
ORIGINAL ARTICLE

An agent- and service-based collaborative design
architecture under a dynamic integration environment

H. B. Qiu & X. Y. Shao & P. G. Li & L. Gao

Received: 24 October 2005 /Accepted: 19 June 2006 / Published online: 6 October 2006
# Springer-Verlag London Limited 2006

Abstract The shortening of product realization times and
the increase of product complication require multidisciplin-
ary experts to cooperate dynamically and closely in the
whole product development lifecycle, behavior that has
been previously unfamiliar. To further improve the design
cooperation efficiency under this environment, this paper
presents a novel cooperative design architecture using
revolutionary Internet, agent, and semantic Web technolo-
gies. Based on the concept of service provision, intelligent
Web-agent groups act as the function backbone to organize
the service-based running of the system. Multidisciplinary
product development units can be dynamically formed and
configured in a knowledge-integration perspective. The
layer-based architecture encapsulates distributed knowledge
at a higher abstract level and coordinates lifecycle activities
from different domains. Semantic-rich service expression
and intelligent service accessing through agent mediation
make the system more flexible. Within this dynamic
cooperative environment, all of the participants involved
and their distributed knowledge can be integrated as a
whole to achieve more efficient and more intelligent design
cooperation.

Keywords Collaborative design .Web service .

SemanticWeb . Injection mold

1 Introduction

In today’s highly competitive market, product development
times have gradually become the most important factor for
achieving product success. While at the same time as the
constantly increasing requirements for product variety, cost-
effective solutions and customer satisfaction have made the
product development process more and more complex.
Under this environment, individual companies, especially
the small- and medium-sized companies, no longer need to
have the breadth of knowledge and capability to understand
all of the aspects along the product realization chains.
Therefore, strategic alliances that share knowledge/exper-
tise and hardware/software resources, and that could
cooperate more tightly in product development processes
are much needed, as are the research of architectures and
technologies concerned with product development collabo-
ration under these conditions.

Confronted with this dynamic and distributed collabora-
tion requirement, this research uses multi-agent theory and
state-of-the-art semantic Web technology to construct a
novel scalable environment that can cover the whole
product development lifecycle for collaborative injection
mold product development. Some key issues of this
environment are also discussed and a prototype system is
developed to give practical validation of the theory.

Web technology and agent technology, as two of the
most prominent technologies, are widely adopted to
develop numerous distributed cooperative design systems.
Madefast [1] was an initiative program that facilitated
communication and collaboration in the cooperative design
Web space. Web-related technologies were also used in

Int J Adv Manuf Technol (2007) 35:15–25
DOI 10.1007/s00170-006-0704-2

H. B. Qiu (*) :X. Y. Shao : P. G. Li : L. Gao
School of Mechanical Science and Engineering,
Huazhong University of Science and Technology,
Wuhan, Hubei, People’s Republic of China
e-mail: hobqiu@yahoo.com.cn



DFX [2], product data management [3], and early supplier
involvement [4] for concurrent design participation. At a
much higher level, some Web-based projects were accom-
plished to achieve distributed knowledge integration in
collaborative design. Zhou et al. [5] proposed a distributed
product-oriented knowledge source provider. The means for
knowledge representation, acquisition, and utilization in the
Internet collaborative design network were given in [6, 7].
Chin et al. [8] presented some methods for the efficient
search of distributed knowledge resources. A Web-based
platform-independent software framework to integrate
software resources into an open design/manufacturing
system was developed in [9]. Kulkarni et al. [10] used
XML to facilitate the effective management of distributed
resources. Furthermore, dynamic resources were also
integrated in the form of loosely coupled services in
collaborative design to leverage more system flexibility.
Wang et al. [11] utilized service type agents to realize a
Web/agent-based collaborative design environment. Web
services were preliminarily used in PLM [12] and CPC
[13]. Aziz et al. [14] employed the semantic Web initiative
data formats RDF in a decentralized design environment,
but they did not consider them from a service perspective.

On the other hand, the agents used in distributed
collaborative design often took the view of autonomy and
interaction. The topics mainly covered include the interac-
tion and control of systems [15], system interoperability
[16], knowledge collaboration [17], and conflict manage-
ment [18]. They can better supplement the Web in an
intelligent and coordinated way.

In the area of die and mold design, most papers focused
on specific intelligent design support expert systems [19].
Some researches have been done on the collaborative
product die and mold development. Tang et al. [20] built
a Web-based environment that can support integration
between die suppliers and product customers. Concurrent
stamping part and die development systems were developed
from the angle of knowledge sharing and tool integration
[21, 22]. With regards to the injection mold, Lee et al. [23]
presented a preliminary collaborative environment integrat-
ing much domain knowledge, but not in a distributed way.
The information management [24] and concurrent analysis
[25] of Web-based mold collaborative design were also
discussed. Chung and Lee [26] used XML and CORBA to
evaluate the interaction of mold design. SPEED [27] was
developed to facilitate the sharing of injection-molding
information between interested parties via the Internet.

