
Active Management Framework for Distributed

Multimedia Systems

Ehab Al�Shaer

Multimedia Networking Research Laboratory

School of Computer Science� Telecommunications and Information Systems

DePaul University

Chicago� IL �����

ehab�cs�depaul�edu

Abstract

The successful deployment of next�generation distributed multimedia systems is signi��

cantly dependent on the e�cient management support that improves the performance and

the reliability of such applications at run�time� In this paper� we describe an active man�

agement framework based on programmable monitoring agents and event��lter�action re�

cursive model� Active management enables users to de�ne recon�gurable and self�directed

monitoring tasks that can be automatically customized at run�time in order to track the

system behavior� Using this active management framework� the monitoring agents can be

programmed to modify their monitoring tasks dynamically based on observed events infor�

mation� and initiate the appropriate management actions accordingly� This paper also em�

phasizes the importance of active management for supporting a scalable� highly�responsive

and non�intrusive distributed management infrastructure� The presented framework� which

is referred to as HiFi monitoring system� supports a comprehensive environment including

code instrumentation� user subscription� agents administration� event �ltering and action

service� Examples of using HiFi in managing large�scale distributed multimedia systems

are also shown�

Key words� Distributed systems management� active networks� multimedia systems� event

correlation� application steering�

�



� Introduction

The next�generation distributed multimedia systems are large�scale� resource intensive and

highly dynamic� With the increasing demands of deploying large�scale distributed multi�

media �LDM� systems� an e�cient on�line monitoring and control has become an essential

service for improving the performance and reliability of such complex applications� Ex�

amples of LDM systems include large�scale collaborative distance learning� video telecon�

ferencing� distributed interactive simulation� and reliable multi�point applications� In an

LDM environment� large numbers of events are generated by system components during

their execution and interaction with external objects �e�g� users or processes�� These events

must be monitored to accurately determine the run�time behavior of an LDM system and

to obtain status information that is required for management operations such as steering

applications or performing a corrective action �	� �
�� However� the manner in which events

are generated in an LDM system is complex and represents a number of challenges for an

on�line monitoring system� Correlated events are generated concurrently and can occur

from multiple locations distributed throughout the environment� This makes monitoring

an intricate task and complicates the management decision process� Furthermore� the large

number of entities and the geographical distribution inherent with LDM systems increases

the challenge of addressing important issues� such as performance bottlenecks� scalability�

and application perturbation�

HiFi active monitoring system is an attempt to deliver a management architecture that

explicitly addresses the challenges and requirements associated with managing large�scale

distributed multimedia systems� HiFi active monitoring system supports dynamic and auto�

matic customization of the management operations as a response to changes in LDM systems

behavior ���� 
��� This is achieved through programmable monitoring agents that re�direct

their monitoring activities on�the��y upon users� requests and based on the information

�events� collected during the monitoring operation� For instance� instead of monitoring

all events and processes in the system� the agents monitor a subset of events�processes

and the monitoring activities expand based on the information of the generated events�

Therefore� active monitoring reduces the monitoring space signi�cantly and o�ers a scal�

able management architecture� The monitoring intrusiveness is also minimized because

this architecture enables initiating few monitoring tasks �targets� at the proper time� In

addition� HiFi active monitoring enables the agents to react spontaneously �e�g�� corrective

actions� which improves the management operations response time compared with human�

in�the�loop model �
���

A number of monitoring approaches and systems for monitoring distributed systems have

been proposed �e�g�� ��� ��� ��� �	� 
�� 

� 
���� Although some of these systems provide

mechanisms for modifying the monitoring requests dynamically� these mechanisms are man�






ual �i�e�� they require human intervention� and insu�cient to support a programmable or

self�directed monitoring tasks �actions� as described in this paper� In addition� they do

not support a scalable and �ne grain event �ltering mechanism which is signi�cant for

monitoring �large�scale� distributed systems such as Internet�based applications�

This paper is organized as follows� Section 
 explains the monitoring model and language

speci�cations� Section � gives an overview of HiFi monitoring architecture and process�

Section � describes our active monitoring approach and its impact on the management

infrastructure� Section � provides an overview of the monitoring system implementation�

Section 
 illustrates� by example� the e�ectiveness of using HiFi for steering distributed

multi�point applications� Section 	 shows the evaluation of HiFi performance� scalability

and system perturbation� and Section � presents the summary and concluding remarks�

� Monitoring Model

In order to present a complete abstraction of the active monitoring architecture� our work

must include modeling the application behavior� the monitoring demands� and the monitor�

ing mechanism with considering the design objectives presented in Section �� The program

behavior can be expressed in a set of events revealed by the application during execution�

In our monitoring model� we call the monitored programs event producers which continu�

ously emit events that express the execution status� An event is a signi�cant occurrence

in a system that is represented by a noti�cation message� A noti�cation message typically

contains information that captures event characteristics such as event type� event values�

event generation time� event source� and state changes� Event signaling is the process of

generating and reporting an event noti�cation� We classify two types of events used in our

model� primitive events which are based on a single noti�cation message� and composite

events which depend on more than one noti�cation message� In the monitoring language�

the event format �noti�cation� is a variable sequence of event attributes determined by the

user but it has a �xed header used in the monitoring process� An event attribute is a pred�

icate that contains the attribute name which typically represents a variable in the producer

�i�e� program� and a value� The event format also determines the type of event signaling�

Immediate to forward the generated event immediately� or Delayed to allow bu�ering or

batching events in the producer before sending them� Table I shows the High�level Event

Speci�cation Language �HESL� in BNF� This event abstraction enables consumers ��� to

specify any arbitrary event format in a declarative way� and �
� to construct a complex

�multi�level� abstraction of a program behavior using composite events� In addition� the

event abstraction enables the consumers�users to assign values to the event attributes and

does not require specifying attribute type �e�g�� int� float or string�� This provides a

simpler interface than CORBA IDL �����

�



We call the monitoring objects �e�g�� human or software programs� event consumers since

they receive and present the forwarded monitoring information� The consumers specify

their monitoring demands via sending a �lter program via the subscription process which

con�gures the monitoring system accordingly �see Section ��� The monitoring operation is

an event�demand�driven model� In other words� the producer behavior is observed based

on the event generated �event�based� and on the monitoring requests �subscription�based��

