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Overview and Outlook of
Three-Dimensional Integrated
Circuit Packaging, Three-
Dimensional Si Integration,
and Three-Dimensional
Integrated Circuit Integration
3D integration consists of 3D integrated circuit (IC) packaging, 3D Si integration, and
3D IC integration. They are different and in general the through-silicon via (TSV) sepa-
rates 3D IC packaging from 3D Si/IC integrations since the latter two use TSV but 3D IC
packaging does not. 3D Si integration and 3D IC integration are different. 3D IC integra-
tion stacks up the thin chips with TSV and microbump, while 3D Si integration stacks up
thin wafers with TSV alone (i.e., bumpless). TSV is the heart of 3D Si/IC integrations and
is the focus of this investigation. Also, the state-of-the-art, challenge, and trend of 3D
integration will be presented and examined. Furthermore, supply chain readiness for
high volume manufacturing (HVM) of TSVs is discussed. [DOI: 10.1115/1.4028629]

1 Introduction

The Electronics Industry has been the largest industry since
1996 and may well reach 1.6 trillion dollars (i.e., $1.6� 1012) by
the end of 2015 [1–3]. The most important invention of the Elec-
tronics Industry is, arguably the transistor (1947), which earned
John Bardeen, Walter Brattain, and Shockley the 1956 Nobel
Prize in Physics. The invention of the IC by Kilby in 1958 (which
earned him the 2000 Nobel Prize in Physics), and 6 months later
by Noyce (who did not share the Nobel Prize with Kilby because
he passed away in 1990) excited the generations of IC
integrations.

The proposal of doubling the number of transistors on an IC
chip (for minimum costs and innovations) every 24 months by
Moore in 1965 (also called Moore’s law) [4] has been the most
powerful driver for the development of the microelectronics
industry in the past �50 yr. This law emphasizes lithography scal-
ing and integration (on a 2D surface) of all functions on a single
chip, perhaps through system-on-chip (SoC). On the other hand,
the integration of all these functions can be achieved through 3D
integrations such as 3D IC packaging [1], 3D IC integration
[1–3,5–89] and 3D Si integration [1–3,69–125] as shown in Fig. 1
[1–3].

TSV was invented more than 50 years ago [1,126] by the 1956
Nobel Laureate in Physics, Shockley. (Yes, the same Shockley
who co-invented the transistor, which is generally considered the
greatest invention in Semiconductor industry.) He filed the patent
“Semiconductive wafer and method of making the same” on Oct.
23, 1958, and as granted the U.S. Patent (3,044,909) on July 17,
1962. One of the key claims is shown in Fig. 2, which gets the
Semiconductor world so excited today. Basically, the “deep pits”
(which are called TSVs today) on the wafer allow the signals
from its top side to its bottom side and vice versa.

TSV is the heart of 3D Si integration and 3D IC Integration
[1,127]. It provides the opportunity for the shortest chip-to-chip
interconnects and the smallest pad size and pitch of interconnects.
Compared with other interconnection technologies, such as wire
bonding, the advantages of TSV include: (a) better electrical per-
formance, (b) lower power consumption, (c) wider data width and
thus bandwidth, (d) higher density, (e) smaller form factor, and (f)
lighter weight, [1–3,5–125].

TSV is a disruptive technology. As with all disruptive technolo-
gies, the questions to ask are: “What is it displacing?” and “What
is the cost?” Unfortunately, TSV is trying to displace the wire-
bonding technology, which is a most mature, high-yield, and
low-cost technology [128]. However, just like solder-bumped flip
chip technology [129,130], because of their unique advantages,
TSVs will be here to stay and for a very long time for high-
performance and high-density applications.

TSV has been in volume production for micro-electro-
mechanical systems [131,132] and complementary metal-oxide-
semiconductor (CMOS) image sensor [133,134]. However, they

Fig. 1 3D integration technologies versus maturity [2]
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are out of the scope of this study, which is focused on memory,
logic, processor, and SoC.

