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a b s t r a c t

Invariant recognition of objects depends on a hierarchy of cortical stages that build invariance gradually.
Binocular disparity computations are a key part of this transformation. Cortical area V1 computes absolute
disparity, which is the horizontal difference in retinal location of an image in the left and right foveas.
Many cells in cortical area V2 compute relative disparity, which is the difference in absolute disparity
of two visible features. Relative, but not absolute, disparity is invariant under both a disparity change
across a scene and vergence eye movements. A neural network model is introduced which predicts that
shunting lateral inhibition of disparity-sensitive layer 4 cells in V2 causes a peak shift in cell responses that
transforms absolute disparity from V1 into relative disparity in V2. This inhibitory circuit has previously
been implicated in contrast gain control, divisive normalization, selection of perceptual groupings, and
attentional focusing. The model hereby links relative disparity to other visual functions and thereby
suggests new ways to test its mechanistic basis. Other brain circuits are reviewed wherein lateral
inhibition causes a peak shift that influences behavioral responses.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cells in visual cortical area V1 are sensitive to absolute disparity
(Gonzalez & Perez, 1998), which is the horizontal difference in the
retinal location of an image feature in the left and right foveas
after fixation. However, many cells in cortical area V2 are sensitive
to relative disparity (Thomas, Cumming, & Parker, 2002), which
is the difference in absolute disparity of two visible features in
the visual field (Cumming & DeAngelis, 2001; Cumming & Parker,
1999); e.g., a figure and its background. Absolute disparity varies
with the distance of an object from an observer. Psychophysical
experiments have shown that absolute disparity can change across
a visual scene without affecting relative disparity. In particular,
relative disparity, unlike absolute disparity, can be unaffected by
the distance of visual stimuli from an observer, or by the vergence
eye movements that occur as the observer inspects objects at
different depths (Miles, 1998; Yang, 2003). Thus relative disparity
is a more invariant measure of an object’s depth, and hence its
3D shape, than is absolute disparity. How does the transformation
from absolute to relative disparity occur between cortical areas V1
and V2 to produce such invariance?
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The transformation from absolute to relative disparity is
relevant to a central theme in cognitive neuroscience; namely,
humans and other primates effortlessly recognize objects in the
world as they move their eyes, heads, and bodies with respect to
them. This flexibility implies a high degree of invariance during
object recognition. Multiple cortical areas, ranging from V1, V2,
and V4, through inferotemporal (IT) and prefrontal cortex (PFC),
gradually build up such invariance in stages. One important
early stage occurs in cortical areas V1 and V2, where binocular
information from both eyes is used to code the location of objects
in depth. Such stereoscopic depth perception can then support the
computation of perceptual grouping, figure–ground segmentation,
3D shape representation, object motion in depth, and invariant
object recognition. The transformation from absolute to relative
disparity is an early step on this road to invariance.

The disparity energy model successfully simulates data about
absolute disparity tuning in V1 cells (Fleet, Wagner, & Heeger,
1996; Ohzawa, 1998; Ohzawa, DeAngelis, & Freeman, 1997). This
model pools inputs from a population of binocular simple cells
with receptive fields (RFs) from both eyes. These responses are
passed through a nonlinear rectifier that does a rectification
followed by squaring. These preprocessed responses are summed
by complex cells whose responses give rise to the desired absolute
disparity tuning curve.

