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1 Introduction

Ontologies [9] comprise a definition of concepts describing their commonalities
(genus proximum) as well as their differences (differentia specifica). One might
think that with the definition of commonalities and differences, the definition of
similarities in and for ontologies should follow immediately. Traditionally, how-
ever, the contrary is true, because the method background of ontologies, i.e.
logics-based representations, and similarity, i.e. geometry-based representations,
have been explored in disjoint communities that have mixed only to a limited
extent. In this short paper we survey how our own work touches on the inter-
section between ontologies and similarity. While this cannot be a comprehensive
account of the interrelationship between ontologies and similarity, we aim it to
be a stepping stone for inspiration and for indicating entry points for future
investigations.

2 Similarity

When analyzing the interplay of ontologies and similarities, we have encountered
two issues that need to be clarified first:

1. For which entities should similarity be assessed?
– Objects: In many applications, the eventual target is the assessment of

similarity between objects. For instance, in information retrieval one may
want to search for the document vector neighboring most closely to a
given query vector whereby the assessment of similarity should take the
ontology-based semantics of query and document representations into
account. Here, the ontology comes as an auxiliary means of influencing
the geometric space in a desired manner, e.g. [10].

– Concepts: Frequently the entities to be compared are the concepts de-
fined in one or several ontologies. For instance, the integration of two
information systems may be pursued by aligning the two ontologies that
conceptualize the underlying information systems. Correspondencies be-
tween concepts from the two ontologies may be explored by taking dif-
ferent types of similarities between concepts into account, e.g. [7].

– Ontologies: In knowledge engineering the task of comparing ontologies
is sometimes required in order to answer questions about the match be-
tween two ontologies, e.g. if they have been learned by automatic means,



e.g. [6]. Not all of the measures used here are similarity measures in
the mathematical sense, but similarities are fed into precision/recall-like
measure in order to judge the container-containee relationship between
two ontologies.

2. What is the objective of this similarity assessment?
– Numeric Similarity Assessment: The most common type of similarity

assessment is based on the mathematical notion of similarity measure
that fulfills the following core properties for any given entities e, e1, e2:

sim(e1, e2) ∈ [0, 1]
sim(e, e) = 1

sim(e1, e2) = sim(e2, e1)

– Preference Ordering: While one may find quite some efforts in the litera-
ture for aligning the numerical assessment of similarity with judgements
found in user experiments, in many application cases numerical mea-
sures are in fact not needed. Application cases like clustering of objects
primarily need information about which pair of objects is most similar
to each other — regardless of a numerical value. This is particularly rel-
evant when ontological knowledge is so incomplete that deciding about
such a preference ordering is still possible, while further measurements
cannot be reasonably predicted.

3 Ontological Foundations for Similarity Assessments

Even within computer science, the word “ontology” is used in two senses. In its
proper sense [9] an ontology is a formal specification of a shared conceptualiza-
tion of a domain of interest. Thereby, the conceptualization abstracts from the
particularities of a particular situation, e.g. a household ontology would typi-
cally include the definition that a desk is a table, while it would not contain
statements about whether a desk is actually found in a particular household,
which rather constitutes a situational and possibly changing aspect:

desk v table

The word “formal” refers to the use of a mathematical mechanism for describ-
ing an ontology. In practice, the Web Ontology Language OWL, which is derived
from the paradigm of description logics [14], is most frequently used as a notation
for writing down ontologies, as it is an standardized, expressive language with
a clear formal semantics. In description logics, one may distinguish definitional
knowledge about concepts and relationships found in the T(erminological)-Box,
e.g. every desk being a table, and assertional knowledge about objects, e.g. a
specific object being a desk and occurring in a given household, such as found
in the following A(ssertional)-Box:

Desk(object1).occur(object1, household2).



Thus, the Web Ontology Language provides convenient language constructs
for specifying an ontology as well as for specifying the facts found in a par-
ticular situation. This convenience led to the use of the term “ontology” in a
second meaning, namely as refering to a complete knowledge base consisting of
an ontology in the proper sense and factual knowledge about a situation.