3D (IC and Si) integration is a very old idea [69,70] which con-
sists of two or more layers of active electronic components that
are integrated vertically through TSV (it used to be called vertical
interconnection) into a single circuit. It was trigged by the
advance of the silicon-on-insulator (SOI) technology first reported
by Gat and his colleagues more than 35 years ago [135], when
semiconductor people thought Moore’s law could be hitting the
wall by the 1990s. Of course, the fact showed otherwise.

3D IC integration is to stack up the thin chips with TSVs and
microbumps. While 3D Si integration is to stack up the thin
wafers/chips with TSVs alone, i.e., bumpless. The advantages of
3D Si integration over 3D IC integration are: (1) better electrical
performance, (2) less power consumption, (3) lower profile, (4)
less weight, and (5) higher throughput.

The most powerful proponent on 3D IC/Si integration is the
1965 Nobel Physics laureate, Richard Feynman. Almost 30 years
ago, during his lecture, Computing Machines in the Future in
1985, he said “Another direction of improvement (of computing
power) is to make physical machines three dimensional instead of
all on a surface of a chip. That can be done in stages instead of all
at once—you can have several layers and then add many more

layers as time goes on.” In this study, the overview, challenge,
and outlook of 3D IC integration, and 3D Si integration will be
presented and discussed. 3D IC packaging will be briefly men-
tioned first.

2 Overview and Outlooks of 3D IC Packaging

Figure 1 shows that chip stacking by wire bonding and package-
on-package (PoP) are now mature for HVM. Chip-to-chip inter-
connects and 3D fan-out embedded wafer-level packaging are
potential candidates for manufacturing.

2.1 Chip Stacking by Wire Bonding. The first paper on
stacking of memory chips in 3D by die-attach material and Au
wire bonding was published by nCHIP [136] more than 20 years
ago. Since then, memory chip (especially the NAND Flash) stack-
ing by Au wire bonding has been in high volume production for,
e.g., the smartphones and tablets. Because of the surge in Au pri-
ces and research and development progress in Cu wire-bonding
technology, many companies have been looking for low-cost
solutions, and the shift from Au to Cu wire bonding as shown in
Fig. 3 is genuinely picking up.

2.2 PoP. PoP comes from many different forms. Figure 4
shows a wirebond package on top of a flip chip package. It can be
seen that the top package consists of two chips cross stacked and
wire bonded on a package substrate and then over molded. The
bottom package consists of a solder-bumped flip chip on another
package substrate with underfill. All these package substrates are
with solder balls. Again, PoP is in high volume production for,
e.g., the smartphones and tablets [6].

2.3 Chip-to-Chip Interconnects. Figure 5 shows the sche-
matic of a 3D chip-to-chip interconnect [137] developed by IME.
It consists of the mother chip which is face-to-face connected to a
daughter chip. The backside of the mother chip can be attached to
a heat spreader (and a heat sink if necessary). The whole module
is attached (through the flip chip mother die) to a rigid or flexible
substrate. It is a very cost-effective 3D IC package without using
the TSVs [137]. In 2012, SONY’s PlayStation (CXD53135GG)
attached Samsung’s 1 GB wide input/output (I/O) synchronous
dynamic random access memory face-to-face to the processor and
then wire bonded to the next level interconnects.

Figure 6 shows Amkor’s double POSSUM
TM

multistacked die
configurations [138] without the use of TSVs. It can be seen that
the grandma die is supporting the mother die, which is supporting
the three daughter dies. The grandma die is solder-bumped flip
chip on a package substrate, which is then attached on to a printed
circuit board (PCB). The packages shown in Figs. 5 and 6 are not

Fig. 3 AMKOR’s 3D IC packaging (stacked chips by Cu
wirebonding)

Fig. 4 3D IC packaging (wirebonding package on flip chip
package). Top: schematic, bottom: photo image.

Fig. 2 TSV invented by Shockley (U.S. patent #3,044,909)
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in manufacturing yet; however, they are the potential candidates
for medium-range performance applications.