Therefore� as illustrated in Figure �� events received in the monitoring system are classi�ed

based on exiting �lters� If an event is detected� the action speci�ed in the �lter is performed

such as forwarding the monitoring information to the corresponding consumers� The �lter

and action speci�cations are described in Section �� We show in Figure � three management

applications of this model� manual fault recovery that requires forwarding the monitoring

information� automatic fault recovery that permit the monitoring system to perform actions

on the event producers� and application steering in which the application acts as an event

producer and consumer in order to tune its parameters�

� Overview of HiFi Monitoring Architecture

HiFi employs a hierarchical event �ltering�based monitoring architecture to distribute the

monitoring load in application environment� Based on a user�s monitoring requests� the

monitoring system determines the appropriate agent or set of agents within the hierarchy

to be tasked with inspection and evaluation of application events� The monitoring system

uses �ne grain decomposition and allocation mechanisms to ensure that �ltering tasks are

e�ciently distributed among the monitoring agents and prevent events propagation in the

network� Since our focus in this paper is on the programmable monitoring environment in

HiFi� we give a brief overview of the HiFi system and refer to ��� �� �� for more details�

Hierarchical Monitoring Agents� In HiFi monitoring system� the task of detecting

primitive and composite events is distributed among dedicated monitoring programs called

monitoring agents �MA�� MA is an application�level monitoring program that runs indepen�

dently of other applications in the system and that communicates with the outside world

�including producers and consumers� via message�passing� HiFi has two types of MAs� local

monitoring agents �LMA�� and domain monitoring agents �DMA� �see Figure 
�� The for�

mer is responsible of detecting primitive events generated by local applications in the same

machine while the latter is responsible of detecting composite events which are beyond the

LMA scope of knowledge� One or more producer entities �i�e�� processes� are connected to

a local LMA in the same machine� Every group of LMAs related to one domain �geograph�

ical or logical domain� is attached to one DMA� These DMAs are also connected to higher

DMAs to form a hierarchical structure for exchanging the monitoring information� Because

�



of the di�erent roles of LMA and DMA� LMAs use Direct Acyclic Graph �DAG� �
�� how�

ever� DMAs use Petri Nets �PN� in order to record and track the event history ����

Subscription Process� The monitoring process starts by a consumer sending a �lter

program that describes the monitoring request to the local MA� The �lter is validated and

decomposed into sub�lters �e�g� F�� F
����Fn� using the decomposition algorithms in such a

manner that each one represents a primitive event ���� Then� each decomposed sub�lter is

assigned to one or more LMAs using the allocation algorithms based on the event sources

and application distribution� The decomposition and allocation algorithms are described

in ���� The monitoring system also determines the proper DMAs for evaluating the event

and the �lter expression of the �lter program� When MAs receive delegated monitoring

tasks �sub�lters� ����� they con�gure themselves accordingly by inserting this sub�lter in

the �ltering internal representation which is a direct acyclic graph �DAG� for LMAs and

Petri Nets �PN� for DMAs ���� This architecture alleviates any performance bottlenecks

or scalability problems by distributing the monitoring load among MAs and limiting the

events� propagation to the originating sources ����

� Techniques for Active Monitoring

The main goal of active monitoring is to o�er dynamically customizable monitoring tasks�

This provides a �exible management infrastructure that scales well with number of produc�

ers and causes a minimal overhead in the application environment as shown in Section 	�

In addition� active monitoring� in HiFi� reduces the monitoring latency because monitoring

agents can customize their monitoring tasks automatically without users involvement� In

this section� we describe the HiFi active monitoring architecture and its impact on improv�

ing scalability and reducing the perturbation of the monitoring system�

��� Filter�based Programmable Agents

In HiFi� users �or event consumers� describe their monitoring demands via programs called

�lters submitted to the monitoring system at run�time� A �lter is a set of predicates where

each predicate is de�ned as a boolean�valued expression that returns true or false� Predicates

may be joined by logical operators �such as AND and OR� to form an expression� In our model�

the �lter consists of three major components� the event expression which speci�es the

relation between the interesting event� �lter expression which speci�es the attributes value

or the relation between the attributes of di�erent events� and the action to be performed if

both event and �lters expressions are true� Table II shows the High�level Filter Speci�cation

Language �HFSL� in BNF�

�



Consumers may add� modify or delete �lters on�the��y through the subscription compo�

nent interface described in Section �� When a consumer performs �lter subscription� the

monitoring agents recon�gure itself accordingly by updating their internal �ltering rep�

resentation ���� Di�erent consumers can potentially send di�erent �lters simultaneously�

However� since the dynamic subscription may create an inconsistency in the monitoring

environment� HiFi uses the subscription protocol� described in ���� to ensure an atomic state

update and synchronization among the monitoring agents�

As the event abstraction emphasizes the declarative aspect of the model� the �lter�based

programming abstraction enables consumers to describe the relation expression between

di�erent events and their attributes as well� which improves the expressive power and the

usability of the monitoring language� This feature permits the agent to perform �ne�grain

�ltering based on regular expressions� For example� assume agents have been con�gured

through �lter to detect warning events� AudioWarning and VidWarning� generated from

Audio and Video processes� respectively� Consumers can limit the monitoring granularity

by re�programming the MAs at run�time to detect only the event correlation between these

two events such that they are both generated by the same machines via sending the following

�lter�

FILTER� ��AudioWarning � V idWarning���

��AudioWarning�Machine�V idWarning�Machine���

�FORWARD��Warnings Correlation Filter�

After decomposing and allocating this �lter� the DMA will only forward Audio and Video

warning events that are generated in the same machine� Consumers can also deactivate or

modify an existing �lter using DEL andMOD in the action part �see Table III�� In addition�

the programming environment permits consumers to overload the attributes values in the

events in order to create a di�erent event instance in the �lter program�

��� Event Incarnation

Actions in the monitoring model can be simply executing a program �local or remote� or

forwarding the detected event to the corresponding consumers which are both necessary

for automatic fault recovery and application steering� respectively� In order to improve

the dynamism and the expressive power of the monitoring system� the model provides more

complex actions� event and �lter incarnation� In HiFi� generating new events as an action is

called event incarnation in HiFi� This feature improves the performance� expressive power�

and usability of the active management system as follows�






� The event incarnation enables the consumer to activate a sequence of monitoring

operations automatically using event��lter�action programming model �see Figure ��

without having the user to intervene in the monitoring process� This new event may

trigger other �lters which in turn causes performing further actions such as checking

the status of other running processes� For example� a failure may occur in a producer