As discussed above, considering the situation from the
point of view of knowledge resource integration and
collaboration, the previous methods and models, especially
those used in mold product collaborative design, still lacked
some flexibility; thus, they cannot adapt to the dynamic
nature of today’s design collaboration environment. Though

a few researchers have used Web services in collaborative
design, the attention was focused on the deployment and
interoperation of services. Because of the passive role of
Web services, the active coordination and intelligent
integration of these services remain challenging problems.
Additionally, with the lack of formal semantic service
information, these integrations will be far away from real
flexibility. So, the combination of agent mediation and
semantic Web support in this paper provides a new
possibility fo this problem which has not been considered
previously by other researches. Under this architecture,
knowledge resources distributed over the Web can be
efficiently discovered, configured, and integrated into the
system. It can better accord with the philosophy of global
manufacturing collaboration.

The paper is organized as follows. Section 2 introduces
our approach from a service-oriented view. Section 3
presents the agent-coordinated system architecture over
the Internet. Section 4 discusses some key methods and
strategies used for dynamic service management. Section 5
gives some brief implementation issues and presents a case
study. The last section concludes this paper.

2 Service-oriented dynamic collaborative product
development environment

2.1 Service perspective in the product development
collaboration

Generally speaking, mold product development includes
activities of injection part design, injection process design,
mold design, and mold manufacturing. The experience
from traditional sequential mold development processes
shows that design iterations, especially those from different
disciplines, are one of the most important causes leading to
the prolonged development time, and the reason for these
iterations are mostly from the lack of information or
knowledge interaction among different designers or design
activities. Collaboration has become the pivotal point for
integrated mold product development, and the nature of this
collaboration is the acquisition of services, i.e., the
appropriate resources and knowledge, which should better
be open, scalable, customizable, and reusable.

In this paper, we proposes a new methodology called
Collaborative Injection-mold-product Development Virtual
Space (CIDVS), an integrated system that enables the agile,
flexible, and dynamic composition of resources, and
permits their interaction in a variety of styles to match the
current and changing needs of design objectives. CIDVS
spans across the boundaries of collaborative product
development enterprises, as well as different disciplines,
and tries to completely integrate the customer, mold part

16 Int J Adv Manuf Technol (2007) 35:15–25



supplier, plastic part designer, mold designer, injection
analyzer, part former, and the mold manufacturer in order to
achieve a concurrent and timely collaboration in the time
and space dimensions.

With the rapid growth of reusable online resources,
especially the widely deployment of Internet Web services,
a global-service-based vision gives a fresh view of
distributed collaboration. As an innovative paradigm, a
Web service exposes the standard XML interface, commu-
nicates with the standard protocol, and can be located
through a registry, so Web-service-based applications
feature the characteristics of being loosely coupled, com-
munications-oriented, and platform-independent. CIVDS is
built upon Web service technology to form a collaborative
environment for the active involvement of dynamic
participants and effective service delivery. Additional
semantic information of the service is also added to
facilitate service coordination.

Design collaborations here are viewed as service-
oriented. The service in this framework is a generalized
concept, which can be defined as “a well-defined, self-
contained modular process that provides a functional use
for a user, an application program, or another service in the
system.” Thus, everything can be seen as a service, from
general CAD data retrieval to a specific injection process

analysis. Under the functional perspective, it can be
grouped into different categories, including collaborative
service, system service, domain service, etc. Though these
services are distributed in different places and on different
platforms, they can work together efficiently to achieve the
overall optimum design goal, enabling enterprise-wide
autonomous design participants to share information and
knowledge, collaborating and coordinating their activities
within the context of a design project.

2.2 Service-supported collaboration throughout the mold
product development chain

The workflow of CIDVS-supported collaborative mold
product development is shown in Fig. 1. The overall
development process can be viewed from two aspects,
i.e., horizontal product realization process and vertical
decision iteration process. The horizontal view represents
the macro process that advances gradually throughout all of
the product development stages. It is driven by a process
optimization method [28] and different collaboration
support.

The vertical view contains many microprocesses accel-
erated by knowledge interaction from different disciplines.
Every such process happens at a certain time point of

Realtime

Product design

IM-oriented design

M
a

c
ro

 p
ro

d
u

c
t 
re

a
liz

a
ti
o

n
 p

ro
c
e

s
s

Mold Concep. design

Mold Solu. Anal.

Simulation Anal.

Manufacturablity

Mold CAAP & Manuf.