2.4 3D Fan-Out Embedded Wafer-Level Package. Figure 7
shows the cross section scanning electron microscopy (SEM)

images of a 3D fan-out embedded wafer-level package [139]
developed by Stats ChipPAC. It consists of a bottom package
which is a fan-out embedded wafer-level ball grid array package
(eWLB) and a top package which is a memory package. It can be
seen that: (a) the eWLP contains the logic, baseband, or applica-
tion processor, (b) the eWLB is only 450 lm thick, (c) the top
package is 520 lm thick and is housing the memory chips with
wire bonding, and (d) the interconnection is from the PCB, solder
balls, redistribution layers (RDLs), to processor, and solder balls,
RDL, to the memory chips. This package is a potential candidate
for mobile and wearable products.

2.5 Outlook of 3D IC Packaging. The outlook of 3D IC
packaging is great! Stacked dies with wirebonding and PoP are in
HVM for commercial products such as smartphones and tablets.
Chip-to-chip interconnects are going to follow SONY and get into
manufacturing soon. 3D fan-out embedded wafer-level package is
also a strong candidate for production. All these 3D packaging
technologies have been keeping 3D IC/Si integration technologies
away from HVM.

3 Overview, Challenges, and Outlook

of 3D Si Integration

Basically, wafer-to-wafer (W2W) is the only way to perform
the bonding operation for 3D Si integration and yield is a big issue
(e.g., some bad chips are forced to bond on the good chips). In
addition, the absence of (or an infinitesimal) gap between wafers
and thermal management could be a problem. Furthermore, the
requirements of the bonding conditions, such as the surface
cleanness, surface flatness, and the class of clean room for 3D Si
integration are very high.

There are at least two different W2W bonding methods for 3D
Si integration, namely, Cu-to-Cu bonding and oxide-to-oxide
bonding, as shown in Figs. 8 and 9, respectively. In general, for
Cu-to-Cu bonding, the TSVs have to be fabricated before bond-
ing. On the other hand, for oxide-to-oxide bonding, the TSVs are
fabricated after bonding. Figure 8(a) shows a high-quality bond-
ing interface by IBM and RPI [90–92]. Before bonding, the Cu
interconnects (pads) are fabricated with the standard back-end-of-
line (BEOL) damascene process, followed by the oxide chemical-
mechanical polishing (CMP) process (oxide touch-up) to recess
the oxide level to 40 nm lower than the Cu surface. The bonding
temperature is ramped up to 400 �C. Figure 8(b) shows a cross

Fig. 7 3D IC packaging (STATSChipPAC’s package-on-package) [139]

Fig. 5 3D IC packaging (chip-to-chip interconnects) [137]

Fig. 6 3D IC packaging (Amkor’s multiple chip-to-chip inter-
connects) [138]
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section of the interface between the bumpless Cu-to-Cu electrodes
(pads) given by the NIMS/AIST/Toshiba/University of Tokyo
[93–99].

Figure 9(a) shows a cross section of MIT’s oxide-to-oxide
bonding structure of three-layer 3D (ring oscillator) bonded at
275 �C [100–106]. It can be seen that: (1) the layers are bonded
and interconnected with W-plugs, (2) the conventional inter level
connections are in the bottom two layers, and (3) the 3D vias are
located in the isolation (field) region between transistors.
Figure 9(b) shows Leti/Freescale/STMicroelectronics’ dielectric-
to-dielectric bonding structure of two device layers bonded at
�400 �C [107–109]. It can be seen that: (a) first, a metal level is
formed on a 200 mm bulk wafer and SOI wafer; next, these wafers
are bonded face-to-face, and then the bulk silicon of the SOI wafer
is removed down to the buried oxide layer, (b) the �1.5 lm

interstrata vias (ISVs) are formed, which make contact from upper
strata to lower strata, (c) a metal layer is formed at the top of the
back side of the SOI wafer, and (d) this ISV makes contact with
both the top and bottom metal layers.