�process� as a result of abnormal close of a communication channel �primitive event��

In this case� the management operation involves failure recovery as well as sending

an event that triggers a new �lter to further diagnose the process that closed the

connection�

� An action could generate a �summary� event which summarizes the information of

detecting a composite event �e�g�� the event expression consists of multiple events��

This enables suppressing the information of multiple events into one event �summary

event�� thereby avoiding event report implosion and reducing the event tra�c� For

example� a monitoring agent may be requested to generate a summary event that

conveys the drop rate average of a set of receivers� We will present an application

example of summary events in Section 
�

� Performing an action such as executing a program may change the state of a running

program� Therefore� sending an event that reveals the state change to the monitoring

system is important to allow re�observing the behavior� and enabling automatic ap�

plication steering� This signi�cantly important for attaining system stability during

the steering process as shown in Section 
�

��� Filter Incarnation

In addition to the manual recon�guration via dynamic users subscription described in Sec�

tion �� HiFi active monitoring also supports programmable agents that recon�gure them�

selves automatically based on events occurrences� A �lter action can be a �lter manipulation

�typically� adding a new �lter� deleting a �lter� and modifying a �lter�� Thus� for example�

another new �lter can be activated in the monitoring environment as a result of detecting

an event� We call this �lter incarnation and shown in Figure �� Filter incarnation is for�

mally de�ned in Table III of the monitoring language� Adding a new �lter means activating

a pre�de�ned �lter that has not been submitted to the system� This is speci�ed in the

monitoring language using a special reserved word �ADD� with the pre�de�ned �lter name�

On the other hand� deletion or modi�cation must be performed on an existing �lter that

consumers subscribed to� This is speci�ed using the reserved words� MOD and DEL� with an

active �lter name� When modifying an active �lter� consumers must specify which parts to

modify� event expression �EX�� �lter expression �FX�� or both� This can be designated by

	



appending the �lter name as a pre�x to EX and�or FX� The resulting EX and�or FX are the

e�ective �lter parts after the subscription is completed�

Filter incarnation enables users to de�ne �general� monitoring tasks that can be automat�

ically customized by the agents at run�time in order to track and diagnose speci�c system

behavior such as failures or performance bottlenecks� This avoids overwhelming the system

by a large number of �static� �hardwired� monitoring tasks to observe all or most system

activities� Consequently� consumers can initiate �lters that can modify �change or expand�

their monitoring scope in order to include other monitoring targets �events and processes�

whenever certain events are detected� In the following� we describe various applications of

�lter incarnation in active monitoring�

Adding�Deleting Filters for controlling monitor timing� Consumers can specify

start and end times for any given monitoring activity based on events� In other words� con�

sumers can specify to start�stop a monitoring activity when a certain event �primitive or

composite� is detected� This minimizes the monitoring overhead and produces concise event

traces� For example� assume a consumer wants to monitor the drop rate in the �receiving�

events �RecvEvent� of bar program only when the transmission rate in the �transmission�

event �TransEvent� of foo program drops below a certain threshold �STHRESHOLD�� In

this case� the consumer can specify a �lter �MonitorSender� that monitors the �transmis�

sion� events of foo which will trigger another �lter �MonitorReceiver� that monitors the

�receiving� events of bar if the transmission rate drops below the threshold� The �lters

example is shown below�

FILTER� ��TransEvent���

��TransEvent�ModuleName � �foo� � TransEvent�transrate � STHRESHOLD���

�ADD MonitorReceiver�� MonintorSender�

FILTER� ��RecvEvent���

��RecvEvent�ModuleName � �bar� � RecvEvent�droprate � RTHRESHOLD���

�FORWARD�� MonintorReceiver�

The MonitorReceiver �lter monitors �receiving� events �RecvEvent� from foo and forwards

them to consumers if their drop rate exceeds RTHRESHOLD� Similarly� theMonitorReceiver

�lter can be deactivated �deleted� based on the transrate value changes in the TransEvent�

This permits activating MonitorReceiver �lter at the proper time automatically and mini�

mizing the monitoring perturbation in the application environment�

Modifying Filters Speci�cations� Usually� monitoring tasks are static and de�ned prior

to any monitoring operation� However� using �lter incarnation� the �lter information �e�g��

�



attribute values� can be determined during the monitoring process itself based on the con�

tents of the detected events� For this purpose� the HASL provides a set of virtual registers

called �lter registers that consumers can use for loading�restoring variables in�from mon�

itoring agents� These registers are used by MAs to restore attribute values of received

events� Consumers can simply assign the attribute value of an event used in EX or FX

to a �lter register and vice versa for this purpose� For example� consumers may want to

monitor all events �trace� of the processes that have generated a security warning event

�WarningEvent�� In this case� the monitoring agents can not identify the module name

information from the monitoring request �i�e�� �lter subscription�� However� the monitoring

agents can determine the module name during the monitoring operations� This is achieved

by using the �ler registers to save and restore the event information� In the following� the

DynamicErrorTrace is a �lter speci�cation example that uses �lter registers and �lter in�

carnation to program the agent operations dynamically� In the following example� ThisMod

is a �lter register that restores the module name �ModuleName� after the occurrence of

WarningEvent of type SECURITY� Then� the �ler incarnation is used to modify the �lter

expression of TraceProcess �lter in order to monitor�trace all events from this particular

process�module only�

FILTER� �WarningEvent��

��WarningEvent�ModuleName � �ANY� �WarningEvent�Type� �SECURITY �����

�ThisMod �WarningEvent�ModuleName�

MOD TraceProcess�FX � �AnyEvent�ModuleName � ThisMod��� DynamicErrorTrace�

FILTER� �AnyEvent��

��AnyEvent�ModuleName � �ANY����

�FORWARD�� TraceProcess�

The TraceProcess is a �generic� �lter that monitors and forwards all events from all modules

to the corresponding consumers �Notice that �ANY� is a language keyword that indicates

any string value�� However� this general �lter is customize by DynamicErrorTrace �lter

in order to perform a speci�c monitoring operation� As a result� this technique enables

activating�deactivating the appropriate monitoring operations �or �lters� at the right time