In Thomas et al. (2002), extracellular single-unit recordings in
area V2 of two alert monkeys were obtained to evaluate their
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Fig. 1. Model circuit: the input consists of dots arranged on a disparity axis along
a single position in the plane. The fixation plane is assigned a disparity of 0°. This
input ismapped to complex cells in V1 layer 2/3 that are tuned to absolute disparity
and positioned along a disparity axis. The inputs from V1 layer 2/3 to V2 layers 6
and 4 define a shunting on-center off-surround network whose lateral inhibition
causes a peak shift in V2 disparity tuning that matches relative disparity data.

relative disparity-tuning properties. The stimulus consisted of a
dynamic random dot stereogram (RDS) with a central patch and
a surrounding annulus. The central patch and the surrounding
annulus created a figure and ground, respectively. Such a RDS
provides a cyclopean stimulus configuration; that is, the eyes
were fixated when the cell responses were measured. Prior to
displaying the RDS, the patch was sized and positioned to cover
the receptive field (RF) of the neuron to be within the minimum
response field. The disparities used for the center and surround
were restricted within the range [−1°, 1°] (see input in Fig. 1).
The V2 cell responses were measured as a change in the absolute
disparity of the central patch at two or three different surround
disparities. This ensured that the relative disparity between the
center and surround was varied independently of the absolute
disparity of the center. Using this protocol, they recorded from 165
neurons and found that 62 of these neurons showed significant
selectivity towards relative disparity. These 62 neurons yielded
sufficient data, determined from a minimum of four repetitions at
each of seven disparities for each surround condition, to enable
analysis. In this setting, for a neuron to have perfect relative
disparity tuning, the change in direction and size of the shift of
the cell tuning should match the change in surround disparity.
Their analysis disclosed a gradient shift of cells tuned fromabsolute
to relative disparity using a shift ratio metric (see Shift Ratio in
Section 4), thereby showing that certain V2 cells encode for relative
disparity.

To explain these data, Thomas et al. (2002) proposed an
extension of the disparity energy model to account for how
neurons in V2 may give rise to relative disparity from absolute
disparity. Their model processes pairs of populations that code
absolute disparity outputs from V1. One population of a pair
consists of cell responses from theRF of the center patch in the RDS,
and the other fromaRF in the surround annulus. These are summed
and squared. Subsequently, the outputs frommonocular filters are
subtracted from each pair to increase the sensitivity to relative
disparity. If the particular monocular filter is not subtracted, the
V2 cell response is influenced more by absolute disparity. This
suggests the need for some inhibitory mechanism. The outputs of

all such responses are summed by a neuron in V2 that is proposed
to estimate relative disparity.

This proposal has several shortcomings. First, the model only
qualitatively simulates some data from Thomas et al. (2002).
Second, themodel needs to somehowknowwhichmonocular filter
to subtract fromeachpopulationpair to compute relative disparity.
The model does not provide any information as to how this may
be accomplished in vivo. Third, no explanation is provided for why
cells in V2 exhibit a gradient from absolute to relative disparity.

We propose a neural model that quantitatively simulates
the data from Thomas et al. (2002). The model demonstrates
that shunting lateral inhibition of layer 4 cells in cortical area
V2 can cause a peak shift in the cell responses. This peak
shift is sufficient to transform absolute disparity into relative
disparity. This inhibitory circuit has previously been used to
explain perceptual and neurobiological data about contrast gain
control, divisive normalization, selection of perceptual groupings,
and attentional focusing (Grossberg, 1999; Grossberg & Raizada,
2000). Themodel’s inhibitory circuit hereby links the computation
of relative disparity to other visual functions and thereby suggests
new ways to test its mechanistic basis.

2. Model overview and equations

As noted above, the model predicts that the transformation
from absolute to relative disparity is accomplished by a peak
shift in cell tuning that is caused by a network between layers
6 and 4 of V2 with spatially narrow excitatory connections and
spatially broader inhibitory connections among cells that obey the
membrane, or shunting, equations of neurophysiology (Hodgkin,
1964). These processes together define a shunting on-center
off-surround network (Fig. 1). Such a shunting on-center off-
surroundnetwork is capable of normalizing the activities of its cells
(Grossberg, 1973; Heeger, 1992).

The inputs to cells in this V2 network are outputs fromV1 layers
2/3 binocular complex cells that are tuned to absolute disparity. An
analogous on-center off-surround network between layers 6 and 4
is known to also occur in V1 (Ahmed, Anderson, Martin, & Nelson,
1997; Callaway, 1998;McGuire, Hornung, Gilbert, &Wiesel, 1984).