Inj. Part process

C

I

D

V

S

Member Active Collaboration

Workflow-based asynchronous

collaboration

driving

Custormer

Product

designer

Mold

designer

Mold

Manufacturer

Mold

Processer

Mold part

Supplier

Moldflow

Analyzer

Service

Pool

Structural

Collaboration

Functional

Collaboration

Predefined along

Product development

chain

Initiated by members

or events in random

time spot

Function

service

Control

service

Coopera.

service

Micro iteration

process

Fig. 1 Process flow and composition of the Collaborative Injection-mold-product Development Virtual Space (CIDVS) methodology

Int J Adv Manuf Technol (2007) 35:15–25 17



product development in the form of active and passive
participance of all concerned parties and services to achieve
intelligent design support. Three-dimensional cooperation
and real-time feedback facilitate the synchronous collabo-
ration. Design review and service integration act as the
main means to support asynchronous collaboration, on
which this paper mostly concentrates.

A service pool serves as the core for the service
integration support. It is composed of various kinds of
services. From the functional point of view, collaborative
services and system services are needed to improve
collaboration among distributed groups, endorse knowledge
sharing, and assist in correct decision making. These services
can be seen as ‘static’ services because they are always
deployed in fixed server places as functional components,
seldom changing, except when self-updating. While, on the
other hand, domain services are intelligent Web-accessible
tools that can provide single-discipline-related design ser-
vices, such as injection process analysis, cost analysis,
moldability assessment, manufacturability assessment, etc.
These services can be developed by different experts and be
distributed in different locations with different knowledge
involved, so they are relatively more dynamic in nature. We
define them as ‘dynamic’ services that need discovery,
registration, configuration, and invocation. They can be
integrated into CIDVS in certain project contexts to achieve
semantic-rich service collaboration.

Under the CIDVS environment, the virtual service
network is dynamically formed to provide service support
for collaborative design project. Services communicate in a
peer-to-peer and open-standard paradigm, and use the
concepts of discovery and deployment to publish their
capabilities or attributes, regardless of their geographic
location. But they are represented only in a non-organized
manner; it is more natural to provide a middle layer for
better coordinating the service group behaviors. So, agent
technology is used to coordinate and encapsulate these
services, aiding collaborative design in a more efficient
way.

3 Web-enabled multi-agent architecture of CIDVS

3.1 Agent integration and cooperation through the Internet

CIDVS can be regarded as an intelligent distributed system
with the aim of accomplishing a given task through
cooperation among multidisciplinary autonomous design
units. Knowledge should be integrated to support the
decision making of these nodes. Although Web service
technology alone can provide a loosely coupled architecture
and effective implementation-level means for knowledge
integration, they provide no mechanisms to facilitate the

problem-solving capabilities of distributed entities, which
usually need coordination, collaboration, and negotiation.

The multi-agent method is naturally used. As an
independent, intelligent, and socialized entity, an agent is
inherently distributed and scalable; it can better adapt to the
flexibility of collaborative product design. Traditionally,
agents have mostly been used for supporting co-operation
among designers, providing the semantic glue between
traditional tools or allowing for better simulations. But in
our approach, the main function of agents is to enable
effective service delivery and achieve optimum service
provision. Agents bring the most crucial capability to turn
an entire set Web services from the existing dormant mass
of information where users need to surf and browse into a
dynamic set of capabilities deployed around the world and
serving the users.

An agent is not designed to realize overall design
automation, but instead to facilitate the concurrency of
processes and the cooperation of participants, aiming at
providing knowledge support for design decision making.
Each agent encapsulates corresponding operations and
interfaces, exhibiting different capabilities in different
contexts. A predefined semantic protocol is used for the
interaction between agents to achieve harmony of the entire
cooperative design process.

The proposed agents can be classified into three
categories: the discipline-dependent application agent, the
coordinate-oriented collaboration agent, and the distributed
user agent. A user agent has more units included, together
with additional dynamic service management functions. A
collaboration agent does not contain the user interface part,
but has more complex business logic, corresponding to the
encapsulation of a static service. An application agent has
the simplest structure and only provides a communication
mechanism above the Web encapsulation layer. These
agents serve as the mediator and encapsulator for local
and distributed services, further facilitating the efficient
cooperation of knowledge-supported decision methods.

3.2 Hierarchical flexible architecture of CIDVS

The CIDVS architecture is highly flexible in various
aspects in order to be more adaptive in virtual environments
(VE) based collaborative design environments. On one
hand, services make it dynamic from a physical or
implementary point of view. On the other hand, agents
make these dynamic services configurable logically. The
overall architecture can be seen from three deployment
layers: a product development unit (PDU) layer, a collab-
orative function layer, and a resource application layer. A
detailed description is illustrated in Fig. 2.