In order to use the 3D Si integration technology to HVM
products, many research and development efforts have to be per-
formed. Besides thermal management, vias formation, thin-wafer
handling, more research and development efforts should also be
placed on areas such as: cost reduction, design and process param-
eter optimization, bonding environment, W2W bonding align-
ment, wafer distortion, wafer bow (warpage), inspection and
testing, contact performance, contact integrity, contact reliability,
and manufacturing yield issues. In addition, packaging the 3D Si
integration module systematically and reliably to the next level of
interconnect pose another great challenge.

Fig. 8 3D Si integration: (a) IBM/RPI’s Cu-to-Cu bonding [90] and (b) NIMS/AIST/Toshiba/Uni-
versity of Tokyo’s Cu-to-Cu bonding [93]

Fig. 9 3D Si integration: (a) MIT’s oxide-to-oxide bonding [100–106] and (b) LETI/Freescale/
STMicroelectronics’ oxide-to-oxide bonding [107,108]
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Besides technology issues just mentioned, the electronic design
automation (EDA), which is the soul of 3D Si integration [127] is
far from ready. Urgently, the industry needs to build standard and
infrastructure and form an ecosystem for 3D Si integration. Then,
the EDA can write the design, simulation, analysis & verification,
manufacturing preparation, and test software with the following
guidelines: (1) design automation from high level description to
layout generation/optimization, (2) verification all dedicated and
tuned to 3D integration, (3) addressing the third dimension not
like a packaging bumping, (4) addressing the true third dimension,
with partitioning, floor planning, automatic placing and routing,
(5) full extraction with the third dimension, full 3D design rule
checks, 3D layout versus schematic with all tiers together in a
same database, and (6) the 3D integrations have then to be seen as
a whole system distributed in several tiers, and not just a stack of
predefined chips.

In the next 10 years, the industry will be hard-pressed for HVM
with the 3D Si integration technology, except for very niche appli-
cations. However, it should be noted and emphasized that 3D Si
integration is the right way to go and compete with Moore’s law.
The industry should strive to make this happen!

4 Overview, Challenges, and Outlook of 3D IC

Integration

Unlike 3D Si integration, 3D IC Integration stacks up thin IC
chips in the third dimension with TSVs and microbumps
(<25 lm) [1] to achieve performance, low power consumption,
wide bandwidth, and small form factor. The ones which are in and
going into low volume production are: memory stacking with
TSVs, hybrid memory cube (HMC) or wide I/O DRAM, wide I/O
DRAM 2, high bandwidth memory (HBM), and 2.5D IC integra-
tion (passive interposer).

4.1 Memory Stacking With TSVs. Samsung mass-produced
(Aug. 2014) industry’s first TSV-based 64GB DDR4 (double data
rate type 4) DRAM module which consists of 36 DDR4 DRAM
chips, each of which consists of four 4-gigabit (GB) DDR4
DRAM dies. The module performs twice as fast as a module that
uses wire-bonding packaging, while consuming approximately
half the power. The module is for server application.

4.2 HMC. Figure 10 shows the very first sample [140] shipped
by Micron/IBM at the end of September 2013. It is a HMC which

consists of four DRAMs each with 2000þTSVs stacking on top of
a logic controller with TSVs. The HMC is then attached to an or-
ganic package substrate. The TSV DRAM cube is fabricated by
Micron and the TSV controller is fabricated by IBM. The micro-
bumps are Cu pillars (20 lm-tall) with solder caps.

At the 2014 International Supercomputing Conference, it was
announced that Intel “Knights Landing” processor unit would de-
but in 2015. It will support for up to 384 GB of on board DDR4
(double data rate type 4) RAM and 16 GB of Micron HMC
stacked DRAM on-package, providing up to 500 GB/s of memory
bandwidth (Fig. 11). Micron reports that having such HMC in the
CPU (central processor unit) package is expected to deliver
5� the sustained memory bandwidth versus GDDR5 (graphics
double data rate type 5) with one-third the energy per bit in half
the footprint.