These processes may be mathematically defined as follows:

1. Model inputs.
The disparity µC of a center input is chosen in the range

[−1°, 1°]. Likewise, the disparity µS1 of the first surround input is
chosen in the range [−1°, 1°], as is the disparity µS2 of a second
surround input.

2. V1 cell responses.
The responses of disparity-tuned complex cells in V1 layer 2/3

are defined in terms of the input parameters. The cells in each layer
of the network are assumed to be arranged topographically along
the disparity axis (see Fig. 1). In V1 layer 2/3, each cell is thus
tuned to a particular absolute disparity. The Gaussian receptive
field across disparity-tuned cells of the ith cell with disparity µi
is defined by:

V (1)
i (θ) = e

−(θ−µi)
2

2σ2
1 . (1)

In Eq. (1), the disparity θ varies in the range [−1°, 1°] and the
tuning curve width σ1 = 0.2 is estimated from data (Gonzalez
& Perez, 1998). The tuning curve width is estimated as the width
of the cell at half its peak amplitude, i.e., as the Full Width Half
Maximum (FWHM). The model V1 neurons used in the simulation
are shown in Fig. 2. Thus a continuous array of cells tuned from
near to far were used in the simulations.
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(a) Disparity tuning functions of cortical visual cells. (b) Disparity tuning of model V1 cells.

Fig. 2. (a) Disparity tuning cells in V1 classified into different types with narrow tuning widths. (Reprinted with permission from Gonzalez and Perez (1998).) (b) Model V1
cell responses used in the simulation are defined by narrow Gaussians: TN—tuned near; TF—tuned far; TE—tuned excitatory; TI—tuned inhibitory; NE—near; FA—far. Only
TN, TF, and TE cells are used in the model.

3. V2 cell responses.
Activity V (2)

i (θ) of the ith layer 4 V2 cell is defined by a
membrane, or shunting, equation that receives inputs fromV1 cells
via a shunting feedforward on-center off-surround network:

dV (2)
i

dt
= −AV (2)

i + (B − V (2)
i )V (1)

i − (C + V (2)
i )

−
j

DijV
(1)
j . (2)

In Eq. (2), parameter A (=0.001) determines the decay rate of
the cell; B (=10) is the excitatory saturation point of depolarized
cell activity; V (1)

i is the on-center input from V1, defined by
Eq. (1), which inputs a narrow band of disparities to V2; C (=3) is
the inhibitory saturation point of hyperpolarized cell activity; and∑

j DijV
(1)
j describes an off-surround inhibitory input fromV1 layer

6 cells with Gaussian off-surround kernel:

Dij = D−
1

√
2πσinh

e

−(µ
−

i −µ
−

j )2

2σ2
inh . (3)

For simplicity, it is assumed that V2 layer 6 cells simply relay their
inputs V (1)

j from V1 to layer 4 via the Gaussian kernel weights Dij.
In Eq. (3), D− is the maximum value of the off-surround kernel;
µ−

j is the preferred disparity of the jth V2 cell; and σinh scales the

width of the off-surround kernel across disparity-tuned cells. In
the simulations, µ−

j varies in the range [−1°, 1°] to correspond to
neurons that are arranged along the disparity axis.

At equilibrium, dV (2)
i
dt = 0. By Eq. (2), the ith V2 layer 4 cell

response at equilibrium is:

V (2)
i =

BV (1)
i − C

∑
j
DijV

(1)
j

A + V (1)
i +

∑
j
DijV

(1)
j

. (4)

The shunting off-surround at equilibrium in Eq. (4) automatically
realizes divisive normalization, unlike the disparity energy model.