�event�� and avoiding the overhead of launching multiple �lters or monitoring requests

simultaneously� It also reduces the monitoring latency since monitoring agents can be

programmed to react spontaneously without consumers intervention� Moreover� the �lter

incarnation feature provides an extendible programming environment utilizing the power of

the event��lter�action recursive model as shown in Section 
�

�



� HiFi Monitoring System Implementation

HiFi consists of four main components� Instrumentation� Subscription Service� Event Fil�

tering and Control� Figure � shows the design of the monitoring system in component level

and their interactions� Here� we provide an overview of the HiFi design components but

detailed description is presented in ��� and ����

Instrumentation Component� The process of inserting monitoring instructions inside

the code of observed programs is called the instrumentation process� The instrumentation

component utilizes the event information �HESL� supplied by the subscription component

to construct low�level event formats called Event Reporting Criteria �ERC� that contains

events information such as event location� reporting mode� event attributes� and the type of

each attribute� The ERC is then used by the Event Reporting Stub �ERS� for constructing

and reporting the event noti�cation� The ERS is a HiFi library linked with the monitored

application during compilation to facilitate event reporting� The main function of the in�

strumentation component is to facilitate the process of inserting the monitoring instruction

�sensors� inside the program code� In many monitoring systems ��	� 
��� programmers

write a considerable size of code for each generated event� This makes the instrumenta�

tion task tedious and error�prone� In HiFi� users only insert the user sense that speci�es

just the event name �e�g�� ReportEvent�WarningEvent��� The instrumentation component

then pre�processes the instrumented code and replaces user sensors with extended system

sensors that contain all events related information such as machine name� process name�

report mode and the attributes types and values� When the program starts executing� the

control is transferred to the ERS which creates �i�e�� forks� the LMA and initiates the agents

organization protocol �described in ���� in order to establish the agents� hierarchy described

in Section ��

Subscription Service Component� The monitoring subscription is the process by which

the consumers would express their monitoring demands represented in �lter programs using

HFSL� There are two major subcomponents in the subscription service� ��� Monitoring

Language Processor which is used for validating� parsing� and constructing the monitoring�

knowledge necessary for distributing events and �ltering tasks� and �
� Monitoring Informa�

tion Processor which is used for decomposing and allocating such information to generate

monitoring tasks executable by the monitoring agents� and packaging and disseminating

the produced information such as event and environment information to the agent networks

using reliable multicasting� The subscription component is also responsible for receiving

and presenting the event noti�cations forwarded from the MAs�

��



Event Filtering Component� The event �ltering component is the core component of

the monitoring system and it constitutes the internal architecture of the monitoring agents�

LMA or DMA� Its main functionality is ��� receiving and processing �ltering tasks delegated

from the subscription component after decomposition and allocation� and �
� inspecting in�

coming events based on the event attributes and the �lters information �i�e�� �lter internal

representation� to determine if this event is interesting �detected� or irrelevant �rejected� ����

This component operates on the event �ltering internal representation that represent the

monitoring information such as consumers� subscriptions and event speci�cations� The in�

ternal �ltering representation can be Direct Acyclic Graph �DAG� or Petri Nets �PN�� In

particular� because of the di�erent roles of LMA and DMA� LMAs use DAG� however�

DMAs use PN in order to keep track of the event history� In other words� each �lter is

implemented in the monitoring agents as sequence of DAG and PN nodes�

Control Component� The control component is provided to support reactive control

management applications� The main function of this component is to perform the actions

speci�ed in a �lter program� There are four types of actions supported by the monitoring

architecture� program execution� information dissemination� event generation �incarnation�

and �lter incarnation �see Table III�� As shown in Figure �� the control component has two

major subcomponents� dissemination service which uses multicasts information to the cor�

responding consumers� and action service which is used to execute local or remote programs�

send a new event and�or perform �lter incarnation �i�e�� adding� modifying or deleting an

existing �lter��

� Active Management for Steering Distributed Multi�point

Applications

The HiFi monitoring system is being used in a number of management applications such as

application steering� fault recovery and debugging of distributedmultimedia systems� In this

section� we present an example of using HiFi for monitoring and steering Reliable Multicast

Server �RMS� �
�� One of the known problems in some reliable multicasting� is the e�ect of

slow members �e�g�� machines� in group communication� A machine is described as a slow

machine if its receiving rate is �much� less than the other members in the group� In this case�

a slow machine could typically slow down the communication to the entire group because

the sender transmission rate� in RMS� eventually adapts to the rate of the slowest receiver�

Developing a solution for slow members in multicast groups is beyond the scope of this paper�

However� this application example is to show the e�ectiveness of HiFi active monitoring

approach in supporting a dynamic discovery mechanism of slow members �or machines�

��



during a multicast session� and providing an automatic feedback to the RMS senders which

make the proper steering management decision accordingly� The criteria of slow members

are de�ned based on the user speci�cations� For example� the user �or manager� may de�ne

a slow member whose performance is below a certain threshold� In our example below�

the RMS sender acts as a manager and sends the threshold information� Figure � shows

the event �HESL� and the �lter �HFSL� speci�cations used to discover slow members in

multicast groups� and Figure � shows the Petri Nets of these �lters as constructed in HiFi

agents� Each RMS receiver is instrumented using HiFi instrumentation component to send

McastRec event that contains the machine name� the domain name� the multicast group

name� total bytes received �KBrec� so far� and number of NACKs scheduled �NackSch�

which equals to the number of Nacks sent plus number of Nacks cancelled� Because of

NACK suppression mechanism ���� the number of NackSch gives more accurate estimation

of the drop rate than number of Nacks sent� The McastRec event is sent periodically based

on time limit or maximum number of bytes received� And the RMS senders send McastSend

events to indicate two things� the transmission rate �TransRate�� and the drop rate threshold

�threshold� for receivers in the group� Thus� the McastSend and McastRecieved events

convey the status of the senders and the receivers� respectively� In order to activate this

management operation at the proper time and avoid unnecessary use of resources� the

slow members discovery process should be initiated only when the sender su�ers some

performance degradation �i�e�� low transmission rate� due to the existence of slow members�

This sender is called the unhappy sender and represented with US event in Figure �� For

this reason� the TransRate �in McastSend event� is �rst checked by the MonMcastSender

�lter �T� transition in Figure �� in order to identify the unhappy senders and their group

names� and consequently activate other slow members discovery �lters that monitor the

receivers and update the threshold� If TransRate is found below the STHRESHOLD� then

the Slow Members �lter is modi�ed to get the GrpName value stored in the �lter register as

described in Section �� and both Slow Members and Update Threshold �lter are activated

�T� is �red in Figure ��� The activated Slow Members �lter compares the NackSch in

McastRec and threshold in McastSend to identify slow members� However� because the

threshold value is dynamic and may be determined from the overall performance of the

participants� another �lter �Update Threshold� is used to provide a feedback on the overall

drop rate average to senders which consequently re�adjust the threshold value accordingly�

Each LMA forwards McastSend and McastRec primitive events to its DMA that evaluates

the �lter expression upon receiving both events� The second �lter� Slow Members� waits to

receive one McastSend and McastRec events from all LMAs in the domain before the �lter

expression is evaluated� The ctr and LMAs are HiFi reserved key words and used to denote

the number of the event occurrences and the number of LMAs in the domain� respectively�

The �lter expression evaluates to true if all RMS receivers in the domain send McastRec

event from the indicated group name �GrpName� and the NackSch of one receiver or more

�




is higher than the threshold� If the �lter expression becomes true� then T
 �in Figure �� �res

and three actions are performed� ��� the average of scheduled Nacks for receivers in same

domain is calculated by CalcAVG action� which �res T� transition� �
� the DomAVG� which

represents a summary event� is sent to the containing DMA to reveal the domain average�

and ��� the McastRec event that matches the slow member criteria represented in the �lter

expression �i�e�� NackSch � threshold� is forwarded to the manager �RMS sender�� The third

�lter� Update Threshold� receives the DomAVG events from the DMAs and then calculates the

total NackSch average� updates the threshold and sends the McastSend with new threshold

to the LMAs�DMAs again� This causes T� and T� transitions to �re and an event S �in

Figure �� to be sent with the new threshold� This �lter can be a DMA task� instead of

RMS senders� However� users must provide the action UpdateThreashold to the DMA which

then can update the threshold and notify the RMS senders automatically� Since senders

or receivers could be members in various multicast groups� the group name �GrpName�

is used to limit this management activities ��lters� on the multicast groups su�ering from

slow members� In addition� another �lter can be used to de�activate Slow Members �lter

when the TransRate becomes less then STHRESHOLD� This way the slow members �lter

can activated and deactivated dynamically based on the condition of the multicast group�

So in summary� three �lters are used in this application� MonMcastSender that discovers

unhappy senders and initiate the discovery process� Slow Members that identi�es receivers

below threshold� and Update Threshold that update the threshold value continuously base

on the overall session performance�

The slow members and NackSch average information are collected from each receiver via

LMAs and then combined and propagated in hierarchical fashion via DMAs to the RMS

of the sender� This mechanism is scalable because it avoids the noti�cations implosion

that may occur when McastRec are forwarded to one RMS sender from group of receivers�

Furthermore� distributing the processing load such as calculating the average drop rate

contributes to the monitoring performance�

� Performance Evaluation

This section describes a performance evaluation study of the HiFi monitoring system� We

conducted number of benchmarking and simulation experiments to assess the application

perturbation� scalability and latency of HiFi� This section presents the numerical results as

well as the conclusions obtained from this performance study�

Application Perturbation Measurements� The application perturbation can be mea�

sured by the execution time overhead caused by the monitoring operations including the

��



ERS event reporting process� and monitoring agents �LMAs and DMAs� operations� The

�rst experiment is performed to evaluate the ERS overhead with respect to the event length�

In order to show the e�ect of EventReport�� function in ERS� used for constructing and re�

porting events� we compare its overhead with the traditional C printf�� function which is

frequently used by programmers as a simplest way for debugging and inspecting the program

state and behavior� Figure 
 shows that the overhead of EventReport�� is very comparable

with printf�� and ranges between ��� to 
�� microseconds based on the event length� This

�gure also shows that ERS overhead grows slowly �about 
� per event attribute� when the

event length is increased�

We then measured the actual overhead caused by the monitoring system including reporting

time �ERS processing�� primitive event �ltering time �LMAs Processing�� event correlation

time �DMAs Processing�� UNIX socket communication and the RMS communication� In

order to measure this experimentally� we use a �lter correlation example called HelloWorld

�lter� In this experiment� two event emulation processes called Random Event Generator

�REG� are used to generate up to ���� events randomly using Bernoulli distribution� Both

REG processes are located in di�erent hosts �Sun Sparc � running Solaris 
��� in the same

�� Mbps Ethernet LAN� At each event time� REG process may choose to generate or not

generate Hello or World events� which are � attributes long� with a probability of P � Each

REG program is connected to an LMA residing in the same machine� The DMA sends a

noti�cation message to the manager if both Hello event and World event have the same

sequence number �TStamp� but generated from two di�erent REG processes �i�e�� machines��

In these experiments� REG programs are �st run without instrumentation or monitoring�

Then programs are instrumented and run in HiFi environment to detect the event of interest�

Figure 	�A depicts the results of this experiment with various event generation probabilities

�P �� Several techniques are developed to minimize the application perturbation including

dynamic signaling and events batching� Using dynamic signaling� ERS only generates the

events which are contained in the expressions of any existing �lter� Other events which are

de�ned but not used in any �lter program are suppressed by ERS� even if they are invoked

by event producers� The event batching is a mechanism to bu�er more events before sending

them and it is used if Delayed mode is selected in HESL as described in Section 
�

To measure the e�ect of dynamic signaling� the REG programs were changed such that ���

of the generated events are �ltered out by ERS� And to measure the impact of both dynamic

signaling and event batching with maximum of � events� REG and ERS programs has been

changed to re�ect this e�ect� Figure 	�A shows a substantial improvement in reducing the

application perturbation� These experiments also show a low perturbation �gure� less than