4.3 Wide I/O DRAM and Wide I/O 2. JEDEC standard
(JESD229) [141], Wide I/O Single Data Rate (Wide I/O SDR),
was published in Dec. 2011 and JEDEC standard (JESD229-2)
[141], Wide I/O 2 (WideI/O2), was published in August 2014.
They are meant for a stack of DRAMs with TSVs on a logic con-
troller with TSVs; very similar to the HMC. The microbumps are
divided into four quadrants with signal assignments mirrored both
horizontally and vertically as shown in Fig. 12, where the bump
pitch (40 lm) of the area array is also shown. The dimensions of
each quadrant are 2880 lm� 200 lm. There will be a space
between quadrants in the x-direction (1000 lm) and in the
y-direction (120 lm) [141].

Fig. 10 Micron’s sample on HMC [140]

Fig. 11 Intel’s Knights Landing processor unit with Micron’s
HMC
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4.4 HBM. Figure 13 shows schematically a HBM system
developed by Hynix/AMD, which is based on JEDEC standard
(JESD235) [142], HBM DRAM, published in December 2013. It
is meant for graphics applications supporting bandwidth from 128
GB/s to 256 GB/s. A TSV/RDL interposer is used to support/
connect mainly the lateral communication (HBM interface)
between the HBM DRAM memory cube with TSVs and the SoC
such as graphic processor unit or CPU without TSVs. The optional
base chip is used for buffering and signal rerouting of the HBM
DRAM cube.

4.5 Passive Interposer (2.5D IC Integration) A 2.5D IC
integration is a TSV/RDL interposer system which consists of a
piece of deviceless silicon with TSVs, RDLs, and IC chips
without TSVs. This piece of deviceless TSV silicon (also called a
passive interposer) is used to support the high-performance, high-
density, fine-pitch chips and has RDLs (mainly) for lateral

communication between the chips as shown schematically in Fig.
14. Figure 15 shows a sample designed and fabricated by Altera/
TSMC [41,42]. It can be seen that even with more than 12 build-
up layers (6-2-6) on the package substrate, it is still not enough to
support the four sliced 28 nm FPGA (field-programmable gate
array) chips. In addition, a passive TSV interposer with
200,000þmicrobumps on 45 lm-pitch and four RDLs (three Cu
damascene layers and one aluminum layer) at a minimum of
0.4 lm-pitch is needed. This type of structure (Figs. 14 and 15) is
called by TSMC as chip on (interposer) wafer on (package) sub-
strate (CoWoS) and has been in small production for Xilinx since
the early of 2013.

4.5.1 Fabrication of TSVs. The fabrication process of TSVs
for interposer is shown in Fig. 16. The process starts with a SiNx/
SiOx insulation layer by either thermal oxidation or PECVD
(plasma enhanced chemical vapor deposition) as shown in

Fig. 12 Schematic of JEDEX’s Wide I/O 2. Pattern of quadrants of microbumps.

Fig. 13 Schematic of JEDEX/Hynix’s HBM
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Fig. 16. After photoresist and TSV lithography, the TSV is etched
into the Si substrate by Bosch-type deep reactive ion etch (DRIE)
[45] to form a high aspect ratio (10.5) via structure. The etched
TSV structure is then processed with a SiOx liner by subatmo-
sphere chemical vapor deposition, a Ta barrier layer, and a Cu
seed layer by physical vapor deposition (PVD) [17]. Cu electro-
plating is used to fill the TSV structure. The final blind TSV has a
top opening of approximately 10 lm in diameter and a depth of
about 105 lm, which gives an aspect ratio of 10.5. In such a high
aspect ratio via structure, a bottom-up plating mechanism is
applied to ensure a seamless TSV with a reasonably low Cu thick-
ness in the field.

The SEM cross-sectional images are shown in Fig. 17. It can be
seen that the diameter of the TSV is slightly decreased at the bot-
tom, which is expected from the etching process. The Cu thick-
ness at the field is <5 lm. The postplating anneal is at 400 �C for
30 min. To complete the TSV process, excess Cu in the field is
removed by CMP [13].