The top layer is the PDU layer. It is composed of several
PDUs, each of which contains a development user, a user

18 Int J Adv Manuf Technol (2007) 35:15–25



agent, several corresponding interface agents, and client-
side encapsulated design application agents. It is the layer
directly facing design participants for interaction through an
Internet-based interface. User agents construct an integrated
development environment for PDUs with different roles
and rights. Design application agents include application
modules, such as the Solidworks modeling tool, deployed
on client sides, which are encapsulated within integrated
interfaces for being recalled to achieve the maximal
efficiency of these traditional tools. Interface agents provide
specific interfaces for users. The amounts and distribution
of agents in this layer are based on PDU-oriented
organization structures.

The resource application layer is situated at the bottom.
It includes all of the distributed resources deployed
worldwide that need to be efficiently organized by the
middle layers.

It is the collaborative function layer in the middle that
facilitates design collaboration among different PDUs. The
main functions of the collaborative function layer can be
grouped into two categories, i.e., agent federation and
service management, each providing different modular
collaboration support for CIDVS, respectively.

Agent federation management aims at the coordination
and control of the agent group behaviors. As the commu-

nication facilitator of the overall framework, a communi-
cation service agent builds the global agent–service model
and records the capabilities, names, addresses, and statuses
of all of the distributed agents. A process management
agent features project-oriented process management func-
tions, including process definition, analysis, optimization,
and alteration. A user management agent manages all the
information of the users, roles, and authorities. A knowl-
edge interaction agent aids multidisciplinary decision-
making activities to obtain the optimized design consensus.
A conflict coordination agent has the function of detecting
and resolving conflicts between different PDUs. A history
agent acquires the cooperative history information. Finally,
a graphics agent controls the graphical presentation and
operation.

Service management provides an efficient service man-
agement mechanism for the above agent layer to realize
dynamic service access, especially to integrate the domain-
dependent knowledge services. The underlying models and
methods to support this mechanism include service ontol-
ogy expression and interpretation, service registry and
related resource match algorithm, service authority config-
uration, and service dynamic invocation. The following
section will concentrate on this part to illustrate the
dynamic acquisition of knowledge services in detail.

Fig. 2 Architecture of the
agent–service cooperative
design system across the
Internet

Int J Adv Manuf Technol (2007) 35:15–25 19



4 Agent-mediated service configuration andmanagement

The process, resources, and even the Web services can be
efficiently configured in the CIDVS environment for
greater system flexibility, with the most adaptable effort
put on the management of the Web services, i.e., the
‘dynamic’ Web service coordination within the user agent
context. This flexibility is achieved through agent-based
service mediating. The major role of service mediating is to
guide, coordinate, and facilitate the teamwork of Web
service providers, which includes acquiring appropriate
services based on given task requirements and providing
dynamic business support for PDUs according to prede-
fined product development processes. It is concerned with
the modeling, discovery, configuration, and invocation of
Web services. The main topics will be discussed in the
following sections.

4.1 Service modeling, description, and support for CIDVS

A Web service is an interface that describes a collection of
operations that are network-accessible through standardized
XML messaging. Its architecture is based upon the
interactions between three roles: the service provider, the
service registry, and the service requestor. For an applica-
tion to take advantage of Web services, three behaviors
must take place: the publication of service descriptions, the
lookup or finding of service descriptions, and the binding
or invoking of services based on the service description.
Accordingly, the traditional interoperation process is based
on standard procedures, such as defining WSDL (Web
Services Description Language) interfaces, binding those
interfaces with SOAP (Simple Object Access Protocol)
messages, and publishing and discovering the services
through UDDI (Universal Description, Discovery, and
Integration).

However, while WSDL descriptions contain information
about the operation and the parameter names in the service,
they offer little/no information about the functionality of the
service. Moreover, UDDI does not represent service
capabilities, the tModels they use only provide a tagging
mechanism, and the search performed is only done by
string-matching on some fields that they have defined.
There should be explicit semantics in the interaction of
collaborating participants in order to achieve efficient
collaboration. Web services are still insufficient in seman-
tics as they just use XML to unify their syntax represen-
tation. So, semantic Web technology based on the resource
description framework (RDF) data model is utilized
together with Web services to provide semantic support in
CIDVS.

The proposed service description complies with the
DAML-S specification. DAML-S is an upper ontology for

describing properties and capabilities of Web services using
DAML+OIL. It provides an unambiguous and computer-
interpretable markup language, which enables the automa-
tion of service use by agents and reasoning about service
properties and capabilities [29], complementing low-level
description about what a service can do. In our research, we
concentrate on two different views, i.e., the profile view
that describes what a service requires from and provides for
the user, and the grounding view that describes how to use
the service.

The profile contains a description of the service and the
provider, the functional behavior of the service, several
functional attributes, and also additional information. The
grounding provides information for service invocation,
including Web interface information, WSDL information,
and instructional information. The grounding details about
service access can be considered as a mapping from the
general description given in the process model to a concrete
implementation of the service.