3. Simulation protocol

The model input consists of points (pixels) arranged in depth
in a visual field along one position, similar to the inputs used
in Thomas et al. (2002); see Fig. 1. The fixation plane has
a disparity of 0°. We chose one position in space to be the
center dot, or patch (Fig. 1). The center dot varies from a
disparity of −1° to 1°. Adhering to the experimental method
in Thomas et al. (2002), we chose a surround dot at random.
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The disparity of the surround dot also varies from −1° to 1°.
With this center and surround fixed, each disparity-tuned cell in
V1 codes for a particular absolute disparity. Disparity-sensitive
cells are distributed across the network. This calculation is a valid
approximation of disparity tuning (Gonzalez & Perez, 1998).

The model consists of 200 cells in each layer of the network,
all arranged along the disparity axis. The disparities of the V2 cells
differ by 0.01°, and thereby sweep out an interval [−1°, 1°] of
disparities.

After fixation is established, a center dot is chosen. The
disparity of this center dot is assessed and the V1 tuning curve
corresponding to the disparity is calculated. The disparity of the
center patch is systematically varied in the range [−1°, 1°], as in
Fig. 1. To assess the nature of the response of V2 cells to surround
disparities and in effect their sensitivity to relative disparity, we
choose a pair of surrounds at random after the V2 cell profile is
assessed at 0° surround disparity. The surrounds are chosen from
the interval [−1°, 1°] to test possible peak shifts. For each center
patch, there are 200 possible surround disparities. Thus, for each
cell, keeping the center of the lateral inhibition at the cell which
codes for the center patch, one of the surround disparities is chosen
and is kept active until the effect of the network on this cell is
found. This is repeated for the second surround as well. The need
for such a protocol becomes clear to understand the shift ratio (see
Shift Ratio calculation in Section 4).

4. Results

Throughout the simulations, the values of A, B, and C in Eq. (2)
were held constant. Parameters D− and σinh in Eq. (2) were varied
to assess the role that the shunting inhibitory off-surround from
layer 6 cells plays in the computation of relative disparity.
1. Peak shift in V2 layer 4 due to the shunting on-center off-surround
network.

The activity of a model V2 layer 4 cell exhibits a peak shift
in its disparity-tuning curve relative to its V1 on-center input
(Fig. 3(b)). This peak shift is due to the shunting on-center off-
surround network from layer 6 to layer 4 in V2.
2. Shift ratio.

The peak shift is calculated as follows: The peak activity across
all V2 cells is shifted by two different V1 cells whose maximal
absolute disparity sensitivities are centered at absolute disparities
µS1 and µS2. These disparities are denoted by µS1 and µS2 because
both of the V1 cells activate target V2 cells via their off-surrounds
(S). The corresponding shifted peaks for each V2 cell V (2)

i are
denoted by pi1 and pi2. The shift in peaks relative to the difference
in surround disparities is called the shift ratio:

shift_ratioS1S2(V
(2)
i ) =

pi1 − pi2
µS1 − µS2

. (5)

In particular, in Eq. (5), the peak shift of the ith V2 cell V (2)
i in

response to the first surround input (S1), chosen at random, is
calculated as the shift of the peak of this cell with respect to the V2
cell peakwhen the surrounddisparity is at 0°. The peak shift caused
by shunting using this surround disparity is p1i. Similarly, the
peak shift of the V (2)

i cell for a second randomly chosen surround
(S2) is calculated. The peak shift of this cell in response to this
surround disparity is p2i. The ratio of these peak shifts divided by
the differenceµS1−µS2 of the surrounddisparities defines the shift
ratio in Eq. (5).

A shift ratio of zero signifies that the cell is tuned to absolute
disparity. A shift ratio of one signifies that the cell is tuned to
relative disparity. In V2, a gradient of shift ratios from absolute
disparity to relative disparity is observed.

An exhaustive number of combinations would correspond
to permutations derived from choosing two surrounds without
repetition from a set of 200 cells; that is,


200
2


=

200!
2!198! = 19,900.