��� when P as low as ��� which what we believe a typical program generates in distributed

environment� It is important to mention that agents communication primitives are the

primary source of overhead in the monitoring operation ����

��



Scalability Analysis� Our approach for evaluating the scalability of HiFi is by measuring

the impact of increasing the event frequency and number of event producers on the mean

response time or the monitoring latency� In this paper� we present the later case since the

results are similar� The monitoring latency is the elapsed time between the event occurrence

and the manager noti�cation� In these experiments� we developed simulation routines to

compare the Mean Response Time �MRT� ���� �monitoring latency� of hierarchical �ltering

approach with the centralized and decentralized monitoring approaches ��� �
� ��� ��� �	� ���



� 
��� The simulation routines assume that event arrivals ��� are exponentially distributed�

and the average monitoring��ltering service rate ��� of an agent is ���� events�second which

was experimentally derived from a benchmarking experiments of LMA �ltering� Therefore�

the mean response time �MRT� for the centralized architecture is as follows�

MRTcentralized � �������� � �f � N���� such that � � f � N where f is the event

frequency and N the number of event producers� In decentralized monitoring architecture�

there are two levels of processing��ltering� in the producer agent� and in the centralized

monitoring node� Thus�

MRTdecentralized � �������� � �f���� � �������� � ��f � ��� �N�����

However� in HiFi which is hierarchical �ltering�based monitoring� the latency is�

Latecnyhierarchical � EGT � LFT �
P

h��
i�� �DFTi � C� where hierarchy height� h �

dlogx�N�e such that x� branching factor and N � number of producers� The EGT and C

can be neglected since it is a comparison study� Thus� the mean response time can be

expressed as follows�

MRThierarchical � �������� � ����� � f��M�� �
P

h��
i�� �����i���� � ��f � ��� � x���i���

The �rst factor represents the LMA �ltering and the second represent the DMA �ltering�

Notice that the LMA receives only ����f of the events since ��� of such event on average are

�ltered by ERS� Since not every event is necessarily forwarded up all the way in the DMA

hierarchy� we calculate the MRT considering three di�erent probabilities for forwarding an

event� ���� ��� and ��� of the events are forwarded� We also assume that there are ��

LMAs maximum are connected to one DMA in any domain �i�e�� x � ����

The simulation results of MRT verses number of producers of three approaches are depicted

in and Figure 	�B� The event frequency �f� is considered 
� events per second� The �gure

shows the high superiority of the response time �latency� of the hierarchical architecture over

the centralized and decentralized ones� The saturation points in the �gures indicates a bu�er

over�ow and inde�nite response time since � � � in this case� The hierarchical architecture

��



with probability ��� is still superior over the other architecture because of the use of dynamic

signaling� This �gure also shows that the MRT of hierarchical architecture grow slowly

with respect of number of producers� In fact� the �jump points� in hierarchical graphs

in Figure 	�B represent creating a new level in the hierarchy to accommodate additional

producers� These �gures also show that the centralized and decentralized approaches have

a better MRT than the hierarchical approach when event frequency is low and very small

number of event producers exist in the system�

� Conclusion and Future Work

This paper describes a novel active monitoring architecture �called HiFi� for distributedmul�

timedia systems� The presented monitoring system organizes the monitoring agents in a

hierarchical structure that distributes the monitoring load and limits the event propagation�

The monitoring agents are programmable and can be recon�gured manually through users�

interactions� or automatically by the agents based on the detected events� Users utilize a

simple language interface� called �lter� to de�ne their monitoring demands and associated

actions� Users can specify �general� monitoring tasks that can be customized dynamically

by the monitoring agents in order to perform special monitoring tasks� We developed sev�

eral techniques to support a programmable agents environment for active monitoring� This

includes event incarnation to enable event��lter�action programming model� �lter incar�

nation and �lter registers to enable self�con�gurable monitoring operations� and dynamic

subscription that enables users to add� delete or modify their requests at run�time� In this

paper� we also demonstrate number of examples for using HiFi in monitoring and steering

large�scale distributed multimedia systems�

The active monitoring architecture o�ers signi�cant advantages in the scalability and per�

formance of the monitoring systems� It also enables the consumer to control the monitoring

granularity� and thereby minimizing its intrusiveness� The scalability testing results shows

an improvement of �	� and 
�� �on average� of HiFi mean response time over central�

ized and decentralized architecture� respectively� with the increase of event producers� The

primary source for these improvements is attributable to the programmable agents environ�

ment that permits distributing of monitoring load among the LMA and DMA groups and

increasing concurrency of monitoring tasks� The HiFi active architecture also enables the

localization of event �ltering and classi�cation in the area from which the events originate�

which is necessary for reducing monitoring intrusiveness� HiFi�s dynamic signaling inher�

ent with the active monitoring� and event batching techniques signi�cantly minimize the

application perturbation to about ����

Although HiFi was developed and used to monitor existing applications such as RMS� it

remains a prototype monitoring system� Many open issues remain to be addressed by our

�




research plan� These include� the integration of fault tolerance to make HiFi resilient to

network and application failures� improved �lter incarnation mechanisms to provide higher

abstraction such that users can specify the ultimate monitoring target without having to

specify intermediate monitoring tasks� and extended monitoring language and architecture

that addresses temporal events�

References

��� Ehab Al�Shaer� Hussein Abdel�Wahab� and Kurt Maly� HiFi� A New Monitoring Architecture
for Distributed System Management� In Proceedings of International Conference on Distributed
Computing Systems �ICDCS����� pages ������	� Austin� TX� May �

��

��� Ehab Al�Shaer� Hussein Abdel�Wahab� and Kurt Maly� Application�Layer Group Communica�
tion Server for Extending Reliable Multicast Protocols Services� In IEEE Int� Conference on
Network Protocols� pages �
������ Atlanta� GA� October �

��

��� Ehab Al�Shaer� Hussein Abdel�Wahab� and Kurt Maly� Dynamic Monitoring Approach for
Multi�point Multimedia Systems� International Journal of Networking and Information Sys�
tems� pages ���		� June �


�

��� Ehab Al�Shaer� Mohamed Fayad� Hussein Abdel�Wahab� and Kurt Maly� Adaptive Object�
Oriented Filtering Framework for Event Management Applications� To Appear in ACM Com�
puting Surveys�

��� S� Alexander� S� Kliger� E� Mozes� Y� Yemini� and D� Ohsie� High Speed and Robust Event
Correlation� IEEE Communication Magazine� pages �������� May �


�

�
� Mary L� Bailey� Burra Gopal� Michael A� Pagels� Larry Peterson� and Prasenjit Sarkar�
PathFinder� A Pattern�Based Packet Classi�er� In Proceedings of the �st Symposium on Oper�
ating System Design and Implementation� pages ������ USENIX Association� November �

��

��� M�C� Chan� G� Paci�ci� and R� Stadler� Managing Multimedia Network Services� Journal of
Network and Systems Management �JNSM�� ����� September �

��

�	� S� Floyd� V� Jacobson� S� McCanne� C�G� Liu� and L� Zhang� A Reliable Multicast Framework
for Light�weight Sessions and Application Level Framing� pages ������
� October �

��

�
� Stella Gatziu and Klaus R� Dittrich� Detecting Composite Events in Active Database Systems
Using Petri Nets� In Proceedings of the �th International Workshop on Research Issues in Data
Engineering� Active Database Systems� pages ��
� February �

��

���� German Goldszmidt� Shaula Yemini� and Yachiam Yemini� Network Management by Delegation
� the MAD approach� In Proceedings of the ���� CAS Conference� pages ������
� �

��

���� Object Management Group� The Common Object Request Broker� Event Service Speci�cation�
Tech� Rep� CCITT X�����ISO ���
���� �

��

���� W� Gu� G� Eisenhauer� E� Kraemer� K Schwan J� Stasko� J� Vetter� and N� Mallavarupu�
Falcon� On�line Monitoring and Steering of Large�Scale Parallel Programs� In Proceedings of
FRONTIERS��	� pages ����
� February �

��

���� R� Hofmann� R� Klar� B� Mohr� A� Quick� and M� Siegle� Distributed Performance Monitoring�
Methods� Tools and Applications� IEEE Transactions on Parallel and Distributed Systems�
��
���	���
�� June �

��

���� Raj Jain� The Arts of Computer Systems Performance Analysis� Addison�Wesley� Reading�
Massachusetts� �

��

�	



���� J� Joyce� G� Lomow� K� Slind� and Unger B� Monitoring Distributed Systems� ACM Transac�
tions on Computer Systems� ������������ �
	��

��
� S� Kaetker and K� Geihs� A Generic Model for Fault Isolation in Integrated Management
System� Journal of Network and Systems Management �JNSM�� ����� June �

��

���� K� Marzullo� R� Cooper� M� D� Wood� and K� P� Birman� Tools for distributed Application
Management� IEEE Computer� ���	�������� August �

��

��	� Charles E� McDowell and David D� Helmbold� Debugging Concurrent Programs� ACM Com�
puting Surveys� �������
��
��� December �
	
�

��
� J�V�D� Merwe� S� Rooney� I� Leslie� and S� Crosby� The tempest� A practical framework for
network programmability� IEEE Network Magazine� June �

	�

���� D� Olge� K� Schwan� and R� Snodgrass� Application�Dependent Dynamic Monitoring of Dis�
tributed Systems� IEEE Transactions on Parallel and Distributed Systems� �������
��
���
December �
	
�

���� Guru Parulkar� Douglas C� Schmidt� Eileen Kraemer� Jon Turner� and Anshul Kantawala� An
architecture for monitoring� visualization� and control and gigabit networks�� IEEE Network�
����������	� October �

��

���� Beth Schroeder� On�line Monitoring� A Tutorial� IEEE Computer� �	�����	� June �

��

���� Morris Sloman� editor� Network and Distributed System Management� Addison�Wesley� Read�
ing� Massachusetts� �

��

���� D� L� Tennenhouse� J� M� Smith� W� D� Sincoskie� D� J� Wetherall� � and G� J� Minden� A
Survey of Active Network Research� IEEE Communications Magazine� ������	��	
� Jan �

��

���� Ouri Wolfson� Soumitra Sengupta� and Yechiam Yemini� Managing Communication Networks
by Monitoring Databases� pages 
���
��� September �

��

Ehab Al�Shaer is an assistant professor of computer science and the director of the Mul�

timedia Networking Research Lab in School of Computer Science� Telecommunications and

Information Systems at DePaul University� He received an MSc in computer science from

Northeastern University� Boston� Massachusetts and a Ph�D� in computer science from Old

Dominion University in Norfolk� Virginia� in ���� and ����� respectively� He worked as a

senior networking engineer for DataGeneral and Tellabs Corporations from ���� to �����

During his research career� he was awarded �� professional certi�cates in networking tech�

nology� Al�Shaer also received a NASA fellowship in ���	� His research interests include

network and distributed systems management� reliable multicast protocols� active network�

ing and multimedia communications�

��



�Event� ��� EVENT � �Event Body� �

�Event Body� ��� �Prim Event� j �Comp Event�

�Prim Event� ��� f�Fix Att� � �Var Att�g �Event Name�

�Comp Event� ��� ��Prim Event� �Event Op� �Comp Event� � j

��Prim Event� �Event Op� �Prim Event� �

�Fix Att� ��� ModuleName � �String� �

FuncName � �String� � �Report Mode�

�Report Mode� ��� Immediate j Delayed

�Var Att� ��� �Predicate� � �Var Att� j �Predicate�

�Predicate� ��� �Att Name� �Relation� �Value�

�Event Op� ��� � j � j �

�Relation� ��� � j � j � j �� j � j �

�Value� ��� �Number� j �String�

�Event Name� ��� �Att Name� ��� �String�

Table I� High�level Event Speci�cation Language �HESL�

��



�Filter� ��� FILTER � �Filter Body�

�Filter Body� ��� ��Event Expr��� ��Filter Expr��� ��Actions���

�Filter Name� �

�Event Expr� ��� � �Event Name� �Event Op� �Event Expr� �

j �Event Name�

�Filter Expr� ��� � �Predicate� �Filter Op� �Filter Expr� �

j �Predicate� j TRUE

�Predicate� ��� � �Pred Att� �Relation� �Pred Att� �

j � �Pred Att� �Relation� �Value� �

�Pred Att� ��� �Event Name���Att Name�

�Filter Op� ��� �Event Op�

�Actions� ��� �Action� � �Actions� j �Action�

�Filter Name� ��� �Program Name� ��� �String�

Table II� High�level Filter Speci�cation Language �HFSL�


�



�Action� ��� �Exec� j �Event Name� j �Filter Rinc� j �Filter Registers� j FORWARD