4.5.2 Fabrication of RDLs. There are at least two ways to
fabricate RDLs [1–3,5]. The first method is by using polymers,
such as polyimide PWDC 1000 (Dow Corning), benzocyclobu-
tene cyclotene 4024-40 (Dow Chemical), polybenzo-bisoxazole

HD-8930 (HD Micro Systems), and the fluorinated aromatic
AL-X 2010 (Asahi Glass Corporation) to make the passivation
layer and electroplating (such as Cu) to make the metal layers.
This method has been used by the outsourced semiconductor as-
sembly and test (OSAT) to fabricate RDLs (without using semi-
conductor equipment) for wafer-level (fan-in) chip scale package
[130], embedded wafer-level (fan-out) ball grid array package
[143–147], and (fan-out) redistribution chip package [148,149].
The second method is the Cu damascene method, which is primar-
ily modified from the conventional semiconductor BEOL to make
the Cu metal RDLs such as those shown in Fig. 15. In general,
much thinner structures (both dielectric layers and Cu RDLs),
finer pitches, smaller line-widths, and spacing can be obtained
with the dual Cu damascene method, which will be briefly stated
in the following.

If starting with the wafer from Fig. 16, the fabrication process of
RDLs with a dual Cu damascene technique is primarily based on
the semiconductor BEOL process. The details are shown in Fig. 18
and listed in the following [5]: (1) SiO2 layer by PECVD, (2) apply
photoresist and mask, then use photolithography techniques (align
and expose) to open vias on the SiO2, (3) RIE of SiO2, (4) strip off
portion of the photoresist, (5) repeat step 3, (6) strip off the photo-
resist, (7) sputter Ti and Cu and electroplate Cu over the entire
wafer, (8) CMP the Cu and Ti/Cu and RDL1 is completed, and (9)
repeat steps 1–8 to complete RDL2 and any additional layers.

SEM images of the RDL cross sections fabricated by the Cu
damascene technique are shown in Fig. 19. The minimum RDL
line width is 3 lm. The thickness of RDL1 and RDL2 is 2.6 lm
and of RDL3 is 1.3 lm. The passivation thickness between RDLs
is 1 lm.

4.5.3 Backside Processing and Assembly. The process flow of
backside and assembly [5] is shown in Fig. 20. It can be seen that
after the fabrication of TSV, RDLs, passivation, and UBM (under
bump metallurgy), the topside of the interposer wafer is temporary
bonded to a carrier by adhesive. The next step is backgrinding the
interposer wafer, Si etching, low-temperature passivation, and Cu
revealing. Next, backside RDL (optional), UBM, and C4 (con-
trolled collapse chip connection) wafer bumping are carried out.
After that, the next step is to temporary bond another carrier wafer
to the backside (with solder bumps) and debond the first carrier
wafer. This step is followed by chip-on-wafer bonding and under-
filling. After the whole (chip on) interposer wafer is completed,
the next step is to debond the second carrier wafer and transfer the
thin interposer wafer with attached chips to a dicing tape for

Fig. 14 TSV/RDL passive interposer supporting chips on pack-
age substrate

Fig. 15 Altera/TSMC’s CoWoS [42]
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singulation. The individual TSV/RDL interposer with chips is
attached to the package substrate by natural reflow and then
underfilled.

4.5.4 Cu Revealing. Figure 21 shows more details on Cu
revealing. Right after the temporary bonding of the support car-
rier, backgrinding the wafer to a few microns to the tip of TSVs,
Si dry etching (by RIE) to a few microns below the tip of TSVs,
and low-temperature passiving the SiN/SiO2 are performed. Then,
CMP for SiN/SiO2 buffing and barrier and Cu seed layers polish-
ing are carried out. Cu revealing is completed and shown in
Fig. 22 [5]. These processes also apply to device TSV wafers.