The agents, especially the user agents, play an important
role to mediate these semantic-rich services. The class
model diagram is shown in Fig. 3. Agents act as the driving
force of coordinating the Internet Web service utilization,
while Web services exist as application knowledge sources.

The service also has other relationships with different
kinds of agents. An application agent can encapsulate a
legacy system as a Web service. A configure agent
performs service configuration work, a registry agent is
used for the registry, and a user agent takes the responsi-
bility of controlling the behavior of one or more Web
services. Normally, agents are built from .NET components
or Java components. Some collaboration-type agents with
intelligence are also developed as Web services for easy
and intelligent self-upgrading.

4.2 Communication and interoperation among components
of CIDVS

Communication among different components is the foun-
dation for collaboration in the CIDVS environment. It is
based on standard Web protocols. Different methods are
used among agents and between agents and services. The
message flow and corresponding message samples of the
system are shown in Fig. 4.

The interoperation can be seen from two abstract layers.
The higher layer includes the communication among
agents. They are mainly based on the HTTP GET and
HTTP POST methods, or through a subset of KQML
(Knowledge Query Manipulation Language) to achieve
simple speech act behavior. The contents of KQML are
encapsulated with the XML language.

The messages used to invoke Web services form the
lower communication layer. The source of these messages

20 Int J Adv Manuf Technol (2007) 35:15–25



may come from various service requests, including requests
from user, KQML requests, and workflow-triggered requests.
The user agent is responsible for constructing and transferring
the requests into SOAP messages, and then forwarding them
to the appropriate Web services. The messages adopted are
mainly PRC/Encode-style SOAP messages used to pass
operation names, parameters, and values.

4.3 Semantic-service-based publication, discovery,
and matchmaking

With the change of environment, new knowledge or
services may be needed to adapt to the new collaboration
requirement. Since large amounts of Web services are
distributed on the Internet, finding the most appropriate

Fig. 4 Message communication and interaction flow

Fig. 3 Class model diagram of
agents and services

Int J Adv Manuf Technol (2007) 35:15–25 21



service is an important part of service mediating. CIDVS
discovers services based on semantic information. Through
capturing service request information such as properties,
capabilities, execution interface, conditions, and constraints
etc., Web services can be dynamically discovered and
integrated into the system.

Traditional Web services discovery is based on UDDI,
which does not make any use of semantic information,
hence, failing to meet the problem of matchmaking between
the provided capabilities of services and service requestors’
needs. It does not provide facilities for service descriptions,
except keyword and industrial service type categorization.
Without sharing common definitions and understanding of
the concepts, and without shared metadata and semantics
associated with a particular Web service, an interaction
between a UDDI client and a Web service cannot be
performed in the correct manner. In CIDVS, a DAML-S-
based local Web service registry is built to facilitate the
capability-based service discovery, and the public UDDI
registry acts as a complementary means for broader range

service matchmaking. The detailed service discovery
procedure is illustrated in Fig. 5.

The local registry stores the related profile and ground-
ing information that were published by different service
providers. A main search engine is equipped to perform
matchmaking with the support of local domain ontology.
Only when this search engine does not have enough
knowledge on achieving successful matchmaking will it
resort to external UDDI for searching in a wider range of
enterprise services. After selecting an appropriate service,
the related semantic information is registered back into the
local registry through a DAML-S parser. Owing to this
feedback mechanism, the number of locally registered Web
services will grow larger and larger with the running of the
system.

Different services share a common ontology in service
profiles for Web service semantic matchmaking to achieve
the sharing, reuse, and integration of services. The ontology
is based on the uniform discovery and classification of Web
services in the injection mold design domain. It provides an

Fig. 5 Semantic Web service discovery flow

22 Int J Adv Manuf Technol (2007) 35:15–25



explicit conceptualization that describes the semantics of
the information of the design task performing. Adopting a
hierarchy structure, it contains a category domain ontology
and a specific service profile ontology for each category in
order to achieve efficient and precise matchmaking. The
domain ontology knowledge base is the repository that
stores this service ontology information. The standardized
service concepts and their relationships contained within it
can be used to carry out service similarity calculation and
intelligent reasoning.

The input to the search engine is the discovery
requirement, which can be represented in XML elements as:

Service_Requirement:=<General_classification>
<Domain_classification><General_information>
<Request_service_function><IO_info>
<Application Constraints>

It is supported by a user agent that accesses multiple
ontologies using an integrated conceptual model expressed
in the Web ontology language.

On the other hand, semantic-rich service descriptions are
published in the local registry as service advertisements
through DAML parsers. When a discovery request arises,
the request and the registered advertisements are compared
and a score can be obtained through a matchmaking
algorithm. The service with the highest score is deemed to
be the most desired service.