3.1 Logics-based Ontology Representations

The full advantage of description logics is derived from the expressiveness of the
language allowing for m the possibility to use concepts and relations to define
new concepts. The following definition describes that a desk that has a Minibar
which only contains FancyDrinks is a FancyDesk:

FancyDesk v Desk u ∃hasPart.(MiniBar u ∀contains.FancyDrink)

This advantage, however, is problematic when, e.g., concept expressions are
to be compared. For instance, the following definition specifies that a Favorit-
eDesk is a Desk with a Compartment having at least some SingleMalt:

FavoriteDesk v Desk u ∃hasPart.(Compartment u ∃contains.SingleMalt)

When assessing the similarity between FancyDesk and FavoriteDesk, the in-
tricate logic expressions lead to many non-trivial problems that we have analysed
in [4]. The core result of this analysis was that existing similarity measures were
not adequately reflecting the richness of description logics with some of them
being unsound. We then suggested a new measure that uses the richness of de-
scription logics in a sound way, however, it is very expensive to implement.

3.2 Lattice-based Ontology Representations

Historically, researchers did not approach the problems of similarity in ontology-
based representations, but they rather relied on simpler representations. Some
of them cannot be called ontology representations anymore, because they fail to
reflect the richness of interactions between concepts and relationships between
concepts.

A very elegant mechanism is formal concept analysis [8]. Here objects (ta-
ble1 . . . seat4) are represented by whether they have a property (hasLegs . . .
hasCompartment) or not. An example is given in Table 1.

This table of binary decision is analysed revealing what Ganter and Wille
call ‘formal concepts’. Each formal concept has an extension consisting of a
subset of objects and an intension consisting of a subset of properties, e.g.
({chair3,seat4},{hasLegs, offersSeating, hasSurface}) is a formal concept — ob-
viously representing the class of all chairs. Also subclass relationships between
formal concepts can be derived, for this particular example there will be a class
of desks (containing desk1) and a class of tables (containinng table1 and desk2),
with the former being more specific than the latter.



hasLegs offersSeating hasSurface hasCompartment

table1 X X

desk2 X X X

chair3 X X X

seat4 X X X

Table 1. Formal context representing the relations between objects and properties

This representation is very interesting during ontology engineering and for
data mining (and many extensions towards non-binary table entries and higher-
arity relationships exist), but it is not close to common ontology representations.
The structures are still very useful as approximations of ontological structures
and the binary vectors lend themselves as a basic means for set-based assessments
of similarity between objects, properties and formal concepts.

Formal concept analysis has been used to induce a taxonomy from words and
their correlations to other words in texts [2]. While we are not aware of direct
applications of formal concept analysis starting with an ontology, we see fruitful
possibilities for such future use — especially because the given method consti-
tutes a well-researched mathematical method with corresponding well-defined
operators.

3.3 Graph-based Ontology Representations

Graph-based representations of ontologies are the most frequently used means
to assess similarities in or between ontologies. The advantage of using graphs
is that the definitions are easy to implement and to adjust to specific needs.
The disadvantage is that graphs also cannot capture the richness of descriptions
found in OWL ontologies.

Most of the work on determining similarity between concepts in ontologies
built on the core idea of Resnik [13] that such similarity is defined on the basis of
a. a stable taxonomy, b. the counting of taxonomic links between two concepts
that are to be compared and c. some normalization to take into account the
height of a concept in this taxonomy, i.e. some version of measuring the extension
of two concepts.

4 Applying Similarities and Ontologies

A very comprehensive survey of similarity measures in ontologies can be found
in the dissertation by d’Amato [3]. Interestingly, these assumptions by Resniks
(and ‘followers’) did not match very well the actual situation found in descrip-
tion logics ontologies. But independently from which representation is chosen to
define which exact similarity measure, there is a wide range of applications for
which this combination has been used. We simply give here an indicative list



without much further explanation (and without claiming completeness): Infor-
mation Retrieval [10]; Machine Learning [1]; Web Service Discovery [11]; Ontol-
ogy Alignment [7]; Ontology Learning: Evaluation [12, 6]; Ontology Learning:
Induction [2]; Indexing of description logics ontologies [5]

5 Conclusion

We have sketched hier the possible space of how different ontology representa-
tions (or approximations of ontologies) may be used as a foundation for similarity
measures. Depending on which entities are to be compared and what the pur-
pose of comparison is a corresponding similarity measure must be chosen. It is
intriguing to note that many of the existing similarity methods do not match
with the assumptions underlying description logics ontologies — making existing
methods invalid and requiring further exploration of this space of ontologies and
similarities.
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