However, the best available data from Thomas et al. (2002) have
a maximum of 91 shifts, so a random selection is justified as the
only means for comparison of the summary statistics. Thus, in our
simulations, for each cell we compute four shift ratios to derive a
total of 1600 shifts and 800 shift ratios. The final results for shift
ratios are randomly sampled without replacement to select 75 and
91 shifts, respectively (see Figs. 3(d) and 4(c)) tomatch the number
of shifts that are computed in the experimental data (see Fig. 3(c)).
Such a samplingwas done to bestmatch the experimental data and
to avoid any bias in running the simulation. The network behavior
measured from the shift ratio statistics for different parameter
values of the inhibitory off-surround kernel is shown in Fig. 4.

The results show that, in order to achieve shift ratios that
spread from 0 (absolute disparity) to 1 (relative disparity), as is
observed in V2, one requires a wide surround inhibition relative to
the breadth of the V1 Gaussian that represents absolute disparity
tuning. Equally important is the amplitude D− of the inhibition.
The amplitude of D− has to be weak relative to the maximum
amplitude of the on-center input, V (1)

i , in Eq. (1). IfD− is small, then
there is an absolute-to-relative disparity gradient in V2 similar to
the data from Thomas et al. (2002). If D− is large relative to the
maximum amplitude of V (1)

i , then, however wide the inhibition is,
the shift ratios cluster around 0, and thus lead to more absolute
disparity.

It is clear from our shift ratio sampling that there is a gradient
shift towards relative disparity. There are also cells in the model
which have shift ratios that exceed 1 or are negative; see Fig. 4.
This is possible because the surround dots are chosen at random.
The best result in comparison to the datawas obtainedwhenD−

=

0.2 and σinh = 1.0. Thus the system requires a wide but weak
inhibitory kernel.

5. Summary and discussion

The V2 shunting lateral inhibitory network operates on the
outputs from the V1 network of disparity-tuned cells to transform
absolute disparity into relative disparity. Model simulations
provide good fits to the data in Thomas et al. (2002); see Fig. 3. The
simulations go beyond the data to predict the mechanism which
causes the relative disparity responses measured in V2 as well as
the shift ratios observed for disparities in V2 (Figs. 3 and 4); namely,
the shifts in the peak or trough of the tuning curves relative to the
difference in surround disparity.

In summary, shunting lateral inhibition acting at layer 4 of
cortical area V2 can quantitatively explain how absolute disparity
in V1 is transformed into relative disparity in V2. This mechanism
is consistent with previous theoretical analyses of perceptual and
neurophysiological data which led to the conclusion that broad
lateral inhibition is needed for stereoscopic depth processing. In
particular, as part of a study to discriminate depth contrast (that is,
to discriminate the depth of two adjacent bars), Mitchison (1993)
hypothesized that center-surround disparity tuning is needed in
the stereo pathway.

The currentmodel supports that claim and predicts, in addition,
that surround inhibition should be wide (σinh = 1.0) and weak
(D−

= 0.2) in the V2 inhibitory surround that causes the peak
shift (see Eqs. (2) and (3)) relative to the central activation zone
— that is, the absolute disparity tuning (σ1 = 0.2; maximum
amplitude of input from V1 = 1.0) in the V2 input Gaussian (see
Eq. (1)) — in order to transform absolute disparity into relative
disparity. This set of surround inhibition parameters with respect
to absolute disparity tuning best fits the shift ratio statistics of the
data from V2 presented in Thomas et al. (2002); see Fig. 3(c). How
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Fig. 3. (Left panel) Sample cell data from experiments and model. (a) Experimental data of two V2 cell responses for relative disparity. (Reprinted with permission from
Thomas et al. (2002).) (b) Two model V2 layer 4 neurons with disparity tuning curves with changes in surround disparity. The model neurons simulate the position of data
peaks and their shifts, but not all aspects of the amplitudes in the data. This is due to the simplicity of the model. Despite the simplicity, the model is capable of capturing the
key shift properties. (Right panel) Shift ratio statistics. The shift ratio is defined as the shift in peaks of the tuning curve relative to the difference of surround disparities. The
shift ratio summarizes the statistics of the type of disparity observed. (c) Shift ratio summary reprinted with permission from Thomas et al. (2002). (d) Shift ratio summary
from the model showing best results with D−

= 0.2 and σinh = 1.0.

these parameters affect the V2 shift ratios is presented in Fig. 4,
with Figs. 4(c) and 3(d) most resembling the data in Fig. 3(c).