Currently, ServiceCategory and Service_IO information
are the most often considered matchmaking factors. Four
kinds of matching degrees are defined, i.e., exact match
(R≡A), full match (R⊆A), part match (A⊆R), and disjoint
match, each with a decreased matching level (R represents
Request and A represents Advertisement). Within the same
level, the match degree can be further determined by the
minimal distance between concepts in the taxonomy tree.
The matchmaking rationale is that the requester expects,
first and foremost, that the provider achieves the output
requested at the highest degree within a certain service
category. Input matching is used only as a secondary score.
For more accurate service retrieval, the QualityRating or
other ServiceParameters can also be included in th rationale
as the calculation factors.

4.4 Project-oriented service configuration

Project configuration in CIDVS is an important task that
not only includes project-related process and design data,
but also information about dynamic Web service distribu-
tion. The main objective is to form a dynamic workspace
for each user in order to better facilitate efficient design
collaboration. It follows the top-down procedure given
below: project requirement acquisition→task specification
definition in task manager→task configuration or PDU

formation→process configuration→dynamic service con-
figuration by user agent. Then, the product development
process may begin.

Each user agent has a corresponding workspace profile
to provide a personalized workspace. It contains process
and product data information, as well as dynamic config-
uration information of the Web service stored in the
blackboard as XML descriptions.

A user agent profile corresponds to certain service
contexts with the aim of ensuring that the appropriate
component services are involved in the collaboration
according to a specific specification. The concerned Web
service context includes composition information (domain
info, related organization info, process info, access author-
ity info, capability info, availability), specification descrip-
tions, execution status information (in-progress, suspended,
terminated, aborted), and invocation info. They are ac-
quired through service discovery and direct configuration.

The invocation information comprises the location of the
associated client interface or grounding description, includ-
ing WSDL, that can generate the SOAP service template.
Thus, the required dynamic Web service can be compre-
hensively invoked according to the project specification.

4.5 Dynamic binding and invocation of semantic services

The final knowledge acquirement process depends on
mapping the general request to the concrete invocation
after consulting the grounding of the appropriate Web
services. The designer of the CIDVS environment can not
only utilize the encapsulated design and analysis tools in
the local host, but they can also invoke dynamic Web
services to reach the design result.

The Web service invocation can be represented as
WSI=<State, Web Service Set, Rule Set, Interpreter,
Interaction Element>, where the ‘State–Agent’ mental state
corresponds to the input parameters of a specific task. ‘Rule
Set–Rules’ is obtained from the project configuration. The
‘Interpreter–Reason’ engine is used to interpret the rules to
generate messages to access the proper Web service. The
‘Interaction Element–Simple Interface’ element includes
the input and output parameters and the corresponding
description.

Thus, two kinds of service invocation requirements exist
during te product development lifecycle:

– Static invocation. Invoke the required service through
configuration information mentioned above.
In this case, service discovery happens during the
project configuration phase according to the project
specification, and then the selected service is statically
configured or bounded to the given user agent. It
presents to the user in the form of a client interface.

Int J Adv Manuf Technol (2007) 35:15–25 23



– Dynamic invocation. Invoke an unknown service
through real-time discovery and binding.
When a user initializes a request for a desired service
during the product development phase, discovery is
immediately conducted. After obtaining enough infor-
mation about the appropriate service, the parameter
interface can be generated and a SOAP-based message
template can be sent for service access. Few researches
have been concerned with this kind of invocation,
which will be discussed below.
Through service discovery, the user agent can obtain
the WSDL and the instruction descriptions through
parsing the corresponding grounding information.
Then, with this information, a new method of dynamic
invocation of. NETWeb services at runtime is proposed.
An instance of the DynamicWebServiceProxy class is
created to realize this invocation. Three methods of this
instance are mainly used; GetWsdl is utilized to acquire
the WSDL document-related information; Build-
AssemblyFromWsdl can generate the proxy class
source code and a program set. And the proxy object
instance is dynamically created by CreateInstance.
Then, on the basis of this proxy instance, various
information of the desired service can be dynamically
acquired through using GetMethod, including informa-
tion about its methods and parameters. Finally, the
dynamic interface can be generated with the known
information, and dynamic invocation can be easily
achieved through this interface.

5 Prototype system implementation and a case study

A proof-of-concept software prototype has been developed
for collaborative mold product development. Thin-client
configuration is adopted to exert the flexibility and easiness
of the Web. The system environment is built upon the .NET
Framework and IIS used as the basic Web server. On the
client side, Java applets, ActiveX controls, and Javascript
are utilized to construct component agents. Server-side
components are deployed for cooperative agents realization.
A .NET Web service is used to encapsulate some basic
collaborative functions and application services. The SOAP
Toolkit’s high-level API and WSDL Reader are used to
achieve flexible service access. Some test Web services
with profiles and groundings have also been developed for
service discovery verification.

In the case study, we demonstrate how the mold products
for a plastic cover plate part are designed. In the project
configuration stage, three PDUs are formed, i.e., a part
design PDU, a part analysis PDU, and a mold design PDU.
Of course, more PDUs can be involved, depending on the

project requirement. After the process and data configura-
tion, services are to be configured. Through service
matchmaking in the local registry, a moldability analysis
service is discovered and then bound with the part analysis
PDU. In the same manner, a plastic selection service is
configured into the part design PDU.

Now, the mold product development process starts. The
part design PDU uses a plastic selection service to select the
appropriate material. After the modeling of the product by
the part designer, a request is sent to the part analysis PDU
for moldability analysis. This service is invoked by the part
analysis PDU and corresponding suggestions are sent back
for further modification on the part. This iteration can take
place several times until the satisfactory result is obtained.
During the development process, the mold designer wants
to participate in the mold design early and efficiently, so he
needs a quick mold-generation service and a request is then
sent for dynamic service discovery. After an appropriate
service is located, dynamic invocation is subsequently
activated. The service information is obtained and a
program set is built as a proxy instance. Based on them, a
simple parameter interface is generated for presenting the
individual service parameters and methods, each with a
description illustrating its main function or value range.
Then, a mold solution can be easily obtained through case-
based reasoning (CBR) methods embedded within the
dynamic knowledge services provided that are based on
our previous work [30]. In the same way, more services can
be efficiently used to aid quick knowledge collaboration. In
this example, a two-plate mold solution case is retrieved,
the designer only needs do some modifications on it, and
other services such as gate design and process planning can
also be used. Synchronous collaborations among several
multidisciplinary stakeholders are carried out at certain
design time points on request.

As we can see, with the standardized and active
participance of multidisciplinary teams and the dynamic
integration of distributed knowledge services, this system
can provide efficient support for dynamically formed
product development projects, further coordinating and
accelerating the design process in a system and its
concurrent view.

6 Conclusion

To the new problem of collaborative design under a dynamic
integration environment, this paper proposes a novel
framework that is dynamic configurable and highly flexible.
It covers the whole product development lifecycle and
integrates multidisciplinary knowledge services efficiently.
Based on the idea of service-orientation, agent and semantic
Web technologies are used at a more abstract level to

24 Int J Adv Manuf Technol (2007) 35:15–25



facilitate the collaboration capability and improve the
flexibility of the system. Besides the implementation of a
prototype system in injection-mold design, it can be further
extended to other areas of inter-enterprise collaborative
design.

Acknowledgment This research is supported by the National Basic
Research Program of China (grant number 2004CB719405).

References

1. Cutkosky MR, Tenenbaum JM, Glicksman J (1996) Madefast:
collaborative engineering over the Internet. Commun ACM 39
(9):78–87

2. Huang GQ, Shi J, Mak KL (1997) Internet-based design for X. In:
Proceedings of the 14th International Conference on Computer-
Aided Production Engineering, Durham, UK, April 1997

3. Xu XW, Liu T (2003) A Web-enabled PDM system in a
collaborative design environment. Robot Com-Int Manuf 19
(4):315–328

4. Huang GQ, Mak KL (2000) WeBid: a Web-based framework to
support early supplier involvement in new product development.
Robot Com-Int Manuf 16(2–3):169–179

5. Zhou SQ, Zhao AP, Chin K-S, Yarlagadda PKDV, Peng Z (2004)
A solution for knowledge resources provider over the Internet. Int
J Adv Manuf Technol 24(2):148–160

6. Zhou SQ, Chin K-S, Ling W, Xie Y (2003) Internet-based
distributive knowledge integrated system for product design.
Comput Ind 50(2):195–205

7. Zhou SQ, Chin K-S, Yarlagadda PKDV (2003) Internet-based
intensive product design platform for product design. Knowl-
Based Syst 16(1):7–15

8. Chin K-S, Zhou SQ, Krishamurthy R, Xie YB, Yarlagadda P
(2002) An intelligent approach of knowledge searching within
Internet-based distributive integrative environment. Eng Appl
Artif Intell 15(6):607–618

9. Xiao A, Choi HJ, Kulkarni R, Allen KJ, Rosen D, Mistree F
(2001) A Web-based distributed product realization environment.
In: Proceedings of the ASME Design Engineering Technical
Conferences, Pittsburgh, Pennsylvania, September 2001, vol 1, pp
979–991

10. Kulkarni R, Rosen D, Allen JK, Mistree F (2002) An information
model for finding and integrating distributed resources for
engineering design-manufacturing processes. In: Proceedings of
the ASME Design Engineering Technical Conferences, Montreal,
Canada, September/October 2002, vol 1, pp 445–458