�Exec� ��� �Dir Name� � �Exec� j �Program Name�

�Filter Register� ��� �Identi�er� � �Event Name���Att Name�

�Filter Registers� ��� �Filter Register� j �Filter Register���Filter Registers��

�Filter Reinc� ��� ADD �Filter Name�� �Filter Reinc� j ADD �Filter Name� j

DEL �Filter Name�� �Filter Reinc� j DEL �Filter Name� j

MOD �New Filter�� �Filter Reinc� jMOD �New Filter�

�New Filter� ��� �Filter Name��EX � �Event Expr� j �Filter Name��FX� �Filter Expr� j

�Filter Name��EX � �Event Expr�� �Filter Name��FX� �Filter Expr�

Table III� High�level Action Speci�cation Language �HASL�


�



Table I� High�level Event Speci�cation Language �HESL�

Table II� High�level Filter Speci�cation Language �HFSL�

Table III� High�level Action Speci�cation Language �HASL�

Figure �� Monitoring Mode�

Figure 
� Hierarchical Filtering�based Monitoring Architecture�

Figure �� Monitoring System Component�

Figure �� Slow Members Discovery in Reliable Multicasting�

Figure �� The PN Representation of Slow Members Discovery Filters�

Figure 
� ERS ReportEvent Perturbation�

Figure 	� A� Application Perturbation Analysis� B� Scalability with Number of Event Pro�

ducers�







R: Filter Reincarnation
S: SubscriptionDirect ActionA:Event FlowE:

Forwarding informationF:

R

Event

Action Filter

Monitoring System
Network

consumer

Manual Recovery Path

Automatic Recovery Path

producer

producer

producer
consumer/

S

producer

consumer

consumer

producer

S

E

E

E

S

F

E

A

S
A

E

Application Steering Path

Figure �� Monitoring Model�


�



DMA

DMA

DMA

DMA

LMALMA

DMA DMA

DMAroot

LMALMA

DOMAINDOMAIN
MachineMachineMachineMachine

L
M

A
G

rp
D

M
A

G
rp

M
G

R
G

rp
(E

ve
n

t 
C

on
su

m
er

s)
E

ve
n

t 
P

ro
d

u
ce

rs

DMA
Comm

Mgr Mgr Mgr

Figure 
� Hierarchical Filtering�based Monitoring Architecture�


�



Event

Filtering

Criteria

Subscr.
Criteria

Criteria

Monitored Object

Filter

Event

Event/Filter Flow
Control Monitoring process flow

Interface

Consumers

Event Receiveing & Dispatching

Filtering

Action Dissemination

ERS

Su
bs

cr
ip

tio
n 

Se
rv

ic
e

C
on

tr
ol

 
C

om
po

ne
nt

C
om

po
ne

nt

C
om

po
ne

nt

Instrumentation 
Component

(producer)

ERS

M
on

ito
rin

g 
La

ng
ua

ge
 P

ro
ce

ss
or

E
ve

nt
 F

ilt
er

in
g

Figure �� Monitoring System Components�


�



EVENT� f ModuleName�RMS	FuncName�McastSend	Immediate�

Machine��ANY�	 Domain��ANY�	 GrpName��ANY�	 TransRate�ANY	 threshold� ANY g McastSend�

EVENT� f ModuleName�RMS	FuncName�McastRecv	Immediate�

Machine��ANY�	 Domain��ANY�	 GrpName��ANY�	 KBrec� ANY	 NackSch�ANY g McastRec�

EVENT� f ModuleName�DMA	FuncName�ANY	Immediate�

Machine��ANY�	 Domain��ANY�	 KBrec� ANY	 NackSch�ANY g DomAVG�

FILTER� �McastSend��

�McastSend�T ransRate � STHRESHOLD��

�ThisGrp � GrpName�MOD Slow Memebrs�FX � �McastRec�GrpName � ThisGrp��

ADD Update Threhold��� MonMcastSender�

FILTER� ��McastSend �McastRec���

��McastRec� ctr� LMAs �McastRec�GrpName � ����� �McastRec�NackSch � McastSend�threshold���

�CalcAvg�DomAVG�FORWARD�� Slow Memebrs�

FILTER� �DomAV G��

�DomAV G� ctr � DMAs��

�UpdateThrehold� McastSend�� Update Threhold�

Figure �� Slow Members Discovery in Reliable Multicasting�







D

S

 S

_DMAs

V

R: McastRec Event

S: McastSend Event

F: Forwards Event Action

US: Unhappy Sender

U: UpdateThreshold Action

D: DomAVG Event V: CalcAvg action

R

(R.NackSch > S.threshold)

F

_LMAs

U
S.TransRate > STHRESHOLD

T1 T2

T3

T4 T5

US

(R.GrpName = ThisGrp)

Figure �� The PN Representation of Slow Members Discovery Filters�


	



4 Attributes 8 Attributes 16 Attribute 32 Attribute 64 Attribute

0

100

200

300

Debugging Techniques

Ti
me

 (M
sec

)

printf

ReportEvent

Figure 
� ERS ReportEvent Perturbation


�



0.3 0.5 0.7 0.9

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

Event Probability (x 0.1)

Pe
rtu

rb
ati

on
 (%

)

Real Perturbation

 With DS

With DS and B

With Dynamic Signalling only

With Dynamic Signalling and Batching

A�

0 50100 200 300 400 500 750 1000

100

200

300

400

500

600

700

800

900

1000

Number of Event Producers (x 100)

M
ea

n R
esp

on
se 

Ti
me

 (M
sec

)

Centralized

Decentralized

Hierarchical 0.1

Hierarchical 0.5

Hierarchical 0.9

Probability = 0.1

Probability = 0.5

Probability = 0.9

Saturation Point

Saturation Point

B�
Figure 	� A� Application Perturbation Analysis� B� Scalability with Number of Event

Producers�


�


