M (only the least significant 64 bits of the length) is then appended so

that the final length becomes a multiple of 512 (in bits). Let M; ; denote the jth word of the ith
block of the padded message, where each word has 32 bits, each block has 16 words (1 < j < 16),
and n is the number of 512-bit blocks in the padded message (1 <7 < n).

2. Initialization: A 4-word buffer IV = (X1, Xo, X3, X4), which is used to keep the 128-bit message
digest, is initialized (in hexadecimal) to:

X, = 67452301, X, = efcdab89, X3 = 98badcfe, X, = 103254786.

3. Processing the Message in 16-word (512-bit) Blocks:
L 4 SetA:Xl, BIXQ, CIXg, DIX4
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e Do the followings, for i =1,... n.

— Do T =add(4, f;(B,C, D),

Mi,Tjatj)a A= Da D= Ca

C =B, B=rol(T,s;), forj=1,... 48.
— Set X1 = Cldd(Xl,A), X2 = add(Xz,B), X3 = add(Xg,C), X4 = add(X4,D)

4. Message Digest: The produced message digest is the 4-word (128-bit) output M D = (X1, Xa, X3, X4).

A.3 MD5

MD5 (Message Digest 5) is the strengthened version of MD4. It has one more round and uses more
operations in each round. The basic notations and functions are defined first.

(X and Y) or (no
(X and 7) or (no

(X)and Z), i=1,...,16.
(Z)and Y), i=17,... 32

F(X.Y,Z) = X xor Y xor Z, i=33,...,48.
(not(Z) or X) xor Y, i=49,...,64.

t; = sin(i) mod 2**, i=1,...

i, i=1,...,16.
_ ) (14+5x(j—17) mod 16, i=17,...,32.
i (5+3x(j—33)mod16, i=33,...,48.

7 % (j — 49) mod 16, i =49,...,64.

4, i=33,37,41,45.

5, i=17,21,25,29.

8, ©=49,53,57,61.

7. i=1,5,9,13.

9, i=18,22,26,30.

10, 4 =50,54,58,62.

11, i=34,38,42,46.
L)z i=261014
=Y 14, i=19,23,27 31

15, i =51,55,59,63.

16, 7= 353943 47.

17, i=3,7,11,15.

20, i=20,24,28,32.

21, ¢ =52,56,60,64.

22, i=4,8,12,16.

23, = 36,40,44,48.

add(X,Y,...) = (X +Y + ) mod 232,

rol(X,s) = Rotate left X by s bits.

MD5 can be summarized as:

1. Appending the Padding Bits and the Length: The arbitrary length message M is padded by a single
‘17 bit followed by enough ‘0’ bits so that the length of the padded message (in bits) is congruent to
448, modulo 512. Length of M (only the least significant 64 bits of the length) is then appended so
that the final length becomes a multiple of 512 (in bits). Let M; ; denote the jth word of the ith
block of the padded message, where each word has 32 bits, each block has 16 words (1 < j < 16),
and n is the number of 512-bit blocks in the padded message (1 <7 < n).

2. Initialization: A 4-word buffer IV = (X1, Xo, X3, X4), which is used to keep the 128-bit message
digest, is initialized (in hexadecimal) to:

X, = 67452301,

X2 = efcdab89,

X5 = 98badcfe, X, = 10325476.



3. Processing the Message in 16-word (512-bit) Blocks:

o Set A=X;, B=X», C = X3, D= X,.
e Do the followings, for i =1,... n.
— Do T = add(A,f]'(B,C, D),Miyrj,tj), A= D, D= C,
C' =B, B=uadd(B,rol(T,s;)), for j =1,... 64.
— Set X1 = add(X1,A4), Xa = add(Xs, B), X35 = add(X3,C), X4 = add(X4, D).

4. Message Digest: The computed message digest is the 4-word (128-bit) output M D = (X, X», X3, X4).

A.4 SHA

SHA (Secure Hash Algorithm}is another strengthened version of MD4, where the buffer size is increased
from 128 bits to 160 bits and the number of steps per rounds is increased from 16 steps to 20 steps. There
are some other small changes that will be mentioned in the following summary. The basic notations and
functions for SHA are:

(X and Y) or (not(X) and 7), i=1,...,20.
X xor Y xor 7, 1 =21,...,40.
[i(X,Y,2) = (X and Y) or (X and Z) or (Y and %), i=41,...,60.
X xor Y xor 7, 1 =61,...,80.
52827999, i=1,...,20.
_(inhew.) 6ed9ebal, 1= 21,,40
T 8fibbcdc, 7 =41,...,60.

ca62ci1ds, ¢ =61,...,80.

m'(i)_{Mi,j, ji=1,....16.
T My o3y D My —g) ® My (j_14) D My (j_16), j=17,...,80.
add(X,Y,..)= (X +Y + ) mod 232,

rol(X,s) = Rotate left X by s bits.

Now SHA process can be summarized as:

1. Appending the Padding Bits and the Length: The arbitrary length message M is padded by a single
‘17 bit followed by enough ‘0’ bits so that the length of the padded message (in bits) is congruent to
448, modulo 512. Length of M (only the least significant 64 bits of the length) is then appended so

that the final length becomes a multiple of 512 (in bits). Let M; ; denote the jth word of the ith
block of the padded message, where each word has 32 bits, each block has 16 words (1 < j < 16),
and n is the number of 512-bit blocks in the padded message (1 <7 < n).

2. Initialization: A 5-word buffer IV = (X1, X2, X3, X4, X5), which is used to keep the 160-bit message
digest, is initialized (in hexadecimal) to:

X, = 67452301, X, = efcdab89, X5 = 98badcfe, X4 = 10325476, X5 = c3d2e1£0.

3. Processing the Message in 20-word (640-bit) Blocks:
* SetA:Xl, BIXQ, CIXg, DIX4, EIX5

e Do the followings, for i =1,... n.
— Do Mi,j = m]'(i), T = add(?“Ol(A,5),f]'(B,C,D),E,Miyj,t]'), = D,
D=C, C=rol(B,30), B=A, A=T, forj=1,...,80.
— Set X1 = Cldd(Xl,A), X2 = add(Xz,B), X3 = add(Xg,C),
X4 = add(X4, D), X5 = add(X5, E)

4. Message Digest: The produced message digest is the 5-word (160-bit) output M D = (X1, X9, X3, X4, X5).
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