11. Wang YD, Shen W, Ghenniwa H (2003) WebBlow: a Web/agent-
based multidisciplinary design optimization environment. Comput
Ind 52(1):17–28

12. Ming XG, Ma S, Lu WF, Ni QF (2003) Web service architecture
for collaborative product lifecycle management in virtual enter-
prise. In: Proceedings of the 10th ISPE International Conference
on Concurrent Engineering: Research and Applications, Madeira
Island, Portugal, July 2003, pp 191–198

13. Chung MJ, Jung HS, Kim W, Goplannalan R, Kim H (2004) A
service-oriented framework for collaborative product commerce.
In: Proceedings of the 8th International Conference on
Computer Supported Cooperative Work in Design (CSCWD
2004), Xiamen, China, May 2004, vol 2, pp 425–430

14. Aziz H, Gao J, Maropoulos P, Cheung WM (2005) Open standard,
open source and peer-to-peer tools and methods for collaborative
product development. Comput Ind 56(3):260–271

15. Yan J, Lu CY (1998) An agent-support approach to collaborative
design. Annals CIRP 47(1):107–110

16. Zhao G, Deng J, Shen W (2001) CLOVER: an agent-base
approach to systems interoperability in cooperative design
systems. Comput Ind 45(3):261–276

17. Sun J, Zhang YF, Nee AYC (2001) A distributed multi-agent
environment for product design and manufacturing planning. Int J
Prod Res 39(4):625–645

18. Chira O, Chira C, Tormey D, Brennan A, Roche T (2003) A
multi-agent architecture for distributed design. Lect Notes Artif
Int 2744:213–224

19. Mok CK, Chin K-S, Ho JKL (2001) An interactive knowledge-
based CAD system for mould design in injection moulding
processes. Int J Adv Manuf Technol 17(1):27–38

20. Tang D, Eversheim W, Schuh G, Chin K-S (2004) CyberStamp-
ing: a Web-based environment for cooperative and integrated
stamping product development. Int J Comput Integ M 17
(6):504–519

21. Tang D, Eversheim W, Schuh G, Chin K-S (2003) Concurrent
metal stamping part and die development system. Proc I Mech
Eng B—J Eng 217(6):805–825

22. Chin K-S, Tang D (2002) Web based concurrent stamping part
and die development. Concurrent Eng—Res Appl 10(3):213–228

23. Lee R-S, Chen Y-M, Li C-Z (1997) Development of a
concurrent mold design system: a knowledge-based approach.
Robot Com-Int Manuf 10(4):287–307

24. Xie SQ, Huang H, Tu YL (2002) A WWW-based information
management system for rapid and integrated mould product
development. Int J Adv Manuf Technol 20(1):50–57

25. Xie SQ, Tu YL, Zhou ZD (2004) Internet-based DFX for rapid
and economical tool/mould making. Int J Adv Manuf Technol 24
(11–12):821–829

26. Chung J, Lee K (2002) A framework of collaborative design
environment for injection molding. Comput Ind 47(3):319–337

27. Ahmed AA, Karina R, Arturo M (2003) Internet-based collabo-
rative design for an injection-moulding system. Concurrent Eng—
Res Appl 11(4):289–299

28. Qiu H, Shao X, Li P (2004) Task flow optimization for the
integrated process management of dynamic alliance collabora-
tive product development. In: Proceedings of the 11th ISPE
International Conference on Concurrent Engineering: Research
and Applications, Beijing, China, July 2004, pp 871–6

29. Ankolekar A, Burstein M, Hobbs JR (2002) DAML-S: Web
service description for the semantic web. In: Proceedings of the
1st International Semantic Web Conference (ISWC 2002),
Sardinia, Italy, June 2002

30. Qiu HB, Li CX (2004) Conceptual design support system in a
collaborative environment for injection moulding. Int J Adv
Manuf Technol 24(1–2):9–15

Int J Adv Manuf Technol (2007) 35:15–25 25


	An agent- and service-based collaborative design architecture under a dynamic integration environment
	Abstract
	Introduction
	Service-oriented dynamic collaborative product development environment
	Service perspective in the product development collaboration
	Service-supported collaboration throughout the mold product development chain

	Web-enabled multi-agent architecture of CIDVS
	Agent integration and cooperation through the Internet
	Hierarchical flexible architecture of CIDVS

	Agent-mediated service configuration and management
	Service modeling, description, and support for CIDVS
	Communication and interoperation among components of CIDVS
	Semantic-service-based publication, discovery, and matchmaking
	Project-oriented service configuration
	Dynamic binding and invocation of semantic services

	Prototype system implementation and a case study
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