Themodel’s peak shift mechanism to carry out this transforma-
tion adds to the list of known functions that may be traced to peak
shifts due to lateral inhibition. These include the visual illusion
of line neutralization (Levine & Grossberg, 1976), the peak shift
and behavioral contrast that occur during reinforcement learning
(Grossberg, 1975), and a peak shift that controls a vector decom-
position whereby global motion appears to be subtracted from the
true motion path of localized stimulus components (Grossberg,

Léveillé, & Versace, in press). In the present case, the peak shift
occurs within a laminar cortical network that enables the com-
putation of relative disparity to facilitate the generation, through
multiple stages of laminar cortical processing in visual cortex, of
invariant representations of 3D shape to which attention can se-
lectively be paid (Grossberg, 1999; Grossberg, Markowitz, & Cao,
in press; Grossberg & Swaminathan, 2004; Grossberg & Yazdan-
bakhsh, 2005; Raizada & Grossberg, 2003).

Within the 3D LAMINART model (Grossberg, 1999, 2003;
Grossberg & Raizada, 2000), the shunting off-surround from
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Fig. 4. Shift ratio statistics due to varying D− and σinh . Shifts towards absolute disparity or relative disparity depend on these parameters. (a) D−
= 0.5; σinh = 1.0. Shift

towards absolute disparity. This is the usual profile of V1 disparity cells. (b) D−
= 1.0; σinh = 0.5. Absolute disparity is observed with a larger amplitude and narrower width

of the off-surround kernel. (c) D−
= 0.2; σinh = 1.0. A weak amplitude modulation (D−

= 0.2) and a wide inhibitory surround together (σinh = 1.0) generate a gradient
from absolute to relative disparity resembling the data. Thus the nature of the surround inhibition in V1 and V2 accounts for the type of disparity sensitivity. The parameters
used in Figs. 3(d) and 4(c) are the same.

layer 6 to 4 has earlier been shown to carry out multiple
additional perceptual roles (Fig. 5). These include contrast nor-
malization of bottom-up inputs from V1; selection of perceptual
groupings via an intracortical V2 recurrent network between layers
2/3, 6, and 4; and biased competition by top-down attention from
higher cortical regions via top-down circuits to layer 6 and then
back up to layer 4 via its self-normalizing on-center off-surround.
In particular, one target of top-down attention is layer 6 cells in V2.

Thus, if there are two surrounds and attention is paid to a particu-
lar surround dot, then the peak shift may increase in the direction
away from the attended surround and its size may co-vary with
the attentional gain.

A shunting inhibitory network also occurs in layer 4 of V1
(Ahmed et al., 1997; McGuire et al., 1984; Tamas, Somogyi, & Buhl,
1998), where it also plays multiple roles. One recently predicted
role is, in concert with other cortical circuits, to help create
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Fig. 5. LAMINARTmodel of 3D vision and figure–ground separation. The model for
absolute to relative disparity suggests a new functional role for the shunting lateral
inhibitory network to layer 4 of cortical area V2.
Source: Reprinted with permission from Grossberg (2003).

percepts of perceptual transparency (Grossberg & Yazdanbakhsh,
2005). Thus even relatively simple circuits within the hierarchy of
laminar cortical circuits in the visual cortex can play an important
role in the transformation of visual inputs into conscious percepts
and recognized objects.
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