4.6 Outlook of 2.5D/3D IC Integration TSVs straight
through the same memory chips, e.g., DRAMs to enlarge the
memory capacity, increase the bandwidth, lower the power con-
sumption, lower the latency (enhance the electrical performance),
and reduce the form factor is the right thing to do and will be the
major application of 3D IC integration. Besides Intel, HMC

samples with capacities of 4 GB and 8 GB have already shipped
to server and chip companies for testing. The first HMC modules
will be used on FPGAs. HMC is targeted for high-performance
computing, cloud computing, in-memory database, networking,
energy, wireless communications, transportation, security, and
high-end servers and the potential customers are Intel, Altera,
Fujitsu, Cray, Cisco, Huawei, Xilinx, HP, etc.

TSV/RDL interposer (2.5D IC integration) is in small volume
manufacturing by Xilinx/TSMC for the sliced FPGAs, which can-
not be supported by the package substrate even with 12 build-up
layers. Thus, interposer is for very high performance, high den-
sity, high I/O, and fine-pitch applications such as networking,
communications, high-end servers, etc.

5 HVM Supply Chains for TSVS and

Middle-End-of-Line (MEOL)

5.1 Supply Chains Before the TSV Era. Before the TSV
era, the technology supply chains are very well defined and under-
stood. Descriptions of the various entities comprising the supply
chain before the TSV era are presented below.

5.1.1 Front-End-of-Line (FEOL). This is the first portion of
IC fabrication where the individual devices such as transistors or
resistors are patterned. This process is from a bare wafer to (but
not including) the deposition of metal layers. FEOL is usually
performed in semiconductor fabrication plants (fabs).

5.1.2 BEOL. This is the fabrication in which active devices
are interconnected with wiring on the wafer. This process starts
from the first layer of metal to bonding pads with passivation. It
also includes insulators and metal contacts and is called middle-
of-the-line (MOL). The term “MOL” is seldom used and embed-
ded in the BEOL. Again, BEOL is usually performed in the fabs.

5.1.3 OSAT. This term is also called packaging, assembly and
test. The process starts when the passivated wafer is received
from the fab and then goes through circuit probing, bumping, thin-
ning, dicing, wiring bonding, flip chip, molding, ball mounting,
final testing, and etc.

5.2 Supply Chains for the TSV Era—Who Makes the
TSV? The following steps in the TSV fabrication process impact
the various considerations that must be addressed:

Fig. 16 TSV fabrication process flow

Fig. 17 SEM images of TSV cross sections [5]
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5.2.1 TSVs Fabricated by the Via-First Process. The TSVs
are fabricated before the FEOL. This can only be done by the fab.
However, even in the fab, this seldom happens because the devi-
ces (e.g., transistors) are much more important than the TSVs.

5.2.2 TSVs Fabricated by the Via-Middle Process. The TSVs
are fabricated right after the FEOL (e.g., transistors) and MOL
(e.g., metal contacts), and before the BEOL (e.g., metal layers). In

this case, the MOL is no longer embedded in the BEOL because
the TSV fabrication process is between them. Owing to logistics
and equipment compatibilities, usually the TSV by the via-middle
process is done by the fab.

5.2.3 TSVs Fabricated by the Via-Last (From the Frontside)
Process. The TSVs are fabricated (from the frontside of the wa-
fer) after the FEOL, MOL, and BEOL. As of today, there is not a
single creditable paper published with this process.

Fig. 18 Process flow for fabricating RDLs by dual Cu damascene

Fig. 19 SEM images of cross sections of RDLs fabricated by the Cu damascene method [5]
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Fig. 20 Conventional process flow for chip on interposer wafer on package substrate [8]

Fig. 21 Backside Cu reveal and UBM/solder plating process flow
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5.2.4 TSVs Fabricated by the Via-Last (From the Backside)
Process. The TSVs are fabricated (from the backside of the wa-
fer) after the FEOL, MOL, and BEOL process flows. The CMOS
image sensor is an example. Strictly speaking, CMOS image sen-
sors are not examples of 3D IC integration. For CMOS device
sample wafers, the only creditable publication is given by LETI
[150]. However, because of technical issues, such as hitting the
various embedded alignment targets in the x-, y-, and z-directions
(to enable the alignment between the metal layers on the topside
of the wafer and the positioning of TSVs formed from the back-
side), TSVs fabricated by the via-last (from the backside) process
should be avoided until these issues are resolved.

Based on the above discussions, it seems that for active device
wafers being used for 3D IC integration applications, TSVs are
better fabricated using the via-middle process. Also, the TSVs
should be fabricated by the fabs, where all the equipment and ex-
pertise already exist and the cost to fabricate the TSVs is less than
5% of the cost in fabricating the (�32 nm) device wafers!

5.2.5 How About the Passive TSV Interposers? When the
industry defined the TSV processes for 3D IC integration, there
were no passive interposers yet. Also, since there is no active de-
vice in the passive interposers, thus they do not fit into any of the
preceding!

5.2.6 Who Wants to Fabricate the TSV for Passive
Interposers? Both the fab and OSAT want to do it! It depends on
the layout, design, and fabrication capabilities, especially the line
width and spacing of the RDLs and the diameter of the TSVs.
Usually, for a few microns of line width and spacing of the RDL
and �5 lm of TSV diameter it can be done by the OSAT. Other-
wise, it should be done by the fabs.

5.3 Supply Chains for the TSV Era—Who Does the
MEOL? For the thicknesses of memory-chip stacking and
DRAMs in HMC and HBM, and interposers under consideration,
all the TSVs fabricated are blind vias. The blind TSV wafer is fol-
lowed by temporary bonding, backgrinding, TSV revealing, thin-
wafer handling, debonding, cleaning, solder bumping, etc., which,
taken together, are called MEOL. Except for the vertically inte-
grated companies (e.g., TSMC and Samsung), it is better for the
MEOL process flow to be performed by the OSAT.

5.4 Outlook of HVM Supply Chains for TSVs and MEOL.
For device wafers, the TSVs should be fabricated by the via-
middle process and manufactured by the fabs. For deviceless
wafers, it depends on the line width/spacing of the RDLs and the
diameter of the TSVs. As to the MEOL, for both device and
deviceless wafers, it should be done by the OSAT.

6 Summary and Recommendations

The overview, challenge, and outlook of 3D IC packaging, 3D
IC integration, and 3D Si integration have been presented and dis-
cussed. The fabrication processes of TSVs and RDLs have also
been mentioned. Furthermore, the supply chains of TSVs and 3D

IC integration at HVM have been examined. Some important
results and recommendations are summarized in the following:

• The driving forces for consumer products such as smart-
phones, tablets, and wearables are cost, cost, and cost. The
cost-effective 3D IC packaging such as the stacked dies by
wirebonding, PoP, chip-to-chip interconnect, and 3D fan-out
embedded wafer-level packaging are just the right technolo-
gies for these products.

• The driving forces for high-performance computing, cloud
computing, networking, wireless communications, high-end
servers are performance and reliability. The considerable
high-cost 2.5D/3D IC integrations such as memory-chip
stacking with TSVs, HMC, HBM, wide I/O 2, and passive
interposer are the right technologies for these products.

• For device wafers, the TSVs should be fabricated by the via-
middle process and manufactured by the fabs. For interposer
wafers, if the diameter of the TSVs is � 5 lm and the line
width/spacing of the RDLs is �3 lm, then it can be manufac-
tured by the fabs and OSAT; otherwise, it should be done by
the fabs. However, since most interposers are for very high
performance, high-density, and fine-pitch applications, thus
the TSV diameters and RDLs line width and spacing are
most likely falling into the fabs’ territory.

• As to the MEOL, assembly, and test of both the TSV device
and deviceless wafers they should be performed by the
OSAT except the vertical integrated companies such as
TSMC and Samsung. There are many important tasks in
MEOL, assembly, and test, thus the OSAT should strive to
make themselves ready for a robust and high-yield manufac-
turing process